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Abstract 

Since the traditional methods to estimation of the thickness of broken rock zone (BRZ) are usually difficult, 
expensive and not feasible in many cases, the development of some predictive models for the thickness of broken 
rock zone (BRZ) for deep roadways will be useful. To describe the complex relationship between geological factors 
and BRZ, a nonlinear model-based support vector machines (SVMs) analysis was applied on the data pertaining to 
China mine to develop some predictive models for the thickness of BRZ for deep roadways from the indirect methods 
in this study. The type of kernel function was Radial basis function (RBF). 132 samples were trained by proposed 
models; the other 10 samples that were not used for training were used to validate the trained models. For the same 
two similarity groups, the developed SVMs model was also compared with the multiple linear regression analysis 
(MLRA) models and measured data. As a result of SVMs analysis, very good model was derived for BRZ estimation. 
It was shown that SVMs models were more reliable and precise than the regression models. Concluding remark is 
that the thickness of BRZ values of deep roadways can reliably be estimated from the indirect methods using SVMs 
analysis. 
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1. Introduction 

In the development of a deep mine tunnel, the original stress balance is destroyed. When stress 
redistribution occurs, the radial stress decreases with distance while the tangential stress increases along 
with stress concentration. Furthermore, the three-dimensional stress state of the in situ rock mass can be 
approximated to a two-dimensional one, and the rock strength is greatly reduced. Consequently, the 
surrounding rocks will be unavoidably broken, and the area in which the rocks are broken is called broken 
rock zone around drifts (Dong 2001[1]; Kruschwitz and Yaramanci, 2004[2]; Cai and Kaiser, 2005[3]). 
According to the formation mechanism of the rock broken zone, the deformation of surrounding rock are 
mainly from the volume expansion of rock broken in the loose circle, and confining pressure of roadway 
is also caused mainly by loose circle (Jing 2004[4]). Therefore, Knowledge of the degree and extent of 
the excavation disturbed zone (EDZ) or identification of the broken rock zone (BRZ) thickness is 
important for the design and construction of deep underground engineering.  

In order to study the stress distribution features of the surrounding rocks along the mine roadway after 
the roadway excavated and the radius size of the released circle, many methods is used to determine the 
scope of broken rock zone, such as acoustic method, seismic wave method, multipoint extensometer 
method, complex resistivity method, infiltration method and geologic radar method etc., among which 
acoustic method was used commonly (Kruschwitz and Yaramanci, 2004[2]; Jing 2004[4]; Chen et al. 
2008[5]). However, the acoustic method is expensive, and is not feasible in many cases. Therefore, it is 
imperative to explore a more reasonable way to study the thickness of the loose ring. The extent and 
degree of the EDZ has been quantified by Cai and Kaiser, 2005[3] using microseismic monitoring data 
and the anisotropic softening model for the rock mass has been confirmed by field velocity measurement. 
Zou and Xiao 2010[6] put forward the mathematical model for determining EDZ of underground caverns. 
Jing et al. 2001[7] present a concept of “key part” of roadways and its stability criterion using the 
program of discontinuous deformation analysis (DDA) while Chen et al. 2008 [5] proposed a new 
arrangement mode of acoustic measuring boreholes for broken rock zone in gently inclined thin layer 
weakness structure. The broken zones of rectangle cavity under different conditions were calculated by 
Xia et al. 2010 [8] using FLAC3D. However, the thickness can not be gotten in advance. To solve this 
problem, the artificial neural network (ANN) was introduced by Zhu 1999[9] to predict the thickness of 
BRZ. Gao and Zheng, 2002[10] presented an evolutionary neural network (ENN) model on prediction of 
the thickness of the loosen zone around roadway. Jing 2004[4] and Xu et al. 2005 [11] introduced an 
emerging intelligent prediction method with adaptive neuro fuzzy inference system (ANFIS) into the 
thickness of BRZ prediction. Research shows that, the developed ANN model has some limitations, such 
as black box approach, arriving at local minima, less generalization capability, slow convergence speed, 
overfitting problem and absence of probabilistic output (Zhu 1999[9]; Gao and Zheng, 2002[10]). 
Furthermore, there is no proper method to determine the number of hidden layers in the ANN model. The 
developed FIS model determines the fuzzy rules with difficulty (Jing 2004[4]). 

Among artificial intelligence (AI) tools, Support vector machines(SVM) is an efficient machine 
learning (ML) technique derived from statistical learning theory by Vapnik 1995 [12]. It is a machine 
learning tools being based on statistical theory and following the structural risk minimization principle. 
As a representative nonlinear technique, SVM will be used since it has been shown to be an effective 
technique for regression nonlinear dataset (Gun 1998[13]; Gopalakrishnan and Kim, 2011[14]; Chang and 
Lin 2000[15]). It is therefore motivating to investigate the capability of SVM in broken zone thickness 
prediction.  

In the current study, the SVM is applied to predict the broken zone thickness and the predicted values 
accord well with the in situ measured ones. Thereby the SVM provides a new approach to obtaining the 
broken zone thickness. 
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2. Multiple linear regression analysis 

Multiple linear regression attempts to model the relationship between two or more explanatory 
variables and a response variable by fitting a linear equation to observed data (Kutner et al. 2004[16]; 
Yilmaz et al. 2007[17]). When there are i independent variables X1, X2, …, Xi; the linear multiple 
regression equation is in the general form  
Y=β0+β1X1+β2X2+…+βiXi                                                                                                                (1) 

where Y is the dependent variable; X1, X2, …, Xi are the independent variables (explanatory variables); 
β0 is the constant, where the regression line intercepts the Y axis, representing the amount the dependent 
Y will be when all the explanatory variables are 0; β1, β2, …, βi are the regression coefficient, representing 
the amount the response variable Y changes when the explanatory variable changes 1 unit.  

3. Support Vector Machines 

Support vector machines (SVM) (Vapnik, 1995[12]) have been introduced as an effective model in 
both machine learning and data mining communities for solving both classification and regression 
problems. This section focuses on some highlights representing crucial elements in using this method. 
Further detailed mathematical description over SVM can be referred from Ref. (Vapnik, 1995[12]; Gunn, 
1998[13]; Gopalakrishnan and Kim, 2011[14]; Chang and Lin, 2001[15]) 

SVMs are linear learning machines which means that a linear function (f(x)=wx+b) is always used to 
solve the regression problem. The best line is defined to be that line which minimises the following cost 
function (Q): 
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The first part of this cost function is a weight decay which is used to regularize weight sizes and 
penalizes large weights. Due to this regularization, the weights converge to smaller values. Large weights 
deteriorate the generalization ability of the SVM because they can cause excessive variance. The second 
part is a penalty function which penalizes errors larger than ±ε using a so-called ε-insensitive loss 
function Lε for each of the N training points. The positive constant C determines the amount up to which 
deviations from c are tolerated. Errors larger than ±ε are denoted with the so-called slack variables ξ 
(above ε) and ξ* (below ε), respectively. The third parts of the equation are constraints that are set to the 
errors between regression predictions (wxi+b) and true values (yi). The values of both ε and C have to be 
chosen by the user and the optimal values are usually data and problem dependent.  

The minimisation of Eq. (2) is a standard problem in optimisation theory: minimisation with 
constraints. This can be solved by applying Lagrangian theory and from this theory it can be derived that 
the weight vector, w, equals the linear combination of the training data 
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In this formula, αi and αi* are Lagrange multipliers that are associated with a specific training point. 
The asterisk again denotes difference above and below the regression line. From Eqs. (2) and (3), the 
following solution is obtained for an unknown data point x: 
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By using a mapping function, the regression function Eq. (4) can be changed into: 
N

i
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1
),(*)()(                                                                        (5) 

In Eq. (5), K is the so-called kernel function which is proven to simplify the use of a mapping. The 
most used kernel functions are the Gaussian RBF with a width of g: K(xi, x)=exp(−0.5||x−xi||2/g2), xi, x 
are the input feature vectors. so the type of kernel function is RBF in this paper. 

4. Applications 

4.1. Determination of broken rock zone(BRZ) factors 

There were many factors affecting the form and thickness of the surrounding rock of broken rock zone, 
such as rock mass physical and mechanical parameters, rock mass structure, section shape, initial stress 
field and explosion effect etc (Dong 2001[1]; Jing 1999 [18]; Gao and Zheng, 2002[10]; Jing 2004[4]). 
Interaction mechanism between various factors forming broken rock zone was complicated, often 
showing a strong non-linear, at present there is no mathematical model of a generic. According to 
available information, the following factors were selected as influencing the he broken zone thickness 
factors: (1) the embedding depth of drifts (ED, m), (2) the drift span (DS, m), (3) the strength of 
surrounding rock blocks (RBS, MPa) and (4) the joint index (J) of surrounding rock masses. 
Corresponding to the classification of rock mass structures, the joint index is taken as 1 to 5 representing 
intact rock, blocky rock, stratified rock, disintegrated rock, and unconsolidated rock, respectively. 

4.2. Dataset  

In this study, a dataset generated by Jing 2004[4] were used for constructing nonlinear models-based 
SVMs and multiple linear regression analysis (MLRA) to estimate the thickness of BRZ. 132 test results 
were selected as training samples of model in this paper. Table 1 indicates the relevant parameters as well 
as their respective symbols used to develop BRZ prediction models range with their max, min, mean, 
standard deviation and skew, respectively. The scatter plot matrix of the original data set is given in Fig. 1 
while the boxplot of the original data set is given in Fig. 2. For the most of the data groups, the median is 
not in the centre of the box, which indicates that the distribution of the most of the data groups is not 
symmetric (Fig. 2). In addition, dependent variable of ED does not have any outliers whereas DS, RBS, J 
and BRZ have at least one outlier (Fig. 2). Another 10 test results (Xu et al. 2005[11]) were used as the 
testing samples for accuracy of the model, which are shown in Tab.2. In the present study, training and 
testing analysis of MLRA and SVM have been carried out using MATLAB. 

Table 1  Descriptive statistics of the input and output parameters with their max, min, mean, standard deviation and skew for SVM 
modeling (the number of 132 samples) 

Type of data Parameter Max Min Mean Standard deviation Skew 
Inputs Embedding depth (ED, m) 97.0 1159.0 565.318 261.770 0.410 

 Drift span (DS, m) 2.4 10.0 3.947 1.339 2.755 
 Rock block strength(RBS, MPa) 7.8 110.2 30.237 23.488 1.411 
 Joint index (J) 1.0 5.0 3.216 1.016 -0.039 

Output Broken zone thickness (BRZ, m) 0.3 3.5 1.522 0.585 0.514 
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Fig. 1  Scatter plot matrix of the original data            Fig. 2  Boxplot of the original data set of BRZ 

Table 2  Testing data of the thickness of BRZ 

No. Embedding depth (m) Drift span (m) Rock block strength (MPa) Joint index Broken zone thickness (m) 
1 700.00 4.20 52.00 3.00 1.70 
2 750.00 4.20 52.00 3.00 1.70 
3 690.00 4.20 52.00 3.00 1.40 
4 690.00 4.60 52.00 3.00 1.50 
5 690.00 4.60 40.00 3.00 1.60 
6 690.00 4.20 40.00 3.00 1.60 
7 660.00 3.60 2.00 5.00 2.50 
8 615.00 3.60 25.64 3.00 1.50 
9 670.00 3.60 16.80 4.50 2.35 
10 685.00 3.60 25.64 3.00 1.70 

4.3. Multiple linear regression analysis 

In this study, a stepwise multiple linear regression analysis was carried out to determine the relations 
between dependent variable the thickness of BRZ and the independent variables ED, DS, RBS and J. To 
achieve this goal, regression analysis was carried out using Matlab. Stepwise regression procedures select 
the most correlated independent variable first, and then select the second independent variable which most 
correlates with the remaining variance in the dependent variable. This procedure continues until selection 
of an additional independent variable does not increase the R-squared (R2) by a significant amount, 
usually a significance of at least 95%. Accordingly, the variables ED, DS, RBS and J were included in the 
regression model, and independent variable RBS was omitted from the model due to lack of statistical 
significance. The most reliable and meaningful regression equation that could be obtained by the 
statistical analysis as follows Eq. (6)~ (7), and the trained models were applied to predicting the thickness 
of BRZ, as shown in Fig. 3. 

BRZ=-0.6681+0.0008ED+0.1134DS-0.0012RBS+0.4074J (Root MSE=0.3074; R2=0.7321)   (6) 
BRZ=-0.7291+0.0008ED+0.1083DS+0.4219J (Root MSE=0.3070; R2=0.7307)                       (7) 

Where 4 re-fit linear regression, 3 re-fit linear regression was calculated by Eq. (6), Eq. (7), 
respectively. 
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Fig. 3  Comparison of forecasting results of train samples by different MLRA method 

4.4. Nonlinear Models-Based SVMs and Its Apllications 

Then, broken rock zone (BRZ) prediction with nonlinear model-based support vector machines can be 
carried out as follows: firstly, the factors influenced behavior of rock mechanics should be determined; 
secondly, training and predicting samples were collected; thirdly, the model were trained, and reasonable 
parameters of SVM structures were obtained; finally, the trained models were applied to predicting the 
thickness of BRZ, as shown in Fig. 4. ED, DS, RBS and J, were selected as the input variables. the 
thickness of BRZ was selected as outputs of the SVM model. So the mapping Rn  BRZ was established. 
Rn is input variables of the proposed model, n is the variable dimension.  

Collection of data sets of
broken rock zone

Model performance evaluation

SVM model establishment

SVM model training
5 fold validation

Data preprocessing

Average accuracy

Initial (C, g)

Criteria terminating

Yes

New (C, g)
Grid search

No

Training set Testing set

Begin

Finish  

Fig. 4  Research architectures for the proposed SVM-based approach with GSM method 

When applying SVR, the goodness of fit is determined by the penalty factor C and insensitive 
parameter g. LIBSVM (Chang and Lin, 2001[15]) provides a parameter selection tool using the RBF 
kernel: cross validation via parallel grid search method(GSM) (Lin and Huang [19]). As shown in Fig.4, 
the framework of optimizing the SVM’s parameters with GSM is presented; While cross validation is 
available for both support vector classification (SVC) and support vector regression (SVR), for the grid 
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search, currently we support only C-SVC with two parameters C and g. In this study, the free parameters 
of SVR were selected followed a 5-fold cross-validation experiment to control generalization capability 
of SVM, and the RBF kernel is used as the kernel function of the SVR because it tends to give better 
performance. Gaussian kernel function is adopted as the kernel function of the samples training, obtaining 
best parameters by GSM. Fig. 5 shows an example of the GSM result, where the x-axis and the y-axis are 
log2C and log2g, respectively. The z-axis is the 5-fold average performance. The findings of this 
experiment were that SVR is quite robust against parameter selections.  

The result of the SVR parameter selection by GSM is shown in Figure 5(3D view), when the penalty 
factor C is 8, g=1 and the average value of MSE is CVmse = 0.023088. 132 sets of training sample data 
were back evaluated one by one using the SVM model of rock fragmentation and compared with the 
actual situation. The compared predicted and Measured of BRZ test results of training data are shown in 
Figure 6 and Figure 7. The regression mean-square error of the study sample is 0.0098502, and the square 
correlation coefficient is 0.9314. From figure 6, SVR have good performance for regression forecast, 
which prove that the model has stable and reliable prediction ability. Therefore, the SVM model is 
feasible and effective for BRZ forecasting and can be put into use. Shown in Fig 6 and Fig 7, the 
prediction curve obtained by SVR training sample fits good. 
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Fig. 5  The fitness curve of selecting best parameters by GSM 
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Fig. 6  Comparison of forecasting results of train samples by SVM method 

 

Fig. 7  Predicted and Measured of BRZ test results of train samples by SVM method 

4.5. Evaluation and Discussion 

The trained models are applied to predicting the BRZ of the other 10 samples. Results of SVM were 
compared to that of MLRA, and measured data, which were presented in Table 3 and Fig. 8. From Table 
3 and Fig. 2, we know that the results using SVM are more feasible and precise than that using MLRA. 

In estimating the SVR Model prediction performance, The results of SVR models are compared with  
MRVR method, computing indexes such as correlation coefficient (R2) and Root Mean Square Error 
(RMSE) can be used to evaluate the prediction accuracy of SVR and MRVR model. These indexes can be 
calculated by the following equation (8) and (9): 

22 21 ( ) / ( )i i ii i
R O T O                                                                          (8) 

2RMSE ( ) /i iO T n                                                                                      (9) 

Where, Ti, Oi and n represent the measured output, the predicted output and the number of input-output 
data pairs, respectively. 

To compare the accuracy of SVM to MLRA, the R2 and RMSE of two methods were listed in Table 3. 
From the prediction results of training and testing samples, the RMSE and R2 between the observed and 
predicted values of SVR model are found to be 0.0099 and 0.9314 respectively for training data, and 
0.0059  and 0.9418 respectively for testing data. From Table 3, the same for the predicted values by 
using Eq. (6) are found to be 0.3074 and 0.7321 respectively for training data, while 0.0703 and 0.9697 
respectively for testing data, the corresponding values for Eq. (7) are 0.3070 and 0.7321 for training data, 
while 0.0703 and 0.9697 respectively for testing data.. So for SVR method it can be seen that though the 
R2 value is very high (0.9314 and 0.9418) showing good correlation. In Fig. 8 comparison of the predicted 
BRZ using MVRA and SVR method for test samples and their deviation from the observed one has been 
made. It is observed that the SVR predicted values are less scattered and are close to observed values 
signified by its closeness to the line of equality. Furthermore, various factors affected the thickness of 
BRZ prediction, as long as the corresponding data can be input to the SVM as variables, and the number 
of factors is not limited. Therefore, SVM can be more comprehensive consideration of rock mass physical 
and mechanical parameters, rock mass structure, section shape, initial stress field, explosion effect etc and 
the relationship between factors. Therefore, in the case of limited training samples, SVM based on small 
samples has more feasible and precise accuracy than MLRA. In conclusion, nonlinear model-based SVM 
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have good generalization ability and nonlinear dynamic data processing capabilities. It better makes up 
for the shortcomings of traditional method (MLRA). It has a very good state of adaptability to the 
thickness of BRZ prediction. 

Table 3  Compared results of the R2 and RMSE of two methods 

Method Train set MSE Train set R2 Test set MSE Test set R2 
MLRA Eq.(6) 0.3074 0.7321 0.0703 0.9697 

 Eq.(7) 0.3070 0.7307 0.0703 0.9697 
SVM  0.0099 0.9314 0.0059 0.9418 
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Fig.8.  Comparison of forecasting results of test samples 

5. Conclusions 

A nonlinear model-based support vector machines (SVMs) analysis was applied on the data pertaining 
to China mine to develop some predictive models for the thickness of BRZ for deep roadways from the 
indirect methods in this study. The 132 samples were trained by proposed models; the other 10 samples 
were tested by trained models. The correlation coefficients of SVM model for predicting the thickness of 
BRZ is more than 0.90, which show the models are highly correlated and have good fitting performance. 
The accuracy of SVM was compared to that of MLRA; the relative errors of two methods were obtained. 
Results show that prediction accuracy of SVM has improved more greatly than that of the MLRA. 
Nonlinear Model-based SVM have good generalization ability and nonlinear dynamic data processing 
capabilities, which has a very good state of adaptability to the thickness of BRZ prediction.  
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