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ABSTRACT 

Given an arbitrary totally ordered set I, we distinguish three types of sequences 
A = (uJi Er c R “, called LI-, H-, and T-sequences according as det[a,,, uiZ, . . . , q] is 
non-zero for some ii < is < . * * < in, is non-zero for all i, < i2 < . . . < i,, and is of 
constant non-zero sign for all i, < i, < . . . < i,. In this paper we show that if r is of 

finite cardinality, then the inhomogeneous system of linear inequalities 

(“iYx>=ai, i E T\B (a), 

sgn(u,,x)=sgnai, iEB(a), 

is solvable for all saturated a i (a.). ,,Er~R1withS+(a)<n-liffAisaT-sequence. 
Here saturated means that there is a unique way of replacing the zeros of a by + 1 
and - 1, in order to reach S’(a). B( a is the union of those “intervals” of I of ) 
maximal cardinality > 2 (called blocks), on which a has a constant non-zero sign. 

1. INTRODUCTION 

Let r be an arbitrary totally (linearly) ordered set with < as order 
relation. We shall use < for real numbers as well; the meaning will be clear 
from the context. r will be used as an “index set” of sequences. Denote by 

A ’ ('i)ier and (Y A (aJiEr 

a sequence of vectors ai = (au, uai,. . . , a,,) E R n and real numbers ai E R ‘, 
i E r, respectively. For p < co, we write (i&‘= 1 for a subsequence 

(in&,..., $)Crwithi,<i,<... <iP. 
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Assume that )I] > n > 1, where II\ is the cardinality of P, and for 
(i&=i~I denote 

ali, alie . . . Uli, 

A a2il 

a(i,,i, ,..., in) = det , 
aJiz . . . a2i, 

. . * 

a,, ani . . * 1 2 ani, 
A 

The sequence A is called a 

linearly independent (LI) sequence in R” if 

a(i,,i,,...,i,)#O for some ( ik)z= 1 c r, 

Haar (H) sequence in R” if 

a(i,,i,,...,i,)#O for all (ik);_lcr, 

Chebyshev (T) sequence in R n if 

sgna(i,,i,,...,i,)=const#O for all (i,);_,cr. 

Then the following statements trivially hold: 

(a) A is an LI-sequence iff there is an (i&= 1 c I? such that the system of 
equations 

(a,;,x) i i uiitxi= cYik’ k=1,2 ,..., n, 
i=l 

is uniquely solvable for all (Y. 
(b) A is an H-sequence iff the system (2) is uniquely solvable for all 

(i&_icr and all (Y. 
(c) If A is a T-sequence then the system (2) is uniquely solvable for all 

(i&i CT and all cy. 

The unique solvability of (2) f or all (ik)iZl c I and all (Y characterizes 
H-sequences but not T-sequences. Property (b) is sometimes called the 
“universal interpolation property” of the sequence A. 
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The purpose of this paper is to introduce an “extended interpolation 
property” and show that this property characterizes T-sequences (in case 

III < co). 
For the formulation of our theorem we recall the following well-known 

concept (see [4], [5], and [3] for its generalization). For a finite sequence 

Pi>&.**, &, of real numbers we denote by S ‘( pi, &. . . , &,) the maximal 
number of sign changes in the sequence, where the zeros are given arbitrary 
non-zero signs. For example, S +(O, 0, + 1, - 2, -3,O, + 4) = 4. 

Define 

s+ (a) 2 sups+ (cri,‘CXyiZ ,*.*, C$), 

where the supremum is taken over all positive integers p and all (i&f= 1 Cr. 
In the sequel we shall use the notation 

Z,(a) i {iEr:ai=O}, I+ ca) 2 phi>O), z_ (a)={imai<oj. 

Two sequences ~~=(a~)~~r, ,8=(Pi)iEr are considered different iff (Y~ # pi for 
some i ET. 

Suppose now that ]I( < co, say 

r i (12 ,..., m). 

Then S+(cw)=S+(ai,as,..., LX,), and in general there are many different 
“fillings” of the zeros of (Y by numbers + 1 and - 1 to reach S ‘(a). More 
precisely, there are many different sequences /I = ( PI, &, . . . , /I,,,) such that 

for i E I+ (a) U I_ (a), 

for iEZ,(a). (3) 

DEFINITION 1. The sequence (Y is said to be saturated if there is only one 
/I for which (3) holds. 

We also need the following simple concept: 

The set of integers 

will be called a block of cx if i < k, sgncri = e #O for i E J, sgn aj_ 1 # c (if i > l), 
and sgnak+i#e (if k<m). 
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I.e., a block is an interval of maximal “length” (> 2) on which (Y has constant 
non-zero sign. 

The union of all blocks of a will be denoted by B (a). 

Now, our theorem is the following [here l? f (1,2,. . . ,m)]: 

THEOREM. Let 

A f (a,,~, ,...,u,)cR”, 2&n+l<m<co, 

be a sequence of vectors 0 # ai E R n (i = 1,2,. . . , m). A is a T-sequence iff 

the system 

(ai, X> = (yi* iEr\B (a), 

(4 
sgn(ai,x)=sgnai, iEB(a), 

is consastent for all saturated sequences of real numbers (Y = (aI, as,. . . , a,) 
for which S ‘(a) < n - 1. 

Using this theorem we can prove an analogous result for an arbitrary 
non-finite I, but it still remains essentially a finite statement (see [9] and the 
remarks in Sec. 5). 

Obviously our theorem is meaningful only when there are T-sequences at 
all. The classical example for a T-sequence is the sequence 

a,f (1,t,t2 ,..., W)ER”, tErcR’. 

More generally, any linearly independent system [or Haar system or 
Chebyshev system] { u, (i)}i= 1, i E I, of real valued functions defined on an 
arbitrary totally ordered set I determines an LI- [or H- or T-1 sequence by 

2ii A (Ul(i),U2(i).....U,(i))ER”, iEr. 

This “sequence” I& is usually called the moment curve of the system. Now 
each x E R n defines a function u(i) = ($,x), i E I’, called the generalized 
(g-) polynomial of the system. In this terminology (2) expresses a well-known 
fact about the interpolation properties of g-polynomials of an H- [or T- or 
LI-] system. On the other hand there are also well-known theorems on the 
existence of g-polynomials of a T-system having prescribed zeros and sign 
change properties. The condition (4) is a kind of “extended interpolation 
property” for g-polynomials. 
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It is obvious that an LI- [H-, T-1 sequence (uJiEr L R n defines an LI- 
[H-, T-1 system on P by 

z&(i) A c&i, iEl?, k=l,2 ,..., n. 

Thus we could have formulated our theorem equivalently in terms of 
T-systems and g-polynomials. We have chosen rather the terminology of 
T-sequences because this shows more clearly that any statement about the 
existence of g-polynomials is a consistency statement for (finite or infinite) 
systems of linear inequalities. In this connection the methods of convex 
analysis can be applied (see, e.g., Rockafellar [2]). In fact, it is the well- 
known theorem of Helly on the intersection of convex sets in R” which 
(together with some purely combinatorial considerations) lies in the core of 
our proof (for the Helly’s theorem see, e.g., Valentine [l]). 

We divide our material into four sections. Section 2 contains a survey of 
some known results about the existence of g-polynomials (of T-systems) with 
prescribed zeros and signs, formulated in our terminology of T-sequences. In 
Sec. 3 we deal with some combinatorial properties of finite sequences of 
numbers 0, + 1, and - 1. In Sec. 4 the proof of our theorem is given. Section 
5 contains some concluding remarks. 

For the basic properties of T-systems and g-polynomials see the book of 
Karlin and Studden [3], or a newer book of Krein and Nudelman [7]. 

2. SOME PRELIMINARY RESULTS 

Here P, A, and OL are, as in Sec. 1, an arbitrary totally ordered set, a 
sequence of vectors 

A 5 (c&&R”, 

and a sequence of real numbers 

a 5 (a&.cR1. 

Assume in this section that IF] > n + 1 > 2, and A is an arbitrary T-sequence 
in R”. 

It can be shown easily (see [3]) that using the notation 
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we have 

S+(p,)Oz-l for all B#xER”. (5) 

This relation suggests that if we try to characterize those sequences (Y for 
which the homogeneous system 

sgn(ai,:t> =sgiifli, i E P. (6) 

is consistent for (as large as possible) P CT, then, probably, we have to 
assume that S ‘(a) < n - 1. Indeed, for a wide class of I and A the following 
statement has been proved: 

ZfS’(cx)<n- 1, then (6) is consistent for some P cI’, where P depends 
on r and A but, in general, does not depend on a. 

For example, a classical result of Krein [6, 71 (in its modified form due to 
Karlin and Studden [3]) states: 

Let 

I’4 [a,b]cRl, -co<a<b<+co, 

a, f (ui(i),us(i) ,..., u,(i))ER”, iElY, 

where {qJnk,lcC([a,bl) is a (continuous) T-system and a~ C([a,b]). Zf 
S ‘(a) < n - 1, then (6) is consistent for P= (a, b). Here C (I?) denotes the set 
of real valued functions continuous on IY (if r has some topology). 

Another well-known result is due to Krein and Rehtman [5] (see also [3] 
or [7]): 

Let 

- 
where K is the set of non-negative integers. Let { u~}~,~c C(K) be a 
T-system, 

a, i (ul(i),u2(i),...,u,,(i))ER”, iEI, 

andaEC(Z?J. Zfq>/Of or all i ET, and S ‘(a) < n - 1, then (6) is consistent 
for P=r=K. 
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Karlin and Studden [3] gave a more general (but weaker) statement: 

Let 

r 4 K, &z(K), and aiER”, iEr, 

be the same as in the previous statement. Zf S ‘(a) < n - 1, then there is a 
6’ # x E R n such that (a,, x)ai > 0 for all i E I. 

This result has been sharpened recently by Tihanyi and Uhrin [B], who 
proved: 

Let 

r f K, ~EC(K) and a,ER”,iEr, 

be as previously. Zf S ‘( ) < a Y n - 1, then (6) is consistent for P= K (see ako 
Uhrin [9]). 

The latter result followed, by standard constructions, from the following 
finite 

PROPOSITION (see [B], [9]). Let 2 < n + 1 < ]I’] < + co, 

be a T-sequence in R”, and 

1y b (ai)iEr~ R ‘. 

Zf S ‘(a) < n - 1, then (6) is consistent for P= r. 

Our Theorem shows that in the finite case A is a T-sequence iff the 
system (4) is consistent for all (Y in a particular subclass of the cw-fulfilling 
S+(a)<n-1. 

3. FINITE SEQUENCES OF NUMBERS 0, + 1, AND - 1 

In this section 

r k (1,2 ,..., WI), m<+oo, 

and w=(w1,w2,..., w,) is a sequence of numbers 0, + 1, and - 1. 
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DEFINITION 2. i E F is a O-multiple zero of w of type 1 or 2, if i + 1 E F 
and w,q + r < 0 or wi wi + r > 0, respectively. 

DEFINITION 3. i E F is a k-multiple zero of w of type 1 or 2 (for k > l), if 
i-l,i+kEr, w~=w~+~=*.. =w~+~._~=O, and w~__~w~+~<O or w~_.~w~+~ 
> 0, respectively. 

Denote by Zl(w) (k > 0, i = 1,2) the set of k-multiple zeros of w of type j. 
Easy considerations show that the numbers Iq(w)l, \Zf(w)l, and S’(w)= 
S +(wrWa>..., w,) are related through the following identity (see [9], [lo]): 

(7) 

((H 1 stands for the cardinality of the set H.) 
Assume that w has r(w) blocks (see Sec. l), r(w) > 0, and denote its 

blocks by B,(w), B,( w), . . . , B,,,,(w). Further denote 

B(w): IJ Bk(w) (ifr(w)=O,thentakeB(w)=a). 
k-l 

Clearly we have 

which implies 

B(w)= U {i,i+l}, 
iEZZ(W) 

JB WI= lZ,z (w)J + r(w). 

The following lemma is of basic importance in our investigations. 

(8) 

LEMMA. Let w=(wl,wz,..., w,,,) be a sequence of numbers 0, + 1, and 

-1, wherem>2. Ifs+(w)< m - 2 and w is saturated, then T(W) > 1 and 

for all subsets P cl? such that IPI > S ‘(w) +2. 

Proof First we prove that the assumption that w is saturated implies 

u (z,z,(w)uz;k-l(w))=0~ 
k>l 

(10) 
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Suppose that the set in (10) is not empty, and let i E Z,“,(w) for some k > 1. 

The part of the sequence defined by i is of the type 

+1, 0, 0, .*., 0, +1 
i-l, 2, i+l, *=.y i+2k-1, i+2k’ 

If we fill in this part by + 1 and - 1 in an arbitrary way, the maximal 
number of sign changes will be 2k. This can be reached by at least two 
different fillings, for example: wi= -l,~~+i=+l,...,w~+~~_r= +1 or wi= 
+1,w,+,= -l,...,wi+,~_r= - 1. This implies that w is not saturated, con- 
tradicting our assumption. We would similarly come to a contradiction if we 
assumed that Zik_ r(w) # 0 for some k > 1. 

Using (7), the condition (10) implies 

s+ (W)+(z;(W)I=Irl-l=m-1, (11) 

and this shows, using the assumption S ‘(w) < m - 2, that ) Z,“( w)l = m - l- 
S +(w) > 1, i.e., r(w) > 1. 

Assume that for some PcI with IPI> S’(w)+2 we have jPnB(w)lG 
T(W). Then using the identities (8) and (ll), we get 

= pq - p cw)l + qw) = s + cw) + 1, 

and this contradicts the condition IPI > S ‘(w) + 2. Hence the lemma is 
proved. n 

For the proof of our theorem, besides the lemma, we shall need the 
following simple constructions. 

Consider a subsequence P= (ik)fcl CT and let wi,, wiP,. . ., wi be an 
arbitrary sequence of numbers + 1 and - 1. Define the seque&e w = 

( WI, w2, * - * 1 w,) as follows: 

wil if 1 < i < ii, 

Wi ’ wik if ik<i<ik+rfork=1,2 ,..., p-l, 
(12) 

wi P 
if ip< i< m. 

It is clear that w is saturated, and we can easily see that for this sequence we 
have 

lY\B(w)CP and S+ (w)=S+ (wil,wip,...,wip). 
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It is also clear that 

p+r j B(w)#0 and J’n B(w)+M. (13) 

Define a new sequence 6 = (& z&, . . . , z&): 

I A wi for iEB(w) 
wi = 

0 for iEl?\B(w). 

First we prove that 

(14) 

(15) 

If l3B (w) = 0, then (15) holds trivially. Let r\ B (w) = ( jl, j2,. . . , is), il < ir! 
< . . . < is. The definition of B (w) implies that if ii = ii+ i - 1, then wi, # wi,+,. 
This shows that in each subset of l3 B (w) which consists of adjacent (in l’) 
elements, the numbers wj alternate in sign. The set T\B (w) is equal to the 
union of subsets of the above type (of maximal “length”), and of such ii’s 
whose both neighbors (in r) belong to B(w). Clearly, the latter elements are 
members of Z,“(G), and the first elements of the above mentioned subsets are 
the elements of either Z,“,+,( “) f w or some k > 1 or Z,‘,(G) for some k > 1. This 
proves (15). 

Now using the identity (7) and the trivial relation Z:(S) = Z,“(W), we 
have S +(w) = S ‘(6). 

It is not hard to show that (15) also implies that 4 is saturated [see also 
the identity (17) below]. 

Thus, we have the following relations for 4: 

B(G)=B(w), s+ (q=s+ (w), and & is saturated. (16) 

Let us note finally that all concepts and statements of this section are valid 
in an unchanged form for an arbitrary sequence (Y = (a,, (~a,. . . , a,) of real 
numbers, when applied to the sequence 

sgna i (sgncu,,...,sgncr,). 

For notational simplicity, instead of S ‘(sgncr), B (sgnar), etc., we shall write 
S +(a), B(cu), etc. 

REMARK. That w is saturated follows also from a more general identity 
proved in [9] (see also [lo]): 
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Denote by M (w) the number of different sequences p fuafilling (3) of 
Sec. 1 with a = w. Then we have 

“11 (2k+ l)~~P’(~)~(2~)~J-,(w)l 

if w=O, 

if w#B, (17) 
k>l 

where 0 is the zero sequence. 

4. PROOF OF THE THEOREM 

The fact a is saturated is equivalent to the equality M(a) = 1. First we 
prove the “only if” part of the theorem. 

Let A be a T-sequence in R”, and let a =(a,,(~~, . . . ,a,J be such that 
S+(a)<,<-1 and M(a)=l. Denote 

ci ii 1 {xERyuj,r)=ffi} if iEr\B(a) 

{xER”:sgn(u,,x)=sgna,} if iEB(0). (18) 

We have to prove that 

The sets C, are convex subsets of An (hyperplanes and open halfspaces), and 
according to Helly’s theorem it is enough to prove that 

iEZ 

for all I=(ik)I,acF. (20) 

According to our Lemma, S ‘(a) < n - 1 and M(a) = 1 implies that r(a) > 1 
and 

)I f-l B (a)1 a r(a) + 1, (21) 

where B (a) = u ${Bf(a), and I$ (a) are the blocks of a. The inequality in 
(21) implies that 

wwl~2 (22) 
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for some 1 < s < r(a) (depending on I). Clearly if ip,ib E Bs(a), 0 < p < q < n, 
then also ip,ip+l,..., ig E B,(a). Since the subdeterminants a( jr, is,. . . , j,,) are 
of constant non-zero sign for all ( jk)i, r C_ I?, it is easily seen that the equation 

det ,“” ,"l *-- ,“p ay”” ... ,” =o 

[ 

. . . . . . 
‘0 ‘I ‘P tp+l ‘” 1 (23) 

has a solution i&, ijr, . . . , $, $ + I, . . . , ij,, such that 

yk=cY. r if i, ElYB (cu), 
(24) 

sgn & = sgn ‘Y& if ikEB(O_). 

Clearly, the last n rows of the determinant in (23) are linearly indepen- 
dent (as vectors in R “+ I) because A is a T-sequence in R ” and m 2 n + 1. 
Hence the solution row ( ij,,, ijl,. . . , Y,) of the equation (23) must be equal to a 
linear combination of the last n rows: 

yk= i xiaic=(a~,x), k=O 1 , ,...,n, 
j=l 

where ai, = (alk,a,+, . . . ,a,J and x=(x,,3ca,. . , ,x,). But this means XE 
n i E rCi, and this proves the “only if” part of the theorem. 

To prove the “if” part of the theorem, assume first that 

a( il,j2,...Tin)=0 for some ( jk)lcl Cr. (26) 

This implies that the equation 

5 Ysaj,= 0 
k=l 

has a non-identically-zero solution ii,, yi,, . . . , yin. Introduce the notation K + 

={jk:ijk>o} and K-={jk:yik<O}. Clearly IK+UK-l>2 (one of them 
may be empty), and denoting qi = ij,, i E K + and vi = - yi, i E K -, we can 
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write 

Let K+UK-={i,,iz,...,i~}, l<ii,<i,<... <$<m, 2< p<n, andset 

+1 if ik E K +, 
Wik = 

-1 if i,EK-, 
k=1,2 ,a.., pa 

Construct the sequences w = (wl, wa, . . . , to,) and 4 = (WI, &s,. . . , t&) in the 
same way as in (12) and (14) of Sec. 3. According to (13), p < n < m implies 
that B(w)#0 and B(w)n(K+u K-)#a. By (16), the same is true for 4, 
I.e., 

B(;)+(zI and B(w)n(K+uK-)#0. (29) 

Assume that the system 

(ui,x)=Wi=O if iEr\B(G), 

(ai,X)<O if iEB(ti5) andGi,(O, 

(-&X)<O if iEB(G)andGi>O 
(30) 

has a solution x E R “. Multiplying the corresponding rows of (30) by vi and 
vi, we get from (29) 

and this contradicts (28). But the construction of w shows that S ‘(w) < n - 

1, and according to (16) we have S ‘(w) < n - 1 and M(w) = 1. Thus, & is a 
sequence fulfilling the assumptions of the theorem and (30) has no solutions, 
i.e., the assumption (26) led to a contradiction. 

Now let us assume that A is an H-sequence but not a T-sequence, i.e., 
assume that 

u(/r,ja ,..., /,)>O and a(k,,k, ,..., k,)<O (31) 

for some ( ii);_ 1, ( ki)l_ 1 c r. We can see easily that there is a sequence of 
n+l different indices (i,,i, ,..., i,+Jc{ jl,jz ,..., f,}~{k,,k, ,..., k,} such 
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that 

O#sgna(ir ,..., i~_i,i~+i ,..., i,+,)#sgna(i,,...,ip,ip+2,...,in+l)#0 (32) 

for some 19 p<n+l. PutAk=a(i,,i, ,..., ik_i,ik+r ,..., i,+l),(xik=(-l)kAit, 
and TIN,= -aik for k=1,2,..., n + 1. The condition (32) shows that sgnaip = 
sgnaiip+l#O; hence S+(CQ+...,CX~+,) < n-l. This implies that for the 
sequence cx=((~i,(~s,..., 01,) defined by (12) (with p = n + 1) we have 

‘+ (a)=s+ (“i,,“j,,...,“i.+,)<n-l (33) 

The relation M (cx) = 1 holds trivially, because (Y has no zeros. Further, we 
have 

det’ 
q1 CQ, . * * (Y. 

I 

n+1 n+l 

i 

‘1’ 
ai* ai, * * . ai, 2 

= kz:, (- l)k-l~i,Ai,= - kz, aFk= 6 <O, (34) 

and clearly the system of equations 

(35) 

has the unique solution Yk = qli, (k = 1,2,. . . , n + 1). 
Assume now that the system 

(a,,x)=q for i EP\B (a), 

(a,,x)<O for i~B(cu) andq<O, 

(-a,,~)<0 for iEB(a)andai>O 
(36) 

has a solution x E R n. [It may happen now that B (CY) = 0, but this does not 
affect the proof.] Multiplying the corresponding rows of (36) by qik, k= 
1,2,..., n+I, we get 

17i,(a,;,x)= -a? ~ if i,EP\B(a), 

Tik(aik,X)<O if ikEB(a) and cr,<O, 

Tik<aik9x)<0 if i,EB(a) andcuik>O. 

(37) 
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Adding up these inequalities, we obtain 

n+l 

c 77&&<0, 

k=l 

which contradicts (35). 
We see that (36) cannot have any solution, and S ‘(a) < n - 1, M(a) = 1. 

Thus, (31) led to a contradiction. This proves the “if” part of the theorem 
and the whole theorem is proved. n 

5. CONCLUDING REMARKS 

(1) For the proof of existence results such as our Theorem or the 
Proposition of Sec. 2, Helly’s theorem was used in [9], where in addition to 
these results, some other more general results were proved. In [9] the 
identity (7) played an important role also in the proof of the Proposition of 
Sec. 2. As A. Tihanyi observed, the proof of the Proposition can be 
established directly from the assumption S ‘( cr) < n - 1. This proof is given in 

PI* 
(2) In [9] a more systematic study of finite sequences of numbers 

0, + 1, - 1 and the quantities I&!(w)], M(w), and S ‘(w) can be found. It is 
proved, for example, that the relation M (w) = 1 (which means w is saturated) 
is equivalent to the following property of w (if w # B and Z,(w) # 0): 

s+ (w1,w2 )..., wi_l,wi+l )..., w&s+ (w) for all iEZ,(w). 

(36) 

This in turn is equivalent to 

u [z,z,(w)uz~k-l(w)]=~ (if w#B). 
k>l 

(3% 

(3) It can also be shown that the concepts introduced here for finite 
sequences of numbers, can, to some extent, be generalized to arbitrary 
functions defined on an arbitrary totally ordered set P (see [9]). The main 
problems which arise are related to the continuity of (Y and the connected- 
ness of I. For example, for any continuous function (Y defined on [a,b] and 
having only finitely many zeros among which at least one is of the first kind, 
we have M(a) > 1. Nevertheless, it is shown in [9] that both the Proposition 
of Sec. 2 and our Theorem may be generalized for an arbitrary totally 
ordered set. These generalizatipns however are not yet satisfactory, and it 
will be a matter of further study to get more exact results for infinite I. 
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