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Abstract

We give a description of the essential spectrum of a large class of operators on metric measure spaces in
terms of their localizations at infinity. These operators are analogues of the elliptic operators on Euclidean
spaces and our main result concerns the ideal structure of the C∗-algebra generated by them.
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1. Introduction

1.1. The question we consider in this paper is whether the essential spectrum of an operator
can be described in terms of its “localizations at infinity”. Later on we give a precise mathemati-
cal meaning to this notion along the following lines: we first define a C∗-algebra E which should
be thought as the minimal C∗-algebra which contains the resolvents of the operators we want
to study, then we point out a remarkable class of geometrically defined ideals E(�) in E , where
� are certain ultrafilters on X, and finally we define the localization of an operator in E at � as
its image in the quotient C∗-algebra E� = E /E(�). For the moment we shall stick to the naive
interpretation of localizations at infinity of an operator H as “asymptotic operators” obtained as
limits of translates of H to infinity, but we stress that translations have no meaning for the class
of spaces of interest here and very soon we shall abandon this point of view.
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We begin with the case X = R
d . Note that we are interested only in operators H which are

self-adjoint (Hamiltonians of quantum systems). Denote Ua the unitary operator of translation
by a ∈ X in L2(X), so that (Uaf )(x) = f (x + a). We say that H� is an asymptotic Hamiltonian
of H if there is a sequence an ∈ X with |an| → ∞ such that UanHU∗

an
converges in strong re-

solvent sense to H� . Then we have Spess(H) = ⋃
�Sp(H�) for very large classes of Schrödinger

operators. We refer to the paper [19] of Helffer and Mohamed as one of the first dealing with
this question in a general setting and to that of Last and Simon [22] for the most recent re-
sults obtained by similar techniques (geometric methods involving partitions of unity) and for
a complete list of references. We mention that the importance of the asymptotic operators has
been emphasized in a series of papers in the nineties by Rabinovich, Roch, and Silbermann and
summarized in their book [28] (see also [6]; we thank B. Simon for this reference). They are
especially concerned with the case X = Z

d and treat differential operators on Lp(Rd) with the
help of a discretization method.

Results of this nature have also been obtained in [15,17] by a quite different method where
the description of localizations at infinity in terms of asymptotic operators is not so natural and
rather looks like an accident. To explain this point, we recall one result. Let X be an abelian
locally compact non-compact group, define Ua as above, and for any character k of X let Vk be
the operator of multiplication by k on L2(X). Let E ≡ E (X) be the set of bounded operators
T on L2(X) such that ‖V ∗

k T Vk − T ‖ → 0 and ‖(Ua − 1)T (∗)‖ → 0 when k → 1 and a → 0.
A self-adjoint operator H satisfying (H − i)−1 ∈ E is said to be affiliated to E ; it is easy to see
that this class of operators is very large. Let δ ≡ δ(X) be the set of ultrafilters on X finer than the
Fréchet filter. If H is affiliated to E then for each � ∈ δ the limit lima→� UaHU∗

a = H� exists in
the strong resolvent sense and we have Spess(H) = ⋃

�∈δ Sp(H�). Thus the essential spectrum
of an operator affiliated to E is determined by its asymptotic operators.

The proof goes as follows. The space E is in fact a C∗-algebra canonically associated to X,
namely the crossed product C(X) � X of the algebra C(X) of bounded uniformly continuous
functions on X by the natural action of X. Moreover, the space K ≡ K (X) of compact oper-
ators on L2(X) is an ideal of E . Note that by ideal in a C∗-algebra we mean “closed bilateral
ideal” and we call morphism a ∗-homomorphism between two ∗-algebras. It is easy to see that for
each � ∈ δ and each T ∈ E the strong limit τ�(T ) := lima→� UaT U∗

a exists and that the so de-
fined τ� is an endomorphism of E so its kernel ker τ� is an ideal of E which clearly contains K .
The main fact is

⋂
�∈δ ker τ� = K and this is the only nontrivial part of the proof. From here we

immediately deduce the preceding formula for the essential spectrum of the operators affiliated
to E . Indeed, it suffices to recall that the essential spectrum of an operator in a C∗-algebra like E
which contains K is equal to the spectrum of the image of the operator in the quotient algebra
E /K .

We shall call E the elliptic C∗-algebra of the group X. It is probably not clear that this
has something to do with the elliptic operators, but the following fact justifies the terminology.
The C∗-algebra generated by a set of self-adjoint operators on a given Hilbert space is by defi-
nition the smallest C∗-algebra which contains the resolvents of these operators. Let X = R

d and
let h be a real elliptic polynomial of order m on X. Then E is the C∗-algebra generated by the
self-adjoint operators of the form h(i∇) + S where S runs over the set of symmetric differential
operators of order < m whose coefficients are C∞ functions which are bounded together with
all their derivatives. We stress that although E (X) is generated by a small class of elliptic differ-
ential operators, the class of self-adjoint operators affiliated to it is quite large and contains many
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singular perturbations of the usual elliptic operators. This is obvious from the description of E
we gave before and many explicit examples may be found in [10,17].

1.2. Our purpose is to extend the framework and the results stated above to the case when X

is a metric space without any group structure or group action and for which the notion of differen-
tial operator is not a priori defined. To each measure metric space X = (X,d,μ) satisfying some
quite general conditions we associate a C∗-algebra E ≡ E (X) of operators on L2 ≡ L2(X,μ)

and to each � ∈ δ(X) we associate an ideal E(�) of E such that
⋂

� E(�) is the space K of
compact operators on L2 if the metric space X has a certain amenability property, namely the
Property A of Guoliang Yu [36]. The E(�) are analogues of the ker τ� and the image of an oper-
ator T ∈ E in the quotient algebra E /E(�) is the analogue of τ�(T ). The ideal E(�) is defined in
terms of the behavior of the operators at a region at infinity which contains � .

Our interest in this question was roused by a recent paper of E.B. Davies [12] in which a
C∗-algebra C (X), called standard algebra, is associated to each metric measure space X as
above. Davies points out a class of ideals of C and describes their role in understanding the
essential spectrum of the operators affiliated to C . This algebra is much larger than E if X is
not discrete. If X is an abelian group as above, then C is the set of bounded operators T on L2

such that ‖V ∗
k T Vk −T ‖ → 0 when k → 1. It is clearly impossible to give a complete description

of the essential spectrum of such operators only in terms of their behavior at infinity in the
configuration space X (consider for example the case X = R). A more precise description of C
and of its relation with E may be found in Section 7.

In Section 6 we show that if X is a unimodular amenable group then we have E (X) =
C(X) � X as in the abelian case. Thus we may recover as a corollary of our main result (The-
orem 2.5) the results in [15,17] for locally compact abelian groups and those of Roe [31] in the
case of finitely generated discrete (non-abelian) groups (see also [27]). Amenability is not re-
ally necessary: in fact, the natural objects here are the reduced crossed products and then Yu’s
Property A is sufficient.

1.3. From a more general point of view, the main point of the approach sketched above is
to shift attention from one operator to an algebra of operators. Instead of studying the essential
spectrum (or other qualitative spectral properties, like the Mourre estimate) of a self-adjoint
operator H on a Hilbert space H, we consider a C∗-algebra E of operators on H which contains
K = K(H) and such that H is affiliated to it and try to find an “efficient” description of the
quotient C∗-algebra E /K . For this, we look for a family of ideals J� of E such that

⋂
� J� =

K because then we have a natural embedding

E /K ↪→
∏
�

E /J� (1.1)

and, in our concrete situation, we think of this as an efficient representation of E /K if the ideals
J� are in some sense maximal and have a geometrically simple interpretation. This is in an
important point and we shall get back to it later on. For the moment note that any representation
like (1.1) has useful consequences in the spectral theory of the operators T ∈ E , for example if
T is normal and T� is the projection of T in E /J� then its essential spectrum is given by

Spess(T ) =
⋃

� Sp(T�). (1.2)
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Arbitrary ideals J ⊂ E also play a role in the spectral analysis of the operators T ∈ E .
For example, if we denote T/J the image of T in the quotient algebra E /J then clearly
Sp(T /J ) ⊂ Sp(T ) and if J contains the compacts then Sp(T /J ) ⊂ Spess(T ). It is natural in
our framework to call the quotient operator T/J localization of T at J (see Section 4.4 for the
meaning of this operation in the abelian case). Observe that Sp(T /J ) becomes smaller when
J increases, which allows a better understanding of parts of the spectrum of T . In particular, it
will become clear later on that by taking large J one can isolate the contribution to the essential
spectrum of T of the localization of T to small regions at infinity.

We refer to [1,4,5,11,13] for a general discussion concerning the operation of localization
with respect to an ideal and for applications in the spectral theory of many-body systems and
quantum field theory but we shall mention here an example which is relevant also in the present
context. Let H be the Hamiltonian of a system of N non-relativistic particles interacting through
two-body potentials and let Vjk be the potential linking particles j and k. For each partition σ of
the system of particles let Hσ be the Hamiltonian obtained by replacing by zero the Vjk such that
j, k belong to different clusters of σ . Then the HVZ theorem says that Spess(H) = ⋃

σ Sp(Hσ )

where σ runs over the set of two-cluster partitions. In fact, this is an immediate consequence
of the preceding algebraic formalism: the N -body C∗-algebra is easy to describe and Hσ is the
localization of H at a certain ideal which appears very naturally in this context. The point is that
we do not have to take some limit at infinity to get Hσ , although this could be done (this would
mean that we use “geometric methods”). The ideals which are involved in the representation (1.1)
in this case are minimal in a precise sense. In particular, the preceding decomposition of the
spectrum is very rough (you do not see the contribution of k-cluster partitions with k > 2).

In connection with the algebraic approach sketched above, we would like to emphasize the
previous work of J. Bellissard, who was one of the first to stress the advantage of considering
C∗-algebras generated by Hamiltonians in the context of solid state physics [2,3], and that of
H.O. Cordes, who studied C∗-algebras of pseudo-differential operators on manifolds and their
quotients with respect to the ideal of compact operators [9] already in the seventies.

1.4. Now let’s get back to our problem. Assuming we have chosen the “correct” alge-
bra E (X), we must find the relevant ideals. In the group case, this is easy, because there is a
natural class of ideals associated to translation invariant filters [15]. Proposition 6.6 gives a char-
acterization of these filters which involves only the metric structure of X (in fact, only the coarse
structure associated to it [30]). Thus what we call coarse filters in a metric space are analogs of
the invariant filters in a group. To each coarse filter ξ we then associate an ideal Jξ defined in
terms of the behavior of the operators at a certain region at infinity defined by ξ , cf. (2.6). These
are the geometric ideals which play the main role in or analysis.

Recall that the set of ultrafilters finer than the Fréchet filter is a compact subset δ(X) of the
Stone–Čech compactification β(X) of X. Any filter ξ finer than Fréchet can be thought as a
closed subset of δ(X) by identifying it with the set ξ† of ultrafilters finer than it, and then the
sets F ∈ ξ can be thought as traces on X of neighborhoods of this closed set in β(X). The sets
ξ† with ξ coarse will be called coarse subsets of δ(X) (they are closed). If X is a group then X

acts on δ(X), the coarse subsets are the closed invariant subsets of δ(X), and the small invariant
sets are parametrized as follows: to each � ∈ δ(X) we associate the smallest closed invariant
set containing � (i.e. the closure of the orbit which passes through it). But this can be easily
expressed in group independent terms: if � ∈ δ(X) let co(�) be the finer coarse filter included
in � and let �̂ := co(�)† be the smallest coarse set containing � . Then the co(�) are the large
coarse filters, the �̂ the small coarse sets, and the E(�) := Jco(�) are the large coarse ideals which
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should allow us to compute the essential spectrum of the operators in E . Heuristically speaking,
E(�) consists of the operators in E which vanish at �̂ . For example, if X is discrete, so E contains
the bounded functions ϕ on X, we have ϕ ∈ E(�) if and only if the continuous extension of ϕ to
β(X) is zero on �̂ .

We stress that this strategy denotes a certain bias toward the role played by the behavior at
infinity in X (thought as physical or configuration space): we think that it has a dominant role
since we hope that our choices of ideals are sufficient to describe the quotient E /K . There is no
a priori reason for this to be true: there are physically natural situations in which ideals defined
in terms of behavior at infinity in momentum or phase space must be taken into account [15].
However, it does not seem so clear to us how to define such physically meaningful objects in the
present context (there is no natural phase space).

Anyway, the situation is not simple even at the level of geometrically defined ideals. Indeed,
the ideals E(�) are defined in terms of the behavior of the operators in E at �̂ , but it is not
completely clear how to express the intuitive idea that an operator T vanishes on �̂ . Our choice
is the most restrictive one, but there is a second one which is also quite natural and leads to a
distinct class of ideals G� , cf. (5.27) and (5.28). One has E(�) ⊂ G� strictly in general but equality
holds if the space X has the Property A.

An interesting point is that in general the ideals G� do not suffice to compute E /K , i.e. we
do not have

⋂
�∈δ G� = K . In fact an ideal G which contains the compacts appears naturally in

the algebra E , the so-called ghost ideal, and this ideal could contain a projection of infinite rank,
hence be strictly larger than the compacts. The construction of such a projection is due to Higson,
Laforgue, and Skandalis [20] and is important in the context of the Baum–Connes conjecture.
They consider the simplest case of discrete metric spaces with bounded geometry (the number
of points in a ball of radius r is bounded independently of the center of the ball) when E is the
uniform Roe C∗-algebra [30]. More information concerning this question may be found in the
papers [7,8,34] by Chen and Wang where the ideal structure of the uniform Roe algebra is studied
in detail. Their idea of using kernel truncations with the help of positive type functions in case
X has Yu’s Property A plays an important role in our proofs, as we shall see in Section 3. But
before going into details on these matters we shall describe in the next section in precise terms
the framework and the main results of this paper.

As explained before, a representation like (1.1) involving ideals which are as large as possi-
ble will provide the most detailed information on the structure of the essential spectrum of the
observables affiliated to E . Thus the fact that

⋂
�∈δ G� 
= K shows that in general the large

ideals are not sufficient to compute the essential spectrum. We leave open the question whether⋂
�∈δ E(�) = K holds even if

⋂
�∈δ G� 
= K .

2. Main results

A metric space X = (X,d) is proper if each closed ball Bx(r) = {y | d(x, y) � r} is a compact
set. This implies the local compactness of the topological space X but is much more because local
compactness means only that the small balls are compact. In particular, if X is not compact, then
the metric cannot be bounded. We are interested in proper non-compact metric spaces equipped
with Radon measures μ with support equal to X, so μ(Bx(r)) > 0 for all x ∈ X and all r > 0,
and which satisfy (at least) the following condition

V (r) := sup μ
(
Bx(r)

)
< ∞ for all real r > 0. (2.3)
x∈X



V. Georgescu / Journal of Functional Analysis 260 (2011) 1734–1765 1739
We shall always assume that a metric measure space (X,d,μ) satisfies these conditions. On the
other hand, for the proof of our main results we need the following supplementary condition:

inf
x

μ
(
Bx(1/2)

)
> 0. (2.4)

The choice of 1/2 in (i) is, of course, rather arbitrary, and an assumption of the form
infx μ(Bx(r)) > 0 for all r > 0 would be more natural. Each time we use (2.4) we shall mention
it explicitly.

To simplify the notations we set dμ(x) = dx, L2(X) = L2(X,μ), and Bx = Bx(1). We de-
note B(X) the C∗-algebra of all bounded operators on L2(X) and K (X) the ideal of B(X)

consisting of compact operators. For A ⊂ X we denote 1A its characteristic function and
if A is measurable then we use the same notation for the operator of multiplication by 1A

in L2(X).
Several versions of Yu’s Property A appear in the literature (see [30, Definition 11.35] and [33]

for the discrete case), we have chosen that which was easier to state and use in our context. Later
on we shall state and use a more abstract version which can easily be reformulated in terms
of positive type functions on X2. See p. 1760 here and [30, Chapter 3] for the relation with
amenability in the group case.

Definition 2.1. We say that the metric measure space (X,d,μ) has Property A if for each ε, r > 0
there is a Borel map φ : X → L2(X) with ‖φ(x)‖ = 1, suppφ(x) ⊂ Bx(s) for some number s

independent of x, and such that ‖φ(x) − φ(y)‖ < ε if d(x, y) < r .

Definition 2.2. We say that X = (X,d,μ) is a class A space if (X,d) is a proper non-compact
metric space and μ is a Borel measure on X such that: (i) μ(Bx(r)) > 0 and supx μ(Bx(r)) < ∞
for each r > 0, (ii) infx μ(Bx(1/2)) > 0, (iii) (X,d,μ) has Property A.

Since X is locally compact the spaces Co(X) and Cc(X) of continuous functions on X which
tend to zero at infinity or have compact support respectively are well defined. We use the slightly
unusual notation C(X) for the set of bounded uniformly continuous functions on X equipped with
the sup norm. Then C(X) is a C∗-algebra and Co(X) is an ideal in it. We embed C(X) ⊂ B(X)

by identifying ϕ ∈ C with the operator ϕ(Q) of multiplication by ϕ (this is an embedding because
the support of μ is equal to X). We shall however use the notation ϕ(Q) if we think that this is
necessary for the clarity of the text.

Functions k : X2 → C on the product space X2 = X × X are also called kernels on X. We
say that k is a controlled kernel if there is a real number r such that d(x, y) > r ⇒ k(x, y) = 0.
With the terminology of [21], a kernel is controlled if it is supported by an entourage of the
bounded coarse structure on X coming from the metric. We denote Ctrl(X

2) the set of bounded
uniformly continuous controlled kernels and to each k ∈ Ctrl(X

2) we associate an operator Op(k)

on L2(X) by (Op(k)f )(x) = ∫
X

k(x, y)f (y)dy. It is easy to check (see Section 3) that the set of
such operators is a ∗-subalgebra of B(X). Hence

E (X) ≡ E (X,d,μ) = norm closure of
{
Op(k)

∣∣ k ∈ Ctrl
(
X2)} (2.5)

is a C∗-algebra of operators on L2(X). We shall say that E (X) is the elliptic algebra of X.
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Remark 2.3. The following alternative presentation of the framework clarifies the role of the
metric. Fix a couple X = (X,μ) consisting of a locally compact non-compact topological space
X equipped with a Radon measure μ with support equal to X. This fixes the Hilbert space L2(X).
Then to each proper metric compatible with the topology of X and such that supx μ(Bx(r)) < ∞
for all r we associate a C∗-algebra E (X,d) of operators on L2(X) which contains K (X). It
is interesting to note that E (X,d) depends only on the coarse equivalence class of the metric.
Recall that two metrics d, d ′ are coarse equivalent if there are positive increasing functions u,v

such that d � u(d ′) and d ′ � v(d). This can also be expressed in terms of coarse structures on
X [32, p. 810].

There is an obvious C(X)-bimodule structure on E (X) and we have

K (X) = Co(X)E (X) = E (X)Co(X) ⊂ E (X).

As explained in the introduction we are interested in a “geometrically meaningful” representa-
tion of the quotient C∗-algebra E (X)/K (X). For this we introduce the class of “coarse ideals”
described below.

If F ⊂ X and r > 0 is real we denote F (r) the set of points x which belong to the interior
of F and are at distance larger than r from the boundary, more precisely infy /∈F d(x, y) > r .
A filter ξ of subsets of X will be called coarse if F ∈ ξ ⇒ F (r) ∈ ξ for all r . Note that the set of
complements of a coarse filter is a coarse ideal of subsets of X in the sens of [21]. The Fréchet
filter, i.e. the set of sets with relatively compact complement, is clearly coarse, we denote it ∞.
There is a trivial coarse filter, namely ξ = {X}, which is of no interest for us. All the other coarse
filters are finer that ∞.

To each coarse filter ξ on X we associate an ideal of E (X) by defining

Jξ (X) =
{
T ∈ E (X)

∣∣∣ inf
F∈ξ

‖1F T ‖ = 0
}

=
{
T ∈ E (X)

∣∣∣ inf
F∈ξ

‖T 1F ‖ = 0
}

(2.6)

where the inf is taken only over measurable F ∈ ξ . We shall see that the set Iξ (X) of ϕ ∈ C(X)

such that limξ ϕ = 0 is an ideal of C(X) and Jξ (X) = Iξ (X)E (X) = E (X)Iξ (X).
Let β(X) be the set of all ultrafilters of X (this is the Stone–Čech compactification of the

discrete space X) and let δ(X) be the set of ultrafilters finer than the Fréchet filter. For each
� ∈ β(X) we denote co(�) the largest coarse filter contained in � and we set C(�)(X) = Ico(�)(X)

and E(�)(X) = Jco(�)(X). These are ideals in C(X) and E (X) respectively and we have

E(�)(X) = C(�)(X)E (X) = E (X)C(�)(X). (2.7)

If X is of class A then from Theorem 5.9 we get a second description of these ideals.

Proposition 2.4. If X is a space of class A then for any � ∈ δ(X) we have

E(�)(X) =
{
T ∈ E (X)

∣∣∣ lim
x→�

‖1Bx(r)T ‖ = 0, ∀r > 0
}
. (2.8)

Then to each ultrafilter � ∈ δ(X) we associate the quotient C∗-algebra

E�(X) = E (X)/E(�)(X) (2.9)
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and call it localization of E (X) at � . We denote �.T the image of T ∈ E (X) through the canoni-
cal morphism E (X) → E�(X) and we say that �.T is the localization of T at � . Our main result
is:

Theorem 2.5. If X is a class A space then
⋂

�∈δ(X) E(�)(X) = K (X), hence

E (X)/K (X) ↪→
∏

�∈δ(X)

E�. (2.10)

In particular, the essential spectrum of any normal operator T ∈ E (X) is equal to the closure of
the union of the spectra of its localizations at infinity:

Spess(T ) =
⋃

�∈δ(X) Sp(�.T ). (2.11)

In view of applications to self-adjoint operators affiliated to E (X), we recall [1] that an ob-
servable affiliated to a C∗-algebra A is a morphism H : Co(R) → A . We set ϕ(H) := H(ϕ).
If P : A → B is a morphism between two C∗-algebras then ϕ �→ P (ϕ(H)) is an observable
affiliated to B denoted P (H). So P (ϕ(H)) = ϕ(P (H)). If A and B are realized on Hilbert
spaces Ha, Hb , then any self-adjoint operator H on Ha affiliated to A defines an observable af-
filiated to A , but the observable P (H) is not necessarily associated to a self-adjoint operator on
Hb because the natural operator associated to it could be non-densely defined (in our context, it
often has domain equal to {0}). The spectrum and essential spectrum of an observable are defined
in an obvious way [1].

Now clearly, if H is an observable affiliated to E (X) then �.H defined by ϕ(�.H) = �.ϕ(H)

is an observable affiliated to E�(X). This is the localization of H at � and we have

Spess(H) =
⋃

�∈δ(X) Sp(�.H). (2.12)

We shall not give in this paper affiliation criteria specific to the algebra E (X) but the results
of Section 6 and the examples form [17] should convince the reader that the class of operators
affiliated to E (X) is very large. On the other hand, if H is a positive self-adjoint operator such
that e−H ∈ E (X) then H is affiliated to E (X). Or this condition is certainly satisfied by the
Laplace operator associated to a large class of Riemannian manifolds due to known estimates
on the heat kernel of the manifold. We thank Thierry Coulhon for an e-mail exchange on this
question.

In connection with Proposition 2.4 we mention that in Section 5 we consider a second class
of ideals G�(X) in E (X) which are similar to the E(�)(X). More precisely, let G�(X) be de-
fined as the right-hand side of (2.8) for any � ∈ δ(X). Then G�(X) is an ideal of E (X) and
E(�)(X) ⊂ G�(X) where equality holds if X is a space of class A but the inclusion is strict in
general. We say that G� is the ghost envelope of E(�). Thus for each ultrafilter � ∈ δ(X) we may
have two distinct contributions to the essential spectrum of H associated to �: first the spectrum
of the localization �.H = H/E(�) at � and second the spectrum of H/G� , which is a subset of
the first one.

In particular, besides the smallest ideal K (X) of E (X) there is a second “small” ideal which
appears quite naturally in the theory. This is the ghost ideal defined by

G (X) =
{
T ∈ E (X)

∣∣∣ lim ‖1Bx(r)T ‖ = 0 for all r > 0
}
. (2.13)
x→∞
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The operators T ∈ G (X) vanish everywhere at infinity in the configuration space X but could
be not compact. The role of the Property A is to ensure that G (X) = K (X). For discrete
metric spaces of bounded geometry, this phenomenon is studied in detail by Chen and Wang,
see [7,8,34] and references therein. Proposition 5.10 shows, among other things, that our defini-
tion of the ghost ideal in the discrete case coincides with theirs.

Observe that in general, if H is an observable affiliated to E (X) then the ghost spectrum
of H , i.e. the spectrum of the quotient observable H/G (X), is strictly included in the essential
spectrum of H .

3. The elliptic C∗-algebra

In this section X = (X,d,μ) is a metric space (X,d) equipped with a measure μ and such
that:

• (X,d) is a locally compact not compact metric space and each closed ball is a compact set,
• μ is a Radon measure on X with support equal to X and supx μ(Bx(r)) = V (r) < ∞,

∀r > 0.

If k is a controlled kernel let d(k) be the least number r such that d(x, y) > r ⇒ k(x, y) = 0.
Recall that

Ctrl
(
X2) = {

k : X2 → C
∣∣ k is a bounded uniformly continuous controlled kernel

}
. (3.14)

If k ∈ Ctrl(X
2) then Op(k) is the operator on L2(X) given by (Op(k)f )(x) = ∫

X
k(x, y)f (y)dx.

From

∥∥Op(k)
∥∥2 � sup

x

∫ ∣∣k(x, y)
∣∣dy · sup

y

∫ ∣∣k(x, y)
∣∣dx, (3.15)

which is the Schur estimate, we get

∥∥Op(k)
∥∥ � V

(
d(k)

)
sup |k|. (3.16)

If k, l ∈ Ctrl(X
2) then we denote k∗(x, y) = k̄(y, x) and (k �l)(x, y) = ∫

k(x, z)l(z, y)dz. Clearly
Op(k)∗ = Op(k∗) and Op(k)Op(l) = Op(k � l). The following simple fact is useful.

Lemma 3.1. If k, l ∈ Ctrl(X
2) then k � l ∈ Ctrl(X

2), we have d(k � l) � d(k) + d(l), and

sup |k � l| � sup |k| · sup |l| · min
{
V

(
d(k)

)
,V

(
d(l)

)}
.

Proof. If we set s = d(k) and t = d(l) then clearly

∣∣(k � l)(x, y)
∣∣ � sup |k| · sup |l| · μ(

Bx(s) ∩ By(t)
)

which gives both estimates from the statement of the lemma. To prove the uniform continuity we
use
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∣∣(k � l)(x, y) − (k � l)
(
x′, y

)∣∣ � sup
z

∣∣k(x, z) − k
(
x′, z

)∣∣ ∫ ∣∣l(z, y)
∣∣dz

� sup
z

∣∣k(x, z) − k
(
x′, z

)∣∣ · sup |l| · V (t)

and a similar inequality for |(k � l)(x, y) − (k � l)(x, y′)|. �
Thus Ctrl(X

2), when equipped with the usual linear structure and the operations k∗ and
k � l, becomes a ∗-algebra and k �→ Op(k) is a morphism into B(X) hence its range is a
∗-subalgebra of B(X). Hence the elliptic algebra E (X) defined in (2.5) is a C∗-algebra of oper-
ators on L2(X).

The uniform continuity assumption involved in the definition (3.14) of Ctrl(X) hence in that
of E (X) is important because thanks to it we have E (X) = C(X) �r X if X is a unimodular
locally compact group, cf. Sections 6 and 7. Here C(X) is the C∗-algebra of right uniformly
continuous functions on X on which X acts by left translations and �r denotes the reduced
crossed product. In particular, the equality C(X) �r X = E (X) gives a description of the crossed
product independent of the group structure of X.

We say that T ∈ B(X) is a controlled operator if there is r > 0 such that if F,G are closed
subsets of X with d(F,G) > r then 1F T 1G = 0; let d(T ) be the smallest r for which this
holds (see [30]; this class of operators has also been considered in [12] and in [14]). Observe
that the Op(k) with k ∈ Ctrl(X

2) are controlled operators but if X is not discrete then there are
many others and most of them do not belong to E (X). The norm closure of the set of controlled
operators will be discussed in Section 7.

Since the kernel of ϕ(Q)Op(k) is ϕ(x)k(x, y) and that of Op(k)ϕ(Q) is k(x, y)ϕ(y), we
clearly have

C(X)E (X) = E (X)C(X) = E (X).

This defines a C(X)-bimodule structure on E (X). We note that, as a consequence of the Cohen–
Hewitt theorem, if A is a C∗-subalgebra of C(X) then the set A E (X) consisting of products AT

of elements A ∈ A and T ∈ E (X) is equal to the closed linear subspace of E (X) generated by
these products.

Proposition 3.2. We have K (X) = Co(X)E (X) = E (X)Co(X) ⊂ E (X).

Proof. If ϕ ∈ Cc and k ∈ Ctrl then the operator ϕ Op(k) has kernel ϕ(x)k(x, y) which is a con-
tinuous function with compact support on X2, hence ϕ Op(k) is a Hilbert–Schmidt operator.
Thus we have Co(X)E (X) ⊂ K (X) and by taking adjoints we also get E (X)Co(X) ⊂ K (X).
Conversely, an operator with kernel in Cc(X

2) clearly belongs to Cc(X)E (X) for example. �
E (X) is a non-degenerate Co(X)-bimodule and there is a natural topology associated to such

a structure, we call it the local topology on E (X). Its utility will be clear from Section 6.

Definition 3.3. The local topology on E (X) is the topology associated to the family of seminorms
‖T ‖θ = ‖T θ(Q)‖ + ‖θ(Q)T ‖ with θ ∈ Co(X).

This is the analog of the topology of local uniform convergence on C(X). Obviously one may
replace the θ with 1Λ where Λ runs over the set of compact subsets of X. If T ∈ E (X) and
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{Tα} is a net of operators in E (X) we write Tα → T or limα Tα = T locally if the convergence
takes place in the local topology. Since X is σ -compact there is θ ∈ Co(X) with θ(x) > 0 for all
x ∈ X and then ‖ · ‖θ is a norm on E (X) which induces on bounded subsets of E (X) the local
topology.

The local topology is finer than the ∗-strong operator topology inherited from the embedding
E (X) ⊂ B(X). We may also consider on E (X) the (intrinsically defined) strict topology associ-
ated to the smallest essential ideal K (X); this is weaker than the local topology and finer than
the ∗-strong operator topology, but coincides with the last one on bounded sets.

Lemma 3.4. The involution T �→ T ∗ is locally continuous on E (X). The multiplication is locally
continuous on bounded sets.

Proof. Since ‖T ∗‖θ = ‖T ‖θ̄ the first assertion is clear. Now assume Sα → S locally and
‖Sα‖ � C and Tα → T locally. If θ ∈ Co then T θ is a compact operator so there is θ ′ ∈ Co such
that T θ = θ ′K for some compact operator K . Then we write (SαTα − ST )θ = Sα(Tα − T )θ +
(Sα − S)θ ′K . �

The ghost ideal is defined as follows:

G (X) :=
{
T ∈ E (X)

∣∣∣ lim
x→∞‖1Bx(r)T ‖ = 0, ∀r

}
=

{
T ∈ E (X)

∣∣∣ lim
x→∞‖T 1Bx(r)‖ = 0, ∀r

}
. (3.17)

The fact that G is an ideal of E follows from the equality stated above which in turn is proved
as follows: for each ε > 0 there is a controlled kernel k such that ‖T − Op(k)‖ < ε hence if
R = r + d(k) we have

‖T 1Bx(r)‖ < ε + ∥∥Op(k)1Bx(r)

∥∥ = ε + ∥∥1Bx(R) Op(k)1Bx(r)

∥∥ < 2ε + ‖1Bx(R)T ‖

which is less than 3ε for large x.
We have K (X) ⊂ G (X) because limx→∞ 1Bx(r) = 0 strongly on L2. It is known that the

inclusion is strict in general [20, p. 349]. In the rest of this section we prove that equality holds
if X is of class A. We begin with some general useful remarks.

Lemma 3.5. If (2.4) holds then there a subset Z ⊂ X with X = ⋃
z∈Z Bz and a function

N : R → N such that: for any x ∈ X and r � 1 the number of z ∈ Z such that Bz(r) ∩ Bx(r) 
= ∅
is at most N(r).

Proof. Let Z be a maximal subset of X such that d(a, b) > 1 if a, b are distinct points in Z. Then
we have X = ⋃

z∈Z Bz (the contrary would contradict the maximality of Z). Now fix r � 1, let
x ∈ X, denote Zx the set of z ∈ Z such that Bz(r) ∩ Bx(r) 
= ∅, and let Nx be the number of
elements of Zx . Choose a ∈ Z such that x ∈ Ba . Then Bx(r) ⊂ Ba(r + 1) hence if z ∈ Zx then
Bz(r) ∩ Ba(r + 1) 
= ∅ so d(z, a) � 2r + 1. Since the balls Bz(1/2) corresponding to these z are
pairwise disjoint and included in Ba(2r +2), the volume of their union is larger than νNx , where
ν = infy∈X μ(By(1/2)), and smaller than V (2r + 2), hence Nx � V (2r + 2)/ν. Thus we may
take N(r) = V (2r + 2)/ν. �
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From now on, if (2.4) is satisfied, the set Z and the function N will be as in Lemma 3.5.

Lemma 3.6. If (2.4) is satisfied and T is a controlled operator, then

‖T ‖ � N
(
d(T ) + 1

)1/2 sup
x∈X

‖1Bx T ‖. (3.18)

Proof. Set R = d(T ) + 1. Then for any f ∈ L2 we have

‖Tf ‖2 �
∑
z∈Z

‖1BzTf ‖2 =
∑
z∈Z

‖1BzT 1Bz(R)f ‖2 � sup
z∈Z

‖1BzT ‖2
∑
z∈Z

‖1Bz(R)f ‖2

and from Lemma 3.5 we get
∑

z∈Z 1Bz(R) � N(R). �
Lemma 3.7. Assume that (2.4) is satisfied and let T ∈ B(X). If limx→∞ ‖1Bx(r)T ‖ = 0 holds
for r = 1 then it holds for all r > 0. In particular, we have

G (X) =
{
T ∈ E (X)

∣∣∣ lim
x→∞‖1Bx T ‖ = 0

}
=

{
T ∈ E (X)

∣∣∣ lim
x→∞‖T 1Bx ‖ = 0

}
. (3.19)

Proof. Let r > 1, ε > 0 and let F be a finite subset of Z such that ‖1BzT ‖ < ε/N(r) if z ∈
Z \ F . We consider points x such that d(x,F ) > r + 1 and denote Z(x, r) the set of z ∈ Z such
that Bz ∩ Bx(r) 
= ∅. Then Z(x, r) has at most N(r) elements and Bx(r) ⊂ ⋃

z∈Z(x,r) Bz hence
‖1Bx(r)T ‖ � N(r)maxz∈Z(x,r) ‖1BzT ‖ < ε because F ∩ Z(x, r) = ∅. �

An operator T ∈ B(X) is called locally compact if for any compact set K the operators 1KT

and T 1K are compact. Clearly any operator in E (X) is locally compact.

Lemma 3.8. Assume that (2.4) is satisfied. If T ∈ B(X) is a controlled locally compact operator
such that ‖1Bx T ‖ → 0 as x → ∞ then T is compact.

Proof. Choose o ∈ X and let 1R be the characteristic function of the ball Bo(R). Then 1RT is
compact so it suffices to show that 1RT converges in norm to T as R → ∞. Clearly T − 1RT is
controlled with d(T − 1RT ) � d(T ) hence from Lemma 3.6 we get

‖T − 1RT ‖ � C sup
x∈X

∥∥1Bx (1 − 1R)T
∥∥ � C sup

d(x,o)>R−1
‖1Bx T ‖

which proves the lemma. �
Now we use an idea from [7] (truncation of kernels with the help of functions of positive type)

and the technique of the proof of Theorem 5.1 from [26].
Let H be an arbitrary separable Hilbert space (in Definition 2.1 we took H = L2(X)) and

let φ : X → H be a Borel function such that ‖φ(x)‖ = 1 for all x. Define Mφ : L2(X) →
L2(X; H) = L2(X)⊗ H by (Mφf )(x) = f (x)φ(x). Then Mφ is a linear operator with ‖Mφ‖ = 1
and its adjoint M∗

φ : L2(X; H) → L2(X) acts as follows: (M∗
φF )(x) = 〈φ(x)|F(x)〉. Let T �→ Tφ

be the linear continuous map on B(X) given by Tφ = M∗(T ⊗ 1)Mφ . Clearly ‖Tφ‖ � ‖T ‖.
φ
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Let k : X2 → C be a locally integrable function. We say that an operator T ∈ B(X) has
integral kernel k if 〈f |T g〉 = ∫

X2 k(x, y)f̄ (x)g(y)dx dy for all f,g ∈ Cc(X). If k is a Schur
kernel, i.e. supx

∫
X
(|k(x, y)| + |k(y, x)|)dy < ∞, then we say that T is a Schur operator and

we have the estimate (3.15) for its norm. And T is a Hilbert–Schmidt operator if and only if
k ∈ L2(X2). From the relation 〈f |Tφg〉 = 〈f φ|T ⊗ 1gφ〉 valid for f,g ∈ Cc(X) we easily get:

Lemma 3.9. If T has kernel k then Tφ has kernel kφ(x, y) = 〈φ(x)|φ(y)〉k(x, y). In particular,
if T is a Schur, Hilbert–Schmidt, or compact operator, then Tφ has the same property.

Lemma 3.10. Assume that 〈φ(x)|φ(y)〉 = 0 if d(x, y) > r . Then for each T ∈ B(X) the op-
erator Tφ is controlled, more precisely: if F,G are closed subsets of X with d(F,G) > r then
1F Tφ1G = 0.

Proof. We have to prove that 〈1F f |Tφ1Gg〉 = 0 for all f,g ∈ L2(X) and T ∈ B(X). The map
T �→ Tφ is continuous for the weak operator topology and the set of finite range operators is
dense in B(X) for this topology. Thus it suffices to assume that T is Hilbert–Schmidt (or even
of rank one) and then the assertion is clear by Lemma 3.9. �

Observe that if θ : X → C is a bounded Borel function then Mφθ(Q) = (θ(Q) ⊗ 1)Mφ hence
θTφ = (θT )φ and Tφθ = (T θ)φ with the usual abbreviation θ = θ(Q). In particular, Lemma 3.9
implies:

Lemma 3.11. Let T ∈ B(X). If T is locally compact then Tφ is locally compact. If
‖1Bx(r)T ‖ → 0 as x → ∞, then ‖1Bx(r)Tφ‖ → 0 as x → ∞.

Theorem 3.12. If X is a class A space then K (X) = G (X).

Proof. Let T ∈ G (X) and φ as above. Then T is locally compact hence Tφ is locally compact,
and we have ‖1Bx Tφ‖ → 0 as x → ∞ by Lemma 3.11. Moreover, if φ is as in Lemma 3.10 then
Tφ is controlled so, by Lemma 3.8, Tφ is compact. Thus it suffices to show that any T ∈ E (X) is
a norm limit of operators Tφ with φ of the preceding form. Since T �→ Tφ is a linear contraction,
it suffices to show this for operators of the form T = Op(k) with k ∈ Ctrl(X

2). But then T − Tφ

is an operator with kernel k(x, y)(1 − 〈φ(x)|φ(y)〉) hence, if we denote M = sup |k|, d = d(k),
from (3.15) we get

‖T − Tφ‖ � M sup
x

∫
Bx(d)

∣∣1 − 〈
φ(x)

∣∣φ(y)
〉∣∣dy.

Until now we did not use the fact that H = L2(X) in Definition 2.1. If we are in this situation
note that we may replace φ(x) by |φ(x)| and then 〈φ(x)|φ(y)〉 is real. More generally, assume
that the φ(x) belong to a real subspace of the (abstract) Hilbert space H so that 〈φ(x)|φ(y)〉 is
real for all x, y. Then 1 − 〈φ(x)|φ(y)〉 = ‖φ(x) − φ(y)‖2/2 so we have

‖T − Tφ‖ � (M/2) sup
x

∫ ∥∥φ(x) − φ(y)
∥∥2

dy.
Bx(d)



V. Georgescu / Journal of Functional Analysis 260 (2011) 1734–1765 1747
Since X has Property A, one may choose φ such that this be smaller than any given num-
ber. �
4. Coarse filters on X and ideals of C(X)

4.1. Filters

We recall some elementary facts; for the moment X is an arbitrary set. A filter on X is a
nonempty set ξ of subsets of X which is stable under finite intersections, does not contain the
empty set, and has the property: G ⊃ F ∈ ξ ⇒ G ∈ ξ . If Y is a topological space and φ : X → Y

then limξ φ = y or limx→ξ φ(x) = y means that y ∈ Y and if V is a neighborhood of y then
φ−1(V ) ∈ ξ .

The set of filters on X is equipped with the order relation given by inclusion. Then the trivial
filter {X} is the smallest filter and the lower bound of any nonempty set F of filters exists:
inf F = ⋂

ξ∈F ξ . A set F of filters is called admissible if
⋂

ξ∈F Fξ 
= ∅ if Fξ ∈ ξ for all ξ and
Fξ = X but for a finite number of indices ξ . If F is admissible then the upper bound sup F exists:
this is the set of sets of the form

⋂
ξ∈F Fξ where Fξ ∈ ξ for all ξ and Fξ = X but for a finite

number of indices ξ .
Let β(X) be the set of ultrafilters on X. If ξ is a filter let ξ† be the set of ultrafilters finer than it.

Then ξ = inf ξ†. We equip β(X) with the topology defined by the condition: a nonempty subset
of β(X) is closed if and only if it is of the form ξ† for some filter ξ . Note that for the trivial filter
consisting of only one set we have {X}† = β(X). Then β(X) becomes a compact topological
space, this is the Stone–Čech compactification of the discrete space X, and is naturally identi-
fied with the spectrum of the C∗-algebra of all bounded complex functions on X. There is an
obvious dense embedding X ⊂ β(X), any bounded function ϕ : X → C has a unique continuous
extension β(ϕ) to β(X), and any map φ : X → X has a unique extension to a continuous map
β(φ) : β(X) → β(X).

More generally, if Y is a compact topological space, each map φ : X → Y has a unique
extension to a continuous map β(φ) : β(X) → Y . The following simple fact should be noticed: if
ξ is a filter and o is a point in Y then limξ φ = o is equivalent to β(φ)|ξ† = o. Indeed, limξ φ = o

is equivalent to lim� φ = o for any � ∈ ξ† (for the proof, observe that if this last relation holds
then for each neighborhood V of o the set φ−1(V ) belongs to � for all � ∈ ξ†, hence φ−1(V ) ⊂⋂

�∈ξ† � = ξ ).
Now assume that X is a locally compact non-compact topological space. Then the Fréchet fil-

ter is the set of complements of relatively compact sets; we denote it ∞, so that
limx→∞ φ(x) = y has the standard meaning. Let δ(X) = ∞† be the set of ultrafilters finer than
it. Thus δ(X) is a compact subset of β(X) and we have δ(X) ⊂ β(X) \ X (strictly in general):

δ(X) = {
� ∈ β(X)

∣∣ if K ⊂ X is relatively compact then K /∈ �
}
.

Indeed, if � is an ultrafilter then for any set K either K ∈ � or Kc ∈ � . If we interpret � as a
character of �∞(X) then � ∈ δ(X) means �(ϕ) = 0 for all ϕ ∈ Co(X).

4.2. Coarse filters

Now assume that X is a metric space. If F ⊂ X then F̄ is its closure and F c = X \ F its
complement. We set dF (x) := infy∈F d(x, y). Note that dF = dF̄ and |dF (x)−dF (y)| � d(x, y).
If r > 0 let F(r) := {x | d(x,F ) � r} = ⋃

Bx(r) be the neighborhood “of order r” of F .
x∈F
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If r > 0 we denote F (r) the set of points x such that d(x,F c) > r . This is an open subset of
X included in F and at distance r from the boundary of F (so if F is too thin, F (r) is empty). In
other terms, x ∈ F (r) means that there is r ′ > r such that Bx(r

′) ⊂ F . In particular, (F (r))(r) ⊂ F

and for an arbitrary pair of sets F,G we have (F ∩ G)(r) = F (r) ∩ G(r) and F ⊂ G ⇒
F (r) ⊂ G(r).

We say that a filter ξ is coarse if for any F ∈ ξ and r > 0 we have F (r) ∈ ξ . We emphasize
that this should hold for all r > 0. If for each F ∈ ξ there is r > 0 such that F (r) ∈ ξ then the
filter is called round. Equivalently, ξ is coarse if for each F ∈ ξ and r > 0 there is G ∈ ξ such
that G(r) ⊂ F and ξ is round if for each F ∈ ξ there are G ∈ ξ and r > 0 such that G(r) ⊂ F .

Our terminology is related to the notion of coarse ideal introduced in [21] (our space X being
equipped with the bounded metric coarse structure). More precisely, a coarse ideal is a set I
of subsets of X such that B ⊂ A ∈ I ⇒ B ∈ I and A ∈ I ⇒ A(r) ∈ I for all r > 0. Clearly
I �→ I c := {Ac | A ∈ I} is a one-one correspondence between coarse ideals and filters.

Coarse filters on groups are very natural objects: if X is a group, then a round filter is coarse
if and only if it is translation invariant (Proposition 6.6).

The Fréchet filter is coarse because if K is relatively compact then K(r) is compact for any r

(the function dK is proper under our assumptions on X). The trivial filter {X} is coarse.
More general examples of coarse filters are constructed as follows [12,15]. Let L ⊂ X be a

set such that L(r) 
= X for all r > 0. Then the filter generated by the sets Lc
(r) = {x | d(x,L) > r}

when r runs over the set of positive real numbers is coarse (indeed, it is clear that the L(r)

generate a coarse ideal). If L is compact the associated filter is ∞. If X = R and L = ]−∞,0]
then the corresponding filter consists of neighborhoods of +∞ and this example has obvious
n-dimensional versions. If L is a sparse set (i.e. the distance between a ∈ L and L \ {a} tends to
infinity as a → ∞) then the ideal in C(X) associated to it (cf. below) and its crossed product by
the action of X (if X is a group) are quite remarkable objects, cf. [15]. It should be clear however
that most coarse filters are not associated to any set L.

Let X be an Euclidean space and let G(X) be the set of finite unions of strict vector subspaces
of X. The sets Lc

(r) when L runs over G(X) and r over R+ form a filter basis and the filter
generated by it is the Grassmann filter γ of X. This is a translation invariant hence coarse filter
which plays a role in a general version of the N -body problem, see [17, Section 6.5]. The relation
limγ ϕ = 0 means that the function ϕ vanishes when we are far from any strict affine subspace.

Lemma 4.1. If F is a nonempty set of coarse filters then inf F is a coarse filter. If F is admissible
then sup F is a coarse filter.

Proof. If F ∈ inf F = ⋂
ξ∈F ξ then for any r > 0 and ξ we have F (r) ∈ ξ and so F (r) ∈ ⋂

ξ∈F ξ .
Now assume for example that F ∈ ξ and G ∈ η with ξ, η ∈ F and let r > 0. Then there are
F ′ ∈ ξ and G′ ∈ η such that F ′

(r) ⊂ F and G′
(r) ⊂ G hence (F ′ ∩ G′)(r) ⊂ F ′

(r) ∩ G′
(r) ⊂ F ∩ G.

The argument for sets of the form
⋂

ξ Fξ with Fξ = X but for a finite number of indices ξ is
similar. �
Lemma 4.2. A coarse filter is either trivial, and then ξ† = β(X), or finer than the Fréchet filter,
and then ξ† ⊂ δ(X).

Proof. Assume that ξ is not finer than the Fréchet filter. Then there is a compact set K such that
Kc /∈ ξ . Hence for any F ∈ ξ we have F 
⊂ Kc so F ∩K 
= ∅. Note that the closed sets in ξ form
a basis of ξ (if F ∈ ξ then the closure of F (2) belongs to ξ and is included in F (1) hence in F ).
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The set {F ∩ K | F ∈ ξ and is closed} is a filter basis consisting of closed sets in the compact set
K hence there is a ∈ K such that a ∈ F for all F ∈ ξ . Then if F ∈ ξ and r > 0 there is G ∈ ξ such
that G(r) ⊂ F and since a ∈ G we have Ba(r) ⊂ G(r) ⊂ F . But X = ⋃

r Ba(r) so X ⊂ F . �
4.3. Coarse ideals of C(X)

We now recall some facts concerning the relation between filters on X and ideals of C(X). To
each filter ξ on X we associate an ideal Iξ (X) of C(X):

Iξ (X) :=
{
ϕ ∈ C(X)

∣∣∣ lim
ξ

ϕ = 0
}
. (4.20)

If ξ is the Fréchet filter then limξ ϕ = 0 means limx→∞ ϕ(x) = 0 in the usual sense and so the
corresponding ideal is Co(X). The ideal associated to the trivial filter clearly is {0}. We also have:

ξ ⊂ η ⇒ Iξ (X) ⊂ Iη(X), (4.21)

Iξ∩η(X) = Iξ (X) ∩ Iη(X) = Iξ (X)Iη(X). (4.22)

The round envelope ξ◦ of ξ is the finer round filter included in ξ . Clearly this is the filter gen-
erated by the sets F(r) when F runs over ξ and r over R+. Note that Iξ (X) = Iξ◦(X), i.e. for
ϕ ∈ C(X) we have limξ ϕ = 0 if and only if limξ◦ ϕ = 0. Indeed, if ε > 0 let F be the set of points
were |ϕ(x)| < ε/2 and let r > 0 be such that |ϕ(x)−ϕ(y)| < ε/2 if d(x, y) � r . Then |ϕ(x)| < ε

if x ∈ F(r).
We recall a well-known description of the spectrum of the algebra C(X) in terms of round

filters.

Proposition 4.3. The map ξ �→ Iξ (X) is a bijection between the set of all round filters on X and
the set of all ideals of C(X).

An ideal I of C(X) will be called coarse if for each positive ϕ ∈ I and r > 0 there is a positive
ψ ∈ I such that

d(x, y) � r and ψ(y) < 1 ⇒ ϕ(x) < 1. (4.23)

Lemma 4.4. Let F,G be subsets of X such that G(r) ⊂ F . Then the function θ =
dF c(dF c + dG)−1 belongs to C(X) and satisfies the estimates 1G � θ � 1F and |θ(x) − θ(y)| �
3r−1d(x, y). In particular, a filter ξ is coarse if and only if for any F ∈ ξ and any ε > 0 there is
G ∈ ξ and a function θ such that 1G � θ � 1F and |θ(x) − θ(y)| � εd(x, y).

Proof. If a ∈ G and b /∈ F then r < d(a, b) � d(x, a) + d(x, b) for any x. By taking the lower
bound of the right-hand side over a, b we get r � dG(x) + dF c(x) ≡ D(x). Hence if d(x) ≡
dF c(x) then

∣∣θ(x) − θ(y)
∣∣ � |d(x) − d(y)|

D(x)
+ d(y)

|D(x) − D(y)|
D(x)D(y)

� d(x, y) + ∣∣D(x) − D(y)
∣∣ � d(x, y)

.

r 3r
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To prove the last assertion, notice that if such a θ exists for some ε < 1/r and if x ∈ G and
d(x, y) � r then θ(x) = 1 and |θ(x) − θ(y)| < 1 hence θ(y) > 0 so y ∈ F . Thus G(r) ⊂ F . �
Proposition 4.5. The filter ξ is coarse if and only if the ideal Iξ (X) is coarse.

Proof. Assume ξ is not trivial and coarse and let ϕ ∈ Iξ positive and r > 0. Then Oϕ :=
{ϕ < 1} ∈ ξ hence there is G ∈ ξ such that G(2r) ⊂ Oϕ . By using Lemma 4.4 we construct
ψ ∈ C such that 0 � ψ � 1, ψ |G = 0, and ψ |Gc

(r)
= 1. Clearly ψ ∈ Iξ . If ψ(y) < 1 then y ∈ G(r)

hence if d(x, y) � r then x ∈ G(2r) so ϕ(x) < 1. Thus Iξ is coarse. Reciprocally, assume that Iξ

is a coarse ideal and let F ∈ ξ and r > 0. There is ϕ ∈ Iξ positive such that Oϕ ⊂ F and there
is a positive function ψ ∈ Iξ such that (4.23) holds. But then Oψ ∈ ξ and (Oψ)(r) ⊂ Oϕ so ξ is
coarse. �
4.4. Coarse envelope

If ξ is a filter then the family of coarse filters included in ξ is admissible, hence there is a
largest coarse filter included in ξ . We denote it co(ξ) and call it coarse envelope (or cover) of ξ .
A set F belongs to co(ξ) if and only if F (r) ∈ ξ for any r > 0 (the set of such F is a filter, see
p. 1748).

By Lemma 4.2 we have only two possibilities: either co(ξ) = {X} or co(ξ) ⊃ ∞. Since
co(ξ) ⊂ ξ , we see that either ξ is finer than Fréchet, and then co(ξ) ⊃ ∞, or not, and then
co(ξ) = {X}.

To each ultrafilter � ∈ β(X) we associate a compact subset �̂ ⊂ β(X) by the rule

�̂ := co(�)† = set of ultrafilters finer than the coarse envelope of �. (4.24)

Thus we have either � ∈ δ(X) and then �̂ ⊂ δ(X), or � /∈ δ(X) and then �̂ = β(X). On the other
hand, we have

⋃
�∈δ(X) �̂ = δ(X) because � ∈ �̂ .

More explicitly, if �,χ ∈ δ(X) then χ ∈ �̂ means: if F is a set such that F (r) ∈ � for all r ,
then F ∈ χ (which is equivalent to F ∩ G 
= ∅ for all G ∈ χ ).

If � is an ultrafilter on X then C(�)(X) is the coarse ideal of C(X) defined by

C(�)(X) = Ico(�) =
{
ϕ ∈ C(X)

∣∣∣ lim
co(�)

ϕ = 0
}
. (4.25)

The quotient C∗-algebra C�(X) = C(X)/C(�)(X) will be called localization of C(X) at � . If
ϕ ∈ C(X) then its image in the quotient is denoted �.ϕ and is called localization of ϕ at � .
The next comments give another description of these objects and will make clear that localization
means extension followed by restriction.

Observe that ϕ ∈ C(X) belongs to C(�)(X) if and only if the restriction of β(ϕ) to �̂ is zero.
Hence two bounded uniformly continuous functions are equal modulo C(�)(X) if and only if
their restrictions to �̂ are equal. Thus ϕ �→ β(ϕ)|̂� induces an embedding C�(X) ↪→ C(�̂) which
allows us to identify C�(X) with an algebra of continuous functions on �̂ . From this we deduce

⋂
C(�)(X) = Co(X). (4.26)
�∈δ(X)
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Indeed, ϕ belongs to the left-hand side if and only if β(ϕ)|̂� = 0 for all � ∈ δ(X). But the
union of the sets �̂ is equal to δ(X) hence this means β(ϕ)|δ(X) = 0 which is equivalent to
ϕ ∈ Co(X).

A maximal coarse filter is a coarse filter which is maximal in the set of coarse filters equipped
with inclusion as order relation. This set is inductive (the union of an increasing set of coarse
filters is a coarse filter) hence each coarse filter is majorated by a maximal one. Dually, we say
that a subset T ⊂ δ(X) is coarse if it is of the form T = �† for some coarse filter � . Note that if
T is a minimal coarse set then T = �̂ for any ultrafilter � ∈ T . In general the coarse sets of the
form �̂ with � ∈ δ(X) are not minimal.

5. Ideals of E (X)

There are two classes of ideals in E (X) which can be defined in terms of the behavior at
infinity of the operators. For any filter ξ on X we define

Jξ (X) =
{
T ∈ E (X)

∣∣∣ inf
F∈ξ

‖1F T ‖ = 0
}
, (5.27)

Gξ (X) =
{
T ∈ E (X)

∣∣∣ lim
x→ξ

‖1Bx(r)T ‖ = 0, ∀r
}
. (5.28)

Here infF∈ξ ‖1F T ‖ is the lower bound of the numbers ‖1F T ‖ when F runs over the set
of measurable F ∈ ξ and we define infF∈ξ ‖T 1F ‖ similarly. Note that ‖1F T ‖ � ‖1GT ‖ and
‖T 1F ‖ � ‖T 1G‖ if F ⊂ G are measurable. Recall also that limx→ξ ‖1Bx(r)T ‖ = 0 means: for
each ε > 0 there is G ∈ ξ such that ‖1Bx(r)T ‖ < ε for all x ∈ G. Observe that for the Fréchet
filter ξ = ∞ we have

K = J∞ and K ⊂ G∞ = G (5.29)

where G (X) is the ghost ideal introduced in (3.17). That J∞ = K follows from the fact
that 1KT is compact if K is compact (or use (5.30) and Proposition 3.2). The equality
G∞(X) = G (X) is just a change of notation.

Lemma 5.1. If T ∈ E and ξ is a coarse filter then infF∈ξ ‖1F T ‖ = infF∈ξ ‖T 1F ‖.

Proof. If infF∈ξ ‖1F T ‖ = a and ε > 0 then there is F ∈ ξ such that ‖1F T ‖ < a + ε. We
may choose k ∈ Ctrl such that ‖T − Op(k)‖ < ε and then ‖1F Op(k)‖ < a + 2ε. Assume
that k(x, y) = 0 if d(x, y) � r and let G ∈ ξ such that G(r) ⊂ F . Then k(x, y)1G(y) =
1G(r)

(x)k(x, y)1G(y) hence Op(k)1G = 1G(r)
Op(k)1G = 1G(r)

1F Op(k)1G so ‖Op(k)1G‖ �
‖1F Op(k)‖ < a + 2ε and so ‖T 1G‖ < a + 3ε. �
Lemma 5.2. For any filter ξ the set Gξ is an ideal of E and we have Jco(ξ) ⊂ Gξ . If ξ is coarse
then Jξ is also an ideal of E and Jξ ⊂ Gξ .

Proof. Gξ is obviously a closed right ideal in E so it will be an ideal if we show that
limx→ξ ‖T 1Bx(r)‖ = 0 for all T ∈ Gξ . Choose ε > and let S be a controlled operator such that
‖S − T ‖ < ε. Then there is R such that S1Bx(r) = 1Bx(R)S1Bx(r) and there is F ∈ ξ such that
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‖1Bx(R)T ‖ < ε for x ∈ F , hence

‖T 1Bx(r)‖ < ε + ‖S1Bx(r)‖ � ε + ‖1Bx(R)S‖ < 2ε + ‖1Bx(R)T ‖ < 3ε.

If T ∈ Jco(ξ) then for any ε > 0 there is F such that F (r) ∈ ξ for all r such that ‖1F T ‖ < ε. So if
we fix r and take G = F (r) ∈ ξ then G ∈ ξ and ‖1Bx(r)T ‖ < ε for all x ∈ G. Thus T ∈ Gξ . Clearly
Jξ is a closed right ideal in E . That it is an ideal if ξ is coarse follows from Lemma 5.1. �
Proposition 5.3. If ξ is a coarse filter on X then Jξ is an ideal of E and we have

Jξ = IξE = E Iξ . (5.30)

Proof. We prove the first equality in (5.30) (the second one follows by taking adjoints). Clearly
ϕ ∈ Iξ if and only if for each ε > 0 there is F ∈ ξ such that ‖1F ϕ‖ < ε hence if and only if
infF∈ξ ‖1F ϕ‖ = 0. This implies IξE ⊂ Jξ and so it remains to be shown that for each T ∈ Jξ

there are ϕ ∈ Iξ and S ∈ E such that T = ϕS. If ξ is trivial this is clear, so we may suppose that
ξ is finer than ∞.

Choose a point o ∈ X and let Kn = Bo(n) for n � 1 integer. We get an increasing sequence
of compact sets such that

⋃
n Kn = X and Kc

n ∈ ξ . We construct by induction a sequence F1 ⊃
G1 ⊃ F2 ⊃ G2 ⊃ · · · of sets in ξ such that:

Fn ⊂ Kc
n, ‖1FnT ‖ � n−2, d

(
Gn,F

c
n

)
> 1, d

(
Fn+1,G

c
n

)
> 1.

We start with F ′
1 ∈ ξ such that ‖1F ′

1
T ‖ � 1, we set F1 = F ′

1 ∩ Kc
1 and then we choose G1 ∈ ξ

such that d(G1,F
c
1 ) > 1. Next, we choose F ′

2 ∈ ξ with ‖1F ′
2
T ‖ � 1/4 and G′

1 ∈ ξ with G′
1 ⊂ G1

and d(G′
1,G

c
1) > 1. We take F2 = F ′

2 ∩ G′
1 ∩ Kc

2 , so d(F2,G
c
1) > 1, and then we choose G2 ∈ ξ

with G2 ⊂ F2 such that d(G2,F
c
2 ) > 1, and so on.

Now we use Lemma 4.4 and for each n we construct a function θn ∈ C such that 1Gn �
θn � 1Fn and |θn(x) − θn(y)| � 3d(x, y). Then either Ba ∩ F1 = ∅ or there is a unique m such
that Ba ∩ Fm 
= ∅ and Ba ∩ Fm+1 = ∅ and in this case θn = 1 on Ba if n < m and θn = 0 on Ba

if n > m. Let θ(x) = ∑
n θn(x). Then θ(x) = 0 on F c

1 and if Ba ∩ Fm 
= ∅ and Ba ∩ Fm+1 = ∅
we get

θ(x) =
∑
n�m

θn(x) = m − 1 + θm(x). (5.31)

Thus θ : X → R̄+ is well defined and for d(x, y) < 1 and a conveniently chosen m we have

∣∣θ(x) − θ(y)
∣∣ = ∣∣θm(x) − θm(y)

∣∣ � 3d(x, y).

On the other hand ‖θnT ‖ � ‖1FnT ‖ � n−2. Thus if θ0 = 1 then the limit of
∑

n�m θnT as
m → ∞ exists in norm and defines an element S of E . Then

T =
( ∑

θn

)−1( ∑
θn

)
T → (1 + θ)−1S
n�m n�m
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because (
∑

n�mθn)
−1 → (1 + θ)−1 strongly on L2(X). If ϕ := (1 + θ)−1 then 0 � ϕ � 1 and

∣∣ϕ(x) − ϕ(y)
∣∣ �

∣∣θ(x) − θ(y)
∣∣ � 3d(x, y) if d(x, y) < 1.

Thus ϕ ∈ C . If x ∈ Ba with Ba ∩ Fm 
= ∅ and Ba ∩ Fm+1 = ∅ then (5.31) gives

ϕ(x) = (
1 + m − 1 + θm(x)

)−1 � 1/m

hence ϕ(x) � 1/m on Fm. Thus limξ ϕ = 0 and T = ϕS with ϕ ∈ I� and S ∈ E . �
We make now more precise the relation between Jξ and Gξ .

Lemma 5.4. If (2.4) holds, T ∈ E is controlled, ξ is coarse, and limx→ξ ‖1Bx T ‖ = 0, then
T ∈ Jξ .

Proof. Assume (2.4) is satisfied and let T ∈ B(X) be a controlled operator. Let Z be as in
Lemma 3.5 and let us set a = d(T )+1, so that 1Bx T = 1Bx T 1Bx(a) for all x. If F is a measurable
set and if we denote Z(F) the set of z ∈ Z such that Bz ∩F 
= ∅ then for any f ∈ L2(X) we have

‖1F Tf ‖2 �
∑

z∈Z(F)

‖1BzTf ‖2 =
∑

z∈Z(F)

‖1BzT 1Bz(a)f ‖2

� sup
z∈Z(F)

‖1BzT ‖2
∑

z∈Z(F)

‖1Bz(a)f ‖2 � sup
x∈F(1)

‖1Bx T ‖2N(a)‖f ‖2

so ‖1F T ‖ � N(a)1/2 supx∈F(1)
‖1Bx T ‖. Thus for any controlled operator we have

infF∈ξ ‖1F T ‖ = 0 if limx→ξ ‖1Bx T ‖ = 0. If T ∈ E (X) this means T ∈ Jξ . �
Proposition 5.5. If X is a class A space then for any filter ξ finer than Fréchet we have
Jco(ξ) ⊂ Gξ . If ξ is coarse and T ∈ E then

T ∈ Jξ ⇔ lim
x→ξ

‖T 1Bx ‖ = 0 ⇔ lim
x→ξ

‖1Bx T ‖ = 0. (5.32)

Proof. We use the same techniques as in the proof of Theorem 3.12. Let T ∈ E (X) and let us
assume that limx→ξ ‖T 1Bx ‖ = 0. Then as we saw in Section 3 we have (T 1Bx )φ = Tφ1Bx hence
for conveniently chosen φ the operator Tφ ∈ E (X) is controlled and limx→ξ ‖Tφ1Bx ‖ = 0. From
Lemma 5.4 we get Tφ ∈ Jξ (X) which is closed, so since Tφ → T in norm as φ → 1, we get
T ∈ Jξ (X). �
Remark 5.6. The relation (5.32) is not true in general if Property A is not satisfied. Indeed, if we
take ξ = ∞ then this would mean K = G , which does not hold in general.

We now seek for a more convenient description of Jco(ξ) for not coarse filters.

Remark 5.7. The following observations are easy to prove and will be useful below. Let F be
any subset of X and let r, s > 0. Then F (r+s) ⊂ (F (r))(s) and if 0 < r < s then F (s) ⊂ F (r) and
F ⊂ (F(s))

(r).
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Proposition 5.8. Assume that (2.4) is satisfied and let T be a controlled operator and ξ a filter
finer than the Fréchet filter. Then infF∈co(ξ) ‖1F T ‖ = 0 if and only if limx→ξ ‖1Bx(r)T ‖ = 0 for
all r > 0.

Proof. If T ∈ B(X) and infF∈co(ξ) ‖1F T ‖ = 0 then the first few lines of the proof of Lemma 5.4
give limx→co(ξ) ‖1Bx(r)T ‖ = 0 for all r > 0, which is more than required. Now let T be a con-
trolled operator and let us set a = d(T ) + 1. If F is a measurable set and Z(F) is as in the proof
of Lemma 5.4 then d(F,Z(F )) � 1 hence for any r > 0 we have

F(r) ⊂ Z(F)(r+1) =
⋃

z∈Z(F)
Bz(r + 1)

hence for any f ∈ L2 we have

‖1F(r)
Tf ‖2 �

∑
z∈Z(F)

‖1Bz(r+1)Tf ‖2 =
∑

z∈Z(F)

‖1Bz(r+1)T 1Bz(r+a)f ‖2

� sup
z∈Z(F)

‖1Bz(r+1)T ‖2
∑

z∈Z(F)

‖1Bz(r+a)f ‖2 � sup
x∈F(1)

‖1Bx(r+1)T ‖2N(r + a)‖f ‖2.

If x ∈ F(1) and y ∈ F is such that d(x, y) � 1 then Bx(r + 1) ⊂ By(r + 2) hence we obtain

‖1F(r)
T ‖ � N(r + a)1/2 sup

x∈F

‖1Bx(r+2)T ‖. (5.33)

Observe also that for an arbitrary measurable set G we have the estimate

‖1GT ‖ � N(a)1/2 sup
x∈X

‖1G∩Bx T ‖. (5.34)

This follows from Lemma 3.6 after noticing that d(1GT ) � d(T ).
Now assume that limx→ξ ‖1Bx(r)T ‖ = 0 for all r > 0 and let us fix ε > o. Then for each r > 0

there is F r ∈ ξ such that

‖1Bx(r+2)T ‖ � εN(r + a)−1/2N(a)−1/2, ∀x ∈ F r .

For each f ∈ L2 and each number s > 0 the map x �→ 1Bx(s)f ∈ L2 is strongly continuous,
hence the function x �→ ‖1Bx(r+2)T ‖ is lower semi-continuous, so we may assume that F r is
closed, hence measurable. Then the Gr := F r

(r) ∈ ξ is closed and ‖1Gr T ‖ � εN(a)−1/2 because

of (5.33). Moreover, if α < r then G
(α)
r ≡ (Gr)

(α) ⊃ F r hence G
(α)
r ∈ ξ . Now fix α > 1 and let

G = ⋃
r>α G

(α)
r . This is a union of open set hence it is open and contains all the G

(α)
r , which

belong to ξ , hence belongs to ξ . If s > 0 and we choose some r > s + α then G(s) ⊃ (G
(α)
r )(s) ⊃

G
(α+s)
r ∈ ξ (Remark 5.7). Thus we see that G(s) ∈ ξ for all s > 0, which means that G ∈ co(ξ).

In order to estimate the norm of 1GT we use (5.34) and observe that if G ∩ Bx 
= ∅ the there is
r > α such that G

(α)
r ∩ Bx 
= ∅ hence Bx ⊂ (G

(α)
r )(1). But it is easy to check that (G

(α)
r )(1) ⊂ Gr

because α > 1, hence Bx ⊂ Gr , and then

‖1G∩Bx T ‖ � ‖1Bx T ‖ � ‖1Gr T ‖ � εN(a)−1/2.

Finally, from (5.34) we get ‖1GT ‖ � ε. �
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Theorem 5.9. Let X be a class A space and let ξ be a filter finer than Fréchet on X. If T ∈ E
then

T ∈ Jco(ξ) ⇔ lim
x→ξ

‖T 1Bx(r)‖ = 0, ∀r > 0,

⇔ lim
x→ξ

‖1Bx(r)T ‖ = 0, ∀r > 0. (5.35)

Proof. This is a repetition of the proof of Proposition 5.5. For example, let
limx→ξ ‖1Bx(r)T ‖ = 0 for all r > 0. Since (1Bx(r)T )φ = 1Bx(r)Tφ for all r , we see that for
conveniently chosen φ the operator Tφ ∈ E (X) is controlled and limx→ξ ‖Tφ1Bx(r)‖ = 0 for
all r . From Proposition 5.8 we clearly get Tφ ∈ Jco(ξ) which is closed. So T ∈ Jco(ξ) because
Tφ → T in norm as φ → 1. �

The ideals of E (X) which are of real interest in our context are defined as follows

� ∈ δ(X) ⇒ E(�)(X) := Jco(�)(X) =
{
T ∈ E (X)

∣∣∣ inf
F∈co(�)

‖1F T ‖ = 0
}
. (5.36)

By Proposition 5.3 this can be expressed in terms of the ideals of C(X) introduced in (4.25) as
follows:

E(�)(X) = C(�)(X)E (X) = E (X)C(�)(X). (5.37)

Prof of Theorem 2.5. Assume that T ∈ E(�) for all � ∈ δ(X); we have to show that T is a
compact operator (the converse being obvious). If � ∈ δ(X) and r > 0 then for any ε > 0 there
is F ∈ co(�) such that ‖1F T ‖ < ε and there is G ∈ � such that G(r) ⊂ F , hence for any x ∈ G

we have ‖1Bx(r)T ‖ < ε. This proves that limx→� ‖1Bx(r)T ‖ = 0. Now define θ(x) = ‖1Bx(r)T ‖,
we obtain a bounded function on X such that lim� θ = 0 for any � ∈ δ(X). The continuous
extension β(θ) : β(X) → R has the property β(θ)(�) = lim� θ thus β(θ) is zero on the compact
subset δ(X) = ∞† of β(X) hence we have lim∞ θ = 0 according to a remark from Section 4.1.
Thus we have limx→∞ ‖1Bx(r)T ‖ = 0, which means that T belongs to the ghost ideal G . Now
the compactness of T follows from Theorem 3.12. �

We end this section with some remarks on the case of discrete spaces with bounded geometry.
Assume that X is an infinite set equipped with a metric d such that the number of points in a
ball is bounded by a number independent of the center of the ball. We equip X with the counting
measure, so L2(X) = �2(X), and embed X ⊂ �2(X) by identifying x = 1{x} ≡ 1x , so X becomes
the canonical orthonormal basis of �2(X). Then any operator T ∈ B(X) has a kernel kT (x, y) =
〈x|Ty〉 and E (X) is the closure of set of T such that 〈x|Ty〉 = 0 if d(x, y) > r(T ) (this is
the uniform Roe algebra). Observe that for each T ∈ E and each ε > 0 there is an r such that
|〈x|Ty〉| < ε if d(x, y) > r .

If ξ is a filter on X and f : X2 → C we write limx,y→ξ f (x, y) = 0 if for each ε > 0 there is
F ∈ ξ such that |f (x, y)| < ε if x, y ∈ F .
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Proposition 5.10. Let X be discrete with bounded geometry. Then if ξ is a filter and T ∈ E we
have

T ∈ Gξ ⇔ lim
x→ξ

sup
y,z∈Bx(r)

∣∣〈y|T z〉∣∣ = 0, ∀r > 0. (5.38)

Moreover, if ξ is coarse then

Gξ =
{
T ∈ E

∣∣∣ lim
x,y→ξ

〈x|Ty〉 = 0
}
. (5.39)

Proof. By definition, we have T ∈ Gξ if and only if limx→ξ ‖T 1Bx(r)‖ = 0 for all r . Since the
norm of the operator T 1y is equal to the norm of the vector Ty, we have

sup
y∈Bx(r)

‖Ty‖ � ‖T 1Bx(r)‖ �
∑

y∈Bx(r)

‖Ty‖ � V (r) sup
y∈Bx(r)

‖Ty‖.

Thus T ∈ Gξ is equivalent to limx→ξ supy∈Bx(r) ‖Ty‖ = 0 for all r , in particular the property
from the right-hand side of (5.38) is satisfied. Conversely, let T ∈ E satisfying this condition and
let ε > 0. Choose an operator S such that ‖S − T ‖ < ε and such that 〈x|Sy〉 = 0 if d(x, y) > R

for some fixed R. Then we have |〈Sy|a〉| � ∑
z |〈Sy|z〉||〈z|a〉| � ‖S‖∑

z∈By(R) |〈z|a〉| hence

‖Ty‖2 = 〈
y
∣∣T ∗Ty

〉
� ε‖T ‖ + ∣∣〈Sy|Ty〉∣∣ � ε‖T ‖ + ‖S‖

∑
z∈By(R)

∣∣〈z|Ty〉∣∣
� ε‖T ‖ + ‖S‖V (R) sup

z∈By(R)

∣∣〈z|Ty〉∣∣.
So for each ε > 0 there are C,R < ∞ with ‖Ty‖2 � ε‖T ‖ + C supz∈By(R) |〈z|Ty〉| for all y.
Hence:

sup
y∈Bx(r)

‖Ty‖2 � ε‖T ‖ + C
{∣∣〈z|Ty〉∣∣ ∣∣ y ∈ Bx(r), z ∈ By(R)

}
� ε‖T ‖ + C sup

{∣∣〈z|Ty〉∣∣ ∣∣ y, z ∈ Bx(r + R)
}
.

This proves the converse implication in (5.38).
Now assume that ξ is coarse. If T is as in the right-hand side of (5.39) then for each ε > 0

there is F ∈ ξ such that |〈y|T z〉| < ε if y, z ∈ F and for each r there is G ∈ ξ such that G(r) ⊂ F .
Then if x ∈ G we have Bx(r) ⊂ F hence supy,z∈Bx(r) |〈y|T z〉| � ε so T ∈ Gξ by (5.38). Recip-
rocally, let T ∈ Gξ and let ε, r > 0. By (5.38), there is F ∈ ξ such that if y, z ∈ Bx(r) for some
x ∈ F then |〈y|T z〉| � ε. Let us choose r such that |〈y|T z〉| < ε if d(y, z) > r and let G ∈ ξ

such that G(r) ⊂ F . If y, z ∈ G then either d(y, z) > r and then |〈y|T z〉| < ε, or d(y, z) � r

and then |〈y|T z〉| < ε because y, z ∈ By(r) and y, z ∈ G ⊂ F . Thus we found G ∈ ξ such that
|〈y|T z〉| < ε if y, z ∈ G. �

Finally, for the convenience of the reader we sketch the construction of the ghost projection
of Higson, Laforgue, and Skandalis. Note that G (X) is a C∗-algebra of operators on �2(X) inde-
pendent of the metric of X. Assume that X is a disjoint union of finite sets Xn with 1 � n � ∞
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such that the number v2
n of elements of Xn tends to infinity with n. Then �2(X) = ⊕

n �2(Xn),
the vector en = ∑

x∈Xn
x/vn is a unit vector in �2(Xn), and π := ∑

n |en〉〈en| is an orthogonal
projection in �2(X) such that 〈x|πy〉 = 0 if x, y belong to different sets Xn and 〈x|πy〉 = v−2

n if
x, y ∈ Xn. Thus π is an infinite rank projection and π ∈ G (X). All this is easy, but the choice of
the metric is not: for this we refer to p. 348 in [20].

6. Locally compact groups

6.1. Crossed products

In this section we assume that X is a locally compact topological group with neutral ele-
ment e and μ is a left Haar measure. We write dμ(x) = dx and denote � the modular function
defined by d(xy) = �(y)dx or dx−1 = �(x)−1 dx (with slightly formal notations). There are
left and right actions of X on functions ϕ defined on X given by (a.ϕ)(x) = ϕ(a−1x) and
(ϕ.a)(x) = ϕ(xa).

The left and right regular representation of X are defined by λaf = a.f and ρaf = √
�(a)f.a

for f ∈ L2(X). Then λa and ρa are unitary operators on L2(X) which induce unitary represen-
tation of X on L2(X). These representations commute: λaρb = ρbλa for all a, b ∈ X. Moreover,
for ϕ ∈ L∞(X) we have λaϕ(Q)λ∗

a = (a.ϕ)(Q) and ρaϕ(Q)ρ∗
a = (ϕ.a)(Q).

The convolution of two functions f,g on X is defined by

(f ∗ g)(x) =
∫

f (y)g
(
y−1x

)
dy =

∫
f

(
xy−1)�(y)−1g(y)dy.

For ψ ∈ L1(X) let λψ = ∫
ψ(y)λy dy ∈ B(X). Then ‖λψ‖ � ‖ψ‖L1 and ψ ∗ g = λψg for

g ∈ L2.
We recall the definition of the ∗-algebra L1(X): the product is the convolution prod-

uct f ∗ g and the involution is given by f ∗(x) = �(x)−1f̄ (x−1); the factor �−1 ensures
that ‖f ∗‖L1 = ‖f ‖L1 . The enveloping C∗-algebra of L1(G) is the group C∗-algebra C∗(X).
The norm closure in B(X) of the set of operators λψ with ψ ∈ L1(X) is the reduced group C∗-
algebra C∗

r (X). There is a canonical surjective morphism C∗(X) → C∗
r (X) which is injective if

and only if X is amenable.

Lemma 6.1. If T ∈ C∗
r (X) then ρaT = Tρa , ∀a ∈ X. If X is not compact then C∗

r (X) ∩
K (X) = {0}.

Proof. The first assertion is clear because ρaλb = λbρa . If X is not compact, then ρa → 0
weakly on L2(X) hence if T ∈ C∗

r (X) is compact ‖Tf ‖ = ‖Tρaf ‖ → 0 hence ‖Tf ‖ = 0 for
all f ∈ L2(X). �

In what follows by uniform continuity we mean “right uniform continuity”, so ϕ : X → C is
uniformly continuous if for any ε > 0 there is a neighborhood V of e such that xy−1 ∈ V ⇒
|ϕ(x) − ϕ(y)| < ε (see p. 60 in [29]). Let C(X) be the C∗-algebra of bounded uniformly con-
tinuous complex functions. If ϕ : X → C is bounded measurable then ϕ ∈ C(X) if and only if
‖λaϕ(Q)λ∗

a − ϕ(Q)‖ → 0 as a → e.
We consider now crossed products of the form A � X where A ⊂ C(X) is a C∗-subalgebra

stable under (left) translations (so a.φ ∈ A if φ ∈ A; only the case A = C(X) is of interest later).
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We refer to [35] for generalities on crossed products. The C∗-algebra A � X is the enveloping
C∗-algebra of the Banach ∗-algebra L1(X; A), where the algebraic operations are defined as
follows:

(f ∗ g)(x) =
∫

f (y)y.g
(
y−1x

)
dy, f ∗(x) = �(x)−1x.f̄

(
x−1).

Thus C∗(X) = C � X. If we define Λ : L1(X; A) → B(X) by Λ(φ) = ∫
φ(a)λa da it is

easy to check that this is a continuous ∗-morphism hence it extends uniquely to a morphism
A � X → B(X) for which we keep the same notation Λ. A short computation gives for
φ ∈ Cc(X; A) and f ∈ L2(X)

(
Λ(φ)f

)
(x) =

∫
φ
(
x, xy−1)�(y)−1f (y)dy

where for an element φ ∈ Cc(X; A) we set φ(x, a) = φ(a)(x). Thus Λ(φ) is an integral operator
with kernel k(x, y) = φ(x, xy−1)�(y)−1 or Λ(φ) = Op(k) with our previous notation.

The next simple characterization of Λ follows from the density in Cc(X; A) of the alge-
braic tensor product A ⊗alg Cc(X): there is a unique morphism Λ : A � X → B(X) such that
Λ(ϕ ⊗ ψ) = ϕ(Q)λψ for ϕ ∈ A and ψ ∈ Cc(X). Here we take φ = ϕ ⊗ ψ with ϕ ∈ A
and ψ ∈ Cc(X), so φ(a) = ϕψ(a). Note that the kernel of the operator ϕ(Q)λψ is k(x, y) =
ϕ(x)ψ(xy−1)�(y)−1.

The reduced crossed product A �r X is a quotient of the full crossed product A � X, the
precise definition is of no interest here. Below we give a description of it which is more conve-
nient in our setting. As usual, we embed A ⊂ B(X) by identifying ϕ = ϕ(Q) and if M ,N are
subspaces of B(X) then M · N is the closed linear subspace generated by the operators MN

with M ∈ M and N ∈ N .

Theorem 6.2. The kernel of Λ is equal to that of A �X → A �r X, hence Λ induces a canonical
embedding A �r X ⊂ B(X) whose range is A · C∗

r (X). This allows us to identify A �r X =
A · C∗

r (X).

We thank Georges Skandalis for showing us that this is an easy consequence of results from
the thesis of Athina Mageira. Indeed, it suffices to take A = A and B = Co(X) in [23, Proposi-
tion 1.3.12] by taking into account that the multiplier algebra of Co(X) is Cb(X), and then to use
Co(X) � X = K (X) (Takai’s theorem, cf. [23, Example 1.3.4]) and the fact that the multiplier
algebra of K (X) is B(X).

The crossed product of interest here is C(X) �r X = C(X) · C∗
r (X). Obviously we have

K (X) = Co(X) �r X ⊂ C(X) �r X, the first equality being a consequence of Takai’s theorem
but also of the following trivial argument: if ϕ,ψ ∈ Cc(X) then the kernel ϕ(x)ψ(xy−1)�(y)−1

of the operator ϕ(Q)λψ belongs to Cc(X
2) hence ϕ(Q)λψ is a Hilbert–Schmidt operator.

We recall that the local topology on C(X) �r X (see Definition 3.3 here and [17, p. 447]) is
defined by the family of seminorms of the form ‖T ‖Λ = ‖1ΛT ‖+‖T 1Λ‖ with Λ ⊂ X compact.

The following is an extension of [17, Proposition 5.9] in the present context (see also
pp. 30–31 in the preprint version of [15] and [31]). Recall that any bounded function ϕ : X → C

extends to a continuous function β(ϕ) on β(X). If � ∈ β(X) we define ϕ� : X → C by

ϕ�(x) = β
(
x−1ϕ

)
(�) = lim

a→�
ϕ(xa). (6.40)
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Lemma 6.3. If ϕ ∈ C(X) then for any θ ∈ Co(X) the set {θϕ.a | a ∈ X} is relatively compact in
Co(X) and the map a �→ θϕa ∈ Co(X) is norm continuous. In particular, for any � ∈ β(X) the
limit in (6.40) exists locally uniformly in x and we have ϕ� ∈ C(X).

Proof. By the Ascoli–Arzela theorem, to show the relative compactness of the set of functions
of the form θϕ.a it suffices to show that the set is equicontinuous. For each ε > 0 there is a
neighborhood V of e such that |ϕ(x) − ϕ(y)| < ε if xy−1 ∈ V . Then |ϕ(xa) − ϕ(ya)| < ε for
all a ∈ X, which proves the assertion. In particular, lima→� θϕ.a exists in norm in Co(X), hence
the limit in (6.40) exists locally uniformly in x. Moreover, we shall have |ϕ�(x) − ϕ�(y)| < ε

so ϕ� belongs to C(X). Finally, we show that for any compact set K and any ε > 0 there is
a neighborhood V of e such that supK |ϕ(xa) − ϕ(x)| < ε for all a ∈ V . For this, let U be an
open cover of K such that the oscillation of ϕ over any U ∈ U is < ε and note that there is
a neighborhood V of e such that for any x ∈ K there is U ∈ U such that xV ⊂ U (use the
Lebesgue property for the left uniform structure). �
Proposition 6.4. For each T ∈ C(X)�r X and each a ∈ X we have τa(T ) := ρaTρ∗

a ∈ C(X)�r X

and the map a �→ τa(T ) is locally continuous on X and has locally relatively compact range. For
each ultrafilter � ∈ β(X) and each T ∈ C(X) �r X the limit τ�(T ) := lima→� τa(T ) exists in the
local topology of C(X) �r X. The so defined map τ� : C(X) �r X → C(X) �r X is a morphism
uniquely determined by the property τ�(ϕ(Q)λψ) = ϕ�(Q)λψ .

Proof. If T = ϕ(Q)λψ then ρaTρ∗
a = (ϕ.a)(Q)λψ is an element of C(X) �r X and so τa is an

automorphism of C(X) �r X. If we take ψ with compact support and Λ is a compact set then
λψ1Λ = 1Kλψ1Λ where K = (suppψ)Λ is also compact. Then τa(T )1Λ = (ϕ.a)(Q)1Kλψ1Λ

and the map a �→ (ϕ.a)(Q)1K is norm continuous, cf. Lemma 6.3. This implies that a �→ τa(T )

is locally continuous on X for any T . To show that the range is relatively compact, it suffices
again to consider the case T = ϕ(Q)λψ with ψ with compact support and to use τa(T )1Λ =
(ϕ.a)(Q)1Kλψ1Λ and the relative compactness of the {(ϕ.a)(Q)1K | a ∈ X} established in
Lemma 6.3. The other assertions of the proposition follow easily from these facts. �
6.2. Elliptic C∗-algebra

Let X be a locally compact non-compact topological group. Since we do not require that X

be metrizable, we have to adapt some of the notions used in the metric case to this context. Of
course, we could use the more general framework of coarse spaces [30] to cover both situations,
but we think that the case of metric groups is already sufficiently general. So the reader may
assume that X is equipped with an invariant proper distance d . Our leftist bias in Section 6.1
forces us to take d right invariant, i.e. d(x, y) = d(xz, yz) for all x, y, z. If we set |x| = d(x, e)

then we get a function | · | on X such that |x−1| = |x|, |xy| � |x| + |y|, and d(x, y) = |xy−1|.
The balls B(r) defined by relations of the form |x| � r are a basis of compact neighborhoods
of e, a function on X is d-uniformly continuous if and only if it is right uniformly continuous,
etc.

Note that Bx(r) = B(r)x so in the non-metrizable case the role of the balls Bx(r) is played by
the sets V x with V compact neighborhoods of e. Recall that the range of the modular function
� is a subgroup of the multiplicative group ]0,∞[ hence it is either {1} or unbounded. Since
μ(V x) = μ(V )�(x) our assumption (2.3) is satisfied only if X is unimodular and in this case
we have μ(V x) = μ(V ) for all x.
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We emphasize the importance of the condition that the metric be proper. Fortunately, it has
been proved in [18] that a locally compact group is second countable if and only if its topology
is generated by a proper right invariant metric.

For coherence, in the non-metrizable case we are forced to say that a kernel k : X2 → C is
controlled if there is a compact set K ⊂ X such that k(x, y) = 0 if xy−1 /∈ K . The symbol d(k)

should be defined now as the smallest compact set K with the preceding property. On the other
hand, k is uniformly continuous if it is right uniformly continuous, i.e. if for any ε > 0 there is a
neighborhood V of e such that |k(ax, by) − k(x, y)| < ε for all a, b ∈ V and x, y ∈ X. Then the
Schur estimate (3.15) gives ‖Op(k)‖ � sup |k| supa μ(Ka) so only if X is unimodular we have a
simple estimate ‖Op(k)‖ � μ(K) sup |k|.

To summarize, if X is unimodular then Ctrl(X
2) is well defined and Lemma 3.1 remains valid

if we set V (d(k)) = μ(d(k)) so we may define the elliptic algebra E (X) as in (2.5). But in fact,
what we get is just a description of the crossed product C(X) �r X independent of the group
structure of X:

Proposition 6.5. If X is unimodular then E (X) = C(X) �r X = C(X) · C∗
r (X).

Proof. From the results presented in Section 6.1 and the fact that � = 1 we get that C(X)�X is
the closed linear space generated by the operators Op(k) with kernels k(x, y) = ϕ(x)ψ(xy−1),
where ϕ ∈ C(X) and ψ ∈ Cc(X). Thus C(X)� X ⊂ E (X). To show the converse, let k ∈ Ctrl(X

2)

and let k̃(x, y) = k(x, y−1x) hence k(x, y) = k̃(x, xy−1). If K = K−1 ⊂ X is a compact set such
that k(x, y) 
= 0 ⇒ xy−1 ∈ K then supp k̃ ⊂ X × K . Fix ε > 0 and let V be a neighborhood of
the origin such that |̃k(x, y) − k̃(x, z)| < ε if yz−1 ∈ V . Then let Z ⊂ K be a finite set such
that K ⊂ ⋃

z∈Z V z and let {θz} be a partition of unity subordinated to this covering. If l̃(x, y) =∑
z∈Z k̃(x, z)θz(y) or l̃ = ∑

z∈Z k̃(·, z) ⊗ θz then

∣∣̃k(x, y) − l̃(x, y)
∣∣ =

∣∣∣∣∑
z∈Z

(̃
k(x, y) − k̃(x, z)

)
θz(y)

∣∣∣∣ �
∑
z∈Z

∣∣̃k(x, y) − k̃(x, z)
∣∣θz(y) � ε

because supp θz ⊂ V z. Now let us set l(x, y) = l̃(x, xy−1)=∑
z∈Z k̃(x, z)θz(xy−1). If l(x, y) 
=0

then θz(xy−1) 
= 0 for some z hence xy−1 ∈ V z ⊂ V K . In this construction we may choose
V ⊂ U where U is a fixed compact neighborhood of the origin. Then we will have l(x, y) 
= 0 ⇒
xy−1 ⊂ UK which is a compact set independent of l and from (3.16) we get ‖Op(k)− Op(l)‖ �
C sup |k − l| � Cε for some constant C independent of ε. But clearly Op(l) ∈ C(X) �r X. �

Thus if X is a unimodular group then we may apply Proposition 6.4 and get endomorphisms
τ� of E (X) indexed by � ∈ δ(X). These will play an important role in the next subsection.

We make now some comments on the relation between amenability and Property A in the
case of groups. First, the Property A is much more general than amenability, cf. the discussion
in [24] for the case of discrete groups. To show that amenability implies Property A we choose
from the numerous known equivalent descriptions that which is most convenient in our con-
text [25, p. 128]: X is amenable if and only if for any ε > 0 and any compact subset K of X

there is a positive function ϕ ∈ Cc(X) with ‖ϕ‖ = 1 such that ‖ρaϕ − ϕ‖ < ε for all a ∈ K .
Now let us set φ(x) = ρ∗

xϕ, so φ(x)(z) = �(x)−1/2ϕ(zx−1). We get a strongly continuous
function φ : X → L2(X) such that ‖φ(x)‖ = 1, suppφ(x) = (suppϕ)x, and ‖φ(x) − φ(y)‖ =
‖ρxy−1ϕ − ϕ‖ � ε if xy−1 ∈ K . In the metric case we get a function as in Definition 2.1, so the
metric version of the Property A is satisfied.
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6.3. Coarse filters in groups

A filter ξ on a locally compact non-compact group X is called round if the sets of the form
V G = {xy | x ∈ V, y ∈ G}, where V runs over the set of neighborhoods of e and G over ξ , are
a basis of ξ . And ξ is (left) invariant if x ∈ X,F ∈ ξ ⇒ xF ∈ ξ . Naturally, ξ is coarse if for any
F ∈ ξ and any compact set K ⊂ X there is G ∈ ξ such that KG ⊂ F .

The simplicity of the next proof owes much to a discussion with H. Rugh. In our initial argu-
ment Proposition 6.6 was a corollary of Proposition 4.5.

Proposition 6.6. A filter is coarse if and only if it is round and invariant.

Proof. Note first that ξ is invariant if and only if for each H ∈ ξ and each finite N ⊂ X there
is G ∈ ξ such that H ⊃ NG. This is clear because NG ⊂ H is equivalent to G ⊂ ⋂

x∈N x−1H .
Now assume that ξ is also round. Then for any F ∈ ξ there is a neighborhood V of e and a set
H ∈ ξ such that F ⊃ V H . If K is any compact set then there is a finite set N such that V N ⊃ K .
Then there is G ∈ ξ such that H ⊃ NG. So F ⊃ V NG ⊃ KH . �
Proposition 6.7. Let X be unimodular and let ξ be a coarse filter. Then for any T ∈ Jξ (X) we
have lima→ξ τa(T ) = 0 locally. If X is amenable then the converse assertion holds, so

Jξ (X) =
{
T ∈ E (X)

∣∣∣ lim
a→ξ

τa(T ) = 0 locally
}

= {
T ∈ E (X)

∣∣ τ�(T ) = 0, ∀� ∈ ξ†}. (6.41)

Moreover, if X is amenable then for any compact neighborhood V of e and any T ∈ E (X) we
have

T ∈ Jξ (X) ⇔ lim
a→ξ

‖T 1V a‖ = 0 ⇔ lim
a→ξ

∥∥τa(T )1V

∥∥ = 0. (6.42)

Proof. We have 1V a(Q) = ρ∗
a 1V (Q)ρa hence ‖T 1V a‖ = ‖Tρ∗

a1V (Q)ρa‖ = ‖τa(T )1V (Q)‖
hence for T ∈ Jξ (X) we have lima→ξ τa(T ) = 0 locally. If X is amenable then Proposition 5.5
in the metric case and a suitable modification in the non-metrizable group case gives (6.41). Then
(6.42) is easy. �
Theorem 6.8. Let X be a unimodular amenable locally compact group. Then for each � ∈ δ(X)

and for each T ∈ E (X) the limit τ�(T ) := lima→� ρaTρ∗
a exists in the local topology of E (X),

in particular in the strong operator topology of B(X). The maps τ� are endomorphisms
of E (X) and

⋂
χ∈δ(X) ker τχ = K (X). In particular, the map T �→ (τ�(T )) is a morphism

E (X) → ∏
�∈δ(X) E (X) with K (X) as kernel, hence the essential spectrum of any normal oper-

ator H ∈ E (X) or any observable H affiliated to E (X) is given by Spess(H) = ⋃
� Sp(τ�(H)).

Proof. We have seen in Section 4.4 that
⋃

�∈δ(X) �̂ = δ(X) and from (6.41) we get

E(�)(X) =
⋂

ker τχ for each � ∈ δ(X). (6.43)

χ∈�̂
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On the other hand, we have shown before that
⋂

�∈δ(X) E(�)(X) = K (X) is a consequence of
Property A, hence of amenability. �
Remark 6.9. Recall that after (2.9) we defined the localization �.T at � ∈ δ(X) of some T ∈ E
as the quotient of T in E� = E /E(�). If T is normal then from (6.43) we get Sp(�.T ) =⋃

χ∈�̂ Sp(τχ (T )) but many of the operators τχ (T ) which appear here are unitary equivalent, in
particular have the same spectrum. Indeed, note that there is a natural (left) action of X on β(X)

which leaves δ(X) invariant and �̂ is the minimal closed invariant subset of δ(X) which con-
tains � . And if χ ∈ δ(X) and a ∈ X then by using aχ = limb→χ ab we get τaχ (T ) = ρaτχ (T )ρ∗

a .

7. Quasi-controlled operators

In this section we describe briefly other C∗-algebras of operators which are analogs of E (X).
We emphasize that our choice of E (X) was determined by our desire to mimic the crossed prod-
uct C(X) � X which is a very natural object in the abelian group case, but there are of course
many other possibilities. For example, we could allow bounded Borel (instead of uniformly con-
tinuous) kernels in (3.14). The C∗-algebra generated by such kernels is strictly larger than E
(even if we require the kernels to be continuous, see Example 7.2) but an analogue of Theo-
rem 2.5 remains true. It is not clear to us if this algebra is really significant in applications, the
set of observables affiliated to E being already very large.

We now consider the C∗-algebra obtained as norm closure of the set of controlled operator.
This notion has been introduced in the metric case in Section 3 but in fact it makes sense in
the general framework of coarse spaces X and geometric Hilbert X-modules [30]. In particular,
if X is a locally compact group an operator T ∈ B(X) is controlled if there is a compact set
Λ ⊂ X such that if F,G are closed subsets of X with F ∩ (ΛG) = ∅ then 1F T 1G = 0. If X is
a metric group with a metric as in Section 6.2 this is equivalent to the definition of Section 3.
We denote C (X) the norm closure of the set of controlled operators and we call quasi-controlled
operators its elements. If X is a proper metric space this is the “standard algebra” from [12].
If X is a discrete metric space with bounded geometry then C (X) = E (X) is the “uniform Roe
C∗-algebra” from [30,7,8,34]. Clearly C (X) ⊃ E (X).

One may define analogs of the ideals Jξ and Gξ . Indeed, form the proof of Lemma 5.1 it fol-
lows that if ξ is a coarse filter on X then the set Jξ (X) of T ∈ C (X) such that infF∈ξ ‖1F T ‖ = 0
is an ideal of C (X). And if ξ is an arbitrary filter then the set Gξ (X) of T ∈ C (X) such that
limx→ξ ‖1ΛxT ‖ = 0 for each compact set Λ is also an ideal of C (X). But if X is not discrete
this class of ideals is too small to allow one to describe the quotient C (X)/K (X) even in sim-
ple cases. For example, if X = R then the operators in C may have an anisotropic behavior in
momentum space (see Proposition 7.4 and [16]).

In order to clarify the difference between E (X) and C (X) we consider the case when X is
an abelian group. We first recall a result from [17]. Let X∗ be the dual group and for p ∈ X∗
let νp be the unitary operator on L2(X) given by (νpf )(x) = p(x)f (x). To any Borel function
ψ on X∗ we associate an operator ψ(P ) = F −1Mψ F on L2(X), where Mψ is the operator of
multiplication by ψ on L2(X∗) and F is the Fourier transformation.

Proposition 7.1. If X is an abelian group then E (X) = C(X) � X = C(X) �r X is the set of
operators T ∈ B(X) such that ‖νpT ν∗

p − T ‖ → 0 and ‖(λa − 1)T (∗)‖ → 0 if p → e in X∗ and
a → e in X.
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The equality E (X) = C(X) � X has been proved before in a more general setting. Propo-
sition 7.1 gives in fact a description of the crossed product C(X) � X if X is abelian. If we
accept it, then we get the following easy proof of the inclusion E (X) = C(X) � X. The opera-
tors νp Op(k)ν∗

p and λa Op(k) have kernels p(x)k(x, y)p̄(y) = p(xy−1)k(x, y) and k(xa−1, y).
Hence from (3.16) we get

∥∥νp Op(k)ν∗
p − Op(k)

∥∥ � sup
xy−1∈K

∣∣p(
xy−1) − 1

∣∣∣∣k(x, y)
∣∣μ(K)

which tends to zero as p → e in X∗. Similarly ‖(λa − 1)Op(k)‖ → 0 as a → e in X. Hence
Op(k) ∈ C(X) � X for each k ∈ Ctrl(X

2).
The next example shows the role played by the uniform continuity condition in the definition

of E (X).

Example 7.2. If X = R then we identify X∗ = R by setting p(x) = eipx . Then the elliptic algebra
can be described in very simple terms. Indeed, if λa, νa are the unitary operators on L2(R) given
by (λaf )(x) = f (x − a) and (νaf )(x) = eiaxf (x), we have

E (R) = {
T ∈ B(R)

∣∣ ∥∥(λa − 1)T (∗)
∥∥ → 0 and

∥∥νaT ν∗
a − T

∥∥ → 0 as a → 0
}
.

Here T (∗) means that the relation holds for T and T ∗. If we take k(x, y) = ϕ(x)θ(x − y)

with ϕ ∈ C(R) and θ ∈ Cc(R) then Op(k) = ϕ(Q)ψ(P ) ∈ E (R) with ψ the Fourier transform
(conveniently normalized) of θ . The advantage now is that we can see what happens if ϕ is
only bounded and continuous. Then it is easy to check that ϕ(Q)ψ(P ) ∈ E (R) if and only if
‖(ϕ(Q + a) − ϕ(Q))ψ(P )‖ → 0 when a → 0. For example, if ϕ(x) = eix2

the last condition is
equivalent to ‖(eiaQ − 1)ψ(P )‖ → 0, which is equivalent to ψ(P ) = η(Q)S for some η ∈ Co(R)

and S ∈ B(R). But then ψ(P ) is compact as a norm limit of operators of the form ζ(Q)ψ(P )

with ζ ∈ Co(R), which is not true if ψ 
= 0. Thus, the operator associated to a kernel of the form
k(x, y) = eix2

θ(x − y) with θ ∈ C∞
c (R) and not zero does not belong to E (R).

To describe C (X), we need an analogue of Lemma 3.5 in the group context.

Lemma 7.3. Let ω be a compact neighborhood of e and Z a maximal ω-separated subset of X

(i.e. if a, b are distinct elements of Z then (ωa)∩(ωb) = ∅). Then for any compact set K ⊃ ω−1ω

we have KZ = X and for any a ∈ Z the number of z ∈ Z such that (Kz) ∩ (Ka) 
= ∅ is at most
μ(ωK−1K)/μ(ω).

Proof. That such maximal Z exist follows from Zorn lemma. By maximality, (ωx) ∩ (ωZ) 
= ∅
for any x, hence x ∈ ω−1ωZ, so X = KZ if K ⊃ ω−1ω. Now fix a ∈ Z and let N be the
number of points z ∈ Z such that (Kz) ∩ (Ka) 
= ∅. For each such z we have z ∈ K−1Ka

hence ωz ⊂ ωK−1Ka. But the sets ωz are pairwise disjoint and have the same measure μ(ω) so
Nμ(ω) � μ(ωK−1Ka) = μ(ωK−1K). �

If X is an abelian group then a Q-regular operator is an operator T ∈ B(X) which satisfies
only the first condition from Proposition 7.1, i.e. is such that the map p �→ νpT ν∗

p is norm
continuous. These operators form a C∗-algebra which contains E (X), strictly if X is not discrete,
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which seems to depend on the group structure of X. But in fact this is not the case, it depends
only on the coarse structure of X.

Proposition 7.4. If X is an abelian group then C (X) = {T ∈ B(X) | limp→e ‖νpT ν∗
p −T ‖ = 0}.

For the proof, it suffices to use [14, Propositions 4.11 and 4.12] (arXiv version) and
Lemma 7.3.

Now let L C (X) be the set of locally compact operators in C (X). Obviously L C is a C∗-
algebra and E ⊂ L C ⊂ C strictly in general. Indeed, let X be an abelian group, ϕ a bounded
continuous function on X, and ψ ∈ C(X∗). Then φ(Q)ψ(P ) belongs to C but not to L C in
general, and if ψ ∈ Co(X

∗) it belongs to L C but not to C in general, cf. Example 7.2. Note that
an operator T ∈ C is locally compact if and only if lima→e λaT

(∗) = T (∗) in the local topology
of C .

Finally, we mention another C∗-algebra which is of a similar nature to C (X) and makes
sense and is useful in the context of arbitrary locally compact spaces X and arbitrary geometric
Hilbert X-modules, see [14,30]. Let us say that S ∈ B(H) is quasilocal (or “decay preserving”)
if for each ϕ ∈ Co(X) there are operators S1, S2 ∈ B(H) and functions ϕ1, ϕ2 ∈ Co(X) such
that Sϕ(Q) = ϕ1(Q)S1 and ϕ(Q)S = S2ϕ2(Q). The set of quasilocal operators is a C∗-algebra
which contains strictly C (X) if X is a locally compact non-compact abelian group. Indeed, if
ψ ∈ L∞(X∗) has compact support then ψ(P ) is quasilocal (because ψ(P )ϕ(Q) and ϕ(Q)ψ(P )

are compact) but it belongs to C (X) if and only if ψ is continuous.
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