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ABSTRACT To determine why elements of central pattern generators phase lock in a particular pattern under some
conditions but not others, we tested a theoretical pattern prediction method. The method is based on the tabulated open loop
pulsatile interactions of bursting neurons on a cycle-by-cycle basis and was tested in closed loop hybrid circuits composed of
one bursting biological neuron and one bursting model neuron coupled using the dynamic clamp. A total of 164 hybrid networks
were formed by varying the synaptic conductances. The prediction of 1:1 phase locking agreed qualitatively with the
experimental observations, except in three hybrid circuits in which 1:1 locking was predicted but not observed. Correct
predictions sometimes required consideration of the second order phase resetting, which measures the change in the timing of
the second burst after the perturbation. The method was robust to offsets between the initiation of bursting in the presynaptic
neuron and the activation of the synaptic coupling with the postsynaptic neuron. The quantitative accuracy of the predictions fell
within the variability (10%) in the experimentally observed intrinsic period and phase resetting curve (PRC), despite changes in
the burst duration of the neurons between open and closed loop conditions.

INTRODUCTION

Central pattern generators (CPGs) are neural circuits able to

maintain a functionally relevant rhythmic output without

requiring input from external sources. To uncover the

fundamental principles of operation that allow a CPG to

maintain a particular pattern despite a wide variation in the

parameters relevant to the oscillation, such as frequency as

well as specific neuronal and synaptic parameters, we have

previously developed methods to predict the patterns

exhibited in the closed loop circuit from the phase resetting

curves (PRCs) measured for each component in the open

loop configuration. In the open loop configuration the

synaptic coupling is unidirectional (Fig. 1, C and D, insets),
whereas in the closed loop configuration the two neurons are

reciprocally coupled (Fig. 2, insets). These methods have

been successfully applied in the noise-free environment of

purely model circuits (Canavier et al., 1997, 1999; Luo et al.,

2004). To determine whether similar methods can be

successfully applied in the presence of the inevitable

variability in biological systems, we applied the methods

to hybrid circuits constructed with one biological and one

model neuron each. Since our phase resetting methods apply

only to endogenous bursters, we constructed the simplest

possible pattern generating circuit that is composed only of

endogenous bursters and contains a biological neuron (Fig. 1

B). The biological neuron selected was a pharmacologically

isolated pyloric dilator (PD) neuron in the Homarus
americanus stomatogastric ganglion (STG), reciprocally

coupled to a model neuron using the dynamic clamp (Sharp

et al., 1993a,b).

The PD neuron is a component of the pyloric circuit of the

crustacean STG in H. americanus, which controls the

movements of the pylorus (Bal et al., 1988; Bartos and

Nusbaum, 1997; Harris-Warrick et al., 1992; Marder and

Calabrese, 1996; Marder, 1998; Mulloney, 1977; Weaver

and Hooper, 2003). The complete pyloric circuit consists of

14 neurons, but often a functional grouping of the neurons

(Hartline and Gassie, 1979; Hartline, 1979) allows a re-

duction to three essential nodes (Fig. 1 A) that generate the

triphasic firing pattern of the pyloric cycle. Because of the

electrical coupling between the anterior burster (AB)
pacemaker neuron and the two PD neurons, we will consider

them as a single functional unit called the AB/PD complex

(Fig. 1 A). The AB/PD complex strongly inhibits the other

cells in the circuit, acting as the overall frequency controller

for the network (Mulloney, 1977; Miller and Selverston,

1982).

We have focused on endogenous bursters because they

play a central role in numerous CPGs including the pyloric

circuit (Hartline and Gassie, 1979; Hartline, 1979; Miller and

Selverston, 1982), the heartbeat of crustaceans (Tasaki and

Cooke, 1990), the gastric CPGs of the crustacean stomato-

gastric system (Harris-Warrick et al., 1992; Panchin et al.,

1993; Selverston and Moulins, 1987), and the feeding CPG

in mollusks (Arshavsky et al., 1989, 1991). An endogenous

burster oscillates autonomously with a cycle length equal to

its intrinsic period and responds to external inputs by

prolonging or shortening the cycle length (Glass and

Mackey, 1988; Perkel et al., 1964; Winfree, 1987) as in

Fig. 1, C and D. The response of a limit cycle oscillator to

a single input event depends on the timing (phase),
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amplitude, and duration of the perturbation. The unperturbed

period is indicated by P0 and the intrinsic burst duration by

b0 (Fig. 1, C and D). A hyperpolarizing perturbation of

a significant duration was applied during the cycle labeled

P1. The stimulus interval (ts) is defined as the time elapsed

between the start of the burst and the beginning of the input

stimulus. In the open loop configuration, the stimulus phase

(u) is equal to the stimulus interval normalized by the in-

trinsic period (ts/P0). A phase of zero is assigned to the

beginning of the burst. The PRC measures the change in the

length of the cycle recorded as a function of the phase at

which the perturbation is received. We define the first order

phase resetting F1(u) as P1/P0 � 1 and the second order

phase resetting F2(u) as P2/P0 � 1 (Fig. 1, C and D).
It is important to recognize the distinction between the

PRC here and the infinitesimal PRC that, in theory

(Ermentrout, 1996; Hoppensteadt and Izhikevich, 1997;

Kopell and Ermentrout, 1988; Mirollo and Strogatz, 1990),

could be convolved with the waveform of the perturbation to

obtain the total resetting. In the circuits we study, a burst in

the presynaptic neuron causes phase space excursions in the

postsynaptic neuron far from the limit cycle; therefore it is

not valid to sum over a set of infinitesimal perturbations.

Instead, we treat the entire perturbation as a whole, which

converts our analysis to a mapping on a cycle-by-cycle basis.

Therefore, in an analogy with spike time response (STR)

methods (Acker et al., 2003), the PRCs in this study can be

referred to as burst PRCs, to distinguish them from the

infinitesimal PRC used by others.

We have successfully analyzed model circuits (Canavier

et al., 1997, 1999) under the following assumptions: 1), all

component neurons in the circuit are endogenous bursters,

2), there are no synaptic delays, 3), each neuron receives one

perturbation (synaptic input) per cycle, 4), this perturbation

takes the same form in the closed loop circuit as in an open

loop circuit composed only of a presynaptic neuron driving

a postsynaptic one, and 5), each neuron returns close to its

unperturbed limit cycle before the next input is received. The

last condition is required for the phase to be well defined.

Here we test the effectiveness of the burst PRC in

predicting 1:1 phase-locked modes in two-neuron hybrid

networks over a wide range of synaptic couplings from weak

(1 nS) to strong (1000 nS), and stimulus durations ranging

from 0.28 s to 1.06 s, which represents a range of 20–80% of

the intrinsic period of the relevant postsynaptic neuron. The

quantitative accuracy of the predictions fell within the

variability (10%) in the experimentally observed intrinsic

period and PRC, despite changes in the burst duration of the

neurons between open and closed loop conditions. Consid-

eration of not only the first but also the second order phase

FIGURE 1 Experimental setup. (A) Simpli-

fied pyloric circuit. The pyloric network

consists of 14 neurons, which can be grouped

as follows: the anterior burster neuron (AB),

two pyloric dilator neurons (PD), eight pyloric

neurons (PY), and one lateral pyloric neuron

(LP). (B) A schematic representation of the

dynamic clamp experiment. A pharmacologi-

cally isolated AB/PD complex was impaled

with conventional sharp microelectrodes via

a single PD neuron, and the membrane

potential (V) recorded from the PD neuron is

used to determine how much synaptic current

(Isyn) this neuron receives through the artificial

synapse. (C) Phase resetting in a biological

neuron. The membrane potential record from

a free running AB/PD complex, with an

intrinsic period P0, is perturbed at the stimulus

interval ts by an inhibitory synaptic input with

gmodel1.bio1¼ 100 nS and a duration of 500 ms.

An upward crossing of the voltage threshold

(horizontal dashed line at �45 mV) is defined

as the beginning of the burst and assigned

a phase of zero. As a result of this particular

perturbation, the first burst after the perturba-

tion is advanced such that P1 , P0. The length

of the second cycle is P2 ffi P0, which implies

that the second order resetting in this case is

negligible. (D) Phase resetting in a model

neuron. In this example, a strong inhibitory

perturbation with gbio1.model1 ¼ 100 nS and

a burst duration of 500 mS, applied during the burst of model neuron 1, terminates the ongoing burst. The length of the perturbed cycle P1 is not significantly

altered, but the burst length (b1) in the cycle that contains the perturbation is shortened, as is the length of the cycle after the perturbation and the burst (b2) in

that cycle. The burst threshold for this model neuron was �42 mV (horizontal dashed line).

2284 Oprisan et al.

Biophysical Journal 87(4) 2283–2298



resetting improved the quantitative accuracy, and in some

cases was required for qualitative accuracy of the predic-

tions.

MATERIALS AND METHODS

Electrophysiology

H. americanus were purchased from Yankee Lobster (Boston, MA) and

maintained in artificial seawater at 10–12�C until used. The stomatogastric

nervous system (STNS) was dissected out and pinned out in a dish coated

with Sylgard (Dow Corning, Midland, MI), and the STG was desheathed

with fine forceps. Throughout the experiments, the stomatogastric nervous

system was superfused with chilled (9–14�C) saline containing (in mM)

NaCl, 479.12; KCl, 12.74; CaCl2, 13.67; MgSO4, 20; Na2SO4, 3.91;

HEPES, 5; pH 7.45. Extracellular recordings were made with stainless steel

pin electrodes in Vaseline wells on the motor nerves and amplified with

a differential AC amplifier (Model 1700, A-M Systems, Carlsborg, WA).

Intracellular recordings from cells in the STG were obtained with an

Axoclamp 2B amplifier (Axon Instruments, Foster City, CA) in discontin-

uous current clampmode using microelectrodes filled with 0.6 MK2SO4 and

20 mM KCl; electrode resistances were in the range of 20–40 MV.

Extracellular and intracellular potential traces were digitized with a Digidata

1200A board (Axon Instruments), recorded using Clampex 8.0 software

(Axon Instruments), and analyzed with in-house software. The PD and

lateral pyloric (LP) motor neurons were identified based on their membrane

potential waveforms, the timing of their activity in the pyloric rhythm, and

their axonal projections to the appropriate motor nerves. The only synaptic

feedback to the pyloric pacemaker group through the LP to PD inhibitory

synapse was removed by applying 10�5 M picrotoxin in the bath. The

pharmacologically isolated pyloric pacemaker was monitored by impaling

one of the PD neurons; it served as the biological oscillator in the

experiments reported here.

Dynamic clamp

We recorded the membrane potential of the AB/PD complex and used the

dynamic clamp (Sharp et al., 1993a,b) to replace the synaptic input from LP

onto PD with artificial synaptic inputs: the membrane potential V at the PD

cell body was amplified, fed into a Digidata 1200A board (Axon

Instruments), and digitized at a rate of 1.7 kHz with in-house software

modified from a C11 program kindly provided by R. Pinto (Pinto et al.,

2001). The dynamic clamp program detected bursts in the ongoing PD

rhythm and monitored the instantaneous period. Artificial dynamic clamp

synaptic inputs were generated at different phases of the PD rhythm by

setting the synaptic activation to the desired value for the desired duration.

During the synaptic input, the program computed the momentary synaptic

current as described below. To inject this synaptic current into the PD

neuron, the program computed the corresponding command voltage, which

was turned into an analog voltage by the Digidata board and sent to the

electrode amplifier.

Model neurons

The model neurons had a single compartment with eight Hodgkin-Huxley

type membrane currents and an intracellular calcium buffer. The membrane

currents were based on voltage-clamp experiments on lobster stomatogastric

neurons (Turrigiano et al., 1995) and included a fast sodium current (INa),
a fast and a slow transient calcium current (ICaT and ICaS), a fast transient

potassium current (IA), a calcium-dependent potassium current (IKCa),

a delayed rectifier potassium current (IKd), and a leak current (Ileak). The
model neurons used here had identical current dynamics and differed only in

the maximal conductances of their eight membrane currents; these

conductances were chosen to produce different burst periods, durations,

and duty cycles in the different model neurons. The maximal conductances

of the eight currents and the corresponding intrinsic periods and burst

durations for all seven model neurons considered in this study are listed in

Table 1 in the Supplementary Material. The model was described in detail in

Prinz et al. (2003), and similar models have been used before (Goldman

et al., 2001; Liu et al., 1998). The model was implemented in a C11
program, and all differential equations were integrated with an exponential

Euler method at a time resolution of;50 ms, corresponding to 10 updates of

the model neuron for every voltage value read and current command written

by the dynamic clamp.

Artificial synapses

For all synapses simulated here, the synaptic current was Isyn ¼ gsynm

(Vpostsyn � Erev) where gsyn is the conductance of the synapse, m is the

synaptic activation, Vpostsyn is the membrane potential of the postsynaptic

FIGURE 2 Schematic representation of an alternating 1:1 firing mode in

a two-neuron network. The stimulus interval of the neuron j is ts,j, and its

recovery interval is tr,j. (A) Steady firing in a two-neuron network with no

delays. The stimulus interval of one neuron equals the recovery interval of

the other. The burst onset is marked with a vertical thick solid line. Although

this analysis treats the coupling as pulsatile and ignores burst duration, the

burst durations are indicated by solid rectangles to emphasize that this

analysis applies to bursting neurons as long as the assumptions are not

violated. (B) Steady firing in a two-neuron network with delay. A delay d

between the activation of the synaptic coupling from the biological neuron to

the model neuron and the initiation of a burst in the model neuron requires

a restatement of the periodicity criteria: tr,model ¼ ts,bio 1 d, and ts,model ¼
tr,bio � d. (C) Convergence to a steady alternating 1:1 phase-locked mode.

The equivalence of certain intervals as shown here results in the periodicity

constraints that must be satisfied in successive cycles during convergence to

(or divergence from) an assumed steady alternating phase-locked mode.

These constraints can be used to derive a system of coupled difference

equations, or maps, for the time evolution of the system on a cycle-to-cycle

basis.
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neuron, and Erev is the synaptic reversal potential, which was set to �90 mV

for all synapses based on voltage clamp experiments on the LP to PD

synapse (Thirumalai, 2002). All synapses were instantaneously activating

and deactivating. The synaptic activation function,m ¼ ð11eðV1=2�VfiltÞ=sÞ�1;

was chosen such that the synapse is fully activated during the burst and

deactivated between bursts.

Because the potential between spikes reaches very hyperpolarized levels,

and the activation of the synapses is instantaneous, we used a filtered

version, Vfilt, of the presynaptic membrane potential to compute the synapse

activation to smooth it. For every time step Dt, Vfilt was updated according to

Vfilt(t 1 Dt) ¼ Vfilt(t) 1 (Vfilt(t 1 Dt) � Vfilt(t))Dt/tfilt, where tfilt ¼ 1 ms for

the biological neuron. The value of V1/2 ¼ �45 mV for synapses from the

biological neurons was set below the minimal filtered voltage between

spikes within a burst. We chose s ¼ 0.1 mV for all synapses, which ensured

rapid activation and deactivation of the synapse during the up- and

downstrokes of each presynaptic burst. For synapses from model neurons,

the values of V1/2, and the corresponding filtering constants, tfilt, were

chosen such that the synapse remained fully activated throughout the burst,

even during the hyperpolarized intervals between spikes. The chosen values

ranged from �47 mV to �40 mV for V1/2 and from 10 mS to 30 ms for tfilt
(Table 2 in the Supplementary Material).

PRCs for biological and model neurons

To generate the PRC of a biological neuron in response to synaptic input

from a given model neuron and for a given synapse strength gmodel.bio, we

first determined the intrinsic period P0 and burst duration b0 of the biological
neuron from the filtered membrane potential recording of the unperturbed

neuron of at least 20 s. We define the intrinsic period P0 of the biological

neuron as the time between two successive crossings of the�45 mV voltage

threshold with positive slope and the intrinsic burst duration b0 as the time

between the voltage threshold crossing with positive slope and the following

crossing with negative slope (Fig. 1 C). The intrinsic periods of the four

biological neurons immediately before different couplings to model neurons

ranged from 1.12 s to 2.5 s and their burst durations were between 0.44 s and

0.88 s (Table 3 in the Supplementary Material). Once the intrinsic period

was determined, the membrane potential of the biological neuron in response

to conductance pulses of amplitude gmodel.bio was recorded, using a stored

activation profile of the artificial synapse, which corresponds to the

activation produced by a single presynaptic burst in a model neuron in the

open loop condition (no feedback). Individual stimuli were delivered;10 s

apart to ensure that the biological neuron returned to its unperturbed activity

between stimuli. The stimulus interval was computed by multiplying the

desired stimulus phase by the period of the preceding cycle. For a full PRC,

we delivered stimuli at 20 (for biological neuron 1) or 40 (for the other

biological neurons) equally spaced phases between 0 and 1. Each PRC was

recorded a total of four times. The experimental protocol described above

was repeated for the same model neuron for all synaptic conductances

gmodel.bio listed in Table 1 (third column). Once all synaptic conductances

gmodel.bio were completed, the next model neuron was selected.

A similar experimental protocol was used to extract the PRCs for the

model neurons at 40 equally spaced phases between 0 and 1. To obtain the

PRCs of the bursting model neurons, we applied a synaptic input with

a stored activation profile of the artificial synapse, which in this case

corresponds to the activation produced by a single presynaptic burst in the

biological neuron in the open loop condition (no feedback), at different times

during the ongoing simulated rhythm. We assigned phase zero to the burst

onset, which was specified by a voltage threshold of �42 mV (Fig. 1 D).

Each PRC was recorded only once.

Dynamic-clamp generated hybrid circuits

We used the dynamic clamp to generate 164 different mutually inhibitory

hybrid circuits between one of four biological neurons and one of seven

model neurons (Fig. 1 B). The range of synaptic conductances used in our

experiments encompasses the estimated physiological range of synaptic

TABLE 1 Experimentally observed and predicted phase-locked modes in four experiments using both the first and

second order PRCs

gbio.model

Model neuron Bio gmodel.bio 1 2 3 5 10 20 30 50 100 200 300 500 1000

1 1 100 c/– c/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a

2 300 a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a

4 500 a/a a/a a/a a/a a/a a/a a/a

2 a/a a/a a/a a/a

1 a/a a/a a/a a/a

2 3 30 a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a

1 100 a/a a/a a/a a/a a/a a/a a/a

3 a/a a/a a/a a/a a/a a/a a/a

4 a/a a/a a/a a/a

3 1 100 a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a

2 500 a/a a/a a/a a/a a/a a/a a/a a/a a/a a/a

1 a/a a/a a/a a/a

4 1 50 c/– c/– a/a c/– c/– c/– a/a c/– c/– c/– a/a c/– c/–
1 100 c/– c/– a/a c/– c/– c/– a/a c/– c/– c/– a/a c/– c/–
2 a/a a/a a/a a/a

4 a/a a/a a/a a/a

5 1 100 c/a c/a a/a a/a a/a a/a a/a a/a a/a a/a

6 3 30 a/a a/a a/a a/a a/a a/a a/a

7 2 30 a/a a/a a/a a/a a/a a/a a/a

4 100 a/a a/a a/a a/a a/a a/a a/a

For each gmodel.bio (third column), 10 hybrid networks were formed with the first biological neuron, and seven with the other three biological neurons. For

each hybrid circuit characterized by a pair (gmodel.bio, gbio.model), the experimental versus predicted results are separated by a slash: the numerator is the

experimentally observed phase-locked mode, and the denominator is the predicted pattern. All conductances are in nanoSiemens. The phase-locked modes

are marked by ‘‘a’’ for 1:1, ‘‘c’’ for a complex 2:1/1:1 mode, and ‘‘–’’ for no mode. Mismatches between experiment and prediction are marked in bold.
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conductances onto the AB/PD complex in the STG (between 10 nS and 60

nS according to Thirumalai, 2002) and extends beyond the 500-nS limit

considered in the existing implementations of analog two-neuron hybrid

networks (Pinto et al., 2000). For each circuit, we recorded the membrane

potential of the biological and the model neuron for at least 20 s before and

40 s after the synapses were switched on. The recording in the closed loop

configuration was used to extract the experimental values of the relative

burst timing of the biological and the model neuron as well as the phase-

locked period.

Theoretical method

The theoretical method for predicting phase-locked modes has two

components, existence and stability. Only modes that satisfy the periodicity

constraints can exist, hence the existence criterion, and only those that are

stable can be observed in the presence of the small perturbations that result

from the unavoidable presence of noise, hence the stability criterion. The

periodicity constraints (Canavier et al., 1997, 1999; Luo et al., 2004) include

the assumptions that the steady-state phase-locked period of each neuron is

determined by the closed loop phase resetting produced by the input from its

partner (right-hand side of Eq. 1) and that this resetting is equal to that

observed in the open loop condition. In addition, there is the obvious

requirement that in 1:1 phase locking the period of each neuron must be the

same and equal to the sum of the stimulus interval (ts) and the recovery

interval (tr) for each neuron. The equivalence of the sum of the stimulus and

recovery intervals with the period in the closed circuit can be stated as

ts;bio 1 tr;bio ¼ ts;model 1 tr;model

¼ P0;jð11F1;jðujÞ1F2;jðujÞÞ; (1)

where the index j stands for bio or model neuron, and ubio and umodel,

represent the phase of each neuron, corresponding to the position on the

appropriate unperturbed limit cycle at which an input is received. The

TABLE 2 Stability analysis

gbio.model ubio umodel m1bio m2bio m1model m2model l l1/l2 Max{|l|}

1 0.42 0.698 0.474 0.005 0.999 �0.032 0.000 0.032/�0.005 0.032

3 0.489 0.644 0.309 �0.064 0.999 �0.099 0.000 0.099/0.064 0.064

10 0.519 0.64 0.261 �0.104 0.999 �0.099 0.000 0.104/0.099 0.104

30 0.514 0.606 0.268 �0.098 0.999 �0.064 0.000 0.098/0.064 0.098

100 0.523 0.585 0.257 �0.108 0.999 �0.037 0.000 0.108/0.037 0.108

300 0.492 0.59 0.302 �0.069 0.999 �0.048 0.000 0.069/0.048 0.069

1000 0.504 0.592 0.282 �0.084 0.999 �0.05 0.000 0.084/0.05 0.084

The values of the predicted phase of the biological neuron 4 (ubio) and the model neuron 1 (umodel) and the slopes of the first (m1) and second (m2) order

PRCs for the hybrid network with gmodel1.bio4 ¼ 100 nS. All conductances gbio4.model1 are in nanoSiemens. The root of the characteristic equation based on

the first order PRC slope is l ¼ (1 � m1,bio)(1 � m1,model), and the values obtained using the second order PRC contribution are l1/l2 with the maximal

absolute value Max{|l|} (see Eq. 4).

TABLE 3 Mean prediction error and the corresponding SE of the recovery intervals compared to the experimental values

Model Bio gmodel.bio dtrbio dtrmodel Model Bio gmodel.bio dtrbio dtrmodel

1 1 100 NA NA 3 1 500 �10.0 6 6.7 8.0 6 11.7

�10.2 6 3.1 8.0 6 3.3 �6.1 6 4.2 3.5 6 4.8

1 1 500 NA NA 3 2 100 �9.8 6 8.9 �1.1 6 9.2

�1.0 6 6.1 5.0 6 4.3 4.2 6 8.3 �0.6 6 9.2

1 2 100 7.8 6 1.7 �4.9 6 1.9 4 1 50 NA NA

4.2 6 2.3 �4.6 6 1.7 NA NA

1 2 300 8.7 6 2.1 �9.2 6 1.1 4 1 100 NA NA

5.1 6 5.6 �10.6 6 0.7 NA NA

1 4 100 �0.7 6 1.3 �2.2 6 1.9 4 2 100 �9.3 6 3.9 �11.8 6 11.5

1.3 6 0.8 �0.3 6 1.1 �2.2 6 3.8 �10.1 6 5.2

2 1 100 5.0 6 9.4 �3.1 6 8.4 4 4 100 �6.9 6 2.9 5.9 6 1.2

2.5 6 4.7 �3.1 6 6.1 �6.5 6 2.4 2.9 6 1.5

2 3 30 11.5 6 8.5 �3.1 6 3.8 5 1 100 NA NA

6.1 6 8.1 �0.2 6 3.6 6.0 6 4.8 �8.1 6 2.4

2 3 100 �5.8 6 3.1 12.1 6 1.6 6 3 30 �4.7 6 1.6 15.4 6 2.8

�7.2 6 3.5 0.4 6 1.4 4.6 6 1.5 0.0 6 5.1

2 4 100 �13.2 6 2.9 17.8 6 1.1 7 2 30 25.2 6 15.1 �7.2 6 4.3

�13.0 6 3.1 15.0 6 0.7 �4.4 6 2.6 5.1 6 3.3

3 1 100 �15.0 6 9.5 7.4 6 8.5 7 4 100 �23.2 6 3.4 1.1 6 5.0

�5.0 6 6.3 2.0 6 3.2 �8.4 6 2.6 �0.5 6 1.2

For each gmodel.bio (third and ninth columns), 10 hybrid networks were formed with the first biological neuron and seven with each of the other three

biological neurons. For each hybrid circuit characterized by a pair (gmodel.bio, gbio.model), the first line is the mean percent error based only on F1, and the

second line is the mean percent error based on both F1 and F2. The values in bold correspond to the data summarized in Figs. 6 and 8. If no number is given

(NA for not applicable), no 1:1 mode was predicted. A negative (positive) sign of the mean error indicates a systematic underestimation (overestimation) of

the predicted recovery interval compared to the experimental value.
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stimulus interval (ts,j) is defined as the interval between the initiation of

a burst in neuron j and the beginning of an input onto neuron j, and the

recovery interval is defined as the interval between the beginning of an input

onto neuron j and the initiation of the next burst in neuron j (Fig. 2 A). The
first and second order PRCs can be used to predict the steady-state values of

ts,j and tr,j as follows:

ts;j ¼ P0;j ðuj 1F2;jðujÞÞ;
tr;j ¼ P0;j ð1� uj 1F1;jðujÞÞ: (2)

Since both of the above quantities depend solely upon the phase at which an

input is received, one can plot the pair of points (tr,model, ts,model) for each

value of umodel as well the pair of points (ts,bio, tr,bio) for each value of ubio,

discarding any resultant negative values for the intervals because they

violate causality. Due to the choice of axes for these plots, the intersection(s)

of these two curves at the periodicity criterion tr,bio ¼ ts,model and ts,bio¼
tr,model will give the values of the stimulus and recovery times for which the

periodicity constraints in Eq. 1 are satisfied for both values of j: model and
bio. If there is a fixed time difference between the initiation of a presynaptic

burst and the activation of the synaptic coupling to the postsynaptic neuron,

then the receipt of the input by the postsynaptic neuron does not coincide

with the initiation of the presynaptic burst. The stimulus and recovery

intervals relative to burst onset are shown in Fig. 2 B for a particular case in

which the coupling is activated before the first spike in the burst occurs,

which could occur in the case of graded synaptic coupling. The periodicity

criterion is now ts,model 1d ¼ tr,bio and ts,bio 1d ¼ tr,model, so one must plot

the pairs (tr,model, ts,model 1 d) and (ts,bio 1 d, tr,bio) to obtain the intersection

that satisfies this periodicity criterion.

The stability criteria were initially formulated by ignoring the

contribution of second order resetting and using the first order PRC to

define a mapping between the phases at which inputs are received in

successive cycles in terms of the dependence of fj[n] on fj[n � 1] where n

indicates the current cycle and n� 1 indicates the previous cycle. A mapping

in terms of the stimulus and recovery intervals ts,j[n] and tr,j[n] is shown in

Fig. 2 C, and due to the implicit dependence of these quantities on fj[n], the

mapping can be written in terms of the fj[n]. If a steady state is assumed for

both fmodel[N] and fbio[N], the mapping also gives the deviation of each

phase, Dfj[n], from its steady-state value. This mapping can be linearized by

assuming that the change in cycle period that occurs in cycle n due to a small

perturbation in the previous cycle, Dfj[n � 1], can be given by m1,jDfj[n �
1] where m1,j is the slope of the first order PRC F#1,j(fj[N]) at the phase at

which neuron j receives an input in the assumed steady 1:1 phase-locked

mode. This leads immediately to the result of Dror et al. (1999) that Dfj[n]

¼ (1 � m1,bio)(1 � m1,model)Dfj[n � 1]. The quantity (1 � m1,bio)(1 �
m1,model) is a multiplier l that determines whether a perturbation from the

assumed steady 1:1 phase-locked mode will increase or decrease. If �1, l

, 1, the perturbation will decrease to zero, guaranteeing the stability of the

assumed 1:1 phase-locked mode. Thus the stability criterion if F2,j(fj)¼ 0 is

�1 , (1 � m1,bio)(1 � m1,model) , 1. However, if F2,j(fj) 6¼ 0, then two

previous cycles (n � 1 and n � 2) must be taken into account. Using the

same methodology, and defining m2,j as the slope of the second order PRC

F#2,j(fj[N]) at the phase that neuron j receives an input in the assumed

steady 1:1 phase-locked mode, the future of a perturbation is given by

a higher order discrete map because an additional cycle must be taken into

account (Oprisan and Canavier, 2001):

Dfj½n� ¼ðð1� m1;bioÞð1� m1;modelÞ � m2;model � m2;bioÞ
Dfj½n� 1� � m2;model m2;bioDfj½n� 2�: (3)

To guarantee stability, meaning that perturbations die out and go to zero, the

solutions to the characteristic equation of Eq. 3, i.e.,

l
2 � ðð1� m1;bioÞð1� m1;modelÞ � m2;bio � m2;modelÞl
1m2;biom2;model ¼ 0; (4)

which are l1 and l2, both must be in the range from�1 to 1 for the presumed

1:1 phase-locked mode to be stable. Note that by neglecting the contribution

of the second order PRC in Eq. 4, i.e., setting both m2,model and m2,bio equal

to zero, we recover the result of Dror et al. (1999) that l ¼ (1 � m1,bio)(1 �
m1,model).

RESULTS

Phase resetting curves

We extracted all PRCs from the membrane potential

recordings offline, using a burst threshold of �45 mV for

all biological neurons. For each synaptic coupling gmodel.bio,

the average of the four PRCs was computed and approxi-

mated with a polynomial fit. The upper and lower envelopes

reflect the trial-to-trial variability of biological neuron PRCs

(dashed lines in Fig. 3, A1 and A2). The upper (lower)
envelope is the polynomial fit through the maximal

(minimal) values of the phase resetting measured in the four

experiments versus the stimulus phase. Typical first order

PRCs obtained for the biological neuron in the open loop

setup are shown in Fig. 3 A1, and typical second order

resetting curves are given in Fig. 3 A2. The results from the

four different trials described in the Methods are indicated by

different symbols, and the average resetting and both

envelopes are shown. In general, the first order resetting

consisted of advances early in the cycle associated with burst

truncation followed by a shortened cycle, a flat region in the

middle of the cycle, and delays near the end of the cycle as

the subsequent burst was delayed by the prolonged in-

hibition. The observed first order resetting is consistent with

previous work (Oprisan et al., 2003; Prinz et al., 2003), and

because the applied perturbation is essentially a square pulse,

the dependency of the PRC in the biological neuron on the

particular model neuron used to drive it reduces to the

different burst durations of the various models. Again

consistent with previous work, the longer pulse durations

reduce the extent of the nearly flat region in the middle in

favor of a more uniformly linear PRC. The second order

PRC for the biological neuron was in general essentially flat

and equal to zero. Additional examples of PRCs for

biological neurons are given in the Supplementary Material.

First order resetting curves are given for model neuron 1 in

Fig. 3 B1 and second order in Fig. 3 B2. Here, only a single

trial is shown, but trials at different values of the conductance

gbio.model are indicated by different symbols. The first order

resetting is typical of the model neuron PRCs in that at 1 nS

for the gbio.model conductance the PRC has some curvature,

but as the conductance is increased to 10 nS and above, the

PRC saturates and becomes linear. This is likely due to the

inhibition driving the model neuron to a fixed point (Demir

et al., 1997) such that the burst follows the end of the
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perturbation by a fixed interval. As with the biological

neuron, advances are observed early in the cycle and delays

late in the cycle. The second order resetting in Fig. 3 B1 is

typical of model neurons in that it is essentially flat and thus

independent of phase with a slope near zero. It is also typical

in that the value of the second order resetting is near zero at

gbio.model ¼ 1 nS, but at a higher value (10 nS), a delay is

observed largely due to a lengthened burst in the second

cycle. The second order resetting shown in Fig. 3 B2 is

atypical in that the delay that constitutes the second order

resetting usually saturates at higher conductances, but in the

case of model 1 at large conductance values (above 100 nS)

an advance is observed. This advance is largely due to burst

shortening in the subsequent cycle, as observed for the same

model neuron driven by a different biological neuron in Fig.

1 D. Additional examples of resetting curves for the model

neurons are shown in the Supplementary Material.

Summary of predictions

Our intent was to predict which of the 164 distinct circuits

created by utilizing different biological neurons reciprocally

coupled to different models at varying values of the synaptic

conductances in each direction would exhibit stable 1:1

phase locking, and further to predict the actual values of the

stimulus and recovery intervals for each neuron as well as the

phase-locked period for the circuit. Fig. 4 illustrates the type

of firing pattern that one would expect if no stable 1:1 phase

locking existed: the period, stimulus intervals, and even

firing order are variable since the model neuron often, but not

always, fires twice before the biological neuron fires. Table 1

indicates for each model circuit that 1:1 locking was

observed by an ‘‘a’’ before the slash and that it was

predicted by an ‘‘a’’ after the slash, such that ‘‘a/a’’ indicates

a successful prediction. In this table, ‘‘c/�’’ also indicates

a success because a complex mode such as that shown in Fig.

4 was observed, and the dash indicates that no 1:1 mode was

predicted to exist. The three failures are indicated in bold by

‘‘c/a,’’ which signifies that a complex mode was observed

despite a prediction of 1:1 phase locking. In each of these

cases, gbio.model was less than or equal to 2 nS, so the

difficulty seems to be related to the low value of this

parameter. In addition, these were the only cases in which the

burst in AB/PD would have been truncated in the predicted

mode. We will illustrate the prediction method using two

FIGURE 4 Example with no stable 1:1 locking mode. In this particular

case, a large ratio of the intrinsic periods of 2.5:0.92 for gmodel4.bio1 ¼ 100

nS resulted in a complicated interplay of transient 2:1 and 1:1 locking in the

absence of a 1:1 steady phase locking mode. Tall bursts are model neuron

bursts; short bursts are biological.

FIGURE 3 Typical experimentally obtained

phase resetting curves. (A) Biological neuron 4.

(A1) The first order PRCs in response to a burst

from model neuron 1. The synaptic strength

was gmodel.bio ¼ 100 nS, and the burst

threshold was �45 mV. The experiments were

repeated four times to reduce the trial-to-trial

variability. (A2) The second order PRC shows

no specific dependence on the stimulus phase.

The best polynomial fits are shown as contin-

uous lines. The minimal polynomial degree for

the best fit of the first order PRCs was three

(higher than 99% correlation with p , 0.05

confidence level) and nine for the second order

PRCs. The upper and lower envelopes of the

four trials are marked with dashed lines. (B)
PRCs for model neuron 1 for four different

values of gbio.model between 1 nS and 1000 nS.

(B1) The first order PRCs for gbio.model . 20

nS are linear with a correlation coefficient

higher than 99.9%, whereas PRCs for

gbio.model # 20 nS were best fitted by a third

degree polynomial with a correlation coeffi-

cient higher than 99%. (B2) The second order PRCs show no specific dependence on the stimulus phase and a model-specific dependence on the synapse

strength. The corresponding open loop circuits are schematically represented to the right of the PRC panels.
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successful specific examples and then summarize the

accuracy of our predictions quantitatively.

Example of a prediction that did not require
consideration of second order resetting

Fig. 5 gives an example of the prediction method using

a hybrid circuit with gmodel1.bio4¼ 100 nS and gbio4.model1¼
100 nS. The polynomial fit to the average of the first order

PRCs (Fig. 5 A1) and to the average total resetting (Fig. 5 A2)
were used to compute the dependence of recovery interval on

the stimulus interval for both the biological (long dashes) and

the model (short dashes) neuron as explained in theMethods,

with the contribution of second order resetting ignored in Fig.

5 B1 but considered in Fig. 5 B2. The contribution of second
order resetting in the biological neuron is negligible (Fig. 3

A2), but the effect of including the essentially constant second
order resetting (triangles pointing up in Fig. 3 B2) of about
�0.25 is to shift the linear PRC for the model in a downward

direction. It also produces a downward shift of the recovery

intervals for the model neuron (short dashes) between Fig. 5,
B1 and B2. This shift causes the short dashed graph to appear
shortened, because negative (acausal) stimulus intervals were

not plotted (see Methods).

FIGURE 5 Prediction of the phase-locked mode in

a hybrid network. (A) The best polynomial fits for the

first order (A1) and total (A2) phase resetting for the

biological neuron 4 (long dashed line) and model

neuron 1 (short dashed line) with both synaptic

conductances equal to 100 nS. The phases of each

neuron in the phase-locked mode are marked by n on

the corresponding PRCs (A1 and A2). (B) The recovery

interval for the model neuron (short dashed line in B1

and B2) plotted versus the model neuron stimulus

interval, and the recovery interval of the biological

neuron plotted versus the biological neuron stimulus

interval (long dashed line in B1 and B2), considering

the contribution of first order resetting only (B1) and
total resetting (B2). The intersection of the two graphs

gives the steady values of the stimulus and recovery

intervals. (C) Membrane potential recordings from the

isolated biological neuron 4 (C1) and model neuron 1

(C2). In these and other traces, the peaks of the action

potentials were not always captured due to the

sampling rate. The average value of the intrinsic period

of oscillation, P0, and the intrinsic burst durations, b0,

is shown for each neuron. The dashed horizontal lines

indicate the burst threshold. (D) The actual firing

pattern observed in the hybrid circuit had recovery

intervals and a period similar to that of the predicted

stable 1:1 phase-locked mode (for numerical values see

text), despite a substantial shortening of the burst

duration in the model neuron 1 compared to its intrinsic

duration (shaded bar). In contrast, the burst duration of

the biological neuron was nearly the same as its

intrinsic value (solid bar). The closed loop hybrid

circuit is schematically represented next to the

membrane potential record.
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The intrinsic period of the biological neuron 4 was 1.296
0.05 s (Fig. 5 C1), and the intrinsic period of model neuron 1

was 1.09 s (Fig. 5 C2), and Fig. 5 D shows the 1:1 phase

locking that was actually observed when the two were

coupled in the hybrid circuit. The predictions using only first

order resetting (the intersection point in Fig. 5 B1) were quite
accurate, giving a value of 0.651 s for trmodel1, which is a 2%

error compared to the average observed value of 0.674 s, and

a value of 0.656 s for trbio4, which has a 3% error compared

to the average observed value of 0.637 s. Adding these two

quantities results in a predicted phase-locked period of Pe ¼
1.307 s, which has only a 0.4% error compared to the

average observed value of 1.312 s. Using the second order

PRC contributions to the total phase resetting moved the

intersection point only slightly to the left in Fig. 5 B2,
resulting in a predicted value of 0.659 s for trmodel1, which

gives a 3% error rather than a 2% error, and a predicted value

of 0.658 s for trbio4 ¼ 0.658 s (a 2% rather than a 3% error)

and an identical prediction for the phase-locked period of

1.317 s. Therefore, for this particular example, the prediction

based on both F1 and F2 is not significantly different from

the prediction based only on the first order resetting, F1.

The reason for the lack of impact of the contribution of F2

results from the resemblance of the graph of the stimulus

versus recovery interval for the model neuron to vertical

lines in Fig. 5, B1 and B2. This is a consequence solely of the
linear form (Demir et al., 1997; Oprisan et al., 2003; Prinz

et al., 2003) of the first order PRC for the model neuron (Fig.

3 B1). The PRC has essentially unit slope (see m1,model in

Table 2). Therefore, the first order resetting is equal to the

phase minus a constant we can denote u0. Substituting u �
u0 for F1(u) in the expression for the recovery interval of the
model neuron (see Methods) produces trmodel ¼ P0model (1 �
u0), so the x coordinate of the short dashed graph in Fig. 5,

B1 and B2, is very nearly constant and independent of the

stimulus phase u. On the other hand, the contribution of F2

shifts the y coordinate, the model stimulus interval, down-

ward by;250 ms for each recovery interval. The example in

the next section shows that although this shift is quantita-

tively unimportant for the example in Fig. 5, it can be

qualitatively very significant if it causes the intersection to

appear or disappear entirely.

A close inspection of the actual membrane potential

recordings in the phase-locked mode (Fig. 5 D) shows that
although the duration of the burst in the biological neuron

remained near its intrinsic value of 0.527 s, the model neuron

burst duration was 0.12 s during phase-locked mode

compared to an intrinsic value of 0.28. We conclude that

near the particular phase 0.523 (marked by squares in Fig. 5,
A1 and A2) at which the biological neuron receives an input

from the model neuron in the hybrid circuit, the phase

resetting is not very sensitive to burst duration, and hence the

prediction algorithm is very robust in this case to striking

changes in burst duration from the open to the closed loop

condition. Since insensitivity to burst duration is not always

the case (Oprisan et al., 2003; Prinz et al., 2003), this is

a potential source of error (see Discussion).

Fig. 6 summarizes the predictions made using the hybrid

circuit with gmodel1.bio4 ¼ 100 nS at seven values of

gbio4.model1. A shows the recovery interval for the model

neuron, B shows the recovery interval for the biological

neuron, and C shows their sum, which is the period. The

experimentally measured values are given in all panels by

black squares connected by black lines. The predictions

using the average resetting are given by red circles connected

by a red line, and in this case overlay quite well with the

experimental data. The predictions based on the upper and

lower (triangles on the blue and green curves) envelopes
largely bracket the experimental results. Note that the

predicted phase-locked period (Fig. 6 C) is always close to

the intrinsic period of the biological neuron (1.29 s) at all

values of gbio4.model1, suggesting that the flat region in the

PRC of the biological neuron (Fig. 5, A1 and A2) may be

a globally attracting set of the network dynamics.

Thus far, we have illustrated only the portion of the

analysis that uses periodicity constraints to predict modes

that can exist because they satisfy these constraints. To

predict that a mode will be observed, we must also predict

that the mode will be stable, and as described in the Methods,

the contribution of F2 to the stability criterion can either be

considered or ignored. In general, the hybrid circuit did not

provide a good test case to determine whether the stability

criteria correctly predict the effect of F2, because in general,

the slopes of the first order PRCs were between 0 and 1, and

the slope of the second order PRC was near 0. These values

guarantee stability regardless of whether the contribution of

F2 is considered. For the example given in Fig. 5, the entry in

Table 2 for gbio4.model1 ¼ 100 nS shows that ignoring F2

gives a multiplier l equal to zero, whereas considering F2

produces l1 and l2 equal to 0.108 and 0.037, all of which

have absolute values smaller than 1. Hence both methods

predict a stable 1:1 phase-locked mode, as they do for all

seven values of gbio4.model1 ¼ 100 nS considered in Fig. 6.

The very small values of l imply that perturbations decay

quickly, producing rapid convergence to the limit cycle for

the component neurons as required by our assumptions.

Example of a prediction that did require
consideration of second order resetting

Fig. 7 shows an example of a hybrid circuit in which the

consideration of second order resettingwas crucial to a correct

analysis, the hybrid network formed with the biological

neuron 1 and model neuron 1 (gmodel1.bio1 ¼ 100 nS,

gbio1.model1¼ 50 nS). The first order resetting alone is shown

for both the biological (long dashes) and model (short
dashes) neuron (Fig. 7 A1). The addition of second order

resetting (Fig. 7 A2) produces only a small change in the PRC

for the biological neuron, but shifts the PRC for the model

neuron upward, corresponding to a constant delay of ;200
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ms, the opposite of what was observed in Fig. 5, A1 and A2.
When second order resetting is ignored (Fig. 7B1), there is no
intersection point between the two recovery versus stimulus

interval curves of the neurons, and hence no 1:1 mode is

predicted to exist. The contribution of F2 to the stimulus

interval for the model neuron 1 causes the dotted curve in Fig.

7 B2 to be shifted upward, as explained above, such that an

intersection with the curve for the biological neuron 1 does

indeed occur. Fig. 7 C1 shows the average intrinsic period of
the biological neuron to be 1.5 s and that of the model 1

neuron to be 1.09 s. Fig. 7 D shows the 1:1 phase-locked

mode obtained when the circuit was closed. Using the

intersection point in Fig. 7 B2 resulted in a predicted value of
0.773 s for trmodel1 compared to an actual average value of

0.776 s, corresponding to a 0.4% error, a predicted value of

0.656 s for trbio1 compared to the actual average value of

0.746 s, corresponding to a 12% error, and a prediction for the

phase-locked period of 1.429 s compared to the actual

average period of 1.522 s (6% prediction error). A close

inspection of the actual membrane potential recordings in the

phase-locked mode (Fig. 7 D) shows that although the

duration of the burst in the biological neuron remained near

its intrinsic value of 0.55 s, the model neuron burst duration

was 0.5 s during phase-locked mode compared to an intrinsic

value of 0.28 s. The significant increase in the burst duration

of the model neuron 1 for this particular hybrid network

(gmodel1.bio1 ¼ 100 nS, gbio1.model1 ¼ 50 nS) during the

phase-locked mode causes the biological neuron to be

released from inhibition at a later time than would be

predicted by the intrinsic burst duration, potentially resulting

in a longer recovery interval for the biological neuron 1 in

closed loop than predicted. This in turn could lead to the

observed systematic underestimation of the recovery of the

biological neurons, which is evident in the summary in Fig. 8

B. The lack of an intersection that satisfies all periodicity

constraints in the absence of consideration of the effects of F2

as shown in Fig. 7 B1 is not unique to this example but rather

occurred in 21 out of the 164 tested circuits, including all

those listed in Tables 1 and 3 with gbio1.model1$ 10 nS at two

values of gmodel1.bio1 (100 nS and 500 nS) and model neuron

5 coupled to biological neuron 1 (gmodel5.bio1 ¼ 100 nS).

Fig. 8 summarizes the predictions made using the hybrid

circuit with gmodel1.bio4 ¼ 100 nS at eight values of

gbio1.model1. A shows the recovery interval for the model

neuron, B shows the recovery interval for the biological

neuron, and C shows their sum, which is the period. The

experimentally measured values are given in all panels by

black squares connected by black lines. There is no

experimental value at gbio1.model1¼ 2 nS, because according

to the entry in Table 1, a complex mode was observed

although 1:1 phase locking was predicted at this value. The

predictions using the average resetting are given by red

circles connected by red lines, and in this case do not overlay

quite as well with the experimental data as the example in

Fig. 6, but the discrepancy is still within the variability of the

data. The predictions based on the upper and lower (triangles
on the blue and green curves) envelopes still largely bracket

the experimental results. On average, the recovery interval of

the model neuron 1 was overestimated by 8%, whereas the

recovery interval of the biological neuron was underestimated

FIGURE 6 Summary of results for a selected group

of hybrid circuits comprised of model neuron 1 and

biological neuron 4. The experimentally observed

values are given by the n (black line), the predicted

values using the average PRC by d (red line), and the

predictions using the upper and lower envelopes are

given by : and ; (blue and green lines). (A)

Recovery intervals for the model neuron. (B) Recovery

intervals for the biological neuron. (C) Phase-locked
period. The predictions based on the average PRC are

in good agreement with the experimentally measured

values (n), and predictions based on the envelopes

generally bracket the range of the experimentally

observed values. The closed loop hybrid circuit is

schematically represented in the lower right-hand

corner.
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by ;10% (Table 3). The prediction error for the phase-

locked period was only;5% (see next section). Note that the

observed phase-locked period (Fig. 8 C) is again always

close to the intrinsic period (1.50 s) of the biological neuron

at all values of gbio1.model1.

Quantitative summary of results

Table 3 gives a quantitative summary of the accuracy of the

predictions. For each of the 20 combinations of a given

model neuron and a given biological neuron at a fixed value

of gmodel.bio, we summed the error over all values of

gbio.model and reported the statistics. The values for the

examples given in Figs. 6 and 8 are shown in bold. The first

example (Fig. 6) shows that over a range of seven

gbio4.model1, the average error was 1.3 6 0.8 and �0.3 6
1.1, respectively, for the biological and model neuron

recovery intervals. These numbers are at the lower end of

those we observed and reflect the excellent fit shown in Fig.

6, A and B. The error when F2 was not considered was �0.7

FIGURE 7 Prediction of the phase-locked mode in

a hybrid network showing the essential contribution of

the second order PRC. (A) The best polynomial fits for

the first order (A1) and total (A2) phase resetting for the

biological (gmodel1.bio1 ¼ 100 nS, long dashes) and

model neuron 1 (gbio1.model1 ¼ 50 nS, short dashes).

The second order PRC of the model neuron 1 has

a significant positive value that shifts the PRC upward

(compare the short dashed curves in A2 and A1). The

phases of each neuron in the phase-locked mode are

marked by squares on the corresponding PRCs (A2).
(B1) There is no intersection between the two recovery

versus stimulus interval curves if only the first order

resetting is considered. (B2) There is an intersection

between the two recovery versus stimulus interval

curves if both the first and second order resetting is

considered. (C) Membrane potential recordings from

(C1) the isolated biological neuron 1 and (C2) the

isolated model neuron 1. (D) The actual firing pattern

observed in the hybrid circuit had recovery intervals

and a period similar to that of the predicted stable 1:1

phase-locked mode (for numerical values see text),

despite a substantial lengthening of the burst duration

of the model neuron 1 compared to its intrinsic duration

(shaded bar in D). The closed loop hybrid circuit

is schematically represented in the lower right-hand

corner.
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6 1.3 and �2.2 61.9, which indicates that the contribution

of F2 did not improve (or worsen) our prediction in this case.

The other example, given in Fig. 8 over a range of eight

values of gbio1.model1 for which phase-locked modes were

observed, gives average errors that were at the high end of

those observed with the correction for F2 included, �10.26
3.1 and 8.06 3.3, respectively, for the biological and model

neuron recovery intervals. In addition, this example

illustrates an extreme case in which the existence of 1:1

phase-locked modes could not be predicted without the

contribution of F2. The consideration of second order effects

was required for the prediction of the observed 1:1 phase

locking in a total of three of the combinations (specifically in

21 individual circuits as described above). In several cases,

such as for model neuron 7 combined with biological neuron

2 or 4, considering the contribution of F2 drastically reduced

the average error in the recovery interval of the biological

neuron, whereas in others, such as model neuron 2 or 6

coupled with biological neuron 3, the average error in the

recovery interval of the model neuron was drastically

reduced. In all but two combinations, the mean prediction

error of both recovery intervals was smaller when the

contribution of the second order PRC to the total phase

resetting was considered. In all but five combinations, the SE

of both recovery intervals was smaller when the contribution

of the second order PRC was considered.

Although in general this data set did not lend itself to a test

of the predictive efficacy of including F2 in the stability

criterion, the case of the hybrid network gbio1.model5 ¼ 1 nS

and gmodel5.bio1¼ 100 nS did provide such a test. The steady

phase of the biological neuron in the predicted 1:1 mode was

ubio1 ¼ 0.754, and the slopes of the PRCs at that phase

were m1bio1 ¼ 0.4, m2bio1 ¼ 0.0, m1model5 ¼ �0.733, and

m2model5 ¼ 0.263. Based on the first order stability criterion,

the absolute value of the characteristic root l is 1.33, which is

greater than 1, so that the steady mode is predicted to be

unstable. However, considering the contribution of the

second order PRC decreases the maximal value of l to

0.78, which correctly predicts that the observed 1:1 phase-

locked mode will be stable. In a total of 9 out of 164 circuits,

stable phase locking would be incorrectly predicted to be

unstable if the effects of the second order phase resetting on

the stability criterion were not taken into account. This

provides further support for the importance of considering

the contribution of second order resetting.

If there is an offset between the activation of the coupling

with the postsynaptic neuron and the initiation of a burst in

the presynaptic neuron, the Methods explain how to

implement the periodicity constraints, and an example is

included in the Supplementary Material. Such an offset could

in principle result from axonal delays or from graded

synaptic coupling in which activation of the coupling

precedes burst onset. All of the entries in Table 3

corresponding to circuits composed of biological neuron 3

and model neuron 2 were calculated in the presence of such

an offset, and the errors were neither excessively high nor

low compared to the remainder of the circuits that had no

such offset.

In Table 3, the signs of the errors for the recovery interval

in the two neurons are frequently opposite. The peculiarities

of the specific PRCs utilized, including the flat region in the

PRC that is often observed in a range of phase bracketing 0.5

FIGURE 8 Summary of results for a selected group

of hybrid circuits comprised of model neuron 1 and

biological neuron 1. The experimentally observed

values are given by the n (black line), the predicted

values using the average PRC by d (red line), and the

predictions using the upper and lower envelopes are

given by : and ; (blue and green lines). (A)

Recovery intervals for the model neuron. (B) Recovery
intervals for the biological neuron. (C) Phase-locked

period. As in Fig. 6, the predictions based on the

envelopes generally bracket the experimentally ob-

served values. The predictions based on the average

PRC were used to calculate the error (Table 3). The

closed loop hybrid circuit is schematically represented

in the lower right-hand corner.
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in the biological neuron (Fig. 5 A1, long dashes) and the

linearity with unit slope observed in the PRC for the model

neuron, frequently combined to produce compensatory

errors in the two recovery intervals as follows. In the flat

region of the first order PRC for the biological neuron,

F1bio(u) ¼ f0 ¼ constant, thus trbio ¼ P0bio (1 � u 1 f0),

which produces a region of negative unit slope in the curve

indicated by dashes in Figs. 5 and 7, B1 and B2. Since the

slope of the biological neuron recovery interval curve near

the intersection point is �1, and the model recovery interval

resembles a straight vertical line, a shift in the model

recovery interval produces an equal and opposite shift in the

recovery interval for the biological neuron and leaves the

prediction of the period essentially constant in the region of

negative unit slope in the recovery interval curve produced

by the flat region in the first order PRC for the biological

neuron. Additional examples of this phenomenon are given

in the Supplementary Material.

DISCUSSION

Validity of the mathematical analysis

Mathematical biology requires that assumptions be made to

map the mathematics onto aspects of the biological system

under study. These assumptions always involve an approx-

imation, and the validity of the mathematical model in

a given situation depends upon the quality of the

approximation. Most previous theoretical work on the

phase-locked modes in biological oscillators has focused

on weakly coupled, simple integrate and fire (IF) neurons

(Hansel et al., 1995; Mirollo and Strogatz, 1990; van

Vreeswijk et al., 1994), IF neurons with arbitrarily strong

pulse coupling (Bressloff and Coombes, 1998), spike

response methods applied to neurons with standard dynam-

ics, i.e., to IF and type I neurons (Gerstner et al., 1996), or

spiking neurons with negligible second order resetting (Goel

and Ermentrout, 2002). These studies are all based on

assumptions that are inappropriate for the bursting neurons,

strong coupling, and relaxation oscillator dynamics observed

in the hybrid circuits in this study.

The mathematical model that we present is a discrete,

cycle-by-cycle mapping of the activity of two coupled

neurons in the hybrid circuit that requires no knowledge of

the equations governing the dynamics of each neuron, only

the empirically determined PRC. The following essential

assumptions were made in this study: 1), the complex

composed of the soma and extended neuritic trees of both PD

neurons and the AB neuron to which they are electrically

coupled can be represented by a single, lumped oscillator

termed the biological neuron, 2), both the biological neuron

and the model neuron in the circuit are noiseless limit cycle

oscillators, 3), each neuron either returns close to its original

unperturbed limit cycle before the next input is received or if

the cycle period changes over time, it returns to a limit cycle

identical to the original one remapped to the new cycle

period, and 4), the input received by each neuron has the same

effect in the closed loop circuit as in the open loop circuit used

to generate the phase resetting. The accuracy of the results

was satisfactory for 161 of the 164 circuits (see Table 1), was

quite good in many cases (see Fig. 6), and in almost every

case was within the 10% variability in the period of the

biological neurons. To fully understand the approximations

that are introduced by the assumption, and to demonstrate

where vigilance is required by others attempting to

implement similar methods, we elaborate below on violations

of the assumptions and their potential consequences.

The first assumption regarding the lumped AB/PD

oscillator kernel was violated in several instances but

fortuitously did not affect the accuracy of our predictions.

In some cases, a pulse that effectively hyperpolarized the PD

neuron from which we were recording did not terminate an

ongoing burst, complete with spikes, presumably occurring

elsewhere in the AB/PD complex due to insufficient space

clamp (Fig. 9 A). In another case, a perturbation applied

around a phase of 0.75 had variable results, producing an

apparent discontinuity in the PRC at that phase. Some trials

resulted in a missed cycle in which an attenuated sub-

threshold depolarization without spikes was initiated during

the perturbation instead of a burst (Fig. 9 B), and on other

trials no depolarization occurred until after the inhibition

(Fig. 9 C). The missed cycle produced an unusually long

delay compared to cases in which a rebound burst was

observed just after PD was released from inhibition and

hence the discontinuity in the PRC (Fig. 9 D). We theorize

that no errors were introduced into our analysis by these

violations of the assumption because the observed phase

locking usually occurs near the middle of the AB/PD cycle,

when the input conductance is low and hyperpolarization

may propagate more effectively to the oscillator kernel,

presumably located in the neurites of the AB neuron.

The second assumption was more problematic, and the

approximation introduced herein is likely responsible for the

bulk of the numeric errors. One source of error is hardware

dependent: the dynamic clamp can introduce numerical error

since the setup used has an average integration time step of

;0.06 ms, but individual time steps have variable lengths

around that value. Some variability was observed in the duty

cycle of the model neurons in some simulations as a result of

numerical errors; yet interestingly, much less variability was

observed in the period. The biological neuron was a more

significant source of error, and a conclusion of this study is

that the method can, at least in some cases, tolerate levels of

noise present in real biological systems. The major sources

of noise in the biological portion of the experimental setup

were the trial-to-trial variability inherent in the experimental

determination of the PRC due to noise and fluctuations in the

modulatory state of the biological circuit and the cycle-to-

cycle variability of the period. Since a constant intrinsic

period is assumed to calculate both the phases at which
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perturbations are applied and the resultant normalized delay

or advance that results from the perturbation, the cycle-to-

cycle variability in the period is likely to be responsible for

much of the trial-to-trial variability in the PRC. In the

experimental setup described in this article, the pyloric

pacemaker still receives many modulatory inputs from

anterior ganglia in the stomatogastric nervous system. In

addition, gastric mill events can cause a transient change in

the period of the pyloric pacemaker (Bartos and Nusbaum,

1997; Bartos et al., 1999; Marder et al., 1998; Mulloney,

1997; Nadim et al., 1998, 1999; Thuma and Hooper, 2002).

In many cases, due to long-term trends, the period of

the biological neuron immediately before the coupling in the

hybrid circuit was turned on was different than when the

PRC was measured. To utilize the PRC determined using

a different intrinsic period to make predictions for that hybrid

circuit, we were forced to make the additional assumption

that the limit cycle with the new period is identical to the

original one remapped to the new cycle period. This

assumption guarantees a constant duty cycle, but there is

insufficient evidence to support any particular mapping of

the phase as cycle period is varied. The impact of the trial-

to-trial variability of the PRC was addressed by using the

average PRC for the predictions but also by comparing the

spread of the predictions resulting from using the upper and

lower envelopes of the experimental PRCs. We concluded

that the trial-to-trial variability could account for much of the

observed errors. The cycle-to-cycle variability of the period

was 10%, and the predictions of the average period fell

within that range.

The third assumption regarding the return to the limit

cycle before receipt of the next input is required for the PRCs

obtained at specific phases along the limit cycle in the open

loop configuration to apply in the closed loop. Potential

violations of this assumption could be introduced in at least

two ways: higher order PRCs in response to a single pulse

and temporal summation of slow processes in response to

a train of pulses. In the first scenario, the deviation from the

limit cycle produced by a single pulse does not die out within

one trip around the limit cycle. F1 measures the portion of the

resetting that occurs during one cycle before the next burst,

and F2 presumably measures the resetting that occurs after

burst initiation but still before the returning to the original

point on the limit cycle at which the perturbation was

received. If higher order PRCs are not negligible, then errors

are introduced by the application of the open loop PRC

because the phase cannot be precisely determined unless the

trajectory is very near the original limit cycle. The manner in

which F2 is tabulated does not guarantee that all of the

resetting occurs before a return to the original phase.

Furthermore, in some hybrid networks, such as biological

neuron 3 coupled with model neuron 2 (data not shown), the

third order PRCs are not negligible, and could be responsible

for the observed systematic errors. In this hybrid circuit the

duration of the perturbation is very long compared to the

cycle period in the model, so the assumption of pulsatile

coupling could be violated because the trajectory cannot

return to the limit cycle during the interburst. The burst

duration in model neuron 3 is 1.06 s, which is 84% of the

1.26-s intrinsic period of biological neuron 2 before coupling

FIGURE 9 The AB/PD group could not always be

characterized as a single oscillator due to space clamp

problems. (A) A burst continued in the oscillator kernel

during hyperpolarization of the PD neuron. (B) A

hyperpolarizing stimulus applied at a phase of 0.75

either (B) prevented a burst from occurring until the

hyperpolarizing current was terminated, resulting in

a short delay, or (C) attenuated the burst, resulting in

a missed cycle and long delay. (D) The PRC for

biological neuron 2 under these conditions exhibited

a spurious discontinuity near a phase of 0.75 in which

the upper branch corresponded to C and the lower to B.
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with model neuron 3 (see Supplementary Material for an

example). Although the mean prediction error of the

recovery interval for this circuit was small (0.6%), the SE

(9.2%, Table 3) is a better indicator of prediction accuracy. A

second, distinct source of error could result if a single

perturbation causes a small deviation from the limit cycle,

but repeated, periodic applications of the perturbation cause

the trajectory to move farther away from the limit cycle such

that the distance summates temporally. In this manner, the

presence of slow conductances could result in systematic

errors.

The final assumption is that the input received by each

neuron has the same effect in the closed loop circuit as in the

open loop circuit used to generate the phase resetting. This

does not require the burst to be identical in both cases,

because in some instances the phase resetting can be

insensitive to duration at the phase locked point (Oprisan

et al., 2003), but a change in burst duration can also be an

important source of error. For some model neurons, the

duration of the first burst (see Fig. 1 D) after the perturbation
is applied can differ from its intrinsic value measured in the

open loop setup, and Figs. 5 D and 7 D show that the

duration of the burst in the model neuron differs in the open

and closed loop conditions. Thus, violation of this final

assumption is a potentially important source of error,

although in this article the errors introduced were not

excessively large in magnitude (see Supplementary Mate-

rial).

Applications to CPGs and other
phase-locked circuits

An interesting feature of certain CPGs is that the

characteristic pattern is preserved over a large range of

frequencies (phase constancy; see Hooper, 1997). The

promise of our methodology is that it may provide insight

both into how the pattern is maintained and the circum-

stances that cause it to break down, such as a change in the

slope of the first or second order PRC that renders the mode

unstable, or a change in the magnitude of the PRC that makes

it impossible for the periodicity constraints to be satisfied.

Fig. 7 provides an excellent illustration of how a change in

the second order resetting, for example, can cause a phase-

locked mode to appear or disappear. In addition, to our

knowledge, no other analysis of the existence or stability of

phase locking in neural circuits has considered the effects on

the second cycle after a perturbation is received. As we have

shown here, such effects are particularly important for

bursting neurons. However, pyramidal neocortical neurons

have been shown to exhibit second order resetting as a result

of a depolarizing pulse (Reyes and Fetz, 1993); therefore,

theories of phase locking in cortical networks may also need

to include the effects of F2. The robustness of our methods to

the presence of delays is also noteworthy.

SUMMARY

In this study, we successfully applied theoretical methods that

had previously only been tested on models (Canavier et al.,

1997, 1999; Luo et al., 2004) to a hybrid circuit composed

of a model neuron and a biological neuron connected via

artificial synapses implemented with the dynamic clamp.

This resulted in a large measure of control over the

experimental setup, although nonetheless allowing for the

rich variability and complexity inherent in physiological

neurons, and established the applicability of the theoretical

methods to this circuit. The reason that we emphasize the

accuracy of our predictions is simply to provide a level of

confidence in the proposed framework for understanding the

basis for the generation of a particular rhythmic oscillatory

pattern. The pyloric circuit may be one of the more severe

tests of our conceptual framework with respect to noisy

operation; a recent editorial (Hooper, 2004) argues that motor

pattern generating networks involved in feeding are more

likely to exhibit and even benefit from cycle-to-cycle

variability than circuits that mediate behaviors in which such

variability confers no advantage, as in swimming or flying, or

even introduces a prohibitive cost of failure, as in terrestrial

locomotion. Thus the degree of accuracy attained by our

predictive method applied to a hybrid circuit containing the

pacemaker of the pyloric circuit bodes well for its ap-

plicability to other biological circuits.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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