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3. Concluding Remarks 
We have considered a positive dynamic system with linear structure and 

discrete time which is observable, and have obtained necessary conditions 
and/or sufficient conditions for the nonnegativity of the initial state. Also, we 
assume a single input and a single output. The study of observability in 
positive systems with these assumptions relaxed is an open problem and 
worthy of attention. 
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LINEAR MODELS AND PROGRAMS FOR THE 
OPTIMIZATION OF THE MECHANICS OF ASSISTED BREATHING 

by MARCEL STAROSWIECKI,% PIERRE VANPEENE,34 and MARIE 
CHRISTINE CHAMBRIN35 

1. Introduction 
This study takes place in a biomedical context. A much discussed problem 

in mechanical ventilation is that of modifying the inspiratory flow pattern. 
Most of the existing breathing machines operate by blowing a constant, 
increasing, or decreasing output. No reference exists in order to justify the 
use of such a blowing curve during the inspiration cycle. The blowing output 
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value can only be modified via manual intervention. The chest-lung system is 
characterized by two interacting parts: the first is purely mechanical, while 
the second is concerned with the gas exchanges between air and blood. We 
only treat here the mechanical part of the problem. The work which is 
reported here is mainly concerned with the study of the effect of the pattern 
of air flow on the mechanical characteristics of the lung. This theoretical 
study, using a linear bicompartmental model (RC) and linear programs, 
attempts to determine the inspiratory flow pattern optimizing the peak 
airway pressure. 

2. The Mechanical Model 
For an intubated patient, the mechanical parts of the chest-lung system 

perform as two associated models. The first model is a nonlinear one [l] and 
represents the upper airways (endotracheal tube and equipment). To describe 
the dynamic behavior of the lower airways (bronchi and alveoli) we use a 
parallel linear model with two resistor-capacitor compartments [2]. Each lung 
i is represented by a compartment i, with resistance Ri and capacitance C, 
(or elastance Ei = l/Ci). The model can be described via the following 
discrete-time equations: 

X(n+l)=AX(n)+Bu(n) 

[volumes of both compartments 1 and 2 at time (n t 

y(n)=CrX(n)+Du(n) 

(pressure at time nT), where 
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7i = Ri/Ei represents the time constant of the compartment i, and 7 = 
(R, + R,)/(E, + E,) represents the time constant of the system. 

3. The Problem of Linear Optimization 

The predominant mechanical criterion is barotraumatic aggression, that 
is, the maximum pressure level reached in the lungs. The predominant 
constraint is the passage of a tidal volume V, during the inspiration period. 
Our objective is to minimize barotraumatic aggression at the level of the 
lower airways; this minimisation is carried out under various constraints. The 
duration of inspiration [0, I] is divided into N elementary periods T. We 
denote by X(0) the initial state of the system and by y’(n) the maximum 
pressure. We seek the elementary flows u(n), n E [0, N - 11, which are 
solutions of the following linear optimization problem of type n: 

n-1 

n$ y+(n)=CTA”X(0)+ c CTAkBu(u-1-k)+Du(n) 
k=O 

under the following constraints: 

(A) The passage of a tidal volume V,: 

N-l 

V,=T c u(n). 
n=O 

(B) The equations of the system: 

X(n+l)=AX(n)+Bu(n), no [O,N-l]. 

(C) The limitation of the average pressure: 

(D) The limitation of the air flows and volumes: 

u(N) = u(N-1) and Umindu(n)<U,,,., n~[0,N-11, 

Ximin G xi(n) d Xima, i E [1,21, nE [O,N]. 
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4. Solution 
The maximal pressure may occur at any point during the inspiration 

period. The problem is solved by treating N + 1 linear programs (LP) of type 
n, by supposing each time that one type of pressure is greater than the 
others: 

LP(p): min y’(p) under the constraints (A), (B), (C), (D), and y(n) G 

Y(P), ~ E LO, v - {PI. 

Each problem LP(p) is solved, and we obtain N + 1 solutions. The optimal 
solution is the most favorable solution. 

5. Example 
Model for obstructed lungs: 

R,=30, R, = 20 (cm H,O)(sec)/liter, 

E, = 20, E, = 30 (cm H,O)/liter; 

N=5, tidal volume Vr = 0.81, FL = 11 cm H,O. 

Reference: Constant air flow; {u(n) = 0.4, n E [0,4]}; 

y+(5) = 15.09 cm H,O, y = 10.03 cm H,O. 

Solutions: 

LP(O,1,2,4): No solution. 
LP(3): Optimized air flow; {u*(n), n E [0,4]} = {0.39;0.3;0.3;0.7;0.3}; 

y+(3) = 13.90 cm HaO, y = 0.65 cm HsO. 

LP(5): Optimized air flow; { u*(n), n E [0,4]} = (0.8; 0.3; 0.3; 0.3; 0.3); 

y+(5) = 13.78 cm HsO, y = 10.66 cm H,O. 

Optimal solution: solution of LP(5). 
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REGULAR MATRIX POLYNOMIALS WITH GIVEN SPECTRAL DATA 

by EIVIND STENSHOLT36 

1. The algorithm 
The n X n matrix polynomials of degree < p over a field K form a 

(p = l)n2-dimensional vector space V,, p. The notation will be as follows: 

a(X) = i aiAP-’ E Vn,p. 
i=O 

(1) 

Instead of formal derivatives, it is easier to work with some closely related 
matrix polynomials: 

alkl(h)=p~k(plii).aih~-k~i, (2) 
i=O 

Multiplication by k! in (2) yields the kth derivative of a( A). 
We let m > 0 and w E K be arbitrary, and consider the block triangular 

m X m matrices 

Kt(m,a(h),w) = 

44 0 0 

a”](w) a(4 0 

aL21( u) a[‘l(w) a(a) 

acm-ll( 0) aA arme31( w) 

. . 0 

. . . 0 

. . . 0 

. . . 44 

These matrices are important because they combine two properties: Firstly, 
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