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In this note we construct two infinite families of vertex-transitive triangulations of 
compact orientable 2-manifolds. Included in these families are two of the best 
known “classical” examples, viz., the triangulation of the genus 3 surface admitting 
the group P&%(2,7) and the triangulation of the genus 7 surface admitting 
sL(2, 8). 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Let r be a graph with vertex set V and edge set E. If (x, JJ> is in E we 
sometimes write x wy. Denote by Aut( r) the group of automorphisms of r. 
Of particular interest to us are the graphs r= (V, E) which satisfy the 
following four conditions: 

(1.1) r is connected. 

(1.2) 1 VI < co. 

(1.3) Aut(T) is transitive on V. 

(1.4) If xE Vandifr(x)= {ye Vly#x andy-x}, then the induced 
graph on T(x) is an ordinary n-gon, n >, 4. 

( 1.5) Let S be the set of 3-element cliques in I? Then each s E S has a 
cyclic ordering such that if sl, s2 E S have orderings < 1, < 2, respectively, 
and ifs, ns, = {x, y} with x<, y, then Y<~x. 

The import of conditions (l.l)-( 1.5) is that if d is the simplicial complex 
with vertices V and simplexes equal to the finite cliques in V, then d 
triangulates a compact orientable 2-manifold of genus g, where 

(1.6) 2-2g=v-nv/2+nv/3, v= 1 VI, and n is the valence of r. 
If r is a graph satisfying ( 1.1 )-( 1.5), and if g is the genus as in ( 1.6), we 

shall call r a vertex-transitive triangulation (or simply a VTT) of genus g. 
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For a discussion of a rather more general aspect of this problem, see [ 1, 
Chap. 51. 

Our two families of VTT’s are constructed as follows: 

First of all, let G = PSL(2, p), where p is a rational prime satisfying 
161 p2 - 1. Let %’ be one of the (two) conjugacy classes of elements of order 
p. Agree that x-y if xy is an involution. Note that this is a symmetric 
relation since yx = x - ‘(xy) X. We shall prove in Section 2 that the graph r 
so obtained is a VTT and has genus g = (p + 2)(p - 3)( p - 5)/24. In par- 
ticular, if p = 7 then g = 3 and G = PSL(2, 7), which is “extremal” in that 
1 G ( = 84( g - 1). (We always have 1 G 16 84( g - 1); see [ 1, (5.5.2)].) 

For the second family, let G = SL(2, q), where q = 2’2 8. Let % be a con- 
jugacy class of elements of order q - 1. If X, y E %? then define x wy if xy2 is 
an involution. In Section 3 we prove that the relation N so defined is sym- 
metric and that the resulting graph is a VTT of genus 
g=(q-l)(q2-5q-12)/12. If q=8 then g=7 and IGI=X(2,8) which 
satisfies 1 G 1 = 84( g - 1). 

We have made no attempt to give exhaustive lists of examples of graphs 
which the methods described herein will produce. Instead, we expect that 
the basic idea of the constructions will lead to further similar constructions 
and thereby shed light on the problem of which genera can actually occur. 

2. G = PSL(2, p), 16 I p2 - 1 

Let % be a fixed class of elements of order p and let Y be the class of 
involutions. Let r be the graph with vertices % and adjacency x-y if 
xy EY. From [2, (19.2)] we have that for any z E 9 

where the summation is over the irreducible characters of G, and where 
ge %‘. From the character table of G [2, Sect. 381, one calculates that the 
right-hand side above is C, where 

z=p-1 ifp = 1 (mod 4), 

=p+l ifp = 3 (mod 4). 

We have l%?l=4(p’-1)and 

91,=5P(P+ 1) ifp = 1 (mod 4), 

=3P(P- 1) ifp = 3 (mod 4). 
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In either case we conclude that if x E V, then 1 T(x) 1 =p, i.e., the valence of 
r is p. The connectivity of r follows from the fact that G is generated by 
any pair of non-commuting subgroups of order p. 

Next, let x, y, and z be elements of G, represented by the matrices 

respectively, where u is a square root of 2. (Since 16 1 p2 - 1, the quadratic 
reciprocity theorem guarantees the existence of u.) We assume that ‘8 is the 
class containing x. Easy calculations show that zxz -’ = y and that 
(~y)~ = 1. Therefore y E T(x). Since we already know that the graph r has 
valence p, we infer that 

T(x)= (x$x-‘)O<i,<p- l}. 

2.1. LEMMA. xiyx - in y  if and only if 2i2 = 1 (mod p). 

Pro05 Calculation reveals that ( yx’yx - i)2 is represented by the matrix 

[ 

(-2i+ 1)2+ 8i2(i- 1) 2i2( - 4i2 + 2) 

4(i-l)(-4i2+2) 1 8i2(i- l)+(4i2-2i- 1)2 ’ 

This matrix represents the identity in G if and only if 2i2 = 1 (mod p), as 
required. 

The above lemma, together with the fact that the cyclic group generated 
by x acts transitively on T(x), shows that T(x) inherits the structure of an 
ordinary p-gon. Thus, we have already shown that r satisfies (1.1) through 
(1.4). 

2.2. LEMMA. r satisfies (1.5). 

ProoJ: Since G acts transitively on vertices and since the cyclic group 
( g) acts transitively on r(g) for any g E %, we infer that G acts trans- 
itively on 3-cliques. Let s = {x1, x2, x3 } be a fixed 3-clique; let the cyclic 
ordering be (x,, x2, x3). If ge G and if s’ =gs, define the cyclic ordering of 
s’ to be ( gxl, gx2, gx3). This is well defined provided that in the stabilizer 
of s, no element fixes one vertex and interchanges the remaining two. Say 
that z E G fixes x1 and interchanges x2 and x3. Then z has even order and 
centralizes x 1 . Since the centralizer of x1 in G is (x, ), z cannot exist as 
above. Finally, assume that s’, S” are 3-cliques with s’ n S” = {xi, xi }, and 
assume that the cyclic ordering of s’ is (xi, x;, xi). Let H be the stabilizer 
in G of the edge (xi, x;]. Since G acts transitively on the f 1 G 1 edges, we 
infer that H has order 2. As above, the nonidentity element z of H cannot 
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fix either xi or xi. It follows that zx; E s” and so the cyclic ordering of s” is 
(xi, 4, 4). 

2.3. THEOREM. risa VTTofgenusg=(p+2)(p-3)(p-5)/24. 

ProoJ: Only the genus needs to be computed. To this end, apply (1.6) 
with V= $(p2- l), n=p. 

3. G=SL(2, q), q=2’28 

Let a be a generator of the multiplicative group ff f . Define elements X, y 
of G by setting [ a 0 1 1 [ 1 3 X= 

0 aA1 ’ ‘=(a2 (a4+a2+l)/a Z4 1 
and let % be the conjugacy class in G containing x. Let 9 be the class of 
involutions in G. Routine calculation shows that ny2 is an involution, as is 
yx2. Further calculation shows that y has eigenvalues a and a - ‘, which 
already shows that x and y are conjugate in GL(2, q). Thus, assume that 
ZXZ-l = y, where det z = d. Since IF, is a perfect field of characteristic 2 we 
infer that d has a square root, say c2 = d. Thus we may write z = z1 z2 where 
Z,EG and z2 = diag(c, c), and so zi XZ; l= y. This proves that y E %‘. 

Next, a character theoretic calculation as in Section 2 reveals that if z is 
an involution in G, 

I{(x,y)EVx~IXy2=Z}I =q. 

Since there are q2 - 1 involutions, we conclude that 

I{ZE~IXZ2E4)l =q-1. 

Thus, we infer that the cyclic group (x) acts transitively of the set 
{ZE % I xz2 EY}. Since y is in this set, and since yx2 E 3 as well, we con- 
clude that xz2 E 9 if and only if zx2 E Y. Since G acts transitively on %, we 
infer that the relation z- w  if zw2 E 3 is actually a symmetric relation on %?. 
We let r be the corresponding graph, which by the above, has valence 
q- 1. 

If r0 is a connected component of r, then To must contain at least q + 1 
vertices. But then the stabilizer in G of To must contain at least q + 1 con- 
jugates of the cyclic group (x) and,hence must be all of G. By transitivity 
we get I-‘,, = r, i.e., r is connected. 

Calculations similar to those in (2.1) give us the following: 
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3.1. LEMMA. Let x, y be as above. Then x’yx - i N y if and only if i E + 1 
(modq-1). 

Therefore, we already have that (1.1) through ( 1.4) are satisfied by r. 
Since the verification of (1.5) is identical with the proof of (2.2) we have the 
following: 

3.2. THEOREM. The graph r is a VTT of genus g = (q - 1 )(q2 - 
5q - 12)/12. 

Proof. Of course, the genus is computed using (1.6). 
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