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1. INTRODUCTION

Let U be a set, let X be a subset of U , and let � = �Xi�i∈I be a family
of subsets of U . We say that X admits a Boolean representation in terms of
� if

X = ⋃
j∈J

⋂
i∈Sj
Xi (1)

for some family �Sj�j∈J of subsets of I.
Similarly, let f be a real valued function on a set 	 and let � = �gi�i∈I

be a family of real valued functions on 	. We say that f admits a Boolean
representation in terms of � if

f �x� = sup
j∈J

inf
i∈Sj

gi�x�� ∀x ∈ 	 (2)

for some family �Sj�j∈J of subsets of I.
The goal of this paper is to establish Boolean representations for smooth

domains in �n and smooth real valued functions on closed convex subsets
of �n.

The paper is organized as follows.
In Section 2, we show that a smooth n-dimensional manifold in �n with a

boundary admits Boolean representation (1) in terms of a family of closed
half subspaces of �n.
In Section 3, we establish Boolean representation (2) for smooth real val-

ued functions on closed convex domains in �n. Although this result can be
established using the method developed in Section 2, we prefer to present
an alternative proof that gives an explicit formula for the family � in (2).
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In Section 4, we investigate the relation between the Boolean represen-
tation established in Section 3 and the Legendre transform.
Finally, in Section 5, we establish an integral representation of smooth

functions in terms of the Choquet integral. This representation is equivalent
to one obtained in Section 3.

2. SMOOTH MANIFOLDS

Let � ⊂ �n be a smooth n-dimensional manifold with a boundary; i.e.,
each x ∈ � has a neighborhood diffeomorphic to an open subset of a closed
half space in �n. For each point x in the boundary ∂� we denote by Qx the
closed half space consisting of all tangent and “inward” vectors at x.
Let a be a point in � and let R be a closed ray with the origin at a.

The connected component of � ∩ R in R is a closed interval 
a� aR� in R
(it is possible that aR = a). In other words, 
a� aR� is the set of all points
in � that are “visible” from a in the “direction” R. Clearly, aR ∈ ∂� and

a� aR� ⊂ QaR�
Let �a be the set of all closed rays with the origin at a. Then

⋂
R∈�a

QaR
is a closed convex subset of � containing a. This we have

� = ⋃
a∈�

⋂
R∈�a

QaR�

The above argument proves the following theorem.

Theorem 1. Let � ⊂ �n be a smooth n-dimensional manifold with the
boundary ∂� and let Q be the family of all closed half spaces Qx, x ∈ ∂�. There
is a family �Qi�i∈I of subsets of Q such that � admits a Boolean representation

� = ⋃
i∈I

⋂
Qx∈Qi

Qx� (3)

Remark 1. Suppose � is convex. Then � = ⋂
x∈∂� Qx which is clearly a

special case of (3). If � is concave, then � = ⋃
x∈∂� Qx which is again a

special case of (3).

Remark 2. Representations similar to (3) are well known in the area
of constructive solid geometry. Namely, any simple polytope can be repre-
sented by a Boolean formula based on the half spaces supporting the faces
of the polytope [1].
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3. SMOOTH FUNCTIONS

We use notation x = �x1� � � � � xn� for points in �n. A closed domain in
�n is the closure of an open set.

Let f be a smooth function on a closed domain 	 in �n. For a point
t ∈ 	 we define

gt�x� = �∇f �t�� x− t� + f �t�� x ∈ 	� (4)

where ∇f �t� is the gradient vector of f at t and �·� ·� is the standard inner
product in �n. Geometrically, the graphs of these affine linear functions
are tangent hyperplanes to the graph of f .
In this section we prove the following theorem.

Theorem 2. Given closed convex domain 	 and f ∈ C1�	�, there exists
a family �Sj�j∈J of subsets of 	 such that

f �x� = sup
j∈J

inf
t∈Sj

gt�x�� ∀x ∈ 	� (5)

First we prove two technical lemmas.

Lemma 1. Let h be a differentiable function on [0, 1]. There exists λ0 ∈

0� 1� such that

h′�λ0��−λ0� + h�λ0� ≤ h�0� and h′�λ0��1− λ0� + h�λ0� ≥ h�1�� (6)

Proof. Let m = h�1� − h�0�. If h′�0� ≥ m, then λ0 = 0 satisfies both
inequalities. Thus we may assume that h′�0� < m. Similarly, if h′�1� ≥ m,
then λ0 = 1 satisfies both inequalities and we may assume that h′�1� < m.

Consider function H�λ� = h�λ� −mλ− h�0�. We have

H�0� = H�1� = 0 and H ′�0� < 0�H ′�1� < 0�

It follows that H is negative in some neighborhood of 0 and positive in
some neighborhood of 1. Hence the set U = �λ ∈ �0� 1� � H�λ� = 0� is
a nonempty closed subset of (0, 1). Let λ0 = inf U . Then H�λ0� = 0 and
H ′�λ0� ≥ 0; i.e.,

h�λ0� = mλ0 + h�0� = m�λ0 − 1� + h�1�
and h′�λ0� ≥ m. We have

h′�λ0��−λ0� + h�λ0� = h′�λ0��−λ0� +mλ0 + h�0� ≤ h�0�
and

h′�λ0��1− λ0� + h�λ0� = h′�λ0��1− λ0� +m�λ0 − 1� + h�1� ≥ h�1��
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Lemma 2. Let f ∈ C1�	�. For any given a� b ∈ 	 there exists c ∈ 	 such
that

gc�a� ≤ f �a� and gc�b� ≥ f �b��
Proof. Let h�λ� = f ��1− λ�a+ λb� for λ ∈ 
0� 1�. By Lemma 1, there

is λ0 ∈ 
0� 1� satisfying inequalities (6). Let c = �1− λ0�a+ λ0b. We have

gc�a� = �∇f �c�� a− c� + f �c� = �−λ0��∇f �c�� b− a� + f �c�
= �−λ0�h′�λ0� + h�λ0� ≤ h�0� = f �a�

and

gc�b� = �∇f �c�� b− c� + f �c� = �1− λ0��∇f �c�� b− a� + f �c�
= �1− λ0�h′�λ0� + h�λ0� ≥ h�1� = f �b��

Now we proceed with the proof of Theorem 2. For a given u ∈ 	, we
define Su = �t ∈ 	 � gt�u� ≥ f �u�� and

fu�x� = inf
t∈Su

gt�x�� x ∈ 	�

which is well defined, since f ∈ C1�	�.
By Lemma 2, for given x� u ∈ 	�x �= u, there exists v ∈ 	 such that

gv�u� ≥ f �u� and gv�x� ≤ f �x�. Hence, v ∈ Su and

fu�x� = inf
t∈Su

gt�x� ≤ gv�x� ≤ f �x��

In addition,

fu�u� = inf
t∈Su

gt�u� = gu�u� = f �u��

since u ∈ Su and gt�u� ≥ f �u� for t ∈ Su. Therefore we have

sup
u∈	

inf
t∈Su

gt�x� = sup
u∈	

fu�x� = f �x��

which completes the proof.

Remark 3. Let f be a strictly convex function. Then

f �x� = sup
u∈	

gu�x�� x ∈ 	�

since Su = �u� for all u ∈ 	. Similarly, for a strictly concave f , Su = 	 and
we have

f �x� = inf
u∈	

gu�x�� x ∈ 	�

Both facts are well known properties of convex (concave) functions.
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FIGURE 1

Remark 4. Convexity of 	 is an essential assumption in Theorem 2.
Consider, for instance, the domain 	 in �2 which is a union of three trian-
gles defined by the sets of their vertices as follows (see Fig. 1):

�1 = ��−1� 0�� �−1�−1�� �0� 0��� �2 = ��0� 0�� �1� 1�� �1� 0���
and �3 = ��−1� 0�� �1� 0�� �0�−1���

Let us define

f �x� =
{
x22� for x ∈ �2,
0� for x ∈ �1 ∪ �3.

Clearly, f ∈ C1�	�. Suppose f has a Boolean representation

f �x� = sup
j∈J

inf
t∈Sj

gt�x�� ∀x ∈ 	�

for some family �Sj�j∈J of subsets of 	. Let a be a point in the interior
of �2. Since f �a� > 0, there is Sj such that inf�gt�a� � t ∈ Sj� > 0. Since
gt�a� = 0 for t ∈ �1 ∪�3, we have Sj ⊆ �1. Let b = �−a1� a2�. Then gt�b� =
gt�a�, since gt�x� = 2t2x2 − t22 . Thus inf�gt�b� � t ∈ Sj� = inf�gt�a� � t ∈
Sj� > 0 which contradicts f �b� = 0.

Remark 5. A Boolean representation of piecewise linear functions in
terms of their linear components similar to (5) is obtained in [6].
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4. THE LEGENDRE TRANSFORM

Let f be a strictly convex smooth function on a compact convex domain
	 ⊂ �n. Then (cf. Remark 3)

f �x� = sup
t∈	
gt�x�

= sup
t∈	

��∇f �t�� x� − 
�∇f �t�� t� − f �t���� ∀x ∈ 	� (7)

Let us introduce variables

p = ∇f �t�� (8)

H = �∇f �t�� t� − f �t�� (9)

Since f is strictly convex, Eq. (8) defines a one-to-one mapping of 	 onto
	′ = ∇f �	� and we can express t in terms of p in (7) to obtain the
following representation of f �x� in terms of its Legendre transform H�p�
(cf. [2]):

f �x� = sup
p∈	′

��p� x� −H�p���

In general, let � denote the graph of a smooth function f � 	→ �. Then
� is the envelope of the set of its tangent hyperplanes. The Legendre trans-
form [7] of � is the surface defined parametrically by (8) and (9) in the
�n + 1�-dimensional �p�H�-space. One can view our Boolean representa-
tion (5) as a representation of an arbitrary smooth function f in terms of
its Legendre transform.

5. INTEGRAL REPRESENTATION

It was shown in Section 3 that a smooth function f on a closed convex
domain 	 admits the Boolean representation

f �x� = sup
u∈	

inf
t∈Su

gt�x�� (10)

where Su is a closed subset of 	 defined by Su = �t ∈ 	 � gt�u� ≥ f �u��.
Let µ be a monotonic set function on 	 defined by

µ�S� =
{
1 if S ⊇ Su for some u ∈ 	,
0 otherwise.

Then (10) can be written equivalently in the form (Proposition 2.2 in [4];
see also [5])

f �x� =
∫
gt�x�dµ�
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where the integral on the right side is the Choquet integral (alternatively,
the Sugeno integral) with respect to the non-additive measure µ. For the
definitions and properties of the Choquet and Sugeno integrals the reader
is referred to [3]. The book also has a comprehensive bibliography on the
subject.
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