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Feature (gene) selection and classification of microarray data are the two most interesting machine learning
challenges. In the present work two existing feature selection/extraction algorithms, namely independent com-
ponent analysis (ICA) and fuzzy backward feature elimination (FBFE) are usedwhich is a new combination of se-
lection/extraction. The main objective of this paper is to select the independent components of the DNA
microarray data using FBFE to improve the performance of support vector machine (SVM) and Naïve Bayes
(NB) classifier, while making the computational expenses affordable. To show the validity of the proposed
method, it is applied to reduce the number of genes for five DNA microarray datasets namely; colon cancer,
acute leukemia, prostate cancer, lung cancer II, and high-grade glioma. Now these datasets are then classified
using SVM and NB classifiers. Experimental results on these five microarray datasets demonstrate that gene se-
lected by proposed approach, effectively improve the performance of SVM and NB classifiers in terms of classifi-
cation accuracy. We compare our proposed method with principal component analysis (PCA) as a standard
extraction algorithm and find that the proposed method can obtain better classification accuracy, using SVM
and NB classifiers with a smaller number of selected genes than the PCA. The curve between the average error
rate and number of genes with each dataset represents the selection of required number of genes for the highest
accuracywith our proposedmethod for both the classifiers. ROC shows best subset of genes for both the classifier
of different datasets with propose method.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gene expression analysis using microarrays has become an impor-
tant part of biomedical and clinical research. Recent advancements in
DNA microarray technology have enabled us to monitor and evaluate
the expression levels of thousands of genes simultaneously, which al-
lows a great deal of microarray data to be generated [1]. Microarray
techniques have been successfully employed virtually in every aspect
of biomedical research because they exhibit the possibility to do
massive tests on genome patterns [2]. Microarray gene expression
data usually has a large number of dimensions and is permitted to eval-
uate each gene in a single environment in different types of tissues like
various cancerous tissues [3]. Accordingly, microarray data analysis,
which can supply useful data for cancer prediction and diagnosis, has
also attracted many researchers from diverse areas. Progressively, the
challenge is to translate such data to get a clear insight into biological
processes and themechanisms of humandisease [4]. To aid such discov-
eries, mathematical and computational tools are required that are
versatile enough to capture the underlying biology and simple enough
. This is an open access article under
to be applied efficiently on large datasets. Therefore, novel statistical
methods must be introduced to analyze those large amounts of data
generated from microarray experiments [5]. The process of microarray
classification consists of two successive steps. The first step is to select
a set of significant and relevant genes and the second step is to develop
a classification model, which can produce accurate prediction for
unseen data. One of the key goals ofmicroarray data analysis is to distin-
guish the various categories of cancers. A true and accurate classification
is essential for successful diagnosis and treatment of cancer. The
enormous dimensionality of the DNA microarray data becomes a prob-
lem, when it is employed for cancer classification, as the sample size of
DNA-microarray is far less than the gene size [6]. However, among the
large number of genes, only a small fraction is effective for performing
a classification task, so the choice of relevant genes is an important
task in most microarray data studies that will give higher accuracy for
sample classification (for example, to distinguish cancerous from nor-
mal tissues). This trouble can be alleviated by using machine learning
with a gene selection problem. The goal of gene selection methods is
to determine a small subset of informative genes that reduces process-
ing time and provides higher classification accuracy [7]. There are a
large number of methods, which have been developed and applied to
do gene selection. A typical gene selectionmethod has two constituents,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 2. Maximummargin hyperplanes for SVM divides the plane into two classes.
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an evaluation criterion and a searching scheme. As many evaluation
criteria and searching schemes already exist, it is possible to develop
many gene selection methods by just combining different evaluation
criteria and searching schemes. Since, many of these combinations of
evaluation criteria and searching schemes actually perform similarly,
it is sufficient to compare the most commonly used combinations
instead of all possible combinations [8]. The commonly used gene selec-
tion & extraction approaches are t-test, Relief-F, information gain, SNR-
test and principal component analysis (PCA), linear discriminant analy-
sis, independent component analysis (ICA). These methods are capable
of selecting a smaller subset of genes for sample classification [9]. Re-
cently, independent component analysis (ICA) method has received
growing attention as effective data-mining tools for microarray gene
expression data. As a technique of higher-order statistical analysis, ICA
is capable of extracting biologically relevant gene expression features
of microarray data [10]. The success of the ICA method depends upon
the appropriate choice of best gene subset from given ICA feature vector
and choice of an appropriate classifier [11].

In this study, fuzzy backward feature elimination (FBFE) schemewas
introduced, in which features were eliminated successively from ICA
feature vector according to their influence on a SVM and NB based eval-
uation criterion. FBFE is a backward feature elimination method based
on fuzzy entropy measure. Several machine learning techniques, such
as artificial neural networks (ANN), k-nearest neighbor (KNN), support
vector machine (SVM), Naïve Bayes (NB), decision tree, random forest
and kernel-based classifiers, have been successfully applied to microar-
ray data and also for other biological data analyses in recent years [4,12].
From the study of Liwei Fan et al. and Chun-Hou Zheng, it was seen that
NB and SVM were the best classifiers with ICA for microarray data, and
feature subset selection from the ICA feature vector can significantly im-
prove the performance of classifiers [3,13].

Naïve Bayes (NB) classifier is a simple Bayesian network classifier,
which is built upon the firm assumption that different attributes are in-
dependent of each other in the given course of instruction. There are
two major challenges that may seriously affect the successful applica-
tion of NB classifier to microarray data analysis. The first is the condi-
tional independence assumption rooted in the classifier itself, which is
hardly satisfied by the microarray data [14]. This limitation could be
successfully resolved as the components extracted by the ICA are statis-
tically independent therefore, gene extraction by ICA could effectively
improve the performance of a NB classifier for microarray data. Second
limitation is that, all the attributes have an influence on the classifica-
tion; hence, the use of FBFE eliminates the inappropriate genes from
ICA feature vector to improve the performance of a NB classifier during
cross validation. It is therefore necessary to select genes to reduce the
dimensionality of microarray data before applying a NB classifier [15].
Fig. 1. Theoretical framework of ICA algorith
On the other hand the SVM-based classifier is superior, as it is less
sensitive to the curse of dimensionality and more robust than other
non-SVM classifiers [16]. The biggest drawback of an SVM is that it can-
not directly obtain the genes of importance. Thus, during the fitting of
an SVM model, a careful gene selection has to be done first and then
the selected genes should be used to obtain improved classification
results. If genes are not appropriately chosen, theremay be a large num-
ber of redundant variables in the model, severely affecting its perfor-
mance [17].

In this paper, a fuzzy backward feature elimination (FBFE) approach
is used to eliminate the inappropriate genes from the independent com-
ponents of the DNAmicroarray data for support vector machine (SVM)
and Naïve Bayes (NB) classifiers. The proposed approach consists
mainly of two steps. The original DNA microarray gene expression
data are modeled by independent component analysis (ICA), and then
the most discriminant features extracted by the ICA are selected by
the fuzzy feature selection technique, which will be introduced and
discussed in detail in Section 2. The next section explains the classifica-
tion procedure of SVM and NB, followed by the details of used datasets
and preprocessing step of datasets. In Section 4, the proposedmethod is
compared and evaluated with PCA as a standard extraction method on
several microarray datasets. The experimental results on five microar-
ray datasets, show that the proposed approach can, not only improve
the average classification accuracy rates, but also reduce the variance
in classification performance of SVM and NB. Discussions and conclu-
sions are presented in Section 5.
ms of microarray gene expression data.



Fig. 3. Naïve Bayes classifier.
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2. Proposed approach

2.1. Feature extraction by ICA

ICA is a projectionmethod that linearly decomposes the dataset into
components that have a desired property. ICA decomposes an input
dataset into components such that each component is statistically as
independent from the others as possible, which was proposed by
Hyvarinen and has been proven successful in many applications [18].
ICA is an extension of PCA; PCA projects the data into a new space
spanned by the principal components. In contrast to PCA, the goal of
ICA is to find a linear representation of non-Gaussian data so that the
components are statistically independent [19]. ICA provides amore bio-
logically plausible model for gene expression data by assuming a non-
Gaussian data distribution. ICA provides a data-driven method for ex-
ploring functional relationships and grouping genes into transcriptional
modules.

In the simplest form of ICA, the expression levels of all genes are
taken as n scalar random variables x1, x2, …, xn, which are assumed
to be linear combinations of m unknown independent components
S1, S2, …, Sm that is mutually statistically independent, and possess
zero-mean. Let the expression levels xj be arranged into a vector
X = (x1, x2, …, xn)T which are modeled as linear combination of m
random variable S = (s1, s2, …, sm)T [20]:

xj ¼ aj1s1 þ aj2s2 þ…þ ajmsm; for all j ¼ 1;…;n ð1Þ

X ¼ AS;

x1
:
:

xn

2
66664

3
77775 ¼

a11 : : a1m
:
:

:
: :

an1 anm

2
664

3
775

s1
:
:
:
sm

2
66664

3
77775 ð2Þ
Table 1
Summary of five high dimensional biomedical microarray datasets (Kent ridge online reposito

Dataset No. of classes No. of features Class balance +/− No. o

Colon cancer [45] 2 2000 (22/40) 62

Acute leukemia [46] 2 7129 (47/25) 72

Prostate tumor [47] 2 12,600 (50/52) 102

High-grade glioma [49] 2 12,625 (28/22) 50

Lung cancer II [48] 2 12,533 (31/150) 181
where X, is (n × m) matrix which denotes microarray gene expres-
sion data, with n genes and m samples, and aij (i=1, … ,m) in X
are some real ratio of intensities, represent the expression level of
ith genes in the jth sample, and number of genes are much greater
than that of the sample m i.e., n ≫ m. This is a basic ICA model of mi-
croarray gene expression data. It is assumed that the observed vari-
ables are independent components, these are latent variable, which
cannot be directly observed and the mixing matrix A is also assumed
to be unknown matrix. The random variable xj is known and both
matrices S and A using X are to be estimated. In most cases, to simpli-
fy feature selection, the number of features is always assumed to be
equal to the number of observed variables, n = m. Then, the mixing
matrix A becomes anm ×m square matrix and can invert the mixing
matrix as:

U ¼ S ¼ A−1X ¼ WX: ð3Þ

Then ICA can be applied to find a matrix W that provides the
transformation U=u1 ,u2 , … ,um=WX of the observed matrix X
under which, the transformed random variables u1 ,u2 , … ,um called
the independent components are as independent as possible. Theo-
retical framework of ICA algorithms of microarray gene expression
data is shown in Fig. 1, as previously demonstrated by Wei Kong
et al. [21].

A fixed point algorithm is a computationally highly efficient method
for performing the estimation of ICA for microarray data [22]. It is based
on a fixed-point iteration scheme that has been found in independent
experiments to be 10–100 times faster than conventional gradient
descent methods for ICA. In the fixed point algorithm of ICA
(FastICA), maximizing negentropy is used as the contrast function
since negentropy is an excellent measure of non-Gaussianity and is
approximated by

J uð Þ ¼ H uGð Þ−H uð Þ ð4Þ

where uG is a Gaussian random vector of the same covariance matrix
as vector u, H is marginal entropy, which is defined asHðuiÞ ¼ −∫pðsiÞ
logpðsiÞdsi of the variable ui and p(.) is a probabilistic density func-
tion. Mutual information I, is known as natural measure indepen-
dence of random variables, it is widely used as the criterion in ICA
algorithm and can be measured by

I ¼ J uð Þ−
X

i
J uið Þ: ð5Þ

The independent components are determined, when mutual infor-
mation I is minimized. From Eq. (5), it is clearly shown that minimizing
the mutual information I is equivalent to maximizing the negentropy
J(u). To estimate the negentropy of ui=wTx, an approximation to iden-
tify independent components one by one is designed as follows:

JG wð Þ ¼ E G wTx
� �� �

−E G vð Þf g� �2 ð6Þ
ry).

f samples Short description

Data collect from colon cancer patient: tumor biopsies showing tumor
negative and normal positive biopsies are from health parts of colons of
the same patients.
Data collected from bone marrow samples: distinction is between Acute
Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL)
without previous knowledge of these classes.
Data from prostate tumor samples where by the non-tumor (normal)
prostate sample sand tumor samples (cancer) are identified.
Data collected from brain tumor samples: distinction is between
glioblastomas and anaplastic oligodendrogliomas.
Data collected from tissue samples; classification between Malignant
Pleural Mesothelioma (MPM) and Adenocarcinoma (ADCA) of the lung.



Table 4
Classification result with prostate tumor data.

S. no. Classifier Method Mean accuracy Variance

1.

SVM

SVM 78.43 0.102
2. PCA + SVM 75.43 0.101
3. ICA + SVM 80.45 0.092
4. PCA + FBFE + SVM 83.23 0.076
5. ICA + FBFE + SVM 88.12 0.043
1.

NB

PCA + NB 73.23 0.092
2. ICA + NB 79.23 0.083
3. PCA + FBFE + NB 83.22 0.052
4. ICA + FBFE + NB 84.12 0.031

Table 2
Classification result with colon cancer data.

S. no. Classifier Method Mean accuracy Variance

1. SVM SVM 88.19 0.061
2. PCA + SVM 75.15 0.053
3. ICA + SVM 79.19 0.052
4. PCA + FBFE + SVM 83.34 0.032
5. ICA + FBFE + SVM 90.09 0.026
1.

NB

PCA + NB 76.58 0.074
2. ICA + NB 80.81 0.051
3. PCA + FBFE + NB 82.65 0.032
4. ICA + FBFE + NB 85.46 0.012
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where,G can be practically any non-quadratic function, E(.) denotes the
expectation, and v is a Gaussian variable of zeromean and unit variance
[23].
2.2. Feature selection by FBFE technique

Fuzzy feature selection approach is used to select the best gene sub-
set from the ICA feature vector for good separability of the classification
task. A central issue associated with ICA is that it generally extracts a
number of components, which are equal to the observational variables
m for which again 2m gene subsets exist [11]. The evaluation of all pos-
sible gene subsets leads to computational problem for large values ofm.
To solve this problem of identifying the most relevant feature subsets
FBFE technique is applied.

Fuzzy feature selection is based on a fuzzy entropymeasure. Since
the fuzzy entropy is able to discriminate pattern distribution better,
it is employed to evaluate the separability of each feature. Intuitively,
the lower the fuzzy entropy of a feature, the higher is the feature's
discriminating ability. Pasi Luukka suggested that corresponding to
Shannon probabilistic entropy, the measure of fuzzy entropy should
be [24]:

H1 Að Þ ¼ −
Xn
j¼1

μA xj
� �

logμA xj
� �þ 1−μA xj

� �� �
log 1−μA x j

� �� �� � ð7Þ

where μA(xj) are the fuzzy values. This fuzzy entropy measure is con-
sidered to be a measure of fuzziness, and it evaluates global devia-
tions from the type of ordinary sets, i.e. any crisp set A0 lead to h
(A0) = 0. Note that the fuzzy set A with μA(xj)=0.5 plays the role
of the maximum element of the ordering defined by H. Newer
fuzzy entropy measures were introduced by Parkash et al. [25]
where fuzzy entropies were defined as:

H2 A : wð Þ ¼
Xn
j¼1

wj sin
πμA x j

� �
2

þ sin
π 1−πμA x j

� �� �
2

−1
� 	

ð8Þ
Table 3
Classification result with acute leukemia data.

S. no. Classifier Method Mean accuracy Variance

1.

SVM

SVM 92.21 0.071
2. PCA + SVM 76.67 0.054
3. ICA + SVM 88.23 0.039
4. PCA + FBFE + SVM 91.23 0.03
5. ICA + FBFE + SVM 94.20 0.013
1.

NB

PCA + NB 68.23 0.053
2. ICA + NB 86.21 0.051
3. PCA + FBFE + NB 91.42 0.026
4. ICA + FBFE + NB 95.12 0.023
H3 A : wð Þ ¼
Xn
j¼1

wj cos
πμA xj

� �
2

þ cos
π 1−πμA x j

� �� �
2

−1
� 	

: ð9Þ

These fuzzy entropy measures were used in the feature selection
process. The main idea is, first to create the ideal vectors Vi =
(vi(f1), …, vi(ft)) that represents the class i as well as possible.
This vector can be user defined or calculated from some sample
set Xi of vectors x = (x(f1), …, x(ft)) which are known to belong to
class Ci. Here the generalized mean is used to create these class
ideal vectors. Then the similarities S (x, Vi), between the sample x
and the ideal vectors Vi are calculated. In calculating the similarity
of the sample vectors and ideal vectors, j similarities are obtained,
where j is the number of features. Then those similarities are collect-
ed into one similarity matrix. At this step, using the Eq. (7) entropy is
calculated to evaluate the relevance of the features. Low entropy
values are obtained if similarity values are high and if similarity
values are close to 0.5, high entropy values are obtained. Using this
underlying idea, the fuzzy entropy values can be calculated for fea-
tures by using similarity values between the ideal vectors and sam-
ple vectors which are to be classified [26]. After the fuzzy entropy
of each feature has been determined, the features can be selected
by forward selection or backward elimination. The forward selection
method is to select the relevant features beginningwith an empty set
and iteratively add features until the termination criterion is met. In
contrast, the backward elimination method starts with the full fea-
ture set and removes features until the termination criterion is met
[27]. In this paper a backward elimination method is used to pick
the relevant features.

2.3. Performance evaluation method (LOOCV)

The Leave-One-Out Cross-Validation (LOOCV), performance is ap-
plied to characterize the behaviour of both the base classifiers. Two typ-
ical cross-validation methods (namely k-fold cross-validation and
leave-one-out validation) have been widely used in microarray data
classification evaluation. Comparing to the k-fold cross-validation
method, the LOOCVmethod is more applicable due to the small sample
size of microarray data [4,9,11,28]. In LOOCVmethod of cross validation
Table 5
Classification result with high-grade glioma data.

S. no. Classifier Method Mean accuracy Variance

1.

SVM

SVM 69.23 0.067
2. PCA + SVM 69.72 0.042
3. ICA + SVM 70.21 0.043
4. PCA + FBFE + SVM 73.32 0.047
5. ICA + FBFE + SVM 79.21 0.041
1.

NB

PCA + NB 69.78 0.032
2. ICA + NB 70.20 0.041
3. PCA + FBFE + NB 74.32 0.021
4. ICA + FBFE + NB 76.23 0.020



Fig. 5. Number of selected genes V/s classification accuracy using SVM and NB classifiers
on acute leukemia data based on proposed method.

Table 6
Classification result with lung cancer II data.

S. no. Classifier Method Mean accuracy Variance

1.

SVM

SVM 76.21 0.074
2. PCA + SVM 75.23 0.081
3. ICA + SVM 80.12 0.091
4. PCA + FBFE + SVM 85.21 0.062
5. ICA + FBFE + SVM 91.23 0.024
1.

NB

PCA + NB 80.54 0.061
2. ICA + NB 86.52 0.082
3. PCA + FBFE + NB 91.32 0.034
4. ICA + FBFE + NB 95.42 0.011
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the number of partitions of a dataset is equal to the number of sample
size (m). Each test set consists of a different singleton set and each train-
ing set consists of all (m − 1) cases not in the corresponding test set.
Given a dataset containingm samples (m− 1) samples are used to con-
struct a classifier and then apply the remaining one data sample to test
this classifier. By repeating this process of successively using each data
sample (xi) as the testing data sample, totally m prediction ei = c(xi)
(i = 1 − m) is obtained. The performance of the classifier is then mea-
sured by the average misclassification rate:

Er ¼ 1
m

Xm
i¼1

δ ei; yið Þ;

where yi is the true class label, for instance xi, and

δ x; yð Þ ¼ 0 if x ¼ y
1 if x ≠ y

:

2.4. SVM classifier

The support vector machine (SVM) is a popular algorithm for
solving, pattern recognition, regression and density estimation prob-
lems, and perform better than most of the machine learning algo-
rithms introduced by Vapnik and co-workers [29–31]. The SVM is a
linear classifier that maximizes the margin between the separating
hyperplane and the training data points. In case of linearly separable
Fig. 4. Number of selected genes V/s classification accuracy using SVM and NB classifiers
on colon cancer data, based on proposed method.
data, the goal of training phase of SVM is to find the linear function
[32]:

f xð Þ ¼ WTX þ b: ð10Þ

For the given training dataset that consists of n samples, (xi, yi) for
i = 1, 2, …, n, xi ∈ Rd represents input vectors and yi denotes the class
label of the ith sample. In the binary SVM the class label yi is either 1
or −1 i.e. yi ∈ (−1, +1), Eq. (10) is the border for two different data
classes and divides the space into two classes according to the
condition:

WTX+bN0, WTX+bb0, where W∈Rn is a normal vector, the
bias b is a scalar; the separating plane is defined by WTX+b=0,
and the distance between the two parallel hyperplanes is equal
to 2

kwk2 . This quantity is termed as the classification margin as

shown in Fig. 2. For maximizing the classification margin the
Fig. 6. Number of selected genes V/s classification accuracy using SVM and NB classifiers
on prostate tumor data, based on proposed feature method.



Fig. 9. Average error rate of SVM classifier for the five datasets with different gene
selection methods.

Fig. 7. Number of selected genes V/s classification accuracy using SVM and NB classifiers
on high-grade glioma data, based on proposed method.
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SVM requires the solution of the following quadratic optimization
problem [33,34]:

minimize
1
2

Wk k2

subject to Yi WTXi þ b

 �

≥1:
ð11Þ

By introducing Lagrange multipliers αi (i = 1, 2, …, n) for the con-
straint, the primal problem becomes a task of finding the saddle point
of Lagrange. Thus, the dual problem becomes:

max L αð Þ ¼
Xn
i¼1

αi−
1
2

Xn
ij

αiα jyi y j xi � xj
� �

subject to
Xn
i¼1

αi yi ¼ 0

αi≥0:

ð12Þ

By applying the Karush–Kuhn–Tucker (KKT) conditions, the
following relationship holds αi[yi(Wxi+b)−1]. If aiN0, the
Fig. 8. Number of selected genes V/s classification accuracy using SVM and NB classifiers
on a lung cancer II data, based on proposed method.
corresponding data points are called support vectors (SVs). Hence,

the optimal solution for the normal vector is given by W � ¼ ∑
N

i¼1
αi yi

xi. Here N is the number of SVs. By choosing any SVs (xk, yk), we can
obtain b * =yk−W*xk.

After (W*, b*) is determined, the discrimination function can be
given by

f xð Þ ¼ sgn
XN
i¼1

αiyi xi � xj
� �þ b�

 !
ð13Þ

where sign (.) is the sign function.
In case of nonlinearly separable data, SVM has to map the data from

the input space into a higher-dimensional feature space, where the clas-
ses can then be separated by a hyperplane. The function that performs
this mapping is called a kernel function. In SVM the following four
basic Kernel functions are used [35]:

1. Linear : K(Xi,Xj)=Xi
TXj

2. Polynomial : KðXi;X jÞ ¼ ðγXT
i;X j þ rÞd; γ N 0

3. Radialbasisfunction(RBF): K(Xi,Xj)= exp(−γ‖Xi−Xj‖)2 ,γN0
4. Sigmoid : KðXi;X jÞ : tanhðγXi

T ;X j þ rÞ
where r, d and γ is a kernel parameter.
Fig. 10.Average error rate of NB classifier for thefive datasetswith different gene selection
methods.
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For nonlinearly separable data, SVM requires the solution of the fol-
lowing optimization problem:

minimize
1
2

WT
��� ���2 þ C∑i¼1

nξi

subjectto : Yi WTXi þ b

 �

≥1−ξi
ξi≥0

ð14Þ

where ξi≥0 are slack variables that allow the elements of
the training dataset to be at the margin or to be misclassified
[36]. More detailed information on SVM can be found elsewhere
[32,37].

2.5. Naïve Bayes classifier

Naïve Bayes is one of the most efficient and effective induc-
tive learning algorithms for machine learning and data mining,
based on applying Bayes theorem with strong independence as-
sumption [38–40]. After feature selection, Naïve Bayes classifier
is built, which is used to classify a new test sample with fea-
tures (gene) values E1, E2, …, En. Bayesian network classifier
computes the posterior probability that the sample belongs to
class H by using the Bayes theorem for multiple evidences as follows
[1,41,42]:

P HjE1; E2; E3;…; Enð Þ ¼ P E1; E2; E3;…; EnjHð Þ � P Hð Þ
P E1; E2; E3;…; Enð Þ : ð15Þ
Fig. 11. (a–d) AUC curves on the test set for both the classifiers with different n
If the assumption of class-conditional independence among attri-
butes is imposed, the following Naïve Bayes classifier can be obtained
[15]:

P HjE1; E2; E3;…; Enð Þ ¼ P E1jHð Þ � P E2jHð Þ �…P EnjHð Þ � P Hð Þ
P E1; E2; E3;…; Enð Þ : ð16Þ

Since P(E1,E2,E3,… ,En) is a common factor for a certain sample, it
can be ignored in the classification process. In addition, since the
attribute variables are continuous inmicroarray data analysis, the prob-
ability density value f(Ei |H) can be used to replace the probability value
P(Ei |H). The class-conditional probability density f(.|H) for each attri-
bute and the prior P(H) can be obtained from the learning process. For
the estimation of f(.|H) the nonparametric kernel density estimation
method is used [13,40,43]. As a result, the general Bayesian classifier
given by Eq. (15) can be simplified as the Naïve Bayes classifier given
by Eq. (17). Fig. 3 shows the simplified form of a Bayesian classifier as
the Naïve Bayes classifier [44].

H0¼ arg max
H∈ω

P Hð Þ ∏
n

i¼1
f EijHð Þ ð17Þ

3. Experiential setup

To evaluate the performance of the proposed feature selection ap-
proach for SVM and NB classifiers five publicly available microarray
datasets, i.e. colon cancer [45], acute leukemia [46], prostate cancer
[47], lung cancer-II [48], and high-grade glioma data [49] are taken.
umbers of selected genes using proposed approach for colon cancer data.
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These datasets have been widely used to benchmark for the perfor-
mance of gene selection methods in bioinformatics field. These
datasets is downloaded from Kent ridge an online repository of
high-dimensional biomedical datasets (http://datam.i2r.astar.edu.
sg/datasets/krbd/index.html). Table 1 shows the five datasets with
their properties.

These datasets are preprocessed by setting thresholds and log-
transformation on the original data. After preprocessing the data, it is
divided into training and test set, further independent component
analysis is performed to reduce the dimensionality of train data. For
ICA, the FastICA algorithm software package for Matlab (R2010a) is
applied it can be obtained from [53]. Then fuzzy feature selection
technique is used for finding a small number of genes in independent
component feature vectors. Codes for fuzzy feature selection are freely
available on internet [54].

In this study, we tested the performance of the proposed fuzzy
ICA algorithm by comparing it with most well-known standard ex-
traction algorithms principal component analysis (PCA) [50].We
compared the performance of each gene selection approach based
on two parameters: the classification accuracy and the number of
predicted genes that have been used for cancer classification. Classi-
fication accuracy is the overall precision of the classifier and is calcu-
lated as the sum of correct cancer classifications divided by the total
number of classifications:

Classification accuracy¼CC
N

� 100

where N is the total number of the instances in the initial microarray
dataset and CC refers to correct classified instances. From early stage
Fig. 12. (a–d) AUC curves on the test set for both the classifiers with different nu
of the SVM, most of the researchers have used the linear, polynomial
and RBF kernels for classification problems. From these kernels poly-
nomial and RBF are the nonlinear kernel and cancer classification
using microarray dataset is a nonlinear classification task [51,52].
Nahar et al. observed from their experiment out of nine microarray
datasets that the polynomial kernel is a first choice for microarray
classification. Therefore, we used polynomial kernel for SVM classifi-
er with parameter gamma = 1, d = 3 and value of 1 is used for the
complexity constant parameter C and the random number of seed
parameter W. In addition, we apply leave-one-out cross-validation
(LOOCV) in order to evaluate the performance of our proposed algo-
rithmwith SVM and NB classifiers. We implement SVM, NB using the
MATLAB software. Furthermore, in order to make experiments more
statistically valid, we conduct each experiment 30 times on each
dataset. In addition, average results and variance of the classification
accuracies of the 30 independent runs are calculated in order to eval-
uate the performance of our proposed algorithm.
4. Experimental result

To check the performance of the proposed approach with SVM and
NB classifiers, the above mentioned combination has been applied on
the five DNA microarray gene expression datasets. Since all data sam-
ples in the five datasets have already been assigned to a training set or
test set. The training dataset is used to do gene selection and then
built the model for classification of the test dataset to evaluate the
performances of alternative classifiers. To show the efficiency and feasi-
bility of our proposed method, the results of the other three gene selec-
tion methods for the same classifier are also listed in Tables 2 to 6 for
mbers of selected genes using proposed approach for acute leukemia data.

http://datam.i2r.astar.edu.sg/datasets/krbd/index.html
http://datam.i2r.astar.edu.sg/datasets/krbd/index.html
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comparison. In method 1, the microarray data are classified by SVM di-
rectly with all features. In themethod 2, all the features are extracted by
principle component analysis for SVM classification and the same is ap-
plied for method 3 except using ICA for feature extraction. Method 4 is
similar to our proposed method where PCA is used with FBFE for SVM
classification and in method 5 ICA with FBFE. The classification for
pure Naïve Bayes classifier was not included due to its extremely
time-consuming computations. In method 1 of NB classification PCA
was used for feature extraction, in second ICA was used with NB. In
methods 3 and 4 PCA and ICAwere used with FBFE for NB classification
respectively.

It can be seen fromTables 2–6 that both FBFE+ PCA and FBFE+ ICA
perform better than PCA and ICA in microarray data analysis, which
demonstrates the effectiveness of the proposed approach. As for the
comparison between the former two classification rules, FBFE + ICA
perform obviously better than FBFE + PCA in terms of classification ac-
curacy for both the classifier. It is clear that the classification accuracy of
classifiers with our proposed method compared to other three gene se-
lection methods with same classifiers is more accurate, feasible and re-
duces the variation of classification performance. Therefore, the
proposed approach improves the classification performance of both
the classifiers formicroarray data. From the accuracy table of 2–6 differ-
ent datasets, the performance of the proposed method for the high-
grade glioma data, in contrast to the other 4 used datasets is low, be-
cause there is no method which could be applied universally to all the
datasets to classify with maximum accuracy, since the properties of
every datasets are different.

Since a small number of features are not enough for classification,
while a large number of features may add noise and cause over fitting,
Fig. 13. (a–d) AUC curves on the test set for both the classifiers with different nu
fuzzy based backward elimination method is used for removing inap-
propriate genes from the independent component feature vector and
the termination criterion in ourmethod is based on the classification ac-
curacy rate of the classifier. Since features with higher fuzzy entropy are
less relevant to our classification goal, we eliminate the feature which
has the highest fuzzy entropy. If the classification rate does not de-
crease, then the above step is repeated until all “inappropriate” features
are removed. Finally, the features that remained were used for classifi-
cation and then the mean classification accuracies and variances were
computed. In order to study the behavior of a proposed feature selection
approach, it is applied to the colon, leukemia, prostate, high-grade glio-
ma and lung cancer II dataset for SVM and NB classification, a graph is
plotted between the number of features and classification accuracy
rates. Figs. 4–8 show the variation of the number of selected genes V/s
classification accuracy, using SVM and NB classifiers.

The colon cancer dataset consists of 62 samples with 2000 (genes)
features of two classes. Fig. 4 shows the graph between the number of
selected genes and the classification accuracy, using SVM and NB classi-
fiers for colon cancer data based on the proposed gene selection meth-
od. Here by reducing the gene, the mean classification accuracy was
enhanced significantly. The classification accuracy with all 61 selected
genes of training set was 79.19%. The mean improvement in classifica-
tion accuracy was verified by eliminating 5 genes, each time from train-
ing sets. Interestingly, the best mean accuracy with the proposed
method was found to be 90.09% for 30 selected features and 85.46%
for 25 selected genes with SVM and NB classifiers respectively. There
is a sudden increase in the classification accuracy with the elimination
of the genes from 61 to 30 for SVM classification, further reduction in
the genes again decreases the classification accuracy. Moreover, as can
mbers of selected genes using proposed approach for prostate tumor data.
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be seen from Fig. 4, the results were improving almost all the time,
when genes were reduced and finally best results were obtained,
using only 30 and 25 genes from the training dataset using SVM and
NB classifiers respectively. This also suggests a significant reduction in
computational cost and simplifies the model a lot.

Acute leukemia dataset consists of 72 samples with 7129 genes of
two classes. Fig. 5 shows the results of classification accuracy with the
number of selected genes for leukemia dataset. As shown in Table 3,
with this dataset using SVM and NB classifiers with ICA feature vector,
the highest mean accuracy obtained was 88.23% and 86.21%. When
FBFE approach is used in independent component feature vector, one
managed to get 94.2% and 95.12% mean classification accuracies for
SVM and NB classifiers respectively. Fuzzy backward feature elimina-
tion (FBFE) approach is used to eliminate the irrelevant and correlated
genes from the independent components. The peak of the graphs
shows that here, 35 genes for SVM and 30 genes for NB were used for
best classification accuracy.

Fig. 6 shows the graph for the classification accuracy of the prostate
cancer dataset with a number of selected genes using FBFE and ICA
approach with SVM and NB classifiers. The peak of the graph shows
the maximum classification accuracy of this dataset. Interestingly, for
both SVM and NB classifiers the selection of 50 genes gives the highest
mean classification accuracy. Classification accuracy of this dataset
with SVM classifier is more as compared with the NB classifier with
the same number of selected genes. Though the classification accuracy
with ICA + SVM and ICA + NB as shown in the Table 4 was 80.45%
and 79.23%, the mean classification accuracy for SVM and NB classifiers
is 88.12% and 84.12% respectively with the proposed approach. These
Fig. 14. (a–d) AUC curves on the test set for both the classifiers with different num
results clearly show that the FBFE approach with ICA performs better
than the other existing methods.

High-grade glioma dataset consist of 50 samples with 12,625 genes
of two classes. From this dataset 49 genes are extracted by FastICA
from the training set. Fig. 7 shows the classification accuracy graph of
high-grade glioma data by the elimination of the genes with FBFE,
using SVM and NB classifiers. From Fig. 5 it is clear that, by eliminating
5 genes here for this data, there is a difference of 10 genes between
the SVMandNBclassification for the highestmean classification accura-
cy which is more as compared with the other selections. It can be seen
from the graph that the highest mean accuracies for glioma dataset
was found with 25 and 35 (with the difference of 10 genes) selected
genes for SVM and NB classifications respectively. There is a gradual in-
crease in the classification accuracy with the elimination of genes for
both SVM and NB classifications. The values of mean classification accu-
racy with the proposed method for SVM and NB classifiers are 79.21%
and 76.23%, respectively, which is very low as compared to the accura-
cies of the other datasets.

In lung cancer-II dataset there were 181 samples with 12,533 genes.
Fig. 8 clearly shows the difference between the classification accuracies
of this dataset using SVM and NB classifiers. It is clear from the accuracy
graph that classification accuracy of NB is more as compared to the ac-
curacy of the SVM classifier with our proposed method. A sudden in-
crease in the mean classification accuracy is seen with the elimination
of the genes using ICA andFBFEwith SVMandNB classifiers. The highest
mean accuracy obtained was 80.12% and 86.52% with an ICA feature
vector as shown in Table 6 using SVM and NB classifiers. With our pro-
posedmethod, themean accuracy obtained is 91.23%with 80 genes and
bers of selected genes using proposed approach for high-grade glioma data.



Fig. 15. (a–d) AUC curves on the test set for both the classifiers with different numbers of selected genes using proposed approach for lung cancer II data.
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95.42% with 90 genes for SVM and NB classification, which shows that
the FBFE approach with ICA performs better than the other existing
methods.

Figs. 9 and 10 show the graph of the average error rate of SVM and
NB classifiers respectively, for the five datasets with different gene se-
lection methods. It is clearly shown in the figure that ICA + FBFE with
SVM and NB classifiers performs better than the other gene selection
methods because of the reduced error rate, which shows the signifi-
cance of the proposed method with the other existing methods. It is
evident from the graph that when genes are selected, based on FBFE
from PCA then the percentage error rate is minimized, which shows
that FBFE with PCA performs better than PCA method with SVM and
NB classifiers.

For further analysis, AUC (area under the ROC curve) curves obtain-
ed on the test set using different numbers of selected features genes
(features) with 0.5 threshold value for each datasets are depicted in
Figs. 11–15. The highest AUC values for each datasets with the number
of selected genes that gives these highest values are shown in Table 7.
From Figs. 11–15 we can see that, how the AUC changes with different
number of genes. For the colon data (Fig. 11a–d), the highest value of
Table 7
Highest AUC values for both the classifiers with best values of selected features using proposed

S. no. Datasets
SVM classifier

Highest area under the ROC curve Best values of selec

1. Colon cancer 0.9126 30
2. Acute leukemia 0.9468 35
3. Prostate tumor 0.8857 50
4. High-grade glioma 0.7933 25
5. Lung cancer II 0.9144 80
AUC is 0.91 with 30 genes for SVM classifier and 0.85 with 25 genes
for NB classifier. For acute leukemia dataset, as the value of selected
gene set increases from 30 to 35, AUC also increases from 0.93 to 0.94
for SVM classifier, on the other hand with the same increase in selected
gene set for NB classifier, AUC decreases from 0.95 to 0.94. Resultantly it
is concluded that 35 genes are best for SVM classifier and 30 are best for
NB classifier. For prostate dataset, highest value of AUCobtainedwith 50
numbers of selected genes for both the classifiers. For high grade glioma
data, 25 gene set gives the highest value of AUC because further increase
in gene, decreases the value of AUC for SVM classifier and for NB classi-
fier 35 selected genes gives the highest value of AUC. From Fig. 15a–d for
lung cancer data it is clear that with 80 selected gene set, the highest
AUC value is found to be 0.91 for SVM classifier and with 90 selected
genes the highest AUC value is 0.95 for NB classifier. It is immediately
apparent from these results that, with this particular setup, we can
find the number of selected genes that gives the best classification
accuracy.

Therefore, with this fuzzy backward feature selection procedure,
discarding redundant, noise-corrupted or unimportant features, we
can reduce the dimensionality of any type of microarray data to speed
approach for different datasets.

NB classifier

ted features Highest area under the ROC curve Best values of selected features

0.8566 25
0.9536 30
0.8427 50
0.7644 35
0.9588 90
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up the classification process, increase the accuracy rate of the classifica-
tion and making the computational expenses affordable.

5. Conclusion

This paper presents a fuzzy backward feature elimination approach
in ICA feature vector for SVM and NB classifications of microarray data
where the methodologies involve dimension reduction of microarray
data using ICA, followed by the feature selection using FBFE. The
approach was tested by classifying five datasets. ROC shows the best
subset of genes, which gives the highest classification accuracy for
both the classifier of different datasets using proposed approach. The
experimental results show that our combination of gene selection
methods of an existing algorithm together with SVM and NB classifiers
is giving better results as compared to other existing approaches. Our
experimental results on five microarray datasets demonstrate the
effectiveness of the proposed approach in improving the classification
performance of SVM and NB classifiers in microarray data analysis. It
is observed that the proposed method can obtain better classification
accuracy with a smaller number of selected genes than the other
existing methods, so our proposed method is effective and efficient for
SVM and NB classifiers.
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