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The  poultry  industry  has  a high  demand  for Salmonella  vaccines  in  order  to generate  safer  Salmonella-free
food  for  consumers  around  the  world.  Vaccination  against  S. Enteritidis  (SE)  is vastly  undertaken  in many
countries,  although  the criteria  for the  use  of  live  vaccine  (LV)  or killed  vaccine  (KV)  should  also  depend  on
the  immune  mechanisms  triggered  by  each.  In this  study,  a commercial  bacterin  (KV)  and  an  attenuated
SG  mutant  (LV)  were  used  in four  different  vaccine  programs  (LV;  LV +  LV; KV;  LV +  KV).  At 1  day  before
(dbi)  and  1, 6 and  9 days  after  SE  challenge  (dpi),  humoral  (IgM,  IgG  and  secretory  IgA)  and  cellular  (CD8+

T  cells)  immune  responses  were  evaluated  along  with  the production  of IL-10,  IL-12  and  IFN-�.  Although
after  challenge,  all birds  from  each  group  had  an  influx  of CD8+ T cells,  birds  which  received  KV  had
lower  levels  of these  cells  in organs  and  significantly  higher  levels  of immunoglobulins.  The  expression
of  the  cytokines  was  up-regulated  in  all groups  post-vaccination,  although,  after  challenge,  cytokine
expression  decreased  in the  vaccinated  groups,  and  increased  in  the  unvaccinated  group  A. IL-10  levels
were  significantly  higher  at 1 day  post-infection  in  the  group  that  received  KV,  which  may  be  involved
in  the  weak  cellular  immune  response  observed  within  this  group.  In caecal  tonsils,  IFN-�  expression  at

+
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1  dbi  was  higher  in  birds  which  received  two vaccine  doses,  and  after  challenge,  the population  of CD8
T  cells  constantly  increased  in  birds  that  were  only  vaccinated  with  the  LV.  This  study  demonstrated
that  the  development  of a mature  immune  response  by CD8+ T cells,  provided  by  the  use of  the  LV,  had
better  efficacy  in  comparison  to the  high  antibody  levels  in  the  serum  stimulated  by  the  KV.  However,
high  secretory  IgA  levels  in the  intestinal  lumen  associated  with  influx  CD8+ T cells  may  be indicative  of
protection  as noticed  in group  E (LV  +  KV).
. Introduction

Salmonella enterica subsp. enterica serovar Enteritidis (SE) is a
andemic pathogen, present in countries with industrial poultry
roduction since the 1990s [1]. Each year, millions of foodborne
almonellosis cases occur worldwide, resulting in an estimated
55,000 deaths [2]. Poultry meat and eggs are largely implicated

n SE foodborne infections [3], and the use of vaccine programs has
hown great application for SE control in poultry flocks [4,5].
Salmonella  vaccines can act by distinct mechanisms. Killed
accines are vastly adopted in many countries, for vaccination
f commercial table-egg layers. Most of these vaccines contain

∗ Corresponding author at: Department of Veterinary Pathology, School of Agri-
ultural and Veterinary Sciences, São Paulo State University (FCAV-Unesp), Via de
cesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, SP, Brazil.
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Open access under the Elsevier OA license.
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SE antigens and adjuvants, and stimulate an enhanced humoral
immune response, with variable levels of protection [6,7]. Oth-
erwise, live vaccines containing attenuated Salmonella strains
stimulate cell mediated immunity (CMI), not necessarily produc-
ing high antibody titers [8]. Due to the low risk of human infection
and the host-specificity, attenuated strains of Salmonella enterica
subsp. enterica serovar Gallinarum biovar Gallinarum (SG) have
been extensively used as live vaccines against salmonellosis in
chickens [9–12].

The  immune response against these intracellular bacteria
involves many factors, including detection of pathogen associated
molecular patterns (PAMPs) by the host pattern recognition recep-
tors (PRRs), e.g. Toll-like receptors (TLRs), and signaling through
production of cytokines, which have an important role in modu-
lating the nature of the immune response [13]. Pro-inflammatory

Open access under the Elsevier OA license.
cytokines trigger the innate immune response, and its chemoat-
tractant activity recruits phagocytic monocytes, natural killer cells,
macrophages and heterophils, important cells for the primary
immune response against SE [14–17]. Although the innate immune
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Table 1
Vaccine schemes tested against S. Enteritdis.

Groups Number of birds 1st dose (5 days) 2nd dose (25 days)

A 20 Unvaccinated
B 20 LV –
C 20  LV LV
D 20 – KV
E 20  LV KV
638 R.A.C.  Penha Filho et al. /

esponse has proven to be important in preventing colonization by
E, the acquired immunity can provide a faster and more specific
mmune response to this pathogen [18].

CD8+ T cells can recognize and destroy infected cells. Anti-
enic stimulation of naïve CD8+ T cells, by antigen presenting
ells (APCs) can lead to the development of two lines; memory
D8+ T lymphocytes and effector CD8+ cytotoxic T lymphocytes
CTLs). The search for live bacterial vaccines that stimulate CD8+

 cell response has been studied previously [9–21]. Differentia-
ion to CTLs is dependent mainly upon the production of IL-12
22]. Nonetheless, IL-12 induces the production of Interferon-�
IFN-�), an essential cytokine for protective immunity against pri-

ary infection with Salmonella [23]. IL-10 is a regulatory cytokine
hat causes down-regulation of inflammatory responses and deac-
ivates macrophages [24]. IL-10 has a negative influence on IFN-�
xpression by T helper 1 (Th1) cells and promotes proliferation of
h2 cells and antibodies [25,26].

The investigation of antibodies for protection against Salmonella
as presented conflicting results. In different studies, high titers
f serum IgG could not be associated with reduction of intestinal
E burden after an experimental challenge [27,28]. Otherwise, in
eld experiments, lower Salmonella prevalence in vaccinated flocks
as associated with high antibody titers [5,29]. IgA has an impor-

ant role in local role in local immunity. This isotype is secreted
n mucosal surfaces and helps to prevent is secreted in mucosal
uperficies, helping to prevent bacterial colonization in the intesti-
al lumen [30]. Additionally, IgA can be transferred to the offspring
y passive immunity, protecting newly hatched chicks [31].

Immunity  to salmonellosis has been studied and summarized
18,32], however it is important to study the acquired immunity
enerated by vaccine programs, applicable in the fields. In the
resent work, a commercial bacterin and a novel vaccine candi-
ate (attenuated SG) were used in four different combinations to

nvestigate the efficacy to control SE challenge and the effector
echanisms triggered, such the influx of CD8+ T cells, antibodies

nd the expression of regulatory cytokines.

. Materials and methods

.1.  Experimental birds

One  hundred and twenty white layer-hens, susceptible to SE
nfection [9], were obtained at day of hatch and submitted to bacte-
iological and serological tests in order to check the Salmonella-free
tatus. All birds used tested negative for Salmonella infection.

Animal  experimentation was approved by the Brazilian Com-
ittee of Animal Welfare and Ethics (permit number 6236-09).

irds were reared in controlled ambient conditions.

.2. Bacterial strains and vaccines

A bacterin in oil emulsion containing SE phagotype (PT) 4, PT8
nd PT13a antigens, was administered subcutaneously in the nape
0.3 mL/bird) as the killed vaccine (KV). An attenuated mutant SG
train, with deletion on genes cobS and cbiA, unable to synthesize
iano-cobalamin and immunogenic against SE, was used as the live
accine strain (LV) [10]. An invasive SE PT4 strain [31] was used to
hallenge birds. Bacterial cultures were prepared in Luria-Bertani
LB) broth (Invitrogen, USA) at 100 rpm at 37 ◦C/24 h. The LV and SE
hallenge inocula consisted of 108 CFU in Phosphate Buffer Saline
PBS) pH 7.4 (Merck, Germany), administered orally, into the crop.
.3. Experimental design

Five  groups containing 20 birds each were allocated and vacci-
ation was carried out at 5 and/or 25 days of age, as described in
LV, live vaccine (0.5 mL  via oral); KV, killed vaccine (0.3 mL  subcutaneous). At 45
days of age, all birds in all groups were challenged with S. Enteritidis.

Table 1. At 45 days of age, all birds were challenged. Unvaccinated
and unchallenged birds were used as a negative control for cytokine
quantification.

2.4. Sampling and bacteriology

At  1 day before infection (dbi) and 1, 6 and 9 days post-infection
(dpi), blood was harvested from five birds in each group, which
were then euthanized by cervical dislocation for sampling. After
necropsy, the intestinal lumen was  washed with 2 mL  phenyl-
methyl sulfonyl fluoride (PMSF) buffer [33] and centrifuged at
2000 rpm, at 4 ◦C for 30 min, supernatants were then stored at
−20 ◦C. Spleen, liver and caecal tonsil samples were aseptically
harvested, snap-frozen in liquid nitrogen and stored at −80 ◦C for
immunohistochemistry or quantitative PCR.

Spleen and caecal contents were used in bacteriology as
described previously [34]. SE counts were expressed as log10 per
gram of sample. Positive samples after enrichment (≤102 CFU/g),
are expressed as 2 (log10 of CFU/g) in calculations.

2.5. Antibodies production

Indirect  enzyme-linked immunosorbent assay (ELISA) using SE
antigen was  applied to quantify IgG (also known as IgY) and IgM
in the sera, and secretory IgA in the intestinal lumen (lavage), as
described before [35]. The optical density values (OD) were used to
calculate the adjusted E values using the following formula:

E  value = OD  sample − OD negative control
OD positive control − OD negative control

2.6.  Immunohistochemistry

Immunohistochemistry was  used to determine the influx of
CD8+ T cells as described previously [36]. Briefly, frozen tissue sec-
tions (8 �m)  of liver and caecal tonsil samples were fixed in ice-cold
acetone. Sections were incubated overnight at 4 ◦C with anti-
chicken CD8�+ antibody (5 ng/mL, SouthernBiotech, USA). Reaction
was developed with Envision-HRP Kit and 3,3′-diaminobenzidine
(DAB, Dako, USA). Tissue sections were randomly photographed
in light microscope (Eclipse Moticam, Nikon, Japan). The percent-
age of positively stained areas was  analyzed using Image Pro Plus
Software (MediaCybernetics, USA).

2.7. RNA isolation and reverse transcription (RT-PCR)

Spleen and caecal tonsil were used for RNA extraction and cDNA
synthesis was performed as described previously [36]. The RNA

quality was  determined using the NanoDrop 1000 (ThermoScien-
tific, USA) and by agarose gel electrophoresis. The cDNA was stored
at −20 ◦C until use.



R.A.C. Penha Filho et al. / Vaccine 30 (2012) 7637– 7643 7639

Table 2
Primer sequences used in the qPCR in real time for cytokine quantification.

Target gene Oligonucleotides Annealing Size (bp) GenBank ID

18S F 5′-CATGGCCGTTCTTAGTTGGT-3′ 50 ◦C 232 FM165414
R  5′-GGCGTAGGGTAGACACAAGC-3′

IL-10 F 5′-CGGGAGCTGAGGGTGAA-3′ 60 ◦C 272 AJ621614
R  5′-GTGAAGAAGCGGTGACAGC-3′

IL-12 p40 F  5′-ACCAGCCGACTGAGATGTTC-3′ 54 ◦C 163 FJ788636.1
R  5′-GTGCTCCAGGTCTTGGGATA-3′

IFN-� [49] F 5-AGCTGACGGTGGACCTATTATT-3′ 56 ◦C 259 HQ739082.1
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cytokine in spleen decreased in all groups, except in group D. In
caecal tonsils, IL-10 levels were higher in groups C and E before
challenge, and a peak was seen at 6 dpi in group E (Fig. 3).
R  5′-GGCTTTGCGCTGGATTC-3′

, forward primer; R, reverse primer.

.8. Quantitative real time PCR

The real time PCR was carried out in 25 �L reactions using 50 ng
f cDNA; 0.5 �M of forward and reverse primers; 12.5 �L of Max-
ma SYBR Green 2X (ThermoScientific, USA); 0.2 �L Platinum Taq
NA polymerase (Invitrogen, USA) and nuclease free water. Primer

equences and annealing temperatures are detailed in Table 2. The
old change in the mRNA expression of each cytokine encoding
ene was calculated in comparison the normative gene 18S and
nvaccinated and unchallenged birds, using the 2−��Cp method
37].

.9. Statistical analysis

The  Kruskall–Wallis method was used to analyze the inci-
ence of different values between all groups at each sampling day.
he Bonferroni test was  further applied to compare differences
etween groups separately. Values were considered statistically
ifferent at p < 0.05.

. Results

.1. Recovery of SE

The  efficacy of each vaccination scheme was  first evaluated by
acterial counting of the SE challenge strain in spleen and caecal
ontent (Fig. 1). At 1 dpi, the challenge strain was detected in the
pleen samples only after enrichment in groups A, B and E with no
ifferences between groups (p > 0.05). At 6 dpi, SE was  recovered

n spleen from all groups. In group E, the bacterial burden was  sig-
ificantly decreased in comparison with the unvaccinated group A.
t 9 dpi, SE numbers in spleen samples were low and not statis-

ically different between groups (p > 0.05). After challenge, SE was
ecovered in high numbers in the caecal contents of the unvacci-
ated group A. At 1 dpi, all vaccinated groups had lower amounts
f the challenge strain in the caecal contents compared to group

 (p < 0.05). At 6 and 9 dpi the bacterial burden was significantly
ower in vaccinated groups B, C and E (p < 0.05), whilst in group
, which received only one dose of the KV, SE numbers were not
ifferent from the unvaccinated group A.

.2. Antibody levels in serum

IgM  and IgG levels were significantly higher in groups D and E
p < 0.05; Fig. 2). In groups A, B and C, IgM and IgG levels were rel-
tively low throughout sampling. Although IgM slightly increased
t 9 dpi in groups A and C. IgG levels in groups A (unvaccinated), B
nd C increased at 6 dpi.
.3. Secretory IgA in the intestinal lumen

The levels of IgA (Fig. 2) were similar in all groups at 1 dbi. After
hallenge, groups D and E had increasing levels of IgA until 6 dpi
(p  < 0.05). At 9 dpi, it was  still significantly higher in group E than
the other groups (p < 0.05). Groups B and C demonstrated increasing
levels of secretory IgA until 9 dpi, although it did not reach the same
levels of groups D and E, whilst in group A levels were low.

3.4.  IL-12, IFN-� and IL-10 expression

The transcript level of IL-12 in spleen and caecal tonsil (Fig. 3)
was higher in all vaccinated groups before challenge, when com-
pared to the unvaccinated group (p < 0.05). After challenge, the
expression of IL-12 was reduced and in caecal tonsils it did not dif-
fer between vaccinated groups and unvaccinated group A (p > 0.05).
IFN-� levels were significantly augmented in vaccinated groups
in comparison to unvaccinated birds, in spleen and caecal tonsils
(Fig. 3) before challenge. IFN-� expression in caecal tonsils was sig-
nificantly elevated in groups C and E at 1 dbi, and at 6 dpi in group
E, in comparison with the other groups (p < 0.05). IL-10 was highly
expressed in spleen samples of all vaccinated groups in compari-
son with group A at 1 dbi (p < 0.05). At 1 dpi, the expression of this
Fig. 1. S. Enteritidis count in spleen and caecal tonsil samples after challenge in
unvaccinated (group A) and vaccinated chickens (groups B, C, D and E). Numbers of
the challenge strain are expressed in log10 of CFU per gram of sample. For samples
that  were positive after enrichment, the value 2 was used in the calculations. Data
represent the means ± SD. *, p < 0.05; ns, not significative.
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Fig. 2. Levels of IgG, IgM (serum) and IgA (intestinal lumen) in unvaccinated (group
A
(

3

u
c
c

F
b

) and vaccinated chickens (groups B, C, D and E), before (1 dbi) and after challenge
1,  6 and 9 dpi). Data represent the means ± SD. *, p < 0.05; ns, not significative.

.5. Influx of CD8+ T cells

+
The recruitment of CD8 T cells in liver and caecal tonsils, eval-
ated by immunohistochemistry, is displayed in Fig. 4. Before the
hallenge, at 1 dbi, all groups had low levels of CD8+ T cells in cae-
al tonsil. At 1 dpi, the influx of CD8+ T cells started to increase in

ig. 3. Relative quantification of IFN-�, IL-10 and IL-12 expression in spleen and caecal 

efore (1 dbi) and after challenge (1, 6 and 9 dpi). Data represent the means ± SD. *, p < 0.0
e 30 (2012) 7637– 7643

all  groups, including the unvaccinated group A. At 6 dpi, cell influx
was significantly higher in groups A and C, and at 9 dpi, groups B
and C showed the highest levels of CD8+ T cells (p < 0.05), in cae-
cal tonsil samples however, groups D and E exhibited significantly
lower levels of CD8+ T cells, similar to the unvaccinated group A.
In liver samples, CD8+ T cells were present at 1 dbi, although, only
groups B, C and E were significantly different from the control group
A. After challenge, the cell influx in the liver was clearly increased
in all groups, and the highest levels were seen in group A; values
in group D were constant and had no significant increase during
this period. At 6 dpi, the amount of CD8+ T cells was  not different
between vaccinated groups (p > 0.05). However, at 9 dpi, groups B
and C showed higher numbers of CD8+ T cells than groups D and E
in liver.

4. Discussion

Studies regarding the influence of live and killed vaccines on the
immune responses of commercial chickens are important to clar-
ify the specific mechanisms involved. Discussions about the use
of Salmonella vaccines are always controversial; live vaccines are
often questioned about reversion to virulence, whilst killed vac-
cines are described as weak stimulators of the CMI  [18,38]. The
present study, and others, demonstrates that bacterins stimulate
the humoral response which is ineffective on its own, to control
Salmonella infection [39]. However, KV can reduce Salmonella bur-
den in poultry flocks when used with a biosecurity program [5,40].

Immune responses generated by invasive live vaccines should
trigger similar processes as the pathogenic strains. The mutant
SG invaded the host organism from the gut and colonized inter-

nal organs similarly to the wild strain [10]. Additionally vaccine
strains with known genetic deletions (GMO) have reduced risks
of reversion to virulence, in comparison with rough strains [41].
After challenge, the LV stimulated the control of SE (Fig. 1). At 9 dpi,

tonsils of unvaccinated (group A) and vaccinated chickens (groups B, C, D and E),
5; ns, not significative.
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ig. 4. Immunohistochemistry staining of CD8+ T cells in sections of liver and caeca
1  dbi) and after challenge (1, 6 and 9 dpi). Columns represent the mean percentage

roups B and C, both vaccinated only with LV showed the highest
evels of CD8+ T cells in caecal tonsils (Fig. 4).

Before  challenge, low levels of CD8+ T cells were detected
Fig. 4), suggesting that levels of CD8+ cells returned to basal lev-
ls during the interval between vaccination and challenge, as seen
efore [36,42]. After challenge, the population of CD8+ T cells con-
tantly increased in groups B and C. This may  suggest a controlled
lonal expansion of memory CD8+ cells in these vaccinated birds.
urthermore, high numbers of CD8+ T cells persisted for longer
eriods, in birds that were vaccinated only with the LV (groups B
nd C). Otherwise, the combination of LV and KV (group E), gen-
rated lower levels of CD8+ T cells, similarly to the KV (group
), whereas unvaccinated birds had rapid influx of cytotoxic T
ells in the liver, possibly attracted by invasive bacteria in this
rgan.

Birds which received one dose of LV (group B) showed the
ighest levels of IFN-� in spleen before challenge. This cytokine is

mportant for macrophage activation [42,43], however after chal-
enge of vaccinated birds, the levels of this cytokine decreased. This

ay  be related to the development of acquired immunity mecha-
isms, obviously different from the innate immune response that

s triggered in unvaccinated birds after primary infection (Fig. 3).
aratyphoid salmonellosis is frequently limited to the gastroin-
estinal tract; thus the control of bacterial invasion must occur
rimarily at the intestinal mucosae and gut associated lymphoid
issue (GALT), specifically the caecal tonsils. Considering this, the
ighest production of IFN-� in the caecal tonsils was  seen in groups

 and E (Fig. 4). At 6 dpi, the expression of IFN-� was  significantly
igher in group E, which could be associated with the ability of birds

n this group to control the first phase of SE infection; colonization
nd invasion. As shown in Fig. 1, control of SE in caecal contents was
learly faster in groups C and E than in the control groups A and

. The association of IFN-� production  and clearance of primary
almonella infection was suggested previously [35,42,44]. How-
ver, in this study, IFN-� levels decreased after challenge (1 dpi)
f vaccinated birds, reaching similar levels to the unvaccinated
il of unvaccinated (group A) and vaccinated chickens (groups B, C, D and E), before
ined areas ± SD. *, p < 0.05; ns, not significative.

group  A, suggesting that the development of acquired immunity
in vaccinated birds is not solely dependant on IFN-�.

IL-12 has an important role in stimulating the production of IFN-
�, recruiting naïve CD8+ T cells and CTLs and developing the CD8+

memory cells [45,46]. The present study detected high expression
of this cytokine in vaccinated birds before challenge (Fig. 3). At 1 dbi
IL-12 levels in caecal tonsils were elevated in all vaccinated groups
in comparison with unvaccinated birds (group A). The presence of
CD8+ T cells combined with low expression of IL-12 in group A
(unvaccinated), may  lead to a weak response by Ag-specific CD8+

T cells and birds may  become more susceptible to infection.
LV  seems to stimulate the development of the CMI in a con-

trolled manner. The influx of CD8+ cells in groups B and C was
constantly increasing as SE numbers decreased. Therefore, at 6 and
9 dpi, the bacterial burden was  lower in all groups which received
at least one dose of the LV, whilst the high immunoglobulin levels
could not decrease SE burden in group D. The high levels of IL-10
in spleen samples are indicative of the important role developed in
vaccinated animals [25]. After challenge, IL-10 levels decreased in
all vaccinated groups which may  be an important shift to increase
antigen presentation and the pro-inflammatory response.

Considering the effective control of the challenge strain, the
bacterial burden was significantly decreased in groups C and E.
The combination of LV and KV provides a comprehensive immune
response. Even though the SG based LV is more efficacious to stim-
ulate the CMI, the KV contains highly immunogenic proteins, like
flagellin, and stimulates high antibody titers. The CMI  combined
with the higher titer of secretory IgA (Fig. 2) could be associ-
ated with the good efficacy of the vaccine program used in group
E. B cells and related immunoglobulins can be important for the
effective control of Salmonella infection [47], as they can present
Salmonella antigens and generate an effective immune response by

CTLs [48].

In  summary, this study elucidates aspects of the humoral and
cellular immune responses triggered by different vaccine programs
using LV and KV, and correlates the control of infection with the
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fficacy of each vaccine program. It was shown that using KV, only,
oes not appear to control high bacterial numbers, despite the
igh immunoglobulin levels generated. The bacterin showed an

mpaired ability to elicit CD8+ T cells responses, compared to the LV.
owever, the combination of LV and KV on the same vaccine pro-
ram showed greater efficacy, together with the use of two  doses
f LV, both vaccine programs stimulated a protective immunity
gainst this pathogen. Overall, this study reinforced the importance
f vaccination for the effective control of SE infections for poultry
roduction and showed novel alternatives for vaccination that may
e useful in the fields.
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