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The seesaw mechanism for three neutrinos is discussed, clarifying the situation where the seesaw texture
results in three approximately zero mass eigenvalues. The true underlying mechanism is shown to be just
the inverse (or linear) seesaw, which explains why there could be large mixing. However, these zeroes
cannot occur naturally, unless there is a conserved symmetry, i.e. lepton number L, either global or
gauged, which is softly or spontaneously broken at the TeV scale. We discuss in particular the case where
the three heavy singlet neutrinos have L = 3,−2,−1.

© 2009 Elsevier B.V.

In the famous canonical seesaw mechanism, the Standard Model (SM) of particle interactions is implemented with a heavy singlet
“right-handed” neutrino NR per family, so that the otherwise massless left-handed neutrino νL gets a mass from diagonalizing the 2 × 2
mass matrix spanning (ν̄L, NR ):

Mν,N =
(

0 mD

mD mN

)
, (1)

resulting in

mν � −m2
D

mN
, (2)

with mixing between νL and NR given by

tan θ � mD

mN
� √|mν/mN |. (3)

As a result, the 3 × 3 mixing matrix linking the 3 light neutrinos to the 3 charged leptons cannot be exactly unitary. However, for
mν ∼ 1 eV and mN ∼ 1 TeV, this violation of unitarity is of order 10−6, which is much too small to be observed.

Suppose the 6 × 6 mass matrix spanning ν1,2,3 and N1,2,3 has three zero mass eigenvalues, without requiring mD = 0 identically [1],
then it has been pointed out that the addition of small perturbations to this texture will result in acceptably small neutrino masses as
well as possible large mixing [2–5] between ν1,2,3 and N1,2,3, in contrast to the case of only one family. It this Letter, we will discuss
what this really means, and show that the underlying mechanism for the origin of this large mixing is just the inverse seesaw [6–8] with
a conserved symmetry, i.e. lepton number L, which may be global (and softly or spontaneously broken) or gauged (and spontaneously
broken). We will implement this idea with a specific model with L = 3,−2,−1 for N1,2,3.

For simplicity, consider first two families. It has been argued that large mixing between (ν1, ν2) and (N1, N2) may occur if the Dirac
mass matrix linking them is of the form

M D =
(

a1b1 a1b2
a2b1 a2b2

)
, (4)

in the basis where
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MN =
(

M ′
1 0

0 M ′
2

)
. (5)

In that case, the arbitrary imposed condition

b2
1

M ′
1

+ b2
2

M ′
2

= 0 (6)

renders all two light neutrinos massless, without requiring M D = 0. To understand what this really means, first note that the determinant
of M D is zero, hence there is only one nonzero eigenvalue. Then consider the most general 4 × 4 mass matrix spanning (ν1, ν2, N1, N2)

in the basis where M D is diagonal, i.e.

Mν,N =
⎛
⎜⎝

0 0 m1 0
0 0 0 m2

m1 0 M1 M3
0 m2 M3 M2

⎞
⎟⎠ . (7)

Changing to this basis does not say anything about the basis of the charged-lepton mass matrix which is still arbitrary. Neither approach
has fixed it to be diagonal. Rotating the nondiagonal M D of Eq. (4) on the left with tan θL = a1/a2 by the matrix

U †
L =

(
cos θL − sin θL

sin θL cos θL

)
, (8)

and on the right with tan θR = b1/b2 by the matrix

U R =
(

cos θR sin θR

− sin θR cos θR

)
, (9)

the texture hypothesis is equivalent to setting

m1 = 0, m2 =
√

a2
1 + a2

2

√
b2

1 + b2
2, (10)

M1 = cos2 θR M ′
1 + sin2 θR M ′

2 = 0, (11)

M2 = sin2 θR M ′
1 + cos2 θR M ′

2 = (
1 − tan2 θR

)
M ′

2, (12)

M3 = sin θR cos θR
(
M ′

1 − M ′
2

) = − tan θR M ′
2. (13)

It is then clear that ν1 and the linear combination ν ′
2 = (M3ν2 − m2N1)/

√
M2

3 + m2
2 are massless. Once small perturbations are added, i.e.

0 �= m1 � m2 and 0 �= M1 � M2,3, ν ′
2 gets a small mass proportional to M1 given by (m2

2/M2
3)M1 through the inverse seesaw, and the

possibly large ν2–N1 mixing remains. The complete reduced 2 × 2 mass matrix spanning ν1 and ν ′
2 is given by

Mν �
(

m2
1M2/M2

3 −m1m2/M3

−m1m2/M3 m2
2M1/M2

3

)
. (14)

Since M2 ∼ M3 in this hypothesis, the (1,1) entry is a canonical seesaw, whereas the (2,2) entry is an inverse seesaw. The (1,2) or (2,1)
entry is known as the linear seesaw [9], but it is equivalent to the inverse seesaw, as explained in Ref. [10]. Note first that if m1 = 0, then
only ν ′

2 gets a small mass (because M1 is small) through the inverse seesaw. If M1 = 0, then since m1M2/M3 � m2 is assumed in such a
texture scenario, the two neutrinos are pseudo-Dirac partners and are nearly degenerate in mass. If m1 �= 0 and M1 �= 0, then it is possible
to have a solution where the (1,1) entry is negligible and the other entries are comparable.

It has been argued that such a texture (resulting in two massless fermions, i.e. ν1 and ν ′
2) is protected by chiral symmetry. Whereas

this may be correct for ν1, it is obviously not true for ν ′
2 because ν2 couples to N2, and N2 has a nonzero Majorana mass, i.e. M2. The

one-loop diagram connecting ν2 to itself through N2 and the SM Higgs boson is infinite and there is no corresponding diagram from N1
to cancel it. Thus the Majorana mass of ν ′

2 has an infinite correction and cannot be zero naturally. The texture idea alone has no support
in terms of a symmetry.

On the other hand, if M2 = 0, then a conserved lepton number L can be defined, with L = 1 for N1 and L = −1 for N2. If small M1,2
and m1 are now added, thus breaking L to (−1)L , Eq. (14) will be obtained with a very small (1,1) entry. The difference between the
texture hypothesis and that supported by lepton number is thus M2. It is nonzero in the former but zero in the latter. The infinite diagram
for the correction to the zero mass of ν ′

2 in the former is absent in the latter, precisely because M2 = 0.
To maintain Eq. (7) with m1 = M1 = 0 and M2 ∼ M3, the lepton-number global symmetry has to be redefined, with for example

L = 3,−1 for N1,2. In that case, the addition of the standard Higgs doublet Φ1 = (φ+
1 , φ0

1) with L = 0 will link ν2 with N2 to obtain m2,

whereas a Higgs singlet χ2 with L = 2 will supply N2 with the Majorana mass M2, and its complex conjugate χ
†
2 will link N1 with N2

to obtain M3. The absence of a Higgs singlet with L = 6 will forbid a Majorana mass M1 for N1 at tree level, but it will be induced by
the mass splitting of Re(χ2) and Im(χ2) in one loop after the breaking of U (1)L , as shown in Fig. 1. This diagram is finite because of
the cancellation between Re(χ2) and Im(χ2). If U (1)L is spontaneously broken, then Im(χ2) is a massless Goldstone boson, resulting in a
majoron which is dominated by Im(χ2) but also picks up a small doublet component. If U (1)L is explicitly broken but only softly, with
the addition of the term μ2χ2 + H.c. for example, then Im(χ2) is massive.
2
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Fig. 1. One-loop generation of M1.

Consider now the most general 6 × 6 mass matrix spanning (ν1,2,3, N1,2,3):

Mν,N =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 m1 0 0
0 0 0 0 m2 0
0 0 0 0 0 m3

m1 0 0 M1 M4 M5
0 m2 0 M4 M2 M6
0 0 m3 M5 M6 M3

⎞
⎟⎟⎟⎟⎟⎠

. (15)

The texture hypothesis is equivalent to m1 = m2 = 0 and M1 = M4 = 0. Again it is clear that there could be large mixing between
ν3 and N1, but there is no symmetry which enforces it. Consider now lepton number with L = 1 for N1,2 and L = −1 for N3, then

M1 = M2 = M3 = M4 = 0 and the linear combination (M6N1 − M5N2)/

√
M2

5 + M2
6 is massless. Once small perturbations are added, this

becomes a scenario for four light neutrinos (three active and one sterile). Suppose N1 has L = 1, N2 has L = 0, N3 has L = −1, then
M1 = M3 = M4 = M6 = 0. In this case, N2 has mass M2, and there are exactly three massless neutrinos.

To maintain the seesaw texture m1,2 = 0, m3 �= 0, M1,4 = 0, and M2,3,5,6 �= 0, the lepton-number global symmetry must again be
redefined. Let ν1,2,3 have L = 1 as usual, and N1,2,3 have L = 3,−2,−1 respectively. Let there again be a Higgs doublet Φ1 with L = 0 and

now three Higgs singlets χ2,3,4 with L = 2,3,4. Then M3 comes from 〈χ2〉, M5 from 〈χ †
2〉, M6 from 〈χ3〉, and M2 from 〈χ4〉. The three

massless eigenstates are

ν1, ν2, ν
′
3 = M5ν3 − m3N1√

M2
5 + m2

3

, (16)

showing explicitly how ν3 − N1 mixing can be large even if all neutrinos are massless. The analog of Fig. 1 now applies to M1 and M4,
both of which obtain one-loop finite masses, resulting in an inverse seesaw mass for ν ′

3, i.e. M1m2
3/M2

5. As for ν1,2 masses, we need extra
Higgs doublets. Consider the minimal case of a second Higgs doublet Φ2 = (φ+

2 , φ0
2) with L = 1. It couples ν1,2,3 to N2. By redefining

ν1,2, we consider only the couplings to ν2,3, resulting in the masses m22 and m32. Thus ν1 remains massless and the reduced 2 × 2 mass
matrix spanning ν2 and ν ′

3 is given by

( −m2
22/M2 −(m22/M2)[m32 + m3(M1M6 − M4M5)/M2

5]
−(m22/M2)[m32 + m3(M1M6 − M4M5)/M2

5] M1m2
3/M2

5

)
. (17)

In the above, let m22 ∼ m32 ∼ M1 ∼ M4 ∼ 1 MeV, m3 ∼ 1 GeV, and M2 ∼ M3 ∼ M5 ∼ M6 ∼ 1 TeV, then all entries are of order 1 eV, and
suitable for a realistic neutrino mass matrix, allowing for both normal and inverse hierarchies.

Another minimal case is to add a second Higgs doublet Φ2 = (φ+
2 , φ0

2) with L = −4 instead. Now we have m21 and m31 instead, and
the reduced 2 × 2 mass matrix Mν spanning ν2 and ν ′

3 is given by

(−m2
21(M2

6 − M2M3)/M2M2
5 −m21m3/M5

−m21m3/M5 M1m2
3/M2

5 − 2m31m3/M5

)
. (18)

This structure is different from Eq. (17) but similar to Eq. (14). The off-diagonal entries could be much bigger than the diagonal ones (if
m31 � m21), thereby allowing for two nearly degenerate neutrino masses, which is perfect for understanding an inverse hierarchy, where
the mass splitting responsible for solar neutrino oscillations is small compared to the neutrino masses themselves. On the other hand,
if m21 � m31, normal hierarchy is also possible. Once ν2,3 are massive, ν1 will acquire a nonzero mass through the exchange of two W
bosons [11], but this contribution is negligible.

Consider now the Higgs potential of Φ1,2 (with L = −4 for Φ2) and χ2,3,4, invariant under U (1)L :

V =
∑

i=1,2

μ2
i Φ

†
i Φi +

∑
i=2,3,4

m2
i χ

†
i χi + 1

2

∑
i, j=1,2

λi j
(
Φ

†
i Φi

)(
Φ

†
jΦ j

) + λ′
12

(
Φ

†
1Φ2

)(
Φ

†
2Φ1

) + 1

2

∑
i, j=2,3,4

f i j
(
χ

†
i χi

)(
χ

†
j χ j

)

+
∑

i=1,2, j=2,3,4

hij
(
Φ

†
i Φi

)(
χ

†
j χ j

) + [
μ124Φ

†
1Φ2χ4 + m224χ

2
2 χ

†
4 + h122Φ

†
1Φ2χ

2
2 + f234χ

†
2χ

2
3 χ

†
4 + H.c.

]
. (19)

To have 〈φ0
2〉 � 〈φ0

1〉, the couplings μ124 and h122 must be chosen to be very small, and μ2
2 positive and large [12]. It may be argued that

μ124 and h122 are naturally small because if they were zero, then V would have an extra global U (1) symmetry, in addition to U (1)L . As
it is, there is no extra global U (1), but the spontaneous breaking of U (1)L does result in a massless Goldstone boson, the singlet–doublet
majoron mentioned already. To avoid this complication, soft explicit U (1)L breaking terms, such as μ2 Φ

†
Φ2 + H.c., could be added. If
12 1
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L = 1 is chosen for Φ2, then the μ124 and h122 terms of Eq. (19) are replaced by h1223Φ
†
1Φ2χ2χ

†
3 + h1234Φ

†
1Φ2χ3χ

†
4 + H.c. and everything

works just as well.
Lepton number may also be considered as a discrete symmetry, in which case Z7 works for the case L = −4 (which is equivalent to

L = 3) for Φ2. Now χ3 is equivalent to χ
†
4 and should be eliminated. The new term χ2χ

3
4 would now appear, by which the massless

majoron is eliminated.
An alternative is to gauge the global U (1)L symmetry, using either U (1)B−L or U (1)χ from the decomposition of SO(10) → SU(5) ×

U (1)χ , where Q χ = 5(B − L) − 4Y . The same seesaw texture may be maintained using exactly the same lepton number assignments.
[However, the N singlets with unconventional lepton numbers are not part of the 16 of SO(10). They may come from a group larger than
SO(10) such as E6 or larger representations of SO(10).] The difference is that there can be no soft symmetry breaking terms and the extra
anomalies generated by N1,2 should be offset, for example, by three pairs of singlets with L = 1,−2, belonging to a separate (odd Z2)
sector.

Consider now specifically U (1)χ [13]. Since Φ2 has nonzero Q χ , its vacuum expectation value 〈φ0
2〉 contributes to Z − Z ′

χ mixing

which is known to be very small [14]. This fits perfectly into our scenario because m22, m32 and m21, m31 are also proportional to 〈φ0
2〉,

and have been chosen to be small for neutrino masses. Constraints on Z ′
χ then come mainly from its direct search at the Tevatron and the

anomalous g − 2 value of the muon. The present best direct lower limit for the mass M Z ′
χ

is 822 GeV [15]. Using this bound, the muon
g − 2 constraint is easily satisfied as well.

If M Z ′
χ

is not too much larger than the present lower limit, it can be produced at the Large Hadron Collider (LHC), due to start taking

data soon this year. Since Z ′
χ couples to SM particles with different U (1)χ charges: 1, −1 and 3 for left-handed quark doublets, right-

handed up and down quark singlets; −3 and −1 for left-handed and right-handed charged leptons, the forward-backward asymmetries in
bb̄ and charged lepton-pair production will deviate from pure Z exchange. This may provide a signal of new physics beyond the SM.

The Z ′
χ boson can also decay into final states containing the heavy singlet neutrinos. If M Z ′

χ
> 2mN , then Z ′

χ will decay into N N̄ with

subsequent decays N → l−W + , ν Z and N̄ → l+W − , ν̄ Z , etc. Depending on which N is the lightest and which ones are produced, the
signature may be different. If N is Majorana, which is possible for N2, then the final decay products of Z ′

χ can have both e±e∓W ∓W ±
and e±e±W ∓W ∓ . If N is from one of the linear combinations of N1,3, and M3 is much smaller than M5, the mass eigenstate can be a
Dirac particle paired from N1 and Nc

3. If so, then the final product will have just l±l∓W ∓W ± . If the mass eigenstates have large Majorana
components, i.e. M3 ∼ M5, the final products also have significant l±l±W ∓W ∓ event rates.

There is another potentially large decay channel involving a single heavy neutrino, i.e. Z ′
χ → νN , because large mixing between light

and heavy neutrinos is possible. This will be the dominant channel producing heavy neutrinos from Z ′
χ decay for M Z ′

χ
in the range

mN < M Z ′
χ

< 2mN .

It is obvious that the best way to verify the seesaw mechanism is to produce the heavy singlet neutrinos. The presence of Z ′
χ allows

for this to happen much more easily than in models without it. In the latter type of models, the production of N is through the single
production channel, qq̄ → Z → νN and qq̄′ → W → lN with the subsequent decay of N into lW . This mechanism is not completely
negligible because the texture hypothesis allows for large mixing between light and heavy neutrinos. It has been shown [16] that mN up
to a hundred GeV may be probed at the LHC. The detection of such a single N can provide useful information on the texture hypothesis
discussed in this work. By looking at the decaying vertex of N , one can also estimate the size of mixing between light and heavy neutrinos.
In the canonical seesaw case, mixing of order (mν/mN)1/2 leads to a very small decay width for N . Although it is not stable enough to
escape the detector, it will produce a displaced vertex. This will not be the case for the large mixing being considered here.

With Z ′
χ , it is possible to produce N in pairs through, qq̄ → Z ′ → N N̄ , if kinematically allowed. The final states to be analyzed are

l±l∓W ±W ∓ and l±l±W ∓W ∓ . The situation is similar to that of the Type III seesaw model [17] where the charged partner E± of the
neutral heavy neutrino in the SU(2)L triplet is analyzed using qq̄ → Z → E+E− with E subsequently decaying into l Z [18]. There mE up to
a TeV can be probed. In this model, however, the cross section will be smaller because the heavier Z ′

χ is mediating the interaction, except
of course if the production is at the Z ′

χ resonance, which is the main advantage of having U (1)χ . A possible scenario is thus the discovery
of Z ′

χ at the LHC and from a detailed study of its decay products, the heavy neutrino states are also discovered with the information
necessary to reconstruct the appropriate seesaw texture.

To conclude, we have studied the seesaw mechanism for three neutrinos, clarifying the situation where the texture of the 6 × 6
mass matrix results in three approximately zero mass eigenvalues. The true underlying mechanism is shown to be just the inverse (or
linear) seesaw, which explains why there could be large mixing. However, these zeroes cannot occur naturally, unless there is a conserved
symmetry, i.e. lepton number L, either global, discrete or gauged, which is softly or spontaneously broken at the TeV scale. We discuss in
particular a case where the heavy singlet neutrinos have L = 3,−2,−1. To support the texture hypothesis, Higgs singlets must be added,
and the zeros of the 3 × 3 mass matrix of the heavy singlet neutrinos at tree level are shown to be nonzero in one loop. The lepton
symmetry may also be gauged, thereby predicting a Z ′ boson which would facilitate the discovery of the heavy singlet neutrinos at the
LHC.
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