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Abstract

In this paper, we study the regularity of weak solution to the incompressible magnetohydro-
dynamic equations. We obtain some sufficient conditions for regularity of weak solutions to the
magnetohydrodynamic equations, which is similar to that of incompressible Navier–Stokes equa-
tions. Moreover, our results demonstrate that the velocity field of the fluid plays a more dominant
role than the magnetic field does on the regularity of solution to the magneto-hydrodynamic
equations.
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1. Introduction

We consider the viscous incompressible magneto-hydrodynamics (MHD) equations




�u
�t

− 1

Re
�u + (u · ∇)u − S(B · ∇)B + ∇

(
p + S

2
|B|2

)
= f,

�B
�t

− 1

Rm
�B + (u · ∇)B − (B · ∇)u = 0,

div u = 0, divB = 0.

(1.1)

Here u, p, B are non-dimensional qualities corresponding to the velocity of the fluid,
its pressure and the magnetic field, respectively.f (x, t) represents a non-dimensional
volume density force. The non-dimensional numberRe is the Reynolds number,Rm
is the magnetic Reynolds andS = M2/(Re Rm) with M being the Hartman number.
In this paper, we will discuss two classes of sufficient conditions which guaran-

tee the weak solutions are regular. At first, we will present some results about the
relationship between the regularity for weak solution to the MHD equations and the
smoothness of the direction of vorticity for large vorticity field. Secondly, we will
show the smoothness of solutions to the MHD equations when the velocity fieldu

belongs toLp(0, T ;Lq(R3)) with 1/p + 3/2q�1/2 for q�3. In general, it is not
known whether the smooth solution of the Cauchy problem exists for all time, for
given sufficient smooth, divergence free initial data. Duvaut and Lions[8] constructed
a class of global weak solutions, similar to the Leray–Hopf weak solutions to the three-
dimensional Navier–Stokes equations. But the strong solution is only local, in general.
For the two-dimensional case, the smoothness of solutions have been shown. And same
results hold in the case of three-dimensional case under the assumption that(u, B) be-
longs toL∞(0, T ;H 1(R3)). For details, see Sermange and Teman[12]. As pointed out
by Constantin and Fefferman[4] in the case of incompressible Navier–Stokes equa-
tions, the main difference between the two-dimensional and three-dimensional cases
can be well understood by considering the dynamics of the fluid vorticity. In the
two-dimensional case, the vorticity field is perpendicular to the plane of motion and
its magnitude is uniformly bounded, while in the three-dimensional case, there exists
a stretching mechanism for the vorticity magnitude which is non-linear and poten-
tially capable of producing finite time singularities. At the same time, Constantin and
Fefferman showed that the solution is smooth, if the direction of vorticity is suffi-
ciently well behaved in the region of high vorticity magnitude, i.e., they obtained the
smoothness of solution if the direction field� of the vorticity w(x, t) satisfies that

|�(x) − �(y)|� |x − y|/� (1.2)

for some positive constant� when |w(x, t)|�� and |w(y, t)|�� for some� > 0.
Similar results were given in[5] for three-dimensional incompressible Euler equations
and for quasi-geostrophic active scalar equation in[6,7].
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The first purpose of this paper is to discuss the important role of the smoothness of
direction of vorticity in the region of the large vorticity in the regularity theory for the
incompressible magnetohydrodynamics equations. Comparing with the incompressible
Navier–Stokes equations, a important characteristic of the magneto-hydrodynamics is
the induction effect. This effect brings about the coupling of the magnetic field and
the velocity field. As a result of the inclusion of the magnetic field, the equation
of magneto-hydrodynamics are considerably more complicated than those of ordinary
hydrodynamics. This first resulting difficulty is that, there is no globalL1-estimate about
the vorticities; The second, that is the key new difficulties come from the appearance
of the strong coupled terms of vorticities of the velocityu and magnetic fieldB. We
use the fine estimate of singular integral to overcome the difficulties resulting from
the lack of theL1-estimate of the vorticity. Furthermore, some integral formulas are
deduced for the coupling terms. By a careful treatment of the kernels of these integrals,
we show that the solution is smooth, if the vorticity fieldw+(x, t) of velocity field u

satisfies the following estimate: there exist three positive constantsK,�,�, such that

|w+(x + y, t)/|w+(x + y, t)| − w+(x, t)/|w+(x + y, t)||�K|y|1/2 (1.3)

when |y|�� and |w+(x, t)|�� for some positive constantsK,� and�.
The second purpose of this paper is to show the smoothness of weak solutions in

Lp(0, T ;Lq(R3)). Many authors have studied the regularity for weak solutions of the
Navier–Stokes equations as long as any one of following three conditions hold:

(1) u ∈ Lp(0, T ;Lq(R3)) for 1/p + 3/2q�1/2 andq > 3,
(2) u ∈ C([0, T ];L3(R3)),
(3) ∇u ∈ L�(0, T ;L�(R3)) for 1/� + 3/2� = 1 with 1< ��2.

See[2,9,13,14]. It must be noticed that case (3) cannot be included into cases (1) and
(2). Moreover, the borderline case� = 2 is significant. It shows thatL2(0, T ;W1,3(R3))

is a regularity class. This cannot be deduced from (1) and (2), sinceW1,3(R3) cannot
be imbedded intoL∞(R3). In this paper, we also show that one of (1)–(3) is sufficient
condition for regularity of the solution to MHD equations. As pointed out by Beirão da
Veiga, (3) shows that the loss of regularity in time turns out to be balanced by some
additional regularity in space.
It should be noted that condition (1.3) is somewhat stronger than condition (1.2),

while the conditions for our second results are the same as those for the Navier–Stokes
equations. However, it is worthy to emphasize that there are no assumptions on the
magnetic fieldB. In other word, our results demonstrate that the magnetic field plays
less dominant role than the velocity field does in the regularity theory of solutions
to the magneto-hydrodynamics equations. In a certain sense, our results are consistent
with the recent numerical simulations of Politano et al. in[11]. Furthermore, observa-
tions of space and laboratory plasmas alike reveal that the magnetic field of the plasma
tends to self-organize through a turbulent phase of relaxation into a simple spiral
configuration[10]. Thus, an incompressible three-dimensional magneto-hydrodynamics
equations should exhibits a greater degree of regularity than does an ordinary
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incompressible three-dimensional Navier–Stokes equation, in some sense. However, we
cannot show this here.
Finally, it will follow easily from our proofs that for the three-dimensional incom-

pressible Navier–Stokes equations, the Hölder continuity of the direction of the vorticity
with exponent 1/2, in the high vorticity magnitude region and a ball of every point
with fixed radius, is sufficient to ensure the regularity of the solution.

2. Mathematical preliminaries

Let w+(x, t) = curlu(x, t), w−(x, t) = curlB(x, t). Then the vorticity equations for
the three-dimensional incompressible magneto-hydrodynamics equation can be written
as




�w+

�t
− 1

Re
�w+ + (u · ∇)w+ − (w+ · ∇)u − S(B · ∇)w− + S(w− · ∇)B = F,

�w−

�t
− 1

Rm
�w− + (u · ∇)w− − (w− · ∇)u − (B · ∇)w+ + (w+ · ∇)B = 2T (B, u)

(2.1)

with

T (B, u) =

 �2B · �3u − �3B · �2u

�3B · �1u − �1B · �3u
�1B · �2u − �2B · �1u


 and F = curlf.

Here �i denote�/�xi for i = 1,2,3.
Let C∞

0,�(R
3) denote the set of allC∞ real vector-valued functions� = (�1,�2,�3)

with compact support inR3, such that div� = 0. Let H and V be the closure of
C∞
0,�(R

3) in L2(R3) andH 1(R3), respectively. And let‖·‖p denote the norm inLp(R3)

for 1�p�∞. If the initial data(u0, B0) belong toH andf ∈ L2(0,∞;V ′), it is well
known that there exists a global weak solution(u, B) in L∞(0,∞;H)∩L2

loc(0,∞;V ),
which satisfies the energy inequality

‖u(t)‖22 + S‖B(t)‖22 + 2
∫ t

0

(
1

Re
‖∇u(s)‖22 + S

Rm
‖∇B(s)‖22

)
ds

�‖u0‖22 + S‖B0‖22 + 2
∫ t

0
(u(s), f (s)) ds (2.2)

for any t�0 (cf. [8]). If (u0, B0) ∈ V and f ∈ L2(0,∞;L2(R3)), then there exists a
unique solution(u, B), such that

u,B ∈ L∞(0, T ∗;V ) ∩ L2(0, T ∗;H 2(R3)) (2.3)
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for someT ∗ > 0. According to the regularity result obtained in[12], u and B are
sufficient smooth, if(u0, B0) and f are sufficient smooth.
By the Biot–Savart law, the velocity field and the magnetic field can be expressed

in terms of their vorticities, respectively, as follows:

u(x, t) = − 1

4�

∫
∇

(
1

|y|
)

× w+(x + y) dy,

B(x, t) = − 1

4�

∫
∇

(
1

|z|
)

× w−(x + z) dz. (2.4)

As in [4], the gradient matrix can be decomposed as the strain matrix and the anti-
symmetric parts

{ ∇u(x, t) = S+(x, t) + 1
2 w

+(x, t) × ·,
∇B(x, t) = S−(x, t) + 1

2 w
−(x, t) × ·

(2.5)

with

S+(x, t) = 1
2(∇u(x, t) + (∇u(x, t))T ), S−(x, t) = 1

2(∇B(x, t) + (∇B(x, t))T ). (2.6)

The following two integral equations were obtained in[4]:




w+(x, t) = 1

4�
P.V.

∫
�(ŷ)w+(x + y, t)

dy

|y|3 ,
w−(x, t) = 1

4�
P.V.

∫
�(ẑ)w−(x + z, t)

dz

|z|3 ,
S+(x, t) = 3

4�
P.V.

∫
M(ŷ,w+(x + y, t))

dy

|y|3 ,
S−(x, t) = 3

4�
P.V.

∫
M(ẑ,w−(x + z, t))

dz

|z|3 ,

(2.7)

where the matrixes

{
�(ŷ) = 3ŷ ⊗ ŷ − I,

M(ŷ, w) = 1
2(ŷ ⊗ (ŷ × w) + (ŷ × w) ⊗ ŷ)

(2.8)

with ŷ = y/|y|, I is the identity matrix and the tensor product simply denotes the
matrix (ŷ ⊗ ŷ)ij = ŷi ŷj . Moreover, the matrix� is symmetric, traceless and has zero
mean on the unit sphere. The matrixM is also traceless and symmetric; Its mean on
the unit sphere is zero when the second variablew is held fixed andM is viewed as a
function of ŷ alone. The property with zero mean on the unit sphere is very important
to deduce the necessary estimates about the coupling terms.
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In the following, we deduce the integral representations for coupling terms. For this
purpose, letT (B, u) = (T1(B, u), T2(B, u), T3(B, u)). Differentiating the Biot–Savart
law (2.4), one can obtain that

�B
�xi

= 1

4�
P.V.

∫
∇�i

(
1

|z|
)

× w−(x + z) dz

here the property of zero mean of� on unit sphere has been used. Note that

∇ �
�zi

(
1

|z|
)

= (−ei + 3ẑi ẑ)/|z|3 �= vi

with ei the unit vector along thezi-axis. Then

T1(B, u) = �2B · �3u − �3B · �2u

= 1

4�
P.V.

∫
(v2 × w−(x + z) · �3u − v3 × w−(x + z) · �2u) dz

= 1

4�
P.V.

∫
(�3u × v2 − �2u × v3) · w−(x + z) dz

= 1

4�
P.V.

∫
(−∇u1 · w−(x + z) + 3(ẑ2�3u × ẑ − ẑ3�2u × ẑ)

×w−(x + z))
dz

|z|3

= 1

4�
P.V.

∫
(−∇u1 · w−(x + z) + 3(ẑ2�3u − ẑ3�2u) · (ẑ × w−(x + z))

dz

|z|3 .

Similarly,

T2(B, u) = 1

4�
P.V.

∫
(−∇u2 · w−(x + z) + 3(ẑ3�1u − ẑ1�3u) · (ẑ × w−(x + z))

dz

|z|3 ,

T3(B, u) = 1

4�
P.V.

∫
(−∇u3 · w−(x + z) + 3(ẑ1�2u − ẑ2�1u) · (ẑ × w−(x + z))

dz

|z|3 .

Thus,

T (B, u) · w−(x, t) = 1

4�
P.V.

∫
(−w−(x + z, t) · ∇u · w−(x, t)

+3(w−(x, t) × ẑ) · ∇u · (ẑ × w−(x + z, t))
dz

|z|3 . (2.9)
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In (2.9), the vectors at the right-hand side of matrix∇u are viewed as column vector.
Applying representations (2.5)–(2.7), it follows that

T (B, u) · w−(x, t)

= − 1

4�
P.V.

∫
(w−(x + z, t) · S+(x, t) · w−(x, t)) dz|z|3

− 1

8�
P.V.

∫
Det(w−(x, t), w−(x + z, t), w+(x, t)) dz|z|3

+ 3

4�
P.V.

∫
((w−(x, t) × ẑ) · S+(x, t) · (ẑ × w−(x + z, t)))

dz

|z|3

+ 3

8�
P.V.

∫
(ẑ, w+(x, t))Det(ẑ, w−(x, t), w−(x + z, t))

dz

|z|3 , (2.10)

where Det denotes the determinant of the matrix whose columns are the three column
vectors in the bracket.

3. The main result

In this section, we intend to present our main results. Our major assumption about
the vorticity w+(x, t) of the velocity fieldu(x, t) is

Assumption A. There exist three positive constantsK, � and� such that

|w+(x + y, t) − w+(x, t)|�K|w+(x + y, t)||y|1/2 (3.1)

holds if both |y|�� and |w+(x, t)|�� for any t ∈ [0, T ].
Under this assumption onw+(x, t), one can show the following a priori estimate.

Theorem 1. Let u0, B0 ∈ V andf ∈ L2(0, T ;L2(R3)). Assume that(u, B) is a smooth
solution of MHD equations(1.1) on some interval[0, T ] with 0< T �∞. Then if the
Assumption A holds on[0, T ], one has

w+, w− ∈ L∞(0, T ;L2(R3)), (3.2)

∇w+,∇w− ∈ L2(0, T ;L2(R3)). (3.3)

Moreover, for t ∈ [0, T ],

‖w+(t)‖22 + S‖w−(t)‖22 +
∫ t

0
((1/Re)‖∇w+(s)‖22 + (S/Rm)‖∇w−(s)‖22) ds

�C

(
‖w+(0)‖22 + S‖w−(0)‖22 +

∫ T

0
‖f (s)‖22 ds

)
eCA0 (3.4)
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with A0 = (�1/2 + (K + �−1/2)2)(‖u0‖22 + S‖B0‖22 + ∫ T

0 ‖f (s)‖V ′ds) and C is an
absolute constant.

Theorem 2. (a) Let u0, B0 ∈ V and f ∈ L2(0, T ;L2(R3)). Assume that(u, B) is a
smooth solution of MHD equations(1.1) on some interval[0, T ] with 0 < T �∞.
Assume that one of the following two conditions holds:

(1) u ∈ Lp(0, T ;Lq(R3)) for 1/p + 3/2q = 1/2 and q > 3,
(2) u ∈ C([0, T ];L3(R3)),

then

u ∈ L∞(0, T ;H 1(R3)) ∩ L2(0, T ;H 2(R3)). (3.5)

Moreover,

‖∇u(t)‖22 + S‖∇B(t)‖22 +
∫ t

0

(
1

Re
‖D2u(s)‖22 + S

Rm
‖D2B(s)‖22

)
ds

�C0(‖∇u0‖2 + ‖∇B0‖22) + C

∫ T

0
‖f ‖22 ds (3.6)

holds for any t ∈ [0, T ]. Here D2 =
3∑

i,j=1
�i�j and C0 is a constant depending on

∫ T

0 ‖u(s)‖pq ds in case(1) and ‖u‖2
C([0,T ];L3(R3))

T in the case(2), respectively.

(b) Let u0, B0 ∈ L�(R3) for some��3. If ∇u ∈ L�(0, T ;L�(R3)) for 1/�+3/2� =
1 with 1< ��2, then

u, B ∈ L∞(0, T ;L�(R3)); |u|
�−2
2 ∇u, |B|

�−2
2 ∇B ∈ L2(0, T ;L2(R3)).

Moreover,

‖u(t)‖�
� + ‖B(t)‖�

� + �(� − 1)

2Re

∫ t

0
‖|u| �−2

2 ∇u(s)‖22 ds

+�(� − 1)

2Rm

∫ t

0
‖|B|

�−2
2 ∇B(s)‖22 ds

�C

(
‖B0‖�

�, ‖u0‖�
�, e

∫ T
0 ‖∇u‖�

�d	
)

(3.7)

for any t ∈ [0, T ].

Employing the above a priori estimates, one can show that
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Theorem 3. Let u0, B0 ∈ V and f ∈ L2(0, T ;L2(R3)). Suppose that(u, B) is the
weak solution of MHD equations(1.1) on [0, T ). If w+(x, t) satisfies the assumption
A on [0, T ], then

w+, w− ∈ L∞(0, T ;L2(R3)), ∇w+,∇w− ∈ L2(0, T ;L2(R3)). (3.8)

Moreover,

‖w+(t)‖22 + S‖w−(t)‖22 +
∫ t

0
((1/Re)‖∇w+(s)‖22 + (S/Rm)‖∇w−(s)‖22) ds

�C

(
‖w+(0)‖22 + S‖w−(0)‖22 +

∫ T

0
‖f (s)‖22 ds

)
eCA0 (3.9)

with A0 = (�1/2 + (K + �−1/2)2)(‖u0‖22 + S‖B0‖22 + ∫ T

0 ‖f (s)‖V ′ds) and C is an
absolute constant. Therefore(u, B) is the unique strong solution to the MHD equations
on [0, T ].

Theorem 4. Let u0, B0 ∈ V and f ∈ L2(0, T ;L2(R3)). Assume that(u, B) is a weak
solution of MHD equations(1.1) on some interval[0, T ] with 0< T �∞. Assume that
one of the following two conditions holds:

(1) u ∈ Lp(0, T ;Lq(R3)) for 1/p + 3/2q = 1/2 and q > 3,
(2) u ∈ C([0, T ];L3(R3)),

then

u ∈ L∞(0, T ;H 1(R3)) ∩ L2(0, T ;H 2(R3)). (3.10)

Moreover,

‖∇u(t)‖22 + S‖∇B(t)‖22 +
∫ t

0

(
1

Re
‖D2u(s)‖22 + S

Rm
‖D2B(s)‖22

)
ds

�C0(‖∇u0‖2 + ‖∇B0‖22) + C

∫ T

0
‖f ‖22 ds (3.11)

hold for any t ∈ [0, T ]. HereC0 is a constant depending on
∫ T

0 ‖u(s)‖pq ds in case(1)
and ‖u‖2

C([0,T ];L3(R3))
T in case(2) respectively.

(b) Let u0, B0 ∈ L�(R3) for some��3. If ∇u ∈ L�(0, T ;L�(R3)) for 1/�+3/2� =
1 with 1< ��2, then

u, B ∈ L∞(0, T ;L�(R3)); |u|
�−2
2 ∇u, |B|

�−2
2 ∇B ∈ L2(0, T ;L2(R3)).
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Moreover,

‖u(t)‖�
� + ‖B(t)‖�

� + �(� − 1)

2Re

∫ t

0
‖|u|

�−2
2 ∇u(s)‖22 ds

+�(� − 1)

2Rm

∫ t

0
‖|B|

�−2
2 ∇B(s)‖22 ds

�C

(
‖B0‖�

�, ‖u0‖�
�, e

∫ T
0 ‖∇u‖�

�d	
)

(3.12)

for any t ∈ [0, T ].

Remarks. 1. If u0, B0 and f are sufficiently smooth, then the strong solution(u, B)

are sufficient smooth, by the regularity results in[12].
2. Constantin and Fefferman showed the smoothness of solutions to the three-

dimensional incompressible Navier–Stokes equations under the assumption that

|w(x, t)/|w(x, t)| − w(y, t)/|w(y, t)||� |x − y|/�

if both |w(x, t)|�� and |w(y, t)|�� for some positive constants� and �. In view
of our estimate below, it is obvious that, in order to obtain their regularity result, it is
sufficient to assume that

|w(x, t)/|w(x, t)| − w(y, t)/|w(y, t)||� |x − y|1/2/�

holds if both |w(x, t)|��, |w(y, t)|�� and |x − y|�
 for some positive constants
�, � and 
.
3. A regularity result was obtained in[3,15] for inviscid MHD equation inR3 under

the assumption that

∫ T

0
[‖w+(s)‖∞ + ‖w−(s)‖∞] ds < ∞.

But here, in order to obtain the regularity for viscous MHD equations, we only need
to assume thatw+(x, t) satisfy Assumption A.
4. Serrin [13], Giga [9], von Wahl [14], etc. obtained the regularity of solutions

to the Navier–Stokes equations in the case of (1)–(3) in Theorem 3. It is worthy
to point out that case (3) is a natural extension of (1)–(2). Moreover, the borderline
case� = 2 is significant. It follows from Theorem 3 thatu and B are regular if
∇u ∈ L2(0, T ;L3(R3)). This cannot be implied by cases (1) and (2), sinceW1,3(R3)

cannot be imbedded intoL∞(R3).
The proof of Theorem 3. Sinceu0, B0 ∈ V and f ∈ L2(0, T ;L2(R3)), then the

weak solution (u, B) is strong and unique on[0, T1] for some T1 < T . By the
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a priori estimate in Theorem 1, together with the Assumption A, it follows that estimate
(3.9) is valid on[0, T1], which is independent ofT1. Thus, the strong solution(u, B)

satisfies estimate (3.9) as long asw+(x, t) satisfies the Assumption A. By the standard
continuation argument, the strong solution can be extended to[0, T ]. �
The proof of Theorem 4 is completely same with that of Theorem 3. We omit it

here.

4. A priori estimate I

In this section, we will give the a priori estimate and complete the proof of Theorem
1. So we assume that the solution(u, B) is sufficient smooth on[0, T ].
For this purpose, we multiply the first equation of (2.1) by w+, the second equation

of (2.1) by Sw−, then add the resulting equations to obtain that

d

dt
(‖w+(t)‖22 + S‖w−(t)‖22) + 2

Re
‖∇w+(t)‖22 + 2

Rm
‖∇w−(t)‖22

= 2
∫
(w+(x, t) · ∇u(x, t) · w+(x, t) + Sw−(x, t) · ∇u(x, t) · w−(x, t)

−Sw−(x, t) · ∇B(x, t) · w+(x, t) − Sw+(x, t) · ∇B(x, t) · w−(x, t)

+2ST (B, u) · w−(x, t) + F · w+(x, t)) dx. (4.1)

Let �(r) be a smooth cut-off function such that 1��(r)�1, �(r) = 1 for 0�r�1,
and�(r) = 0 for r�2. In the following, we will estimate all the terms on the right-hand
side of (4.1). By (2.5), the first term at the right-hand side can be written as

I1 = 2
∫

w+(x, t) · ∇u(x, t) · w+(x, t) dx

= 2
∫

w+(x, t) · S+(x, t) · w+(x, t) dx

= 2
∫

�
( |w+(x, t)|

�

)
(w+(x, t) · S+(x, t) · w+(x, t)) dx

+2
∫ (

1− �
( |w+(x, t)|

�

))
(w+(x, t) · S+(x, t) · w+(x, t)) dx.

By the Calderon–Zygmund estimate and formula (2.7), we have that

{ ‖S+‖p�C(p)‖w+‖p,
‖S−‖p�C(p)‖w−‖p (4.2)
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for any 1< p < ∞. Then by the Hölder and Sobolev inequalities,

I11 = 2

∣∣∣∣
∫

�
( |w+(x, t)|

�

)
(w+(x, t) · S+(x, t) · w+(x, t)) dx

∣∣∣∣
� C�1/5‖w+‖2‖w+‖4/524/5‖S+‖3
� C�1/5‖w+‖8/52 ‖∇w+‖6/52

� 
1‖∇w+‖22 + C(
1)�1/2‖w+‖42 (4.3)

for any 
1 > 0, where the Young inequality has been used.
Since the mean ofM on the unit sphere is zero when the second variablew+ is

fixed andM is viewed as a function of̂y alone, then its integral vanishes in any ball
in this case, i.e.,

P.V.
∫

|y|��
M(ŷ,w+(x, t)) dy|y|3 = 0. (4.4)

Thus, by formula (2.7) and Assumption A,

∣∣∣∣
(
1− �

( |w+(x, t)|
�

))
S+(x, t)

∣∣∣∣ � CP.V.
∫

|y|��
M(ŷ,w+(x + y, t))

dy

|y|3

+P.V.
∫

|y|��

(
1− �

( |w+(x, t)|
�

))

×M(ŷ,w+(x + y, t) − w+(x, t)) dy|y|3

� C(�−1/2 + K)P.V.
∫

|w+(x + y, t)| dy

|y|5/2 .

Therefore, by Calderon–Zygmund estimate, the Hölder and Sobolev inequalities, we
have

I12 = 2

∣∣∣∣
∫ (

1− �
( |w+(x, t)|

�

))
(w+(x, t) · S+(x, t) · w+(x, t)) dx

∣∣∣∣
� C‖w+‖2‖w+‖6‖

(
1− �

( |w+(·, t)|
�

))
S+(·, t)‖3

� C(�−1/2 + K)‖w+‖22‖∇w+‖2
� 
1‖∇w+‖22 + C(
1)(�−1/2 + K)2‖w+‖42. (4.5)
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Therefore,

I1�2
1‖∇w+‖22 + C(
1)[�1/2 + (�−1/2 + K)2]‖w+‖42. (4.6)

Applying formulas (2.5) and (2.7), one may rewrite the second term at the right-hand
side of (4.1) as

I2 = 2S
∫

w−(x, t) · ∇u(x, t) · w−(x, t) dx

= 2S
∫

w−(x, t) · S+(x, t) · w−(x, t) dx

= 3S

2�
P.V.

∫ ∫
(ŷ, w−(x, t))Det(ŷ, w+(x + y, t), w−(x, t)) dy|y|3 dx.

Using the cut-off function�(|w+(x + y, t)|/�), one decomposes the last integral into
two parts,

I21 = 3S

2�
P.V.

∫ ∫
(ŷ, w−(x, t))Det

(
ŷ,�

( |w+(x + y, t)|
�

)

×w+(x + y, t), w−(x, t)
) dy

|y|3 dx,

I22 = 3S

2�
P.V.

∫ ∫
(ŷ, w−(x, t))Det

(
ŷ,

(
1− �

( |w+(x + y, t)|
�

))

×w+(x + y, t), w−(x, t)
) dy

|y|3 dx.

Similar to the treatment ofI11, I21 can be estimated as

I21�C�1/5‖w−‖2‖w−‖6‖w+‖4/512/5.

By Gagliardo–Nirenberg, Sobolev and the Young inequalities, one has

I21�
1‖∇w+‖22 + 
2‖∇w−‖22 + C(
1, 
2)�1/2(‖w+‖42 + ‖w−‖42)

for any 
2 > 0. In order to estimateI22, we need to use the property of zero mean of
� on unit sphere, i.e.,

∫
|y|��

�(ŷ)w+(x, t) dy|y|3 = 0 (4.7)
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By representation (2.7), one has that

(
1− �

( |w+(x + y, t)|
�

))
w+(x + y, t)

= 1

4�
P.V.

∫
|z|��

(
1− �

( |w+(x + y, t)|
�

))
�(ẑ)w+(x + y + z, t)

dz

|z|3

+ 1

4�
P.V.

∫
|z|��

(
1− �

( |w+(x + y, t)|
�

))
�(ẑ)w+(x + y + z, t)

dz

|z|3 .

Using (4.7) and Calderon–Zygmund estimate, one has that

∣∣∣∣
∣∣∣∣
(
1− �

( |w+(·, t)|
�

))
w+(·, t)

∣∣∣∣
∣∣∣∣
3

�C(K + �−1/2)‖w+‖2.

Thus we obtain the estimate ofI22

I22 � C‖w−‖2‖w−‖6‖(1− �(|w+(·, t)|�))w+(·, t)‖3
� 
2‖∇w−‖22 + C(
2)(K + �−1/2)2(‖w+‖42 + ‖w−‖42).

Consequently,

I2�
1‖∇w+‖22 + 2
2‖w−‖22 + C(
1, 
2)

[�1/2 + (K + �−1/2)2](‖w+‖42 + ‖w−‖42). (4.8)

It follows from (2.5) and (2.7) that the third term at the right-hand side of (4.1) can
be written as

I3 = −2S
∫

[w−(x, t) · (∇B(x, t) · w+(x, t) + w+(x, t) · ∇B(x, t) · w−(x, t)] dx

= −2S
∫

w−(x, t) · (∇B(x, t) + (∇B(x, t))T ) · w+(x, t) dx

= −4S
∫

w−(x, t) · S−(x, t) · w+(x, t) dx.

By (4.2) and (4.7), one has that

I3 � C‖w−‖2‖S−‖6
∣∣∣∣
∣∣∣∣�

( |w+(·, t)|
�

)
w+(·, t)

∣∣∣∣
∣∣∣∣
3
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+
∣∣∣∣
∣∣∣∣
(
1− �

( |w+(·, t)|
�

))
w+(·, t)

∣∣∣∣
∣∣∣∣
3

� C�1/5‖w−‖2‖∇w−‖2‖w+‖4/512/5 + C(K + �−1/2)‖w−‖2‖∇w−‖2‖w+‖2
� 
1‖∇w+‖22 + 
2‖∇w−‖22 + C(
1, 
2)[�1/2

+(K + �−1/2)2](‖w+‖42 + ‖w−‖42). (4.9)

Let

I4 = 4S
∫

T (B, u) · w−(x, t) dx.

Applying representation (2.10) and taking into account of facts (4.4) and (4.7), we can
deduce in a similar way as forI3 that

I4 � 
1‖∇w+‖22 + 
2‖∇w−‖22 + C(
1, 
2)[�1/2 + (K + �−1/2)2]
×(‖w+‖42 + ‖w−‖42). (4.10)

Integrating by part, we get, with the help of the Hölder and Young inequalities, that

I5 = 2

∣∣∣∣
∫

F · w+(x, t) dx
∣∣∣∣

� 2
∫

|f ||∇w+(x, t)| dx

� 
1‖∇w+‖22 + C‖f ‖22. (4.11)

Substituting above estimates into (3.9) and integrating from 0 tot show that

(‖w+(t)‖22 + S‖w−(t)‖22) +
∫ t

0

(
1

Re
‖∇w+(s)‖22 + S

Rm
‖∇w−(s)‖22

)
ds

�‖w+(0)‖22 + S‖w−(0)‖22 +
∫ T

0
‖f (s)‖22 ds

+C(�1/2 + (K + �−1/2)2)

∫ t

0
(‖w+(s)‖42 + ‖w−(s)‖42) ds (4.12)

with 
1 = 1/(6Re) and 
2 = S/(5Rm).
Combining the energy inequality with the fact

‖w+(t)‖2 = ‖∇u(t)‖2, ‖w−(t)‖2 = ‖∇B(t)‖2,
the one deduces estimate (3.9) from (4.12) by Gronwall inequality. �
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5. A priori estimate II

In this section, we will deduce another kind of a priori estimate and prove Theorem
2. Here we also assume that(u, B) is sufficient smooth on[0, T ].
First, we differentiate the first equations of (1.1) aboutxi , then multiply the resulting

equations by�iu to get

1

2

d

dt
‖�iu‖22 + 1

Re
‖∇�iu‖22

= −
∫
(�iu · ∇)u · �iu dx + S

∫
(�iB · ∇)B · �iu dx

+S

∫
(B · ∇)�iB · �iu dx +

∫
�if · �iu dx. (5.1)

Similarly,

1

2

d

dt
‖�iB‖22 + 1

Rm
‖∇�iB‖22

= −
∫
(�iu · ∇)B · �iB dx

+
∫
(�iB · ∇)u · �iB dx +

∫
(B · ∇)�iu · �iB dx. (5.2)

Adding (5.1) and S× (5.2), we obtain, by integration by part, that

d

dt
(‖�iu‖22 + S‖�iB‖22) + 2

(
1

Re
‖∇�iu‖22 + S

Rm
‖∇�iB‖22

)

= −2
∫
(�iu · ∇)u · �iu dx + 2S

∫
(�iB · ∇)B · �iu dx − 2S

∫
(�iu · ∇)B · �iB dx

+2S
∫
(�iB · ∇)u · �iB dx +

∫
�if · �iu dx. (5.3)

If u ∈ Lp(0, T ;Lq(R3)) with 1/p + 3/2q = 1/2 andq > 3, thenp = 2q/(q − 3).
We get, by the integration by part and the Hölder inequality, that

I1 =
∣∣∣∣−2

∫
(�iu · ∇)u · �iu dx

∣∣∣∣
� 2

∣∣∣∣
∫
(u · ∇)�iu · �iu dx

∣∣∣∣ + 2

∣∣∣∣
∫
(u · ∇)u · �i�iu dx

∣∣∣∣
� 4‖u‖q‖∇u‖ 2q

q−2
‖D2u‖2.
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By the Gagliardo–Nirenberg inequality and Young inequality,I1 can be estimated as

I1�
1

10Re
‖D2u‖22 + C‖u‖pq ‖∇u‖22. (5.4)

Similarly, we can estimate the other terms in (5.3) and obtain that

I2 =
∣∣∣∣2S

∫
(�iB · ∇)B · �iu dx

∣∣∣∣
� S

10Rm
‖D2B‖22 + C‖u‖pq ‖∇B‖22,

I3 =
∣∣∣∣−2S

∫
(�iu · ∇B) · �iB dx

∣∣∣∣
� S

10Rm
‖D2B‖22 + C‖u‖pq ‖∇B‖22,

I4 =
∣∣∣∣2S

∫
(�iB · ∇u) · �iB dx

∣∣∣∣
� S

10Rm
‖D2B‖22 + C‖u‖pq ‖∇B‖22,

I5 =
∣∣∣∣2

∫
(�if · �iu) dx

∣∣∣∣
� 1

10Re
‖D2u‖22 + C‖f ‖22. (5.5)

Substituting above estimates into (5.3) and summingi from 0 to 3, one gets that

d

dt
(‖∇u‖22 + S‖∇B‖22) + 1

Re
‖D2u‖22 + S

Rm
‖D2B‖22

�C‖u‖pq (‖∇u‖22 + S‖∇B‖22) + C‖f ‖22 (5.6)

which implies that

‖∇u(t)‖22 + S‖∇B(t)‖22 � (‖∇u0‖22 + S‖∇B0‖22)exp
{
C

∫ t

0
‖u(	)‖pq d	

}

+C

∫ t

0
‖f (s)‖22 exp

{
C

∫ t

s

‖u(	)‖pq d	
}
ds. (5.7)

Thus, we obtain estimate (3.6) in the case of (1).
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If u ∈ C([0, T ];L3(R3)), then we can decomposeu = u1+u2 with ‖u1‖
C([0,T ];L3(R3))

�� and ‖u2‖
L∞((0,T )×R3)

�C(�, ‖u‖
C([0,T ];L3(R3))

) for any � > 0. ThenI1 can be es-
timated as

I1 � C

∫
|u||D2u||∇u| dx

� C‖u1‖3‖∇u‖6‖D2u‖2 + C‖u2‖∞‖∇u‖2‖D2u‖2
� C�‖D2u‖22 + C‖u2‖2∞‖∇u‖22. (5.8)

Here we have used the Sobolev inequality and Cauchy inequality. The other terms in
(5.3) can be treated as before, so we can obtain an inequality similar to (5.6). Then
we deduce the result by same procedure as before.
Now we consider the case that∇u ∈ L�(0, T ;L�(R3)) for 1/� + 3/2� = 1 with

1 < ��2. We multiply the both sides of the second equation in (1.1), integrate over
R3 and get by integration by parts,

1

�
d

dt
‖B‖�

� + � − 1

Rm
‖|B|

�−2
2 ∇B‖22�

∫
|B|�|∇u| dx�‖∇u‖�‖B‖�

�2/(�−1)
. (5.9)

By the Gagliardo–Nirenberg inequality,

‖B‖�
�2/(�−1)

�C‖B‖
2�−3
2

� ‖|B|
�−2
2 ∇B‖

3
�
2 . (5.10)

By the Young’s inequality, we get

1

�
d

dt
‖B‖�

� + � − 1

2Rm
‖|B|

�−2
2 ∇B‖22�C‖∇u‖�

�‖B‖�
�. (5.11)

Therefore

‖B(t)‖�
� + �(� − 1)

2Rm

∫ t

0
‖|B|

�−2
2 ∇B(s)‖22 ds�C‖B0‖�

�e

∫ T
0 ‖∇u‖�

�d	 (5.12)

for any t ∈ [0, T ].
Noting that the projectorP commutes with∇, we have

1

�
d

dt
‖u‖�

� + � − 1

Re
‖|u|

�−2
2 ∇u‖22

�
∫

P(u · ∇)u · |u|�−2u dx −
∫

P(B · ∇)B · |u|�−2u dx
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�‖∇u‖�

(
‖u‖�

�2/(�−1)
+ ‖B‖2

�2/(�−1)
‖u‖�−2

�2/(�−2)

)

�C‖∇u‖�


‖u‖

2�−3
2

� ‖|u|
�−2
2 ∇u‖

3
�
2

+‖B‖
2�−3

�
� ‖|B|

�−2
2 ∇B‖

6
�2

2 ‖u‖
(�−2)(2�−3)

2�
� ‖|u|

�−2
2 ∇u‖

3(�−2)
�2

2


 . (5.13)

Thus

1

�
d

dt
‖u‖�

� + � − 1

2Re
‖|u|

�−2
2 ∇u‖22 � ‖|B| �−2

2 ∇B‖22 + C‖∇u‖�
�‖u‖�

�

+C‖∇u‖�
�‖B‖2�‖u‖�−2

� . (5.14)

By Gronwall’s inequality and (5.12), we obtain that

‖u(t)‖�
� + �(� − 1)

2Re

∫ t

0
‖|u|

�−2
2 ∇u(s)‖22 ds�C

(
‖B0‖�

�, ‖u0‖�
�, e

∫ T
0 ‖∇u‖�

�d	
)

(5.15)

for any t ∈ [0, T ]. This completes the proof of Theorem 2.�
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