
Discrete Mathematics 309 (2009) 4355–4361

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Vertex domination of generalized Petersen graphs
B. Javad Ebrahimi a, Nafiseh Jahanbakht b, E.S. Mahmoodian c,∗
a Swiss Federal Institute of Technology (EPFL), Station 14, CH-1015 Lausanne, Switzerland
b Department of Math and Computer Science, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
c Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155–9415, Tehran, Islamic Republic of Iran

a r t i c l e i n f o

Article history:
Received 9 August 2007
Received in revised form 20 January 2009
Accepted 22 January 2009
Available online 23 February 2009

Keywords:
Generalized Petersen graph
Vertex domination
Efficient domination
Perfect domination

a b s t r a c t

In a graphG a vertexv dominates all its neighbors and itself. A setDof vertices ofG is (vertex)
dominating set if each vertex of G is dominated by at least one vertex in D. The (vertex)
domination number of G, denoted by γ (G), is the cardinality of a minimum dominating set
of G. A set D of vertices in G is efficient dominating set if every vertex of G is dominated by
exactly one vertex of D. For natural numbers n and k, where n > 2k, a generalized Petersen
graph P(n, k) is obtained by letting its vertex set be {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and
its edge set be the union of {uiui+1, uivi, vivi+l} over 1 ≤ i ≤ n, where subscripts are
reduced modulo n. We prove a necessary and sufficient condition for these graphs to have
an efficient dominating set, and we determine exact values of γ (P(n, k)) for k ∈ {1, 2, 3}.
Also we prove that for an odd number k, γ (P(n, k)) = n

2 + O(k) and for an even number
k > 2, γ (P(n, k)) ≤ 5n

9 + O(k).
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

For the definition of basic concepts not given here we refer the reader to a textbook in graph theory, for example [8]. For
surveys on the domination concept in graph theory we refer the reader to [5,6].
A set D of vertices of a graph G is a (vertex) dominating set if each vertex in V − D is adjacent to at least one vertex in

D. The (vertex) domination number of G, denoted by γ (G), is the cardinality of a minimum dominating set of G. A minimum
dominating set of G is a γ -set. A set D of vertices is efficient dominating set or a perfect dominating set if each vertex of G is
dominated by exactly one vertex inD. Note that every efficient dominating set is necessarily independent. Also, any efficient
dominating set in a graph must be of size γ (G).
In a generalized Petersen graph P(n, k)we let its vertex set be the union ofU = {u1, u2, . . . , un} andV = {v1, v2, . . . , vn},

and its edge set be {uiui+1, uivi, vivi+k}, 1 ≤ i ≤ n. The first set of vertices is u-vertices and the second ones v-vertices. By
a u-path in P(n, k) we mean a path whose vertices consist of just u-vertices. A v-path is defined similarly. The edge of the
form uivi is spoke. Fig. 1 shows the generalized Petersen graph P(16, 5) and an efficient dominating set.
Georges et al. [4] and Zelinka [9] studied other domination parameters on generalized Petersen graphs. Here we study

their vertex domination. In Section 2 we characterize generalized Petersen graphs that have efficient dominating sets. By
applying this result, in Section 3 we find the exact values of γ (P(n, k)) for 1 ≤ k ≤ 3. In Section 4 we discuss γ (P(n, k)) for
any k.

2. Efficient vertex domination

In the following lemma a useful necessary condition is given for P(n, k) to have an efficient dominating set.

Lemma 1. If P(n, k) has an efficient dominating set, then γ (P(n, k)) = n
2 and 4|n.
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Fig. 1. An efficient dominating set in P(16, 5).

Fig. 2. If vi and vi+1 belong to a dominating set in P(n, k).

Proof. Since P(n, k) is a 3-regular graph with 2n vertices, if P(n, k) has an efficient dominating set, then γ (P(n, k)) =
2n
3+1 =

n
2 .

Now if we let γ (P(n, k)) = m, then n = 2m. Assume that S is a dominating set of sizem and suppose that l of its elements
are u-vertices and m − l of them v-vertices. Each u-vertex dominates three of u-vertices and each v-vertex dominates one
u-vertex. Since P(n, k) has an efficient dominating set, 3l + (m − l) = n = 2m, and hence m = 2l. As n = 2m, we have
n = 4l and so 4|n. �

Lemma 2. If k is an odd number and 4|n, then γ (P(n, k)) = n
2 , and therefore P(n, k) has an efficient dominating set.

Proof. Let n = 4l. We construct an efficient dominating set S = A ∪ B, where

A = {u4i+1 | 0 ≤ i ≤ l− 1} and B = {v4i+3 | 0 ≤ i ≤ l− 1}.

Here A dominates vertices u4i, u4i+1, and u4i+2, and B dominates u4i+3. Also the vertices v4i+3, v4i+3+k, and v4i+3−k are
dominated by B, while for each i the vertex v4i+1 is dominated by A. Since k is odd, any v-vertex vj with j = 4i + r , for
each r ∈ {1, 2, 3, 4} is dominated. But |S| = n

2 , so γ (P(n, k)) = |S| =
n
2 and therefore S is an efficient dominating set. See

Fig. 1 for an example. �

Lemma 3. Suppose that S is an efficient dominating set for P(n, k). If a v-vertex vi ∈ S, then vi+1 6∈ S, where subscripts are
taken modulo n.

Proof. Suppose to the contrary that vi, vi+1 ⊆ S for some i, as in Fig. 2.
To dominate ui+k and ui+k+1, we must have ui−1+k ∈ S and ui+2+k ∈ S. To dominate ui−k and ui+1−k we must have

ui−1−k ∈ S and ui+2−k ∈ S. Now, neither vi−1 nor its neighbors can be used for dominating vi−1, as there will be some
overlaps in dominating. �

Theorem 1. A generalized Petersen graph P(n, k) has an efficient dominating set if and only if n ≡ 0 (mod 4) and k is odd.
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Fig. 3. A building block of a γ -set in P(n, 2).

Proof. Sufficiency of the statement follows from Lemma 2. For necessity, suppose that S is an efficient dominating set in
P(n, k). As in Lemma 1, we have |S| = n

2 = 2l, where l is the number of u-vertices in S, which is equal to the number
of v-vertices in S. Each u-vertex dominates three u-vertices (including itself) and one v-vertex. So there are 3l u-vertices
dominated by u-vertices, and l of them dominated by v-vertices. Let ui and uj be two u-vertices in S, such that on one of
the u-paths from ui to uj there is no other u-vertex in S. Now there are exactly five u-vertices on the u-path from ui to uj,
including ui and uj. For, since S is an efficient dominating set and by Lemma 3 the number of vertices on that path dominated
by a v-vertex is at most 1, and also since there are l v-vertices in S, there must be at least one vertex of that path dominated
by a v-vertex. So there is a unique pattern for the u-vertices in S, say {ui, ui+4} ⊆ S, and similarly {vi−2, vi+2} ⊆ S, see
Fig. 1 for the pattern. By this unique pattern, it is clear that P(n, k) does not have an efficient dominating set for even values
of k. �

3. Some exact values for γ(P(n, k))

In this section we establish some formulas for the vertex domination number of three classes of generalized Petersen
graphs.

3.1. The Case k = 1

Theorem 2. If n ≥ 3, then we have

γ (P(n, 1)) =


n
2
+ 1 if n ≡ 2 (mod 4)⌈n
2

⌉
otherwise.

Where dxe denotes the smallest integer greater than or equal to x.
Proof. Obviously γ (P(n, 1)) ≥ d n2e. For the case n ≡ 2 (mod 4), by Lemma 1, P(n, 1) is not efficient, so in this case
γ (P(n, 1)) ≥ n

2 + 1. For the construction of γ -sets with desired sizes, the same pattern as of Lemma 2 works, except in
the case of n = 4l+ 2, we need an extra vertex v1. �

3.2. The Case k = 2

Behzad and Behzad [1] have shown that γ (P(2k+ 1, k)) ≤ d 3(2k+1)5 e. Since for each odd number n, the graph P(n, 2) is
isomorphic to P(2k+ 1, k) (see [7]), we generalize their result and show that equality holds for any n.

Theorem 3. For n ≥ 5 we have γ (P(n, 2)) = d 3n5 e.

Proof. For sufficiency, to show that γ (P(n, 2)) ≤ d 3n5 e, all we need is to construct a set that uses d
3n
5 e vertices to dominate

P(n, 2). We cover P(n, 2) by blocks of 10 vertices each, as shown in Fig. 3.
We dominate vertices of each block with 3 vertices as shown in Fig. 3. For n = 5l, vertices of P(n, 2) can be partitioned

by these blocks, therefore, γ (P(5l, 2)) ≤ 3l. If n ≡ 1( mod 5), then we can cover all vertices by these blocks, except two
adjacent vertices which can be dominated just with onemore vertex. Hence γ (P(5l+1, 2)) ≤ 3l+1. If n ≡ 2 or 3 ( mod 5)
thenwe candominate remaining verticeswith twomore vertices. So,γ (P(n, 2)) ≤ d 3n5 e forn = 5l+2 or 3. Ifn ≡ 4 ( mod 5),
then we dominate eight remaining vertices with three more vertices, and we still have γ (P(n, 2)) ≤ d 3n5 e.
For necessity, we need to show that γ (P(n, 2)) ≥ d 3n5 e. By Theorem 1, P(n, 2) never has an efficient dominating set. So

γ (P(n, 2)) > n
2 , which implies that γ (P(n, 2)) = d

3n
5 e, for n = 5, 6, 8, 10. Also note that P(7, 2) is isomorphic to P(7, 3)

and we will see in Theorem 4 that γ (P(7, 3)) = 5, so γ (P(7, 2)) = 5 = d 3·75 e. For n = 9, we need some more work.
γ (P(9, 2)) ≥ d 92e = 5. If γ (P(9, 2)) = 5, then in any γ -set S, either the number of u-vertices or the number of v-vertices
must be at most 2. Obviously none of them can contain just one vertex of S. If there are just two u-vertices in S, then without
loss of generality, we may assume that u1 ∈ S. The non-trivial cases are {u1, u4} ⊂ S or {u1, u5} ⊂ S. In either case we are
forced to include a set of three v-vertices in S. In both cases, the resulting set of 5 vertices does not form a dominating set.
The case that S only contains two v-vertices is similar. Thus γ (P(9, 2)) ≥ 6.
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Fig. 4. A Pi-block.

Fig. 5. Block Pi and its neighbor block.

Fig. 6. Two possible forms of blocks with γi = 2.

Now assume that n > 10 and let S be a γ -set for P(n, 2). For each i = 1, . . . , n we define a Pi-block to be induced
subgraph of P(n, 2) on the set of vertices {ui−2, ui−1, ui, ui+1, ui+2, vi−2, vi−1, vi, vi+1, vi+2}, where the subscripts are taken
modulo n. See Fig. 4.
Let γi = |S ∩ V (Pi)|. We proceed as follows.
First, we show that there exists a γ -set inwhich allPi-blocks have γi > 1. Note that each of the vertices {ui−1, ui, ui+1, vi}

can be dominated onlywith somevertex ofPi. So for all i, γi ≥ 1. Nowsuppose that S is aγ -set forwhich the cardinality of the
set {i|γi = 1} is minimum.We show that this cardinality is zero. Indeed, if for some i, |S∩V (Pi)| = 1 then obviously the only
vertex in V (Pi) belonging to S, must be ui. To dominate vertices vi+1, ui+2, and vi+2 we need to have {vi+3, ui+3, vi+4} ⊆ S.
Now, the set T = (S − {ui+3}) ∪ {ui+2} is a γ -set and it has less blocks with {i|γi = 1} than S. A contradiction.
Next, let S be a γ -set for which γi > 1 for all i, and the cardinality of the set {i|γi = 2} for S is minimum. We show that

in any Pi-block with γi = 2, we have

(a) ui ∈ Pi.
(b) γi±2, γi±4 ≥ 3 and γi+2 or γi−2 ≥ 4.

Let Pi be a block with γi = 2 (see Fig. 4). To show (a), note that, as we noticed earlier, the vertices {ui−1, ui, ui+1, vi} can
be dominated only with some vertices of Pi. So either ui ∈ Pi or |Pi ∩ S| ≥ 3.
To show (b) we prove that in Pi, neither of the vertices ui−2, vi−2, ui+2, nor vi+2 can belong to S. For, if one of these

vertices, say ui−2, belongs to S then vi+1, ui+2, and vi+2 must be dominated by other vertices than those of Pi. So we must
have {vi+3, ui+3, vi+4} ⊂ S. See Fig. 5.
On the other hand, to dominate ui+5, one of the vertices ui+6, vi+5, ui+4, or ui+5 must belong to S. So, Block 2 has at least

4 vertices in S. Now, (S−{ui+3})∪ {ui+2} is another γ -set which has fewer blocks with γi = 2, and this is a contradiction to
the way that S is chosen. So, without loss of generality, we may assume that each block with γi = 2, up to symmetry, is one
of the forms given in Fig. 6. AssumePi is of the form in Fig. 6(a). Since ui+2 and vi+2 cannot be dominated by the vertices of
Pi ∩ S, we have vi+4, ui+3 ∈ S. Also, at least one of the vertices ui+4, ui+5, ui+6, or vi+5 must belong to S. Similarly, ui−3, vi−4
and at least one of the vertices ui−4, ui−5, ui−6 or vi−5 must belong to S. Now, assertion (b) is clear. Proof of the second case,
Fig. 6(b), is similar.
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Now, we count the elements of S. From the above, we know that γi ≥ 2, and also that if γi = 2 then γi−2+ γi+ γi+2 ≥ 9.
Let L be a set defined as L = {i− 2, i, i+ 2|γi = 2}. Obviously |L| is of multiple 3, and we have

n∑
i=1

γi =
∑
γi=2

(γi−2 + γi + γi+2)+
∑
i6∈L

γi.

≥

∑
γi=2

9+
∑
i6∈L

3 = 9
|L|
3
+ 3(n− |L|) = 3n.

Therefore,
∑n

i=1
γi ≥ 3n. Note that each vertex of P(n, 2) belongs to exactly 5 Pi-blocks. So, 5|S| =

∑n

i=1
γi. Hence,

5|S| ≥ 3n and |S| ≥ d 3n5 e. �

3.3. The Case k = 3

Xueliang Fu, Yuansheng Yang and Baoqi Jiang have proved the following theorem in [3]. Herewe give a short and different
proof.

Theorem 4. For n ≥ 7 we have

γ (P(n, 3)) =



n
2
+ 1 if n ≡ 2 (mod 4)⌈n
2

⌉
if n ≡ 1, 0 (mod 4) or n = 11⌈n

2

⌉
+ 1 if n ≡ 3 (mod 4), n 6= 11.

Proof. First, we construct an efficient dominating set for each case. For a given number l, let A and B be two sets defined as
in Lemma 2, i.e.

A = {u4i+1 | 0 ≤ i ≤ l− 1} and B = {v4i+3 | 0 ≤ i ≤ l− 1}.

Now it can be easily checked that each of the following sets is a dominating set of the appropriate size in each case:
1. n = 4l, S = A ∪ B;
2. n = 4l+ 1, S = A ∪ B ∪ {vn−1};
3. n = 4l+ 2, S = A ∪ B ∪ {un−2, vn−1};
4. n = 4l+ 3 (n 6= 11), S = A ∪ B ∪ {un−2, vn−3, v2};
5. n = 11, S = {u1, u5, u8, v1, v3, v10}.
Next, we prove that each of the given sets is indeed a γ -set. As we noted in the proof of Lemma 1, we have γ (P(n, 3)) ≥ d n2e.
So, this takes care of cases 1, 2, and 5. Case 3 follows from Lemma 1. To see Case 4, if γ (P(4l+3, 3)) = d n2e = 2l+2, and if S
is a γ -set, thenwe have exactly two double dominations, i.e. there are two vertices of P(4l+3, 3) each of which is dominated
twice, or one vertex is dominated three times. Suppose that we have s of u-vertices and t of v-vertices in S. So,

3s+ t ≥ 4l+ 3, 3t + s ≥ 4l+ 3, and s+ t = 2l+ 2.

These imply s = t = l+ 1.
Therefore there are 3(l+ 1)+ (l+ 1)many u-vertices dominated and the same number for v-vertices. Thus, there is no

vertex dominated three times, and one of the two doubly dominated vertices is a u-vertex and the other one is a v-vertex.
Two adjacent u-vertices or v-vertices cannot be in S since thenwe have a vertex dominated by two vertices. Therefore, there
are three cases to be discussed:
(a) Two vertices of a spoke belong to S. Let u1 and v1 be such vertices. For n ≥ 15, to dominate u3 we need to have v3 ∈ S.
Also similar argument may be used to show that the vertices u5, u8, vn−1, v10, v12, and v14, orderly are forced to be in S.
Now we have no choice to dominate u11.
Note that if n = 11 we do not face this situation, because vn−1 = v10. Indeed the γ -set given in the above has two

such double dominated vertices. But if n = 7, then v3 is forced to be in S, and there is no choice for u4 to be dominated
without having another double domination vertex.

(b) Let the double dominated u-vertex be u2, which is dominated by u1 and u3. If n = 7, then to dominate u5 and u6 we
must have v6, v5 ∈ S, also to dominate v4 we need either v4 or v7 to be in S. Therefore, S = {u1, u3, v5, v6, v7} or
{u1, u3, v4, v5, v6}. If n > 7, then to dominate u5 wemust have u6 or v5 in S. If u6 ∈ S, then to dominate v4 there will be
another double domination in u-vertices, namely u4. So, v5 ∈ S. Now to dominate v4 we need v7 ∈ S, and for u6 we need
v6 ∈ S. Now to dominate u8 we must have u9 ∈ S. But then there will be two double dominated v-vertices, namely v3
and v9.

(c) Let the double dominated u-vertex be u1, which is dominated by v1 and u2. If n > 7, then vertices u5, vn, and v9 are forced
to be in S. Now that we have {u5, v9, vn} ⊂ S, vertices u6 and u9 are dominated, but in order u7 to be dominatedwemust
have v7 ∈ S. Then we do not have choice to dominate u8 unless we have another double domination in v-vertices. For
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the case n = 7 since u1 is the only double dominated u-vertex by v1 and u2, so u5 is the only candidate to dominate u4.
Now to dominate u7, we must choose v7. Thus v6 is left undominated. Therefore γ (P(7, 3)) > 4. �

4. Final notes

In this section we introduce some bounds for domination number of generalized Petersen graphs.

Proposition 1. If k is an odd number and n > 2k is any integer, then γ (P(n, k)) = n
2 + O(k).

Proof. Let A and B be two sets defined as in the proof of Lemma 2, and let S = A∪ B. The vertices uj, for j ≡ 0, 1, 2 (mod 4)
are dominated by uj+1, uj, or uj−1 and if j ≡ 3 (mod 4), then uj is dominated by vj. So, all u-vertices are dominated. For the
v-vertices, if k ≤ j ≤ n− k, then vj is dominated by uj, vj±k, vj, or vj∓k according to the value of jmodulo 4. The number of
possible remaining v-vertices that are not dominated by the vertices in S is at most 2k. We may add all of them to S to have
a dominating set. So, we have

n
2
≤ γ (P(n, k)) ≤

n
2
+ 2k H⇒ γ (P(n, k)) =

n
2
+ O(k). �

Note that when k is a fixed integer the upper and lower bounds given in the proof of Proposition 1 are close to each other,
but for large values of k (for example close to n2 ) the gap between them is significant.
In the following we find an upper bound by introducing appropriate blocks of vertices in each case.

Proposition 2. If k is an even number greater than 2 and n > 2k, then γ (P(n, k)) ≤ 5n
9 + O(k). Indeed, this upper bound can

be improved:
(a) γ (P(n, k)) ≤ (5l)d n9le (k = 3l);
(b) γ (P(n, k)) ≤ (5l+ 2)d n

9l+4e (k = 3l+ 1);
(c) γ (P(n, k)) ≤ (5l+ 4)d n

9l+6e (k = 3l+ 2).

Proof. To show the inequality, we choose blocks, described in each case in the following, and cover P(n, k) by these blocks.
(a) k = 3l

In this case consider a blockBi of size 9l having 5l vertices S(Bi), in the dominating set as follows:

S(Bi) = {ui+1, ui+4, . . . , ui+3l−2, ui+6l+1, ui+6l+4, . . . , ui+9l−2}∪
{vi+3l, vi+3l+1, . . . , vi+6l−1}

v-vertices:
u-vertices:

(b) k = 3l+ 1
In this case consider a block Ci of size 9l+ 4, having 5l+ 2 vertices S(Ci), in the dominating set as follows:

S(Ci) = {ui+2, ui+5, . . . , ui+3l−1, ui+6l+3, ui+6l+6, . . . , ui+9l+3}∪
{vi+3l+1, vi+3l+2, . . . , vi+6l+1}

v-vertices:
u-vertices:

(c) k = 3l+ 2
In this case consider a blockDi of size 9l+ 6 having 5l+ 4 vertices S(Di), in the dominating set as follows:

S(Di) = {ui, ui+3, . . . , ui+3l, ui+6l+5, ui+6l+8, . . . , ui+9l+5}∪
{vi+3l+2, vi+3l+3, . . . , vi+6l+3}

v-vertices:
u-vertices:

And these complete the proof. �

Note. The Generalized Petersen graphs are particular cases of the I-graphs (see for example [2]). The I-graph I(n, j, k) is
a graph with vertex and edge set

V (I(n, j, k)) = {u1, u2, . . . , un, v1, v2, . . . , vn}
E(I(n, j, k)) = {uiui+j, uivi, vivi+k | i = 1, 2, . . . , n},

where subscripts are reduced modulo n.
Clearly, P(n, k) = I(n, 1, k). It could be an interesting project to investigate the domination number for this class of

graphs as well, and we propose this research problem to the interested reader.
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