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Sightless has homology to transmembrane acyltransferases and
is required to generate active Hedgehog protein
Jeffrey D. Lee and Jessica E. Treisman

Proteins of the Hedgehog (Hh) family act as discs of third instar larvae transheterozygous for two sit
alleles. In these discs, only a few cells were able to differ-important developmental signals in a variety of

species [1]. Hh proteins are synthesized as full- entiate as photoreceptors (Figure 1c). Rescue by adjacent
wild-type tissuemay thus contribute to the differentiationlength precursors that are autocatalytically cleaved

by their C-terminal domains to release the signaling observed in sit mutant clones.
N-terminal domains [2]. The addition of a
cholesterol molecule to the C terminus of the One of the critical signals triggering photoreceptor devel-
signaling domain is concomitant with cleavage [3]. opment is Hedgehog (Hh), which is expressed at the
Vertebrate Sonic hedgehog (Shh) proteins have also posterior margin of the disc prior to differentiation and
been shown to acquire a fatty acid chain on the subsequently in the differentiating photoreceptors [10–
N-terminal cysteine of this domain [4], which is 14]. Hh activates the expression of decapentaplegic (dpp)
required for a subset of their in vivo functions [5, in a stripe at the front of differentiation, or morphogenetic
6]. A mutation of the corresponding cysteine in furrow; Dpp signaling also promotes photoreceptor forma-
Drosophila Hh transforms it into a dominant- tion [10, 12, 15–19]. dpp expression was lost from the
negative protein [6]. We have identified a novel gene, morphogenetic furrow in sit mutant eye discs (Figure 1c).
sightless (sit), which is required for the activity of Another target of Hh signaling, the proneural gene atonal
Drosophila Hh in the eye and wing imaginal discs [20, 21], also required sit for its expression (data not
and in embryonic segmentation. sit acts in the cells shown). Despite this lack of Hh target gene expression,
that produce Hh, but does not affect hh transcription, a hh-lacZ enhancer trap [22] was expressed at the posterior
Hh cleavage, or the accumulation of Hh protein. sit margin of sit mutant eye discs (Figure 1d), indicating that
encodes a conserved transmembrane protein with hh expression is established normally. This suggests that
homology to a family of membrane-bound the sit phenotype could be due to a defect inHh signaling.
acyltransferases. The Sit protein could act by
acylating Hh or by promoting other modifications Hh signaling has been extensively studied in the wing
or trafficking events necessary for its function. disc, where hh is expressed in the posterior compartment

and signals to cells just anterior to the compartmentAddress: Skirball Institute for Biomolecular Medicine and Department
of Cell Biology, New York University School of Medicine, 540 First boundary to upregulate the expression of dpp and patched
Avenue, New York, New York 10016, USA. (ptc) (Figure 2a,c,g) [23, 24]. The Hh signal is mediated

by the stabilization and activation of the full-length formCorrespondence: Jessica E. Treisman
E-mail: treisman@saturn.med.nyu.edu of the transcription factor Cubitus interruptus (Ci) [25].

This stabilization can be detected with an antibody di-Received: 29 May 2001
Accepted: 11 June 2001 rected against the C-terminal region of Ci, which fails to

recognize the cleaved form of Ci produced in the absencePublished: 24 July 2001
of Hh signaling (Figure 2e) [25, 26]. sitmutant wing discs

Current Biology 2001, 11:1147–1152 showed defects consistent with a lack of Hh pathway
0960-9822/01/$ – see front matter function; ptc expression was not upregulated at the com-
 2001 Elsevier Science Ltd. All rights reserved. partment boundary, and dpp expression was almost com-

pletely absent (Figure 2b,d). In addition, we failed to
detect any stabilization of full-length Ci at the compart-
ment boundary (Figure 2f). However, we found that hh-Results and discussion
lacZ was expressed at wild-type levels in sit mutant discs,sightless is required for the activation of Hedgehog
indicating that hh transcription was unaffected (Figuretarget genes
2g,h). This implicates Sit in the Hh pathway downstreamIn a mosaic screen for novel genes required for Drosophila
of hh transcription and upstream of Ci stabilization.photoreceptor differentiation [7–9], we identified two al-

leles of a gene that we named sightless (sit) for its effect
on photoreceptor development. Clones of sitmutant cells The defects in sit mutant discs appeared to be specific

to anterior-posterior patterning; wingless (wg), which marksin the eye disc showed a reduction in the number of Elav-
expressing photoreceptors that was most pronounced near the dorsal-ventral compartment boundary, and its target

gene Distal-less [27, 28] were still expressed in sit mutantthe center of large clones (Figure 1b), suggesting that
sit might act nonautonomously. Because both sit alleles wing discs (data not shown). In addition, the phenotype

was not as severe as the complete loss of hh from earlycaused pupal lethality, we were able to examine the eye
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Figure 1 we observed a loss of naked cuticle strongly resembling
the hh phenotype; however, a wild-type copy of sit pro-
vided on the paternal chromosomewas able to fully rescue
the phenotype (data not shown). In embryos lacking both
maternal and paternal sit, stripes of Wg expression were
lost from the ectoderm by stage 11 (Figure 2j). Thus, sit
is required for the expression of Hh target genes in the
embryo as well as in the eye and wing discs.

sit is required in the Hh-producing cells but does
not affect the level of Hh protein
sitmight affect Hh signaling by promoting the production
of functional Hh or by allowing cells to respond to the
Hh signal. To distinguish between these possibilities,
we used mosaic analysis to determine in which cells sit
function was required; in the wing disc, Hh-producing
cells are restricted to the posterior compartment, and Hh-
responding cells are restricted to the anterior compart-
ment. We found that small clones of cells homozygous
for sit had no effect on ptc or dpp expression in the wing
disc (data not shown), consistent with the nonautonomy
of sit function in the eye disc. When we used the Minute
technique [32] to generate larger clones lacking sit, we
found that sit function was not required in the ptc-express-
ing cells or anywhere in the anterior compartment for ptc
upregulation, provided that sitwas present in the posterior
compartment (Figure 3a–c). We also found that the loss
of sit from the posterior compartment prevented ptc upreg-
ulation in adjacent anterior cells even if they themselves
were wild-type for sit (Figure 3d–f). Thus, sit function in

sightless is required for photoreceptor differentiation. All panels show cells of the posterior compartment is both necessary and
third larval instar eye imaginal discs with the posterior oriented

sufficient to upregulate ptc in anterior compartment cells.toward the right. (a) Wild-type, (b) sitT802 mosaic clones, and (c,d)
This suggests that sit may be required for the production,sitT392/sitT802. Panels (a)–(c) are stained with anti-Elav antibody in

brown to reveal differentiating photoreceptors, which are reduced in activity, or release of Hh protein.
number in clones homozygous for sit and almost completely lacking
in larvae homozygous for sit. Blue X-gal staining reveals dpp-lacZ
expression in (a) and (c) and arm-lacZ expression marking wild-type To determine whether Hh protein could be produced in
tissue in (b). dpp expression is lost from the morphogenetic furrow in the absence of sit function, we stained sit mutant clones
sit mutant discs. Panel (d) is stained with X-gal to reveal hh-lacZ in the wing disc with an antibody to the N-terminal do-expression at the posterior margin of the sit mutant eye disc. (e)

main of Hh. No change in the intensity of staining wasey-GAL4/�; UAS-Hh-N/�, and (f) ey-GAL4/�; UAS-Hh-N, sitT392/
sitT392. Panels (e)–(f) are stained with anti-Elav antibody. The expression apparent in sit mutant clones compared to adjacent wild-
of Hh-N in a wild-type background dorsalizes the eye disc and type tissue (Figure 3g–i). Thus, sit is not required for
induces premature photoreceptor differentiation, but it has no Hh translation or stability. In clones that are mutant forsignificant effect in a sit mutant background.

dispatched (disp), which encodes a protein required for Hh
release from the cell, Hh protein accumulates to high
levels [33]. We did not observe such an accumulation ofstages of larval development; although sit discs were
Hh in sit mutant clones, suggesting that unlike Disp, Sitsmaller than wild-type discs, they were larger and more
does not act at the level of Hh release.normally shaped than hh mutant discs [23, 29]. Our sit

alleles are therefore likely to cause an incomplete or late
Hh is synthesized as a full-length precursor that is thenloss of Hh signaling; since they appear to be nulls at the
cleaved by the autocatalytic activity of its C-terminal do-molecular level (see below), thismay be due to the activity
main to release the N-terminal signaling domain [2, 34].of maternally contributed sit.
sit does not appear to be required for this cleavage, as
similar proportions of full-length Hh and its cleavedHh signaling is also required for normal embryonic seg-
N-terminal domain were detected on Western blots ofmentation; hhmutant embryos show a loss of naked cuticle
extracts from sit mutant and wild-type third instar larvaeand of wg expression [30, 31]. When we removed the

maternal contribution of sit by making germline clones, (data not shown). We also tested whether the expression
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Figure 2

sit is required to activate Hh target genes.
(a–h) Third instar wing discs with the
posterior oriented toward the right and the
dorsal side facing up. (a,c,e,g) Wild-type, and
(b,d,f,h) sitT392/sitT802. (a,b) Anti-�-
galactosidase staining shows dpp-lacZ
expression, and (c,d) anti-�-galactosidase
staining shows ptc-lacZ expression. dpp
expression is almost absent, and ptc is not
upregulated at the compartment boundary in sit
mutant discs. (e,f) Anti-Ci staining.
Upregulation of full-length Ci at the
compartment boundary does not occur in sit
mutant discs. (g,h) X-gal staining shows hh-
lacZ expression, which is unaffected by the
absence of sit. Panels (i)–(j) show stage 11
embryos stained with anti-Wg antibody. (i)
Wild-type, and (j) a sitT392 germline clone
without paternal rescue. The Wg stripes fade
early, as they do in hh mutant embryos.

of an N-terminally truncated form of Hh (Hh-N) could Since no ESTs corresponding to CG11495 had been listed
in the Berkeley Drosophila genome project database, werescue sit mutants; this form of the protein is not choles-

terol-modified or restricted in its diffusion [35] and does screened an embryonic cDNA library with a PCR probe
from the 5� end of the predicted open reading frame. Wenot require disp for its release from the cell [33]. The

expression of UAS-Hh-N with eyeless-GAL4 could induce isolated three cDNAs containing the full open reading
frame (Figure 4b). In situ hybridization showed that thispremature photoreceptor differentiation in wild-type eye

discs (Figure 1e) but did not alter the phenotype of sit transcript was expressed uniformly at low levels in the
imaginal discs and early embryo (data not shown). Themutant eye discs (Figure 1f). These results suggest that

sit is required for Hh activity, but not for its cleavage, encoded protein has ten predicted transmembrane do-
mains and shows homology to human, mouse, and C.cholesterol modification, or secretion.
elegans proteins present in the database. Its closest human
homolog is BAA91772, to which it shows 28% identitysit encodes a conserved transmembrane protein

with homology to acyltransferases and 45% similarity (Figure 4b). In addition, the Sit protein
To identify the sit gene, we first mapped it by comple- shows more distant homology to a family of proteins that
mentation tests with a collection of deficiencies.We found have been shown to transfer acyl chains onto hydroxyl
that the deficiency Df(3L)M21 failed to complement the groups of membrane-bound lipid or protein targets [37]
lethality of sit alleles, localizing sit to the 62F–63B region. (Figure 4c). An invariant histidine that was suggested as
We then used P element-mediated male recombination a possible active-site residue [37] is conserved in the Sit
mapping [36] to further refine this map position (Figure sequence, and both sit mutations would truncate the pro-
4a). We found that sit mapped to 63B11–13, between the tein prior to the region of acyltransferase homology.
P elements l(3)S103012 and l(3)j5c2. Eleven predicted
genes lie in this region. We found that each of our two
sit alleles had a sequence change in its genomic DNA Possible functions of Sit

Wehave shown that sit encodes a putative transmembranethat would introduce a stop codon into the predicted
protein encoded by one of these genes, CG11495 (Figure protein required in Hh-producing cells to generate active

Hh protein. Since sit does not alter the level of Hh protein4a,b). These changes were not present in the isogenic
strain used for the original mutagenesis. The sit mutant present in the cell, it is unlikely to affect Hh translation

or release. The cleavage of Hh to release the N-terminalphenotype is thus likely to be caused by loss of function
of CG11495. signaling domain also does not require sit, and an exoge-
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Figure 3

sit is required in the Hh-producing cells but
does not alter the level of Hh protein. All
panels show third instar wing discs containing
sitT392 mutant clones oriented as in Figure 2.
Wild-type tissue is marked by GFP expression
in green in (b,c,e,f,h,i). ptc-lacZ expression
is monitored by red anti-�-galactosidase
staining in (a,c,d,f). The arrow in (c) points
to sit mutant cells that are able to express ptc.
The arrow in (f) points to wild-type cells just
anterior to the compartment boundary that do
not express ptc. Panels (g) and (i) show anti-
Hh staining in red. No change in the amount
of Hh protein is apparent in sit mutant cells.

nously provided Hh-N domain is inactive in the absence Further biochemical analysis will be needed to determine
whether Drosophila Hh is in fact palmitoylated andof sit. sit is unlikely to be required for cholesterol addition

to the C terminus of the signaling domain; bacterially whether this palmitoylation requires sit function.
produced Hh protein becomes cholesterol-modified in
vitro, and this modification restricts Hh localization, but Alternatively, Sit could be required for another modifica-
does not increase its activity in vivo [2, 3, 35]. tion or trafficking event required for Hh activity. Sit is

distantly related to the Porcupine (Porc) protein, which
is required in Wg-producing cells for Wg activity. PorcHuman and rodent Sonic hedgehog (Shh) proteins have
is localized to the endoplasmic reticulum and alters thebeen shown to acquire a palmitoyl modification on the
glycosylation state of Wg [38, 39]. Interestingly, Porc alsoN-terminal cysteine of the signaling domain in cell culture
has homology to the membrane-bound O-acyltransferase[4]. Mutation of this cysteine to serine in human Shh
family [37] (Figure 4c). The requirement of Porc for Wgprevents its palmitoylation and greatly reduces its ability
function and Sit for Hh function suggests that modifica-to ventralize the mouse forebrain [4, 5]. We have pre-
tions that are essential for the activity of signaling proteinsviously shown that the corresponding cysteine to serine
may be more widespread than previously believed.mutation in Drosophila Hh (Hh-C84S) completely abol-

ishes its activity; however, the mutant protein appears to
Materials and methodsbe secreted and appears to block the effects of wild-
Geneticstype Hh in the extracellular space [6]. Together with
The fly strains that were used included hh-lacZ [22], dpp-lacZ [40], ptc-the homology of Sit to acyltransferases, this raises the lacZ [41], ey-GAL4 [42], and UAS-Hh-N [35]. To make sit clones in the

intriguing possibility that Sit might be the enzyme respon- eye disc, FRT80B, sit/TM6B males were crossed to FRT80B, P(arm-
lacZ); eyFLP1 females. To make large sit clones in the wing disc, FRT80B,sible for the palmitoylation of Hh. However, this would
sit/TM6B males were crossed to FRT80B, M(3)67C, Ubi-GFP/TM6B;represent a difference in specificity between Sit and the
hsFLP122 females, and larvae were heat shocked for 1 hr at 38.5�C inother acyltransferases of this family, which acylate hy- the first and second instar. To make sit germline clones, an insertion of

droxyl groups; the inactivity of Hh-C84S indicates that a P(ovoD) was transposed onto the FRT80B chromosome, and FRT80B,
sit/TM6B females were crossed to FRT80B, P(ovoD)/TM3; hsFLP122/Yhydroxyl group cannot act as a substrate in this case.
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Figure 4

Sit is a conserved transmembrane protein with
homology to acyltransferases. (a) The
identification of the sit gene. sit was mapped
by P element-induced male recombination
with each of the P elements shown, localizing
it to a region containing 11 predicted genes
between l(3)S103012 and l(3)j5c2. The
sequence of the CG11495 coding region
was altered in DNA from each of the two sit
alleles. (b) The alignment of the Sit protein
sequence (fly) with its closest human homolog,
BAA91772 (human). Identical amino acids
appear white on a black background, while
conserved residues appear white on a gray
background. Predicted transmembrane
domains are overlined. Arrows mark the
positions of the sequence changes in sitT802

(N156) and sitT392 (Q287). Both changes
would introduce stop codons into the
predicted protein. (c) The alignment of Sit
(Dm Sit) with the conserved region of a family
of membrane-bound acyltransferases [37].
An arrow marks the position of an invariant
histidine proposed to be an active site
residue. Sequences shown are from human
cholesterol acyltransferase (Hs ACAT),
mouse diacylglycerol O-acyltransferase (Mm
DGAT), Staphylococcus DltB (Sa dltB),
Treponema Alg I (Tp algI), and fly Porcupine
(Dm Porc).

males. Larvae were heat shocked as described above. FRT80B, sitT392/ the Drosophila genome sequence. l(3)S103012 is inserted at position
FRT80B, P(ovoD); hsFLP122/� females were crossed to sitT802/TM6B 95524, and l(3)S049217 is inserted at position 186052 in clone
males to generate the embryos shown. Half of the embryos hatched and AE003477. Genomic DNA was prepared from larvae homozygous for
developed into larvae with the TM6B, Tb chromosome. FRT80B, sitT392 or FRT80B, sitT802 or from adults homozygous for FRT80B,

and the full open reading frame of CG11495 was amplified by PCR as
a 1.6-kb fragment. sitT392 had a CAG to TAG change converting Q287Immunohistochemistry
to a stop codon. sitT802 had a deletion of the underlined 10 bp: GTGCATEye and wing discs were stained with antibodies and X-gal as described
CAATGTGATGCAAAAGAATGT, causing a frame shift at N156, fol-[6, 42]. The antibodies that were used included rat anti-Elav (1:1), rabbit
lowed by 17 extraneous amino acids and a stop codon. Both changesanti-Ato (1:5000) [21], rabbit anti-�-galactosidase (Cappel; 1:5000), rat
were confirmed in a second independent PCR reaction, and neither wasanti-Ci (1:1) [26], mouse anti- Wg (1:10) [29], and rabbit anti-Hh-N
present in DNA from the FRT80B flies. A PCR fragment covering the(1:2000) [6]. For Western blotting, imaginal discs and brains from wild-
5�-most 1.1 kb of this region was used to screen the LD embryonictype and sit mutant third instar larvae were homogenized directly in

protein gel loading buffer. Western blotting with rabbit anti-Hh-N was cDNA library obtained from the Berkeley Drosophila genome project.
performed as described [6]. Three cDNA clones were obtained (GenBank accession number

AF393157); the two longest initiated 3 bp upstream of the initiator ATG
codon. This codon occurs 185 bp after the 3� end of the previousMolecular biology
predicted gene, CG15812. The full-length cDNA in pBluescript wassit was mapped using site-directed male recombination [36] with the
used as a template to make sense and antisense probes for in situfollowing P element insertions: l(3)06803, EP(3)3109, l(3)S103012,
hybridization, which was performed as described [43]. PHDhtm andl(3)j5c2, l(3)S049217, and l(3)09143. Between one and four recombi-
TopPred2 were used to predict transmembrane domains, and blastpnants were obtained for each P element. Insertion site information was
and ALIGN were used to align the Drosophila and human sequences.not available for l(3)S103012 or l(3)S049217, so in these cases, flank-

ing DNA was obtained by inverse PCR, sequenced, and compared to The alignment in Figure 4c is based on [37].
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