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The earliest-pseudo-deadline-first (EPDF) Pfair algorithm is more efficient than other
known Pfair scheduling algorithms, but is not optimal for scheduling recurrent real-time
task systems on more than two identical processors. Although not optimal, EPDF may
be preferable for real-time systems instantiated on less-powerful platforms, those with
soft timing constraints, or those whose task composition can change at run-time. In prior
work, Srinivasan and Anderson established a sufficient per-task utilization restriction for
ensuring a tardiness of at most q quanta, where q � 1, under EPDF. They also conjectured
that under this algorithm, a tardiness bound of one quantum applies to task systems that
are not subject to any restriction other than the obvious restrictions, namely, that the total
system utilization not exceed the available processing capacity and per-task utilizations not
exceed 1.0. In this paper, we present counterexamples that show that their conjecture is
false and present sufficient per-task utilization restrictions that are more liberal than theirs.
For ensuring a tardiness bound of one quantum, our restriction presents an improvement
of 50% over the previous one.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider the scheduling of recurrent (i.e., periodic, sporadic, or rate-based) real-time task systems on multiprocessor
platforms consisting of M identical, unit-capacity processors. Pfair scheduling, originally introduced by Baruah et al. [4],
is the only known way of optimally scheduling such multiprocessor task systems. (A real-time scheduling algorithm is
said to be optimal iff it can schedule without deadline misses every task system for which some correct schedule exists.)
To ensure optimality, Pfair scheduling imposes a stronger constraint on the timeliness of tasks than that mandated by
periodic scheduling. Specifically, under Pfair scheduling, each task must execute at an approximately uniform rate at all
times, while respecting a fixed-size allocation quantum. A task’s execution rate is defined by its weight (i.e., utilization).
Uniform rates are ensured by subdividing each task into quantum-length subtasks that are subject to intermediate deadlines,
called pseudo-deadlines, computed based on the task’s weight. Under most known Pfair algorithms, subtasks are scheduled
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on an earliest-pseudo-deadline-first basis. However, to avoid deadline misses, ties among subtasks with the same deadline
must be resolved carefully. In fact, tie-breaking rules are of crucial importance when devising optimal Pfair scheduling
algorithms.

1.1. Motivation

The overheads associated with the tie-breaking rules of the optimal algorithms may be problematic for some applications.
The earliest-pseudo-deadline-first (EPDF) algorithm is computationally more efficient than optimal Pfair algorithms in that
it does not use any tie-breaking rule to resolve ties among subtasks with the same pseudo-deadline, but disambiguates
them arbitrarily. PD2, the most efficient of the known optimal Pfair algorithms, requires two tie-break parameters. Though
these tie-break parameters can be computed for each subtask in constant time, there exist some soft and/or dynamic real-
time systems in which not using any tie-breaking rule may still be preferable. Eliminating tie-breaking rules may also be
preferable in embedded systems with slower processors or limited memory bandwidth.

The viability of EPDF for scheduling soft and/or dynamic real-time systems was first considered by Srinivasan and
Anderson in [11], where they provided examples of such applications for which EPDF may be preferable to PD2. Some web-
hosting systems, server farms, packet processing in programmable multiprocessor-based routers, and packet transmission on
multiple, parallel outgoing router links are among the examples provided by them. In these systems, fair resource allocation
is needed, so that quality-of-service guarantees can be provided. However, an extreme notion of fairness that precludes all
deadline misses is not required. Moreover, in systems such as routing networks, the inclusion of tie-breaking information in
subtask priorities may result in unacceptably high space overhead.

The applications mentioned above may also be dynamic in that the set of tasks and the utilizations of tasks requiring
service may change. In [11], Srinivasan and Anderson also noted that the use of tie-breaking rules may be problematic for
such dynamic task systems. As they explained, it is possible to reweight each task whenever its utilization changes such
that its next subtask deadline is preserved. If no tie-breaking information is maintained, such an approach entails very little
computational overhead. However, utilization changes can cause tie-breaking information to change, so if tie-breaking rules
are used, then reweighting may necessitate an O(N) cost for N tasks, due to the need to reconstruct the scheduler’s priority
queue. This cost may be prohibitive if reallocations are frequent.

Motivated by the above reasons, Srinivasan and Anderson studied EPDF and they succeeded in showing that this algo-
rithm can guarantee a tardiness (i.e., lateness) bound of q � 1 quanta for every subtask, provided a certain condition holds.
Their condition can be ensured by limiting each task’s weight to at most q

q+1 . Unfortunately, Srinivasan and Anderson left
open the question of whether such weight restrictions are necessary to guarantee small bounded tardiness. Moreover, they
conjectured that EPDF can ensure a tardiness bound of one quantum as long as the weight of each task does not exceed 1.0
(i.e., the capacity of a single processor), and the total system utilization does not exceed the total available processing
capacity.

1.2. Contributions

Our contributions in this paper are two-fold. First, we provide counterexamples that show that the above conjecture is
false, and that, in general, restrictions on individual task utilizations are necessary to guarantee bounded tardiness under
EPDF. Our second contribution is to show that a more liberal per-task weight restriction of q+2

q+3 is sufficient to ensure a
tardiness of q quanta. When q = 1, this presents an improvement of 50% over the previous result.

The rest of the paper is organized as follows. Section 2 provides an overview of Pfair scheduling. In Section 3, the results
described above are established. Section 4 concludes.

2. Background on Pfair scheduling

This section describes some basic concepts of Pfair scheduling, provides needed background, and summarizes results
from prior work reported in [1–4,10,11]. Pfair scheduling [4,10] can be used to schedule a periodic, sporadic, intra-sporadic
(IS), or generalized-intra-sporadic (GIS) (see below) task system τ on M � 1 identical processors, each of whose processing
capacity is taken to be 1.0. As explained later, in this paper, we assume that M � 3 holds. Each task T of τ is assigned a
rational weight wt(T ) ∈ (0,1] that denotes the fraction of a single processor it requires. In this paper, for simplicity and to
avoid some boundary cases, we assume that wt(T ) < 1 holds. The sum of the weights of all the tasks in τ , i.e., the total
system utilization of τ , is assumed to be at most M , which is the total available processing capacity. For a periodic or a
sporadic task T , wt(T ) = T .e/T .p, where T .e and T .p are the execution cost and inter-arrival time or period, respectively,
of T . When scheduled under Pfair algorithms, it is required that T .e and T .p be specified as integers, which are interpreted
as integral numbers of quanta.

A periodic or sporadic task T may be invoked zero or more times; T is periodic if any two consecutive invocations of
T are separated by exactly T .p time units and is sporadic if T .p is a lower-bound on the inter-arrival separation. Each
invocation of T is referred to as a job of T . The first job may be invoked or released at any time at or after time zero. Every
job of T executes for T .e time units and should complete execution within T .p time units of its release, i.e., every job of T
has a relative deadline of T .p time units. (In this paper, for ease of description, we assume that each job executes for exactly
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Fig. 1. (a) PF-windows of the first job of a periodic (or sporadic) task T with weight 3/7. This job consists of subtasks T1, T2, and T3, each of which must be
scheduled within its window. (This pattern repeats for every job.) (b) PF-windows of an IS task. Subtask T2 is released one time unit late. Here, Θ(T1) = 0
while Θ(T2) = Θ(T3) = 1. (c) PF-windows of a GIS task. Subtask T2 is absent and subtask T3 is released one time unit late. (d) PF- and IS-windows of
the first job of a GIS task with early releases. All the subtasks of this job are eligible when the job arrives. (The deadline-based priority definition of the
Pfair scheduling algorithms and the prohibition of parallel execution of a task ensure that the subtasks execute in the correct sequence.) For each subtask,
its PF-window consists of the solid part; the IS-window includes the dashed part, in addition. For example, T2’s PF-window is [2,5) and its IS-window
is [0,5).

T .e time units.) Each task is sequential, and at any time may execute on at most one processor. A task is light if its weight
is less than 1/2, and heavy, otherwise.

Pfair algorithms allocate processor time in discrete quanta; the tth quantum, where t � 0, spans the time interval
[t, t + 1), and is also referred to as slot t . (Hence, time t refers to the beginning of slot t .) Quanta are assumed to be aligned
on all processors. All references to time are non-negative integers. The interval [t1, t2), consists of slots t1, t1 + 1, . . . , t2 − 1.
A task may be allocated time on different processors, but not in the same slot (i.e., interprocessor migration is allowed but
parallelism is not). Similarly, on each processor, at most one task may be allocated in each slot. The sequence of alloca-
tion decisions over time defines a schedule S . Formally, S : τ × N �→ {0,1}, where N is the set of non-negative integers.
S(T , t) = 1 iff T is scheduled in slot t . On M processors,

∑
T ∈τ S(T , t) � M holds for all t .

2.1. Periodic, sporadic, and IS task models

In Pfair scheduling, each quantum of execution of each task is referred to as a subtask. Each task gives rise to a potentially
infinite sequence of subtasks. The ith subtask of T is denoted Ti , where i � 1. If T is periodic or sporadic, then the kth job
of T consists of subtasks T(k−1)·e+1, . . . , Tk·e , where e = T .e and k � 1.

Each subtask Ti has an associated pseudo-release r(Ti) and pseudo-deadline d(Ti), defined as follows (the prefix “pseudo-”
is often omitted for conciseness):

r(Ti) = Θ(Ti) +
⌊

i − 1

wt(T )

⌋
∧ d(Ti) = Θ(Ti) +

⌈
i

wt(T )

⌉
. (1)

In the above formulas, Θ(Ti) � 0 denotes the offset of Ti and is used in modeling the late releases of sporadic and IS tasks.
It is well known that the sporadic model generalizes the periodic model by allowing jobs to be released “late”; the intra-
sporadic model (IS model), proposed by Srinivasan and Anderson in [2,10], is a further generalization that allows subtasks to
be released late. The offsets of T ’s various subtasks are non-negative and satisfy the following:

k > i ⇒ Θ(Tk) � Θ(Ti). (2)

T is periodic if Θ(Ti) = c holds for all i (and is synchronous also if c = 0), and is IS, otherwise. For a sporadic task, all
subtasks that belong to the same job will have equal offsets. Examples are given in insets (a) and (b) of Fig. 1. Informally,
the restriction in (2) on offsets implies that the separation between any pair of subtask releases is at least the separation
between those releases if the task were periodic.

The interval [r(Ti),d(Ti)) is termed the PF-window of Ti and is denoted ω(Ti). The following lemma, concerning PF-
window lengths, follows from (1).

Lemma 1. (See Anderson and Srinivasan [3].) The length of the PF-window of any subtask Ti of a task T , |ω(Ti)| = d(Ti) − r(Ti), is
either � 1

wt(T )
	 or � 1

wt(T )
	 + 1.

2.2. GIS task model

When proving properties concerning Pfair scheduling algorithms, it is sometimes useful to “eliminate” or “omit” certain
subtasks. For example, if a deadline miss does not depend on the existence of a subtask, then ignoring such a subtask makes
analysis easier. In [10], Srinivasan and Anderson introduced the generalized intra-sporadic model (GIS model) to facilitate such
selective removal of subtasks. A GIS task system is obtained by omitting subtasks from a corresponding IS (or GIS) task
system. However, the spacing between subtasks of a task that are not omitted may not be decreased in comparison to
how they are spaced in a periodic task. Specifically, subtask Ti may be followed by subtask Tk , where k > i + 1 if the
following holds: r(Tk) − r(Ti) is at least 
 k−1 � − 
 i−1 �. That is, r(Tk) is not smaller than what it would have been
wt(T ) wt(T )
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if Ti+1, Ti+2, . . . , Tk−1 were present, and released as early as possible. For the special case where Tk is the first subtask
released by T , r(Tk) must be at least 
 k−1

wt(T )
�. Fig. 1(c) shows an example. In this example, though subtask T2 is omitted, T3

cannot be released before time 4. If a task T , releases subtask Tk after executing subtask Ti , then Tk is called the successor
of Ti and Ti is called the predecessor of Tk . Note that a periodic task system is an IS task system, which in turn is a GIS task
system, so any property established for the GIS task model applies to the other models, as well.

2.3. The early-release task model

The task models described so far are non-work-conserving in that, the second and later subtasks remain ineligible to be
scheduled before their release times, even if they are otherwise ready and some processor is idle. The early-release (ER) task
model is a work-conserving variant of the other models that allows subtasks to be scheduled before their release times [1].
Early releasing can be applied to subtasks in any of the task models considered so far, and unless otherwise specified, it
should be assumed that early releasing is enabled. However, whether subtasks are actually released early is optional. To
facilitate this, in this model, each subtask Ti has an eligibility time e(Ti) that specifies the first time slot in which Ti may
be scheduled. The interval [e(Ti),d(Ti)) is referred to as the IS-window of Ti . Fig. 1(d) gives an example. It is required that
the following holds:(∀i � 1 :: e(Ti) � r(Ti) ∧ e(Ti) � e(Ti+1)

)
. (3)

Note that the model is very flexible in that it does not preclude a job from becoming eligible before its release time, but
provides mechanisms to restrict such behavior, if so desired. Such flexibility, in conjunction with the sporadic or the IS task
model, can be used to schedule rate-based tasks, whose arrival pattern may be jittered, and whose instantaneous work-
load may deviate from the average or expected workload, such as in distributed multimedia and digital signal processing
applications [7,10].

2.4. b-bit

The b-bit or boundary bit is associated with each subtask Ti and is denoted b(Ti). b(Ti) is as defined by (4) below:

b(Ti) =
⌈

i

wt(T )

⌉
−

⌊
i

wt(T )

⌋
. (4)

From (1), it can be verified that if Θ(Ti) < Θ(Ti+1), then d(Ti) � r(Ti+1). Therefore, the PF-windows of Ti and Ti+1 can
overlap only if Θ(Ti) = Θ(Ti+1). It can also be verified that if Θ(Ti) = Θ(Ti+1), then d(Ti) − r(Ti+1) = b(Ti). Hence, b(Ti)

determines whether the PF-window of Ti can overlap that of Ti+1. Observe that b(Ti) is either zero or one. Therefore, the
PF-windows of Ti and Ti+1 are either disjoint or overlap by at most one slot. In Fig. 1, b(T2) = 1, while b(T3) = 0. Therefore,
the PF-window of T2 overlaps T3’s when Θ(T3) = Θ(T2) as in insets (a), (b), and (d). Further, as shown in [6], the following
lemma holds.

Lemma 2. (From [6].) For all i � 1, k � 1, the following holds:

r(Ti+k) �
{

d(Ti) + k − 1, b(Ti) = 0,

d(Ti) + k − 2, b(Ti) = 1.

2.5. Group deadlines

Like the b-bit, the group deadline is a parameter that is associated with each subtask and is used by some Pfair schedul-
ing algorithms. The group deadline of subtask Ti is denoted D(Ti).

By Lemma 1, all the windows of a heavy task with weights in the range [1/2,1) are of length two or three. Informally,
for such tasks, the group deadline marks the end of a sequence of subtasks whose PF-windows satisfy the following two
properties: each window, except possibly of the first subtask in the sequence, is of length two, and every consecutive pair
of windows is overlapping. In Fig. 2(a), T1, T2 is one such sequence in which the first window is of length two; T3, . . . , T5
and T6, . . . , T8 are other such sequences in which the first window is of length three. In each sequence, if any subtask is
not scheduled until its last slot, then all subsequent subtasks will be forced to be scheduled in their last slots as well, and
in that sense constitute a “group.” In addition, if the last subtask in the group is followed by a subtask with a window of
length three, as in the first two groups considered above, then this subtask will also be precluded from being scheduled in
its first slot (when any subtask in the group is scheduled in its last slot). However, no later subtask is directly impacted.
Thus, the group deadline of Ti can be thought of as the earliest time t after r(Ti) such that t is the release time of some
subtask and no subtask released at or after t is directly influenced by whether Ti is scheduled in its last slot.

Informally, for a heavy periodic task with weight less than one, the end of each slot that is not the first slot of the
PF-window of any of its subtasks is a group deadline. In Fig. 2(a), times 4, 8, and 11 are group deadlines for T in the
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Fig. 2. Illustration of group deadlines using a task T with weight 8/11. Group deadlines are marked with a “D.” (a) T is synchronous, periodic. The group
deadlines of T1 and T2 are at time 4, and those of T3, . . . , T5 and T6, . . . , T8 are at times 8 and 11, respectively. (b) T is an IS task. In this example, T2

and T6 are released late. Nevertheless, the group deadline of T1 is still at time 4. However, the group deadline of T2 is at time 5. Similarly, though T6 is
released one time unit late, the group deadlines of T3, . . . , T5 are computed under the assumption that T6 would be released in time, and hence, are at
time 9. The group deadlines of T6, . . . , T8 are at time 13.

interval [0,11]. Note that no subtask is released at times 3, 7, or 10. Formally, the group deadline of a subtask Ti is defined
as D(Ti) = (min u: u � d(Ti) ∧ u is a group deadline of T ). For example, in Fig. 2(a), D(T1) = 4 and D(T6) = 11.

The group deadline of a subtask Ti of an IS or GIS task is computed assuming that all later subtasks are present and
released as early as possible, that is, under the assumption that Θ(Ti) = Θ(T j) holds for all j � i, regardless of how the
subtasks are actually released. An illustration for an IS task is provided in Fig. 2(b).

2.6. Concrete and non-concrete task systems

A task system is said to be concrete if release and eligibility times are specified for each subtask of each task, and non-
concrete, otherwise. Note that an infinite number of concrete task systems can be specified for every non-concrete task
system. The type of the task system is indicated only when necessary.

2.7. Pfair and ERfair schedules

The notion of a Pfair schedule is obtained by comparing the allocations that each task receives in such a schedule to those
received in an ideal fluid schedule. In an ideal fluid schedule, each task executes at a precise rate given by its utilization
whenever it is active. Let A(ideal, T , t1, t2) and A(S, T , t1, t2), denote the total allocation to T in the interval [t1, t2) in the
ideal schedule and an actual schedule, S , respectively. Then, the “error” in allocation to T in S at time t with respect to the
ideal schedule, referred to as the lag of T at t in S , is given by lag(T , t, S) = A(ideal, T ,0, t) − A(S, T ,0, t).

S is said to be a Pfair schedule for τ iff the following holds: (∀t, T ∈ τ :: −1 < lag(T , t, S) < 1). Informally, each task’s
allocation error must always be less than one quantum. If early releases are allowed, then it is not required that the negative
lag constraint, lag(T , t) > −1, hold. A schedule for which (∀T , t : lag(T , t) < 1) holds is said to be ERfair. The release times
and deadlines in (1) are assigned such that scheduling each subtask by its deadline is sufficient to generate an ERfair
schedule for τ ; a Pfair schedule can be generated if each subtask is scheduled at or after its release time, as well. Further,
ensuring that each task is scheduled in a Pfair or an ERfair manner is sufficient to ensure that the deadlines of all jobs are
met in a periodic or sporadic task system. A schedule that is Pfair or ERfair exists for a GIS task system τ on M processors
iff ∑

T ∈τ

wt(T ) � M (5)

holds [2,4]. A GIS task system satisfying (5) and in which the weight of each task is at most 1.0 is said to be feasible on M
processors. (In general, a task system is said to be feasible on M processors if there exists some way of correctly scheduling
that task system on M processors.)

If T is synchronous and periodic, then A(ideal, T ,0, t) equals t · wt(T ). However, if T is GIS, then the allocation it receives
in the ideal schedule may be less due to IS separations or omitted subtasks. To facilitate expressing A(ideal, T ,0, t) for GIS
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Fig. 3. Per-slot ideal allocations to subtasks of a task T with weight 3/7. These allocations are marked above the subtask windows. (a) T is synchronous,
periodic. A(ideal, T , t) = 3/7 holds for every t . A(ideal, T2,4) = 2

7 and A(ideal, T3,4) = 1
7 . (b) T is GIS. T2’s release is delayed by one time slot. T4 is delayed

by an additional time slot and T5 is omitted. Here, A(ideal, T2,4) = 3
7 and A(ideal, T3,4) = 0.

tasks, let A(ideal, Ti,0, t) and A(ideal, Ti, t) denote the ideal allocations to subtask Ti in [0, t) and slot t , respectively. In [2],
Anderson and Srinivasan showed that A(ideal, Ti, t) is given by (6) below (an example is given in Fig. 3):

A(ideal, Ti, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
 i−1
wt(T )

� + 1) × wt(T ) − (i − 1), u = r(Ti),

i − (� i
wt(T )

	 − 1) × wt(T ), u = d(Ti) − 1,

wt(T ), r(Ti) < u < d(Ti) − 1,

0, otherwise.

(6)

Let A(ideal, T , t) denote the total allocation to task T in slot t . Then, A(ideal, T , t) is given by
∑

i A(ideal, Ti, t). For
example, in Fig. 3, A(ideal, T ,4) = A(ideal, T2,4) + A(ideal, T3,4) = 1/7 + 2/7 = 3/7, since no subtasks other than T2 and T3
receive a non-zero allocation in slot 4. Note that in the ideal schedule, each subtask completes executing by its deadline.

As shown in Fig. 3, A(ideal, T , u) usually equals wt(T ), but in certain slots, it may be less than wt(T ) due to omitted or
delayed subtasks. Also, the total allocation that a subtask Ti receives in the slots that span its window is exactly one in the
ideal schedule. These and similar properties have been proved formally in [9]. Later in this paper, we will use Lemma 3,
and (7)–(10) given below (examples of which can be seen in Fig. 3):

(∀T , u � 0 :: A(ideal, T , u) � wt(T )
)
, (7)(

∀Ti ::
d(Ti)−1∑
u=r(Ti)

A(ideal, Ti, u) = 1

)
, (8)

(∀Ti, u � 0 :: A(ideal, Ti, u) � wt(T )
)
, (9)(∀Ti, u ∈ [

r(Ti),d(Ti)
) :: A(ideal, Ti, u) � 1/T .p

)
. (10)

Lemma 3. If b(Ti) = 1 and subtask Ti+1 exists, then A(ideal, Ti,d(Ti) − 1) + A(ideal, Ti+1, r(Ti+1)) = wt(T ).

A task T ’s ideal allocation up to time t is simply

A(ideal, T ,0, t) =
t−1∑
u=0

A(ideal, T , u) =
t−1∑
u=0

∑
i

A(ideal, Ti, u),

and hence
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lag(T , t, S) = A(ideal, T ,0, t) − A(S, T ,0, t) (11)

=
t−1∑
u=0

A(ideal, T , u) −
t−1∑
u=0

S(T , u) (12)

=
t−1∑
u=0

∑
i

A(ideal, Ti, u) −
t−1∑
u=0

S(T , u). (13)

From (12), lag(T , t + 1) (the schedule parameter is omitted in the lag and LAG functions when unambiguous) is given by

lag(T , t + 1) =
t∑

u=0

(
A(ideal, T , u) − S(T , u)

)
= lag(T , t) + A(ideal, T , t) − S(T , t). (14)

Similarly, by (12) again, for any 0 � t′ � t ,

lag(T , t + 1) = lag(T , t′) +
t∑

u=t′

(
A(ideal, T , u) − S(T , u)

)
= lag(T , t′) + A(ideal, T , t′, t + 1) − A(S, T , t′, t + 1). (15)

Another useful definition, the total lag for a task system τ in a schedule S at time t , LAG(τ , t, S), or more concisely,
LAG(τ , t), is given by

LAG(τ , t) =
∑
T ∈τ

lag(T , t). (16)

Using (14)–(16), LAG(τ , t + 1) can be expressed as follows. In (18) below, 0 � t′ � t holds:

LAG(τ , t + 1) = LAG(τ , t) +
∑
T ∈τ

(
A(ideal, T , t) − S(T , t)

)
, (17)

LAG(τ , t + 1) = LAG(τ , t′) +
t∑

u=t′

∑
T ∈τ

(
A(ideal, T , u) − A(S, T , u)

)
= LAG(τ , t′) + A(ideal, τ , t′, t + 1) − A(S, τ , t′, t + 1). (18)

Eqs. (17) and (18) above can be rewritten as follows using (7):

LAG(τ , t + 1) � LAG(τ , t) +
∑
T ∈τ

(
wt(T ) − S(T , t)

)
, (19)

LAG(τ , t + 1) � LAG(τ , t′) + (t + 1 − t′) ·
∑
T ∈τ

wt(T ) − A(S, τ , t′, t + 1) (20)

= LAG(τ , t′) + (t + 1 − t′) ·
∑
T ∈τ

wt(T ) −
t∑

u=t′

∑
T ∈τ

S(T , u). (21)

2.8. Soft real-time model

In soft real-time systems, tasks may miss their deadlines. As discussed in the introduction, this paper is concerned with
deriving a lateness or tardiness [8] bound for a GIS task system scheduled under EPDF (described below). Formally, the
tardiness of a subtask Ti in schedule S is defined as tardiness(Ti, S) = max(0, t − d(Ti)), where t is the time at which
Ti completes executing in S . The tardiness of a task system τ under scheduling algorithm A is defined as the maximum
tardiness of any subtask of any task in τ in any schedule for any concrete instantiation of τ under A. If κ(M) is the
maximum tardiness of any task system with Usum � M under A on M processors, then A is said to ensure a tardiness bound
of κ(M) on M processors. Though tasks in a soft real-time system are allowed to have non-zero tardiness, it is assumed
that missed deadlines do not delay future job releases. Hence, guaranteeing a reasonable bound on tardiness that is independent
of time is sufficient to ensure that in the long run each task is allocated a processor share that is in accordance with its
weight. Because each task is sequential and subtasks of a task have an implicit precedence relationship, a later subtask
cannot commence execution until all prior subtasks of the same task have completed execution. Thus, a missed deadline
effectively reduces the interval over which the next subtask should be scheduled in order to meet its deadline.
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2.9. Algorithm EPDF

Like most Pfair scheduling algorithms, the earliest-pseudo-deadline-first (EPDF) Pfair algorithm functions by choosing
subtasks for execution at the beginning of every slot. Under EPDF, higher priority is accorded to subtasks with earlier
deadlines; ties among subtasks with equal deadlines are resolved arbitrarily. In prior work, Srinivasan and Anderson have
shown that EPDF is optimal on at most two processors [3]. They have also shown that on more than two processors,
EPDF can correctly schedule task systems in which the maximum task weight is at most 1/(M − 1) [12], and that EPDF
can ensure a tardiness bound of q � 1 if the weight of each task is restricted to q

q+1 [11]. (Since EPDF is optimal on two
processors, in deriving tardiness bounds under this algorithm, we assume that M � 3 holds.)

The above is a fairly comprehensive summary of basic Pfair scheduling. The rest of this section presents some additional
definitions and results that we will use in this paper.

2.10. Active tasks

If subtasks are absent or are released late, then it is possible for a GIS (or IS) task to have no eligible subtasks and an
allocation of zero during certain time slots. Tasks with and without subtasks in the interval [t, t + �) are distinguished using
the following definition of an active task.

Definition 1. A GIS task U is active in slot t if it has one or more subtasks U j such that e(U j) � t < d(U j). (A task that is
active in t is not necessarily scheduled in that slot.)

2.11. Holes

If fewer than M tasks are scheduled at time t in S , then one or more processors are idle in slot t . For each slot, each
processor that is idle in that slot is referred to as a hole. Hence, if k processors are idle in slot t , then there are said to be k
holes in t . The following lemma is a generalization of one proved in [10], and relates an increase in the total lag of τ , LAG,
to the presence of holes.

Lemma 4. (See Srinivasan and Anderson [10].) If LAG(τ , t + �, S) > LAG(τ , t, S), where � � 1, then there is at least one hole in the
interval [t, t + �).

Intuitively, if there is no idle processor in slots t, . . . , t + � − 1, then the total allocation in S in each of those slots to
tasks in τ is equal to M . Since τ is assumed to be feasible, this is at least the total allocation that τ receives in any slot in
the ideal schedule. Therefore, LAG cannot increase.

2.12. Task classification (from [10])

Tasks in τ may be classified as follows with respect to a schedule S and time interval [t, t + �). (For brevity, we let the
task system τ and schedule S be implicit in these definitions.)

A(t, t + �): Set of all tasks that are scheduled in one or more slots in [t, t + �).
B(t, t + �): Set of all tasks that are not scheduled in any slot in [t, t + �), but are active in one or more slots in the interval.
I(t, t + �): Set of all tasks that are neither active nor scheduled in any slot in [t, t + �).

As a shorthand, the notation A(t), B(t), and I(t) is used when � = 1. A(t, t +�), B(t, t +�), and I(t, t +�) form a partition
of τ , i.e., the following holds:

A(t, t + �) ∪ B(t, t + �) ∪ I(t, t + �) = τ , (22)

A(t, t + �) ∩ B(t, t + �) = B(t, t + �) ∩ I(t, t + �) = I(t, t + �) ∩ A(t, t + �) = ∅. (23)

This classification of tasks is illustrated in Fig. 4(a) for � = 1. Using (16), (22), and (23) above, we have the following:

LAG(τ , t + 1) =
∑

T ∈A(t)

lag(T , t + 1) +
∑

T ∈B(t)

lag(T , t + 1) +
∑

T ∈I(t)

lag(T , t + 1). (24)

The next definition identifies the last-released subtask at t of any task U .

Definition 2. Subtask U j is the critical subtask of U at t iff e(U j) � t < d(U j) holds, and no other subtask Uk of U , where
k > j, satisfies e(Uk) � t < d(Uk). For example, in Fig. 4(a), the critical subtask of T at both t − 1 and t is Ti+1, and that of
U at t + 1 is Uk+1.



396 U.C. Devi, J.H. Anderson / Journal of Computer and System Sciences 75 (2009) 388–420
Fig. 4. (a) Task classification at time t . IS-windows of two consecutive subtasks of three GIS tasks T , U , and V are depicted. The slot in which each subtask
is scheduled is indicated by an “X.” Because subtask Ti+1 is scheduled at t , T ∈ A(t). No subtask of U is scheduled at t . However, because the window
of Uk overlaps slot t , U is active at t , and hence, U ∈ B(t). Task V is neither scheduled at t , nor is it active at t . Therefore, V ∈ I(t). (b) Illustration of
displacements. If Ui , scheduled at time t , is removed from the task system, then some subtask that is eligible at t , but scheduled later, can be scheduled
at t . In this example, it is subtask Vk (scheduled at t + 3). This displacement of Vk results in two more displacements, those of Vk+1 and Ui+1, as shown.
Thus, there are three displacements in all: Δ1 = (Ui , t, Vk, t + 3), Δ2 = (Vk, t + 3, Vk+1, t + 4), and Δ3 = (Vk+1, t + 4, Ui+1, t + 5).

2.13. Displacements

To facilitate reasoning about Pfair algorithms, Srinivasan and Anderson formally defined displacements in [10]. Let τ be a
GIS task system and let S be an EPDF schedule for τ . Then, removing a subtask, say Ti , from τ results in another GIS task
system τ ′ . Suppose Ti is scheduled at t in S . Then, Ti ’s removal can cause another subtask, say U j , scheduled after t to
shift left to t , which in turn can lead to other shifts, resulting in an EPDF schedule S ′ for τ ′ . Each shift that results due to
a subtask removal is called a displacement and is denoted by a four-tuple 〈X (1), t1, X (2), t2〉, where X (1) and X (2) represent
subtasks. This is equivalent to saying that subtask X (2) originally scheduled at t2 in S displaces subtask X (1) scheduled at
t1 in S . A displacement 〈X (1), t1, X (2), t2〉 is valid iff e(X (2)) � t1. Because there can be a cascade of shifts, there may be a
chain of displacements. Such a chain is represented by a sequence of four-tuples. An example is given in Fig. 4(b).

The next lemma regarding displacements is proved in [9]. It states that in an EPDF schedule, a subtask removal can
cause other subtasks to shift only to their left.

Lemma 5. (From [9].) Let X (1) be a subtask that is removed from τ , and let the resulting chain of displacements in an EPDF schedule
for τ be C = Δ1,Δ2, . . . ,Δk, where Δi = 〈X (i), ti, X (i+1), ti+1〉. Then ti+1 > ti for all i ∈ [1,k].

3. Tardiness bounds for EPDF

In this section, we present results concerning tardiness bounds that can be guaranteed under EPDF.
It is easy to show that subtask deadlines can be missed under EPDF. In [11], it was conjectured that EPDF ensures a

tardiness of at most one for every feasible task system. We now show that this conjecture is false.

Theorem 1. Tardiness under EPDF can exceed three quanta for feasible GIS task systems. In particular, if EPDF is used to schedule task
system τi (1 � i � 3) in Table 1, then a tardiness of i + 1 quanta is possible.

Proof. Fig. 5 shows a schedule for τ1, in which a subtask has a tardiness of two at time 50. The schedules for τ2 and τ3 are
too lengthy to be depicted; we verified them using two independently-coded EPDF simulators. �

The sufficient condition for a tardiness of q > 0 quanta as given by Srinivasan and Anderson requires that the sum of the
weights of the M − 1 heaviest tasks be less than qM+1

q+1 . This can be ensured if the weight of each task is restricted to be

at most q
q+1 . We next show that a weight restriction of q+2

q+3 per task is sufficient to guarantee a tardiness of q quanta. This
restriction is stated below.

(W) The weight of each task is at most q+2
q+3 .

In what follows, we prove the following theorem.
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Table 1
Counterexamples to show that tardiness under EPDF can exceed three.

Task set Util.
(M)

Tardiness
(in quanta)# of tasks weight

τ1 4 1/2 10 2 at 50
3 3/4
6 23/24

τ2 4 1/2 19 3 at 963
3 3/4
5 23/24

10 239/240

τ3 4 1/2 80 4 at 43,204
3 3/4
3 23/24
1 31/32
4 119/120
4 239/240
6 479/480
8 959/960

15 1199/1200
15 2399/2400
20 4799/4800

Fig. 5. Counterexample to prove that tardiness under EPDF can exceed one quantum. 13 periodic tasks with total utilization ten are scheduled on ten
processors. In the schedule, tasks of the same weight are shown together as a group. Each column corresponds to a time slot. The PF-window of each
subtask is shown as a sequence of dashes that are aligned. An integer value n in slot t means that n tasks in the corresponding group have a subtask
scheduled at t . Subtasks that miss deadlines are shown scheduled after their windows. In this schedule, 11 subtasks miss their deadlines at time 48. Hence,
tardiness is 2 quanta for at least one subtask.

Theorem 2. Tardiness under EPDF is at most q quanta, where q � 1, for every GIS task system that is feasible on M � 3 processors
and satisfies (W).

We use a setup similar to that used by Srinivasan and Anderson in [10] and [11] to prove the above theorem. Though the
setup is similar and some fundamental properties are applicable, there are significant differences in the core of the proof.

Our proof is by contradiction, hence, assume Theorem 2 does not hold. This assumption implies that there exists a q � 1,
a time td , and a concrete task system σ defined as follows.

Definition 3. td is the earliest deadline of a subtask with a tardiness of q + 1 under EPDF in any feasible GIS task system
satisfying (W), i.e., there exists some such task system with a subtask with deadline at td and tardiness q + 1, and there
does not exist any such task system with a subtask with deadline prior to td and a tardiness of q + 1.

Definition 4. σ is a feasible concrete GIS task system satisfying (W) with the following properties.

(S1) A subtask in σ with deadline at td has a tardiness of q + 1 under EPDF.
(S2) No feasible concrete task system satisfying (W) and (S1) releases fewer subtasks in [0, td) than σ .
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In what follows, let S ′ denote an EPDF schedule for σ in which a subtask of σ with deadline at td has a tardiness of
q + 1.

By (S1) and (S2), exactly one subtask in σ has a tardiness of q + 1: if several such subtasks exist, then all but one can be
removed and the remaining subtask will still have a tardiness of q + 1, contradicting (S2). Similarly, a subtask with deadline
later than td cannot impact how subtasks with deadlines at or before td are scheduled. Therefore, no subtask in σ has a
deadline after td . Based on these facts, Lemma 6 below can be shown to hold. In proving Lemma 6, we use the following
claim, proved in Appendix A.

Claim 1. There is no hole in any slot in [td − 1, td + q) in S ′ .

We now show that LAG of σ at td is exactly qM + 1.

Lemma 6. LAG(σ , td, S ′) = qM + 1.

Proof. By Claim 1, there is no hole in any slot in [td, td + q) in S ′ . Further, the subtask with a tardiness of q + 1 and
deadline at td , as specified in (S1), is not scheduled until time td + q. (Also, recall that there is exactly one such subtask.)
Thus, because every subtask in σ has a deadline of at most td , there exist exactly qM + 1 subtasks with deadlines at most
td that are pending at td in S ′ . In the ideal schedule, all of these subtasks complete executing by time td . Therefore, the
LAG of σ at td , which is the difference between the ideal allocation and the allocation in S ′ in [0, td), is qM + 1. �

By Claim 1, there is no hole in slot td −1. Therefore, by the contrapositive of Lemma 4, LAG(σ , td −1, S ′) � LAG(σ , td, S ′),
which, by Lemma 6, is qM + 1. Thus, because LAG(σ ,0, S ′) = 0, there exists a time t , where 0 � t < td − 1 such that
LAG(σ , t, S ′) < qM + 1 and LAG(σ , t + 1, S ′) � qM + 1. This further implies the existence of a time 0 � th < td − 1, a
concrete task system τ , and an EPDF schedule S for τ defined as follows.

Definition 5. th , where 0 � th < td − 1, is the earliest time such that the LAG in any EPDF schedule for any feasible concrete
GIS task system satisfying (W) is at least qM + 1 at th + 1.

Definition 6. τ is a feasible concrete GIS task system satisfying (W) with the following properties.

(T1) LAG(τ , th + 1, S) � qM + 1.
(T2) No feasible concrete task system satisfying (W) and (T1) releases fewer subtasks than τ .
(T3) No feasible concrete task system satisfying (W), (T1), and (T2) has a larger rank than τ where the rank of a task system

is the sum of the eligibility times of all its subtasks, i.e., rank(τ , t) = ∑
{Ti∈τ } e(Ti).

(T2) can be thought of as identifying a minimal task system in the sense of having LAG exceed qM + 1 at the earliest
possible time with the fewest number of subtasks, subject to satisfying (W). As already explained, if Theorem 2 does not
hold for all task systems satisfying (W), then there exists some task system whose LAG is at least qM + 1. Therefore,
some task system satisfying (W), (T1), and (T2) necessarily exists. (T3) further restricts the nature of such a task system by
requiring subtask eligibility times to be spaced as much apart as possible.

We next prove some properties about the subtasks of τ scheduled in S .

Lemma 7. Let Ti be a subtask in τ . Then, the following properties hold for Ti in S .

(a) If T i is scheduled at t, then e(Ti) � min(r(Ti), t).
(b) If T i is scheduled before td, then the tardiness of Ti is at most q.

Proof of part (a). Suppose e(Ti) is not equal to min(r(Ti), t). Then, by (3) and because Ti is scheduled at t , it is before
min(r(Ti), t). Hence, simply changing e(Ti) so that it equals min(r(Ti), t) will not affect how Ti or any other subtask is
scheduled. Therefore, the actual allocations in S to every task, and hence, the lag of every task, will remain unchanged.
Therefore, the LAG of τ at th + 1 will still be at least qM + 1. However, changing the eligibility time of Ti increases the rank
of the task system, and hence, (T3) is contradicted. �
Proof of part (b). It follows from Definition 3. �

In what follows, we show that if (W) is satisfied, then there does not exist a time th as defined in Definition 5, that is,
we contradict its existence, and in turn prove Theorem 2. For this, we deduce the LAG of τ at th + 1 by determining the
lags of the tasks in τ . But first, a brief digression on subtask categorization that will help improve the accuracy with which
task lags are bound.



U.C. Devi, J.H. Anderson / Journal of Computer and System Sciences 75 (2009) 388–420 399
3.1. Categorization of subtasks

As can be seen from (13) and (6), the lag of a task T at t depends on the allocations that subtasks of T receive in each
time slot until t in the ideal schedule. Hence, a tight estimate of such allocations is essential to bounding the lag of T
reasonably accurately. If a subtask’s index is not known, then (6), which can otherwise be used to compute the allocation
received by any subtask in any slot exactly, is not of much help. Hence, in this subsection, we define terms that will help in
categorizing subtasks, and then derive upper bounds for the allocations that these categories of subtasks receive in certain
slots in the ideal schedule.

3.1.1. k-dependent subtasks
The subtasks of a heavy task with weight in the range [1/2,1) can be divided into “groups” based on their group

deadlines in a straightforward manner: place all subtasks with identical group deadlines in the same group and identify the
group using the smallest index of any subtask in that group. For example, in Fig. 2, G1 = {T1, T2}, G3 = {T3, T4, T5}, and
G6 = {T6, T7, T8}. If there are no IS separations or GIS omissions among the subtasks of a group, then a deadline miss by
q quanta for a subtask Ti will necessarily result in a deadline miss by at least q quanta for the subsequent subtasks in Ti ’s
group. Hence, a subtask T j is dependent on all prior subtasks in its group for not missing its deadline. If T is heavy, we
say that T j is k-dependent, where k � 0, if T j is the (k + 1)st subtask in its group, computed assuming all subtasks are
present (that is, as in the determination of group deadlines, even if T is GIS and some subtasks are omitted, k-dependency
is determined assuming there are no omissions).

Recall that by Lemma 1, all subtasks of a heavy task with weight less than one are of length two or three. Further, note
that in each group, each subtask except possibly the first is of length two. This implies that for a periodic task the deadlines
of any two successive subtasks that belong to the same group differ by exactly one. Also, in each group, each subtask except
possibly the final subtask has a b-bit of one. Finally, if the final subtask of a group has a b-bit of one, then the first subtask
of the group that follows is of length three. These properties are summarized in the following lemma.

Lemma 8. The following properties hold.

(a) Let T be a heavy task with wt(T ) < 1 and let Ti be a 0-dependent subtask of T . Then, one of the following holds: (i) i = 1;
(ii) b(Ti−1) = 0; (iii) |ω(Ti)| = 3.

(b) If T i is a k-dependent subtask of a periodic task T , where i � 2 and k � 1, then d(Ti) = d(Ti−1) + 1 and r(Ti) = d(Ti−1) − 1.
(c) Let Ti , where i > 1, be a k-dependent subtask of T with wt(T ) < 1. If k � 1, then |ω(Ti)| = 2 and b(Ti−1) = 1.

If a task T is light, then we simply define all of its subtasks to be 0-dependent. In this case, each subtask is in its own
group.

3.1.2. Miss initiators
A subtask scheduled at t and missing its deadline by c quanta, where c � 1, is referred to as a miss initiator by c (or a

c-MI, for short) for its group, if no subtask of the same task is scheduled at t − 1. (A miss initiator by q, i.e., a q-MI, will
simply be referred to as an MI.) Thus, a subtask is a c-MI if it misses its deadline by c quanta and is either the first subtask
in its group to do so or separated from its predecessor by an IS or GIS separation, and its predecessor is not scheduled in
the immediately preceding slot. Such a subtask is termed a miss initiator by c because in the absence of future separations,
it causes all subsequent subtasks in its group to miss their deadlines by c quanta as well. Several examples of MIs for q = 1
are shown in Fig. 6.

3.1.3. Successors of miss initiators
The immediate successor Ti+1 of a c-MI Ti is called a successor of a c-MI (or c-SMI, for short) if tardiness(Ti+1) =

tardiness(Ti) = c, S(Ti+1, t) = 1 ⇒ S(Ti, t − 1) = 1, and Ti is a c-MI. (A successor of a miss initiator by q, i.e., a q-SMI,
will simply be referred to as an SMI.) Fig. 6 shows several examples for q = 1. Note that for Ti+1 to be a c-SMI, its prede-
cessor in S must be Ti , rather than some lower-indexed subtask of T . Also note that a c-SMI is at least 1-dependent.

The lemma below follows immediately from Lemma 8(a), which by (1) implies that the deadline of the first subtask of a
group is greater than that of the final subtask of the preceding group by at least two.

Lemma 9. Let Ti be a subtask that is scheduled at t and let Ti ’s tardiness be c > 0 quanta. If T j , where j < i, is scheduled at t − 1 and
T j does not belong to the same dependency group as Ti , then the tardiness of T j is at least c + 1.

The next lemma bounds the allocation received by a k-dependent subtask in the first slot of its window in the ideal
schedule, and is proved in Appendix A.
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Fig. 6. Possible schedules for the second job of (a) a periodic and (b) a GIS task of weight 7/9 under EPDF. Subtasks are scheduled in the slots marked
by an X. Solid (dotted) lines indicate slots that lie within (outside) the window of a subtask. A subtask scheduled in a dotted slot misses its deadline. In
(a), T8 and T12 are MIs, T9 and T13 are SMIs, and the remaining subtasks fall within neither category. T10 and T14 have a tardiness of one, and T11 has a
tardiness of zero. In (b), T8, T9, T11, and T13 are MIs, and T10 and T14 are SMIs. Note that T8 and T9 (T11 and T13) belong to the same group G8 (G11).
Thus, if there are IS separations, there may be more than one MI in a group.

Lemma 10. The allocation received by a k-dependent subtask in its first slot in the ideal schedule are as follows.

(a) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a periodic task T with wt(T ) < 1
in the first slot of its window is at most k · T .e

T .p − (k − 1) − 1
T .p , for all k � 0.

(b) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a GIS task T in the first slot of its
window is at most k · T .e

T .p − (k − 1) − 1
T .p , for all k � 0.

(c) Let Ti , where i � k + 1 and k � 1, be a subtask of T with wt(T ) < 1 such that |ω(Ti)| � 3 and b(Ti−1) = 1. Let the number of
subtasks in Ti−1 ’s dependency group be at least k. Then, A(ideal, Ti, r(Ti)) � k · T .e

T .p − (k − 1) − 1
T .p .

The next lemma bounds the lag of a task at time t , based on the k-dependency of its last-scheduled subtask. This is also
proved in Appendix A.

Lemma 11. Let Ti be a k-dependent subtask of a task T for k � 0, and let the tardiness of Ti be s for some s � 1 (that is, T i is scheduled
at time d(Ti) + s − 1). Then lag(T ,d(Ti) + s) < (k + s + 1) · wt(T ) − k.

3.2. Subclassification of tasks in A(t)

Recall from Section 2 that a task in A(t) is scheduled in slot t . We further classify tasks in A(t), based on the tardiness
of their subtasks scheduled at t , as follows.

A0(t): Includes T in A(t) iff its subtask scheduled at t has zero tardiness.
Aq(t): Includes T in A(t) iff its subtask scheduled at t has a tardiness of q.
Aq−1(t), q > 1: Includes T in A(t) iff its subtask scheduled at t has a tardiness greater than 0 but less than q.

Aq(t) is further partitioned into A0
q(t), A1

q(t), and A2
q(t).

A0
q(t): Includes T in Aq(t) iff its subtask scheduled at t is an MI.

A1
q(t): Includes T in Aq(t) iff its subtask scheduled at t is an SMI.

A2
q(t): Includes T in Aq(t) iff its subtask scheduled at t is neither an MI nor an SMI.

A0
q−1(t),q > 1: Includes T in Aq−1(t) iff its subtask scheduled at t is a c-MI, where 0 < c < q.

From the above, we have the following:

A0(t) ∪ Aq(t) ∪ Aq−1(t) = A(t) and A0
q(t) ∪ A1

q(t) ∪ A2
q(t) = Aq(t), (25)

A0(t) ∩ Aq(t) = Aq(t) ∩ Aq−1(t) = Aq−1(t) ∩ A0(t) = ∅, (26)

A0
q(t) ∩ A1

q(t) = A1
q(t) ∩ A2

q(t) = A2
q(t) ∩ A0

q(t) = ∅. (27)
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3.3. Task lags by task classes and subclasses

By the definition there of th in Definition 5, LAG(τ , th + 1) > LAG(τ , th). Hence, by Lemma 4, the following holds.

(H) There is at least one hole in slot th .

The next lemma gives bounds on the lags of tasks in A(t), B(t), and I(t) at t + 1, where t � th is a slot with a hole, and
hence, the lemma holds for t = th , as well.

Lemma 12. Let t � th be a slot with a hole. Then, the following bounds hold for lag at t + 1 of a task T depending on whether it is
scheduled at t and the type of its subtask scheduled at that time.

(a) (From [11].) For T ∈ I(t), lag(I, t + 1) = 0.
(b) (From [11].) For T ∈ B(t), lag(B, t + 1) � 0.
(c) (From [6].) For T ∈ A0(t), lag(T , t + 1) < wt(T ).
(d) For T ∈ A0

q(t), lag(T , t + 1) < (q + 1) · wt(T ).

(e) For T ∈ A1
q(t), lag(T , t + 1) < (q + 2) · wt(T ) − 1.

(f) For T ∈ A2
q(t), lag(T , t + 1) < (q + 3) · wt(T ) − 2.

(g) For T ∈ Aq−1(t), lag(T , t + 1) < q · wt(T ).

Proof. Parts (a) and (b) are proved in [11]. To see why they hold, note that no task in B(t) or I(t) is scheduled at t . Because
there is a hole in t , the critical subtask of a task in B(t) is scheduled before t; similarly, the latest subtask of a task in I(t)
with release time at or before t should have completed execution by t . Hence, such tasks cannot be behind with respect to
the ideal schedule. Part (c) is proved in [6]. The remaining parts are proved below. �
Proof of part (d). If T ∈ A0

q(t), then the subtask Ti of T scheduled at t is an MI, and d(Ti) = t − q + 1. Further Ti is k-
dependent, where k � 0. Hence, by Lemma 11, lag(T , t + 1) is less than (k + q + 1) · wt(T ) − k, which (because wt(T ) � 1) is
at most (q + 1) · wt(T ), for all k � 0. �
Proof of part (e). If T ∈ A1

q(t), then the subtask Ti of T scheduled at t is an SMI, and is k-dependent for k � 1. Also,
d(Ti) = t − q + 1. Thus, by Lemma 11, lag(T , t + 1) < (k + q + 1) · wt(T ) − k � (q + 2) · wt(T ) − 1 for all k � 1 (because
wt(T ) � 1). �
Proof of part (f). Similar to that of part (e). �
Proof of part (g). Let Ti be T ’s subtask scheduled at t and let s denote the tardiness of Ti . Then, t + 1 = d(Ti) + s. Let Ti be
k-dependent, where k � 0. By the definition of Aq−1, 0 < s < q holds, and by Lemma 11, lag(T ,d(Ti) + s) = lag(T , t + 1) <

(k + s + 1) · wt(T ) − k � (k + q) · wt(T ) − k � q · wt(T ), for all k � 0. �
3.4. Some auxiliary lemmas

In proving Theorem 2, we also make use of the following three lemmas, established in prior work by Srinivasan and
Anderson.

Lemma 13. (See Srinivasan and Anderson [10].) If LAG(τ , t + 1) > LAG(τ , t), then B(t) �= ∅.

The following is an intuitive explanation for why Lemma 13 holds. Recall from Section 2 that B(t) is the set of all tasks
that are active but not scheduled at t . Because e(Ti) � r(Ti) holds, by Definition 1 and (6), only tasks that are active at t
may receive positive allocations in slot t in the ideal schedule. Therefore, if every task that is active at t is scheduled at t ,
then the total allocation in S cannot be less than the total allocation in the ideal schedule, and hence, by (17), LAG cannot
increase across slot t .

Lemma 14. (See Srinivasan and Anderson [10].) Let t < td be a slot with holes and let T ∈ B(t). Then, the critical subtask at t of T is
scheduled before t.

To see that the above lemma holds, let Ti be the critical subtask of T at t . By its definition, the IS-window of Ti overlaps
slot t , but T is not scheduled at t . Also, there is at least a hole in t . Because EPDF does not idle a processor while there is
a task with an outstanding execution request, Ti is thus scheduled before t .
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Lemma 15. (See Srinivasan and Anderson [10].) Let U j be a subtask that is scheduled in slot t′ , where t′ � t � th and let there be a
hole in t. Then, d(U j) � t + 1.

This lemma is true because it can be shown that if d(U j) > t + 1 holds, then U j has no impact on how subtasks are
scheduled after t . In particular, it can be shown that even if U j is removed, no subtask scheduled after t can be scheduled
at or before t . Therefore, it can be shown that if the lemma does not hold, then the GIS task system obtained from τ by
removing U j also has a LAG at least qM + 1 at th + 1, which is a contradiction to (T2).

Arguments similar to those used in proving the above lemma can be used to show the following. This lemma is proved
in [6].

Lemma 16. (From [6].) Let t < td be a slot with holes. Let U j be a subtask that is scheduled at t and let the tardiness of U j be zero.
Then, d(U j) = t + 1 and b(U j) = 1.

In the rest of this subsection, we will establish three more lemmas for later use. But first, a couple of definitions.
By Definition 5, LAG(τ , th + 1) > LAG(τ , th). Therefore, by Lemma 13, B(th) �= ∅. By (H), there is at least one hole in th .

Hence, by Lemma 14, the critical subtask at th of every task in B(th) is scheduled before th . The next definition identifies
the latest time at which a critical subtask at th of any task in B(th) is scheduled.

Definition 7. tb denotes the latest time before th at which the subtask that is critical at th of any task in B(th) is scheduled.

U and U j are henceforth to be taken as defined below.

Definition 8 (U and U j ). U denotes a task in B(th) with a subtask U j that is critical at th scheduled at tb .

The lemma below shows that the deadline of the critical subtask at th of every task in B(th) is at th + 1.

Lemma 17. Let T be a task in B(th) and let Ti be T ’s critical subtask at th. Then, d(Ti) = th + 1.

Proof. Because T is in B(th), T is active at th , but is not scheduled at th . Hence, Ti , which is critical at th , should have
been scheduled earlier. In this case, by Lemma 15, d(Ti) � th + 1 holds. However, since Ti is T ’s critical subtask at th , by
Definition 2, d(Ti) � th + 1 holds. Therefore, d(Ti) = th + 1 follows. �

The following lemma shows that at least one subtask scheduled in th has a tardiness of zero, i.e., |A0(th)| � 1. It is proved
in Appendix A.

Lemma 18. There exists a subtask W� scheduled at th with e(W�) � tb , d(W�) = th + 1, and S(W , t) = 0, for all t ∈ [tb, th). Also,
there is no hole in any slot in [tb, th). (Note that, by this lemma, A0(th) �= ∅.)

The next lemma establishes some properties with respect to a slot in which at least one MI is scheduled. It is also proved
in Appendix A.

Lemma 19. Let tm � th be a slot in which an MI is scheduled. Then, the following hold.

(a) For all t, where tm − (q + 2) < t < tm, there is no hole in slot t, and for each subtask Vk that is scheduled in t, d(Vk) � tm − q + 1.
(b) Let W be a task in B(tm) and let the critical subtask W� of W at tm be scheduled before tm. Then, W� is scheduled at or before

tm − (q + 2).

3.5. Core of the proof

Having classified the tasks at th and determined their lags at th +1, we next show that if (W) holds, then LAG(τ , th +1) <

M + 1 in each of the following cases.
For conciseness, in what follows, we denote subsets A(th), B(th), and I(th) as A, B , and I , respectively. Subsets Aq−1(th)

and Aq(th) and their subsets are similarly denoted without the time parameter.

Case A: Aq = ∅.
Case B: A0

q �= ∅ or (A1
q �= ∅ and A0

q−1 �= ∅).

Case C: A0
q = ∅ and A1

q �= ∅ and A0
q−1 = ∅.

Case D: A0
q = A1

q = ∅.
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The following notation is used to denote subset cardinality:

a0 = |A0|; aq = |Aq|; a0
q = ∣∣A0

q

∣∣; a1
q = ∣∣A1

q

∣∣; a2
q = ∣∣A2

q

∣∣;
a0

q−1 = ∣∣A0
q−1

∣∣; aq−1 = |Aq−1|.
h is defined as follows (there is no correspondence between h as defined here and the subscript h in th . The subscript h in
th is just an indication that th is a slot with holes):

h
def= number of holes in th.

Because there is at least one hole in th

h > 0. (28)

In the remainder of this paper, let Wmax denote the maximum weight of any task in τ . That is,

Wmax = max
T ∈τ

{
wt(T )

}
. (29)

In each of the above cases, LAG(τ , th + 1) can be expressed as follows:

LAG(τ , th + 1) =
∑
T ∈τ

lag(T , th + 1)

�
∑

T ∈A0

lag(T , th + 1) +
∑

T ∈Aq−1

lag(T , th + 1) +
∑

T ∈A0
q

lag(T , th + 1)

+
∑

T ∈A1
q

lag(T , th + 1) +
∑

T ∈A2
q

lag(T , th + 1)
(
by (22), (23), (25), and Lemmas 12(a) and (b)

)

<
∑

T ∈A0

wt(T ) +
∑

T ∈Aq−1

q · wt(T ) +
∑

T ∈A0
q

(q + 1) · wt(T )

+
∑

T ∈A1
q

(
(q + 2) · wt(T ) − 1

) +
∑

T ∈A2
q

(
(q + 3) · wt(T ) − 2

) (
by Lemmas 12(c)–(g)

)
.

Using (29), LAG(τ , th + 1) can be bounded as

LAG(τ , th + 1)

< a0 · Wmax + aq−1 · q · Wmax + a0
q(q + 1)Wmax + a1

q

(
(q + 2)Wmax − 1

) + a2
q

(
(q + 3)Wmax − 2

)
(30)

�
{

a0 · Wmax + a0
q · (q + 1)Wmax + a1

q · ((q + 2)Wmax − 1) + (aq−1 + a2
q) · ((q + 3)Wmax − 2), Wmax � 2

3 ,

a0 · (2/3) + a0
q · (q + 1)(2/3) + a1

q · ((q + 2)(2/3) − 1) + (aq−1 + a2
q) · (q · (2/3)), Wmax < 2

3(
because (q + 3)Wmax − 2 � q · Wmax for Wmax � 2/3

)
. (31)

Note that though (q + 3)Wmax − 2 < q · Wmax holds, for Wmax < 2/3, (q + 3) · (2/3) − 2 = (2/3) · q > q · Wmax holds for
all Wmax < 2/3. Therefore, if the values of a0, aq−1, and ai

q are not dependent on whether Wmax � 2/3 or Wmax < 2/3,
determining a bound on LAG(τ , th + 1) using the expression corresponding to Wmax � 2/3 in (31) (of course, assuming that
Wmax � 2/3) serves as an upper bound for LAG when Wmax < 2/3. Hence, later in the paper, when a0, aq−1, and ai

q are not
dependent on Wmax, we bound LAG(τ , th + 1) in this way.

The total number of processors, M , expressed in terms of the number of subtasks in each subset of A scheduled at th ,
and the number of holes in th , is as follows:

M = a0 + aq−1 + a0
q + a1

q + a2
q + h. (32)

3.6. Case A: Aq = ∅

Case A is dealt with as follows.

Lemma 20. If Aq = ∅, then LAG(τ , th + 1) < qM + 1.
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Proof. If Aq = ∅, then

LAG(τ , th + 1) < a0 · Wmax + aq−1 · q · Wmax
(
by (30) and a0

q = a1
q = a2

q = 0
)

� a0 · q · Wmax + aq−1 · q · Wmax

< (M − h) · q · Wmax
(
by (32), a0 + aq−1 = M − h for this case

)
< qM + 1. �

Hence, if no subtask with a tardiness of q is scheduled in th , then (T1) is contradicted.

3.7. Case B: A0
q �= ∅ or (A1

q �= ∅ and A0
q−1 �= ∅)

By Lemma 12(d), lag(T , th + 1) could be as high as (q + 1) · wt(T ), if the subtask Ti of T scheduled at th is an MI, i.e.,
is in A0

q . Therefore, if a0
q is large, then LAG at th + 1 could exceed qM + 1. However, as we show below, if the number

of MIs and SMIs scheduled at th is large, then the number of tasks that are inactive at th is also large, which can in
turn be used to show that LAG does not increase across th . Specifically, we show that if a0

q + a1
q > (q + 1)(h − 1), then

LAG(τ , th + 1) � LAG(τ , th) < qM + 1, contradicting (T1). (Otherwise, the number of MIs and SMIs is not large enough for
LAG to equal or exceed qM + 1.)

We begin by giving a lemma concerning the sum of the weights of tasks in I .

Lemma 21. If LAG(τ , th + 1) > LAG(τ , th), then
∑

V ∈I wt(V ) < h.

Proof. By (17),

LAG(τ , th + 1) = LAG(τ , th) +
∑
T ∈τ

(
A(ideal, T , th) − S(T , th)

)
= LAG(τ , th) +

∑
T ∈A∪B

(
A(ideal, T , th)

) − (M − h)

(
by (23) and A(ideal, T , th) = 0 for T in I, and (32)

)
� LAG(τ , th) +

∑
T ∈A∪B

wt(T ) − (M − h)
(
by (7)

)
.

If LAG(τ , th + 1) > LAG(τ , th), then by the derivation above,∑
T ∈A∪B

wt(T ) > M − h. (33)

By (5), (22), and (23),
∑

T ∈I wt(T ) � M − ∑
T ∈A∪B wt(T ), which by (33) implies that

∑
T ∈I wt(T ) < h. �

We next determine the largest number of MIs and SMIs that may be scheduled at th , for
∑

T ∈I wt(T ) < h to hold. We
begin with a lemma that gives the latest time that a subtask of a task in B may be scheduled if a0

q > 0 or (a1
q > 0 and

a0
q−1 > 0).

Lemma 22. If a0
q > 0 (that is, an MI is scheduled at th), or (a1

q > 0 and a0
q−1 > 0) (that is, an SMI, and a c-MI, where 0 < c < q, is

scheduled at th), then subtask U j defined by Definition 8 is scheduled no later than th − (q + 2), i.e., tb � th − (q + 2).

Proof. If a0
q > 0 holds, then this lemma is immediate from Definitions 8, 7, and Lemma 19(b). (Note that Definitions 8 and 7

imply that U j is scheduled before th .)
If a0

q−1 > 0 holds, then a c-MI, where 0 < c < q, say Ti , is scheduled at th . Hence, d(Ti) = th + 1 − c � th holds. By the
definition of c-MI, the predecessor of Ti is not scheduled at th − 1. Hence, the deadline of every subtask scheduled at th − 1
is at most th . By Definition 2, d(U j) � th + 1. Therefore, U j is not scheduled at th − 1.

If a1
q > 0 holds, then an SMI is scheduled at th , and its predecessor, which is an MI, is scheduled at th − 1. Therefore, by

Lemma 19(b), U j is not scheduled in [th − 1 − (q + 1), th − 1) = [th − (q + 2), th − 1).
Thus, if both a0

q−1 > 0 and a1
q > 0 hold, U j is not scheduled later than th − (q + 3). �

The lemma that follows is used to identify tasks that are inactive at th .

Lemma 23. Let T be a task that is not scheduled at th. If T is scheduled in any of the slots in [tb + 1, th), then T is in I .
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Proof. T clearly is not in A. Because T is scheduled in [tb + 1, th), T is also not in B , by Definition 7. �
In the rest of this subsection, we let s denote the number of slots in [tb + 1, th). That is,

s
def= th − tb − 1 � q + 1 (by Lemma 22). (34)

We now determine a lower bound on the number of subtasks of tasks in I that may be scheduled in [tb + 1, th) as a
function of a0

q , a1
q , h, and s. For this purpose, we assign subtasks scheduled in [tb + 1, th) to processors in a systematic way.

This assignment is only for accounting purposes; subtasks need not be bound to processors in the actual schedule.

3.7.1. Processor groups
The assignment of subtasks to processors is based on the tasks scheduled at th . The M processors are partitioned into

four disjoint sets, P1, P2, P3, and P4, based on the tasks scheduled at th , as follows.

P1: By Lemma 18, there is at least one subtask W� scheduled at th such that e(W�) � tb and S(W , t) = 0, for t in [tb, th).
We assign one such subtask to the lone processor in this group. Hence, |P1| = 1.

P2: The h processors that are idle at th comprise this group. Thus, |P2| = h.
P3: This group consists of the a0

q + a1
q processors on which the a0

q MIs and a1
q SMIs are scheduled. Because either a0

q > 1 or

a1
q > 1 holds, |P3| � 1. τ 3 denotes the subset of all tasks scheduled on processors in P3 at th .

P4: Processors not assigned to P1, P2, or P3 belong to this group. τ 4 denotes the subset of all tasks scheduled on processors
in P4 at th .

3.7.2. Subtask assignment in [tb + 1, th)

Subtasks scheduled in [tb + 1, th) are assigned to processors by the following rules. Tasks in τ 3 and τ 4 are assigned to
the same processor that they are assigned to in th , in every slot in which they are scheduled in [tb + 1, th). (It is trivial
that such an assignment is possible since by the processor groups defined above, |τ 3| + |τ 4| = P3 + P4 � M − h − 1 < M .)
Subtasks of tasks not in τ 3 or τ 4 may be assigned to any processor.

The next three lemmas bound the number of subtasks of tasks in I scheduled in [tb + 1, th). These lemmas assume that
the assignment of subtasks to processors in [tb + 1, th) follows the rules described above. In these lemmas we assume that
either a0

q � 1 or (a1
q � 1 and a0

q−1 � 1) holds.

Lemma 24. The number of subtasks of tasks in I that are scheduled in [tb + 1, th) is at least s · (h + 1) + (a0
q + a1

q).

Proof. We first make the following two claims.

Claim 2. Let Ti be a subtask assigned to a processor in P1 or P2 in [tb + 1, th). Then, T is in I .

Proof. By our assignment of subtasks to processors, tasks assigned to processors in P1 or P2 in [tb +1, th) are not scheduled
at th . Therefore, T is not scheduled at th . Hence, by Lemma 23, T is inactive at th , i.e., is in I . �
Claim 3. At least one of the subtasks assigned to each processor in P3 in [tb + 1, th) is a subtask of a task in I .

Proof. Let P x
3 be any processor in P3, and let Ti be the subtask scheduled on P x

3 at th . Then, Ti is either an MI or an SMI. In
the former case, by the definition of an MI, S(T , th − 1) = 0, and in the latter, by the definition of an SMI, S(T , th − 2) = 0.
By Lemma 22, tb � th − (q + 2). Thus, since q � 1, and by Lemma 18, there is no hole in any slot in [tb, th), there is no hole
in slot th − 2 or th − 1. Thus, a subtask of a task V other than T is assigned to P x

3 in one of these two slots. By our subtask
assignment, V is not scheduled at th; thus, by Lemma 23, V ∈ I . �

The lemma follows from the definition of s in (34), and Claims 2 and 3 above. �
Lemma 25. The sum of the weights of the tasks in I is at least (h+1)·s

s+q+1 + a0
q+a1

q
s+q+1 .

Proof. Let Vk be a subtask of a task V in I that is scheduled in [tb +1, th). Then, by Definition 1, d(Vk) � th . By Definition 8,
U j is scheduled at tb , and by Definition 2, d(U j) � th + 1. Because Vk with an earlier deadline than U j is scheduled later
than tb , either r(Vk) � tb + 1 or Vk ’s predecessor V j , where j < k, is scheduled at tb . In the latter case, by Lemma 7(b),
tardiness(V j) � q, and hence, d(V j) � tb − q + 1, which, by Lemma 2, implies r(Vk) � tb − q. Thus, we have the following:

(∀Vk: V ∈ I :: ((u ∈ [tb + 1, th) ∧ S(Vk, u) = 1
) ⇒ (

r(Vk) � tb − q ∧ d(Vk) � th
)))

. (35)
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We next show that wt(V ) � V .n
s+q+1 , where V .n is the number of subtasks of V scheduled in [tb + 1, th). Let Vk and V�

denote the first and final subtasks of V scheduled in [tb + 1, th). Then, by (35), r(Vk) � tb − q and d(V�) � th . Hence,

d(V�) − r(Vk) � th − tb + q = s + q + 1
(
by the definition of s in (34)

)
. (36)

By (1),

d(V�) − r(Vk) =
⌈

�

wt(V )

⌉
−

⌊
k − 1

wt(V )

⌋
+ Θ(V�) − Θ(Vk)

�
⌈

�

wt(V )

⌉
−

⌊
k − 1

wt(V )

⌋ (
by � > k and (2)

)
. (37)

By (36) and (37), we have � �
wt(V )

	 − 
 k−1
wt(V )

� � s + q + 1, which implies �
wt(V )

− k−1
wt(V )

� s + q + 1, i.e.,

wt(V ) � � − k + 1

s + q + 1
� V .n

s + q + 1
(because V .n = � − k + 1 if V is periodic and V .n � � − k + 1 if V is IS or GIS).

Therefore, we have
∑

V ∈I wt(V ) �
∑

V ∈I
V .n

s+q+1 � (h+1)·s
s+q+1 + a0

1+a1
1

s+q+1 , where the last inequality is by Lemma 24. �
Lemma 26. If LAG(τ , th + 1) > LAG(τ , th) and either a0

q � 1 or (a1
q � 1 and a0

q−1 � 1), then a0
q +a1

q � min((h − 1)(q + 1)− 1, M −
h − 1).

Proof. By Lemma 21, if LAG(τ , th + 1) > LAG(τ , th), then
∑

V ∈I wt(V ) < h. By Lemma 25, (h+1)·s
s+q+1 + a0

q+a1
q

s+q+1 �
∑

V ∈I wt(V ).

Therefore, (h+1)·s
s+q+1 + a0

q+a1
q

s+q+1 < h, which implies that

a0
q + a1

q < h(q + 1) − s

� h(q + 1) − (q + 1)
(
by (34)

)
= (h − 1)(q + 1). (38)

Also, there are h holes in th , and by Lemma 18, a0 � 1. Therefore, by (32),

a0
q + a1

q � M − h − 1. (39)

Eqs. (38) and (39) imply that a0
q + a1

q � min((h − 1)(q + 1) − 1, M − h − 1). �
We now conclude Case B by establishing the following.

Lemma 27. If a0
q > 0 or (a1

q > 0 and a0
q−1 > 0), then LAG(τ , th + 1) < qM + 1.

Proof. Because Wmax < 1, assuming Wmax � 2/3 (because, as discussed earlier, a0, aq−1, and ai
q are not dependent on

Wmax), by (31), we have

LAG(τ , th + 1) < a0 · Wmax + (
(q + 1) · Wmax

) · (a0
q + a1

q

) + (
aq−1 + a2

q

) · ((q + 3) · Wmax − 2
)
. (40)

By Lemma 26, if LAG(τ , th + 1) > LAG(τ , th), then a0
q + a1

q � min((h − 1)(q + 1) − 1, M − h − 1). By Lemmas 12(a)–(g)

(and as can be seen from the coefficients of the ai terms in (40)), the lag bounds for tasks in A0
q ∪ A1

q are higher than those

for the other tasks. Hence, LAG(τ , th + 1) is maximized when a0
q + a1

q = min((h − 1)(q + 1) − 1, M − h − 1). We assume this
is the case. Note that

min
(
(h − 1)(q + 1) − 1, M − h − 1

) =
{

(h − 1)(q + 1) − 1, h � M+1+q
q+2 ,

M − h − 1, otherwise.
(41)

Based on (41), we consider two cases.

Case 1: h > M+1+q
q+2 . For this case, LAG is maximized when a0

q + a1
q = M − h − 1, and hence, by (32), a0 + aq−1 + a2

q =
M − h − (a0

1 + a1
1) = 1. Because, by Lemma 18, a0 > 0, we have a0 = 1, and hence, aq−1 = a2

q = 0. Substituting a0 = 1,

a2
q = aq−1 = 0, and a0

q + a1
q = M − h − 1 in (40), we have LAG(τ , th + 1) < Wmax + (q + 1) · Wmax · (a0

q + a1
q) = Wmax +

(q + 1) · Wmax · (M − h − 1) < Wmax + (q + 1) · Wmax · (M − M+q+1 − 1) (where the last inequality is by the condition of
q+2
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Case 1, namely, h >
M+1+q

q+2 ). If qM + 1 � LAG(τ , th + 1), then Wmax + (q + 1) · Wmax · (M − M+q+1
q+2 − 1) > qM + 1, which

implies that Wmax >
Mq(q+2)+q+2

M(q+1)2−(2q2+4q+1)
, which is greater than q+2

q+3 for all q � 1 and M � 2. This contradicts (W), and hence,
LAG(τ , th + 1) < qM + 1.

Case 2: h ��� M+1+q
q+2 . For this case, LAG is maximized when a0

q + a1
q = (h − 1)(q + 1) − 1. By (32), we have aq−1 + a2

q =
M − h − (a0 + a0

q + a1
q) = M − h − a0 − (hq + h − q − 2). Therefore, by (40),

LAG(τ , th + 1) < a0 · Wmax + (q + 1) · Wmax · (a0
q + a1

q

) + (
(q + 3) · Wmax − 2

) · (aq−1 + a2
q

)
= a0 · Wmax + (q + 1) · Wmax · (hq + h − q − 2)

+ (
(q + 3) · Wmax − 2

)
(M − 2h − a0 − hq + q + 2). (42)

If qM + 1 � LAG(τ , th + 1), then the expression on the right-hand side of (42) exceeds qM + 1, which implies that Wmax >
(q+2)M+2q+5−4h−2a0−2hq

(q+3)M+2q+4−5h−(2+q)a0−3hq . Let f
def= (q+2)M+2q+5−4h−2a0−2hq

(q+3)M+2q+4−5h−(2+q)a0−3hq , and let Y denote the denominator, (q + 3)M + 2q + 4 −
5h − (2 + q)a0 − 3hq, of f . To show that the lemma holds for this case, we show that unless Wmax exceeds q+2

q+3 , qM +
1 > LAG(τ , th + 1). For this purpose, we determine a lower bound to the value of f . Note that for a given number of
processors, M , and tardiness, q, f varies with a0 and h. Because a0

q + a1
q = (h − 1)(q + 1) − 1 > 0, we have h >

q+2
q+1 ; hence,

because h is integral, h � 2 holds. The first derivative of f with respect to h is M(q2+q−2)+a0(2q2+2q−2)+2q2+9q+9
Y 2 , which

is non-negative for all a0 � 0, and that with respect to a0 is M(q2+2q−2)+h(2−2q−2q2)+2q2+5q+2
Y 2 , which is non-negative for

h � M(q2+2q−2)+2q2+5q+2
2q2+2q−2

. Thus, f is minimized when h = 2, and because M(q2+2q−2)+2q2+5q+2
2q2+2q−2

� M+1+q
q+2 (where M+1+q

q+2 � h

holds for this case), when a0 = 1. When h = 2 and a0 = 1 hold, f = qM+2M−2q−5
qM+3M−5q−8 >

q+2
q+3 , for all M (since when h = 2 and

a0 = 1, we have M � 4). Hence, Wmax >
q+2
q+3 , which is a violation of (W), and the lemma follows for this case. �

Thus, if an MI or an SMI and a c-MI are scheduled in th , then (T1) is contradicted.

3.8. Case C: (A0
q = ∅ and A1

q �= ∅ and A0
q−1 = ∅)

For this case, we show that if LAG(τ , th + 1, S) > qM + 1, then there exists another concrete task system τ ′ , obtained
from τ by removing certain subtasks, such that LAG of τ ′ at th − 1 in an EPDF schedule S ′ is greater than qM + 1
contradicting the minimality of th (in Definition 5). Our approach is to identify task subsets, determine the lag for tasks in
each subset in S ′ at th − 1, and use task lags to determine the LAG of τ ′ at th − 1. We begin by defining needed subsets of
subtasks and tasks.

In this case, since no MI is scheduled in slot th , tb (in Definition 7) can be as late as th − 1. This is stated below:

tb � th − 1. (43)

Let t′
b be defined as follows.

Definition 9. t′
b denotes the latest time, if any, before th − 1 that a subtask with deadline at or after th is scheduled.

Since at least one SMI is scheduled at th , at least one MI is scheduled at th − 1. Therefore, by Lemma 19(a), the following
holds.

(C) The deadline of every subtask scheduled in any slot in [th − (q + 2), th − 1) is at or before th − q.

Since q � 1 holds, (C) implies the following:

when it exists, t′
b � th − (q + 3). (44)

Let τ 1
s through τ 8

s be subsets of subtasks defined as follows. In the definitions that follow, when we say that Ti is ready
at t′

b , we mean that e(Ti) � t′
b , and Ti ’s predecessor, if any, is scheduled before t′

b ,

τ 1
s

def= {
Ti

∣∣ Ti is either the critical subtask at th of a task in B(th) or the critical subtask at th − 1 of a task in

B(th − 1), t′
b exists, Ti is scheduled at or before t′

b, and T is not scheduled at th
}
,

τ 2
s

def= {
Ti

∣∣ d(Ti) � th, Ti is scheduled at th − 1, and T is not scheduled at th
}
,

τ 3
s

def= {
Ti

∣∣ T ∈ A0(th), Ti is scheduled at th, and Ti is ready at or before th − (q + 3) in S
}
,
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τ 4
s

def= {
Ti

∣∣ T ∈ A0(th), Ti is scheduled at th, and Ti is not ready at or before th − (q + 3) in S
}
,

τ 5
s

def= {
Ti

∣∣ T ∈ (
A1

q(th) ∪ A2
q(th) ∪ Aq−1(th)

)
, Ti is scheduled at th, and T is scheduled at th − 1

}
,

τ 6
s

def= {
Ti

∣∣ Ti is scheduled at th − 1, Ti /∈ τ 2
s

(
i.e., d(Ti) < th

)
, and T is not scheduled at th

}
,

τ 7
s

def= {
Ti

∣∣ Ti is the predecessor of a subtask in τ 1
s and d(Ti) = th

}
,

τ 8
s

def= {
Ti

∣∣ Ti is the predecessor of a subtask in τ 2
s and d(Ti) = th

}
.

Let τ i denote the set of all tasks with a subtask in τ i
s , for all 1 � i � 8. Note that τ 7 ⊆ τ 1 and τ 8 ⊆ τ 2 hold.

The following lemma establishes some properties concerning the subsets of subtasks and tasks defined above. A proof
can be found in Appendix A.

Lemma 28. The following properties hold for subsets τ i
s and τ i defined above, where 1 � i � 8.

(a) For every task T , there is at most one subtask in (τ 1
s ∪ τ 2

s ∪ τ 6
s ).

(b) Let Ti scheduled at th be the subtask of a task T in Aq(th) or Aq−1(th). Then, Ti is in τ 5
s .

(c) τ 7 ⊆ τ 1 and τ 8 ⊆ τ 2 .
(d) Subsets τ i , where 1 � i � 6, are pairwise disjoint.

Let

τ R
s

def= τ 1
s ∪ τ 2

s ∪ τ 3
s ∪ τ 7

s ∪ τ 8
s , (45)

and let τ ′ be a concrete GIS task system obtained from τ by removing all the subtasks in τ R
s . Let S ′ be an EPDF schedule

for τ ′ such that ties among subtasks with equal deadlines are resolved in the same way as they are resolved in S . Our
goal is to show that LAG(τ ′, th − 1, S ′) � qM + 1, and derive a contradiction to the minimality of th in Definition 5. For
this purpose, in the next few lemmas (proved in Appendix A), we establish lag bounds in S ′ for tasks with subtasks in the
subsets defined above. We will denote the ideal schedule for τ as idealτ and that for τ ′ as idealτ ′ .

Lemma 29. Let T be a task with a subtask in τ 1
s or τ 2

s . Then, lag(T , th − 1, S ′) = lag(T , th + 1, S).

Lemma 30. Let T be a task with a subtask in τ 3
s . Then, lag(T , th − 1, S ′) > lag(T , th + 1, S) − 1/(q + 2).

Lemma 31. Let T be a task with a subtask in τ 4
s . Then, lag(T , th − 1, S ′) � lag(T , th + 1, S) − 2 · Wmax + 1.

Lemma 32. Let T be a task with a subtask in τ 5
s . Then, lag(T , th − 1, S ′) � lag(T , th + 1, S) + 2 − 2 · Wmax .

Lemma 33. Let T be a task with a subtask in τ 6
s . Then, lag(T , th − 1, S ′) > lag(T , th + 1, S).

Let τ c = τ ′ \ (
⋃6

i=1 τi). Because τ and τ ′ are concrete instantiations of the same non-concrete task system, they both
contain the same tasks, and hence, τ c = τ \ (

⋃6
i=1 τi). We show the following concerning the lag of a task in τ c at th − 1

in S ′ . (This lemma is also proved in Appendix A.)

Lemma 34. Let T be a task in τ c . Then, lag(T , th − 1, S ′) = lag(T , th + 1, S).

Having determined bounds for the lags of tasks at th − 1 in S ′ , we now determine a lower bound for the LAG of τ ′ at
th − 1 in S ′ , and show that if (W) holds, then LAG(τ ′, th − 1, S ′) � qM + 1.

Lemma 35. If either (Wmax � q+3
2q+4 and a0 � (M−h)·(q+1)

q+2 ) or (Wmax >
q+3

2q+4 and a0 � 2(M − h)(1 − Wmax)), then LAG(τ ′, th −
1, S ′) � qM + 1.

Proof. By (16),

LAG(τ ′, th − 1, S ′) =
∑
T ∈τ ′

lag(T , th − 1, S ′)

=
∑

lag(T , th − 1, S ′) (by the construction of τ ′)

T ∈τ
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=
6∑

i=1

∑
T ∈τ i

lag(T , th − 1, S ′) +
∑
T ∈τ c

lag(T , th − 1, S ′)

(
by Lemmas 28(c) and (d), and because τ c = τ \

6⋃
i=1

τ i

)

�
∑

T ∈τ 1∪τ 2∪τ 6∪τ c

lag(T , th + 1, S) +
5∑

i=3

∑
T ∈τ i

lag(T , th − 1, S ′) (by Lemmas 29, 33, and 34)

�
6∑

i=1

∑
T ∈τ i

lag(T , th + 1, S) +
∑
T ∈τ c

lag(T , th + 1, S) − ∣∣τ 3
∣∣ · 1

q + 2

+ ∣∣τ 4
∣∣ · (1 − 2Wmax) + ∣∣τ 5

∣∣ · (2 − 2Wmax) (by Lemmas 30–32)

= LAG(τ , th + 1, S) − ∣∣τ 3
∣∣ · 1

q + 2
− ∣∣τ 4

∣∣ · (2Wmax − 1) + ∣∣τ 5
∣∣ · (2 − 2Wmax)(

by the definitions of sets τ i, where 1 � i � 6, and τ c). (46)

Note that∣∣τ 3
∣∣ + ∣∣τ 4

∣∣ = a0. (47)

By Lemma 28(b), |τ 5| = |Aq| + |Aq−1| = aq + aq−1. By the definitions of Aq , A0
q , A1

q , and A2
q , and by (25)–(27), aq = a0

q + a1
q +

a2
q . However, because no MI is scheduled at th by the conditions of Case C, a0

q = 0, and hence,∣∣τ 5
∣∣ = a1

q + a2
q + aq−1 = M − h − a0

(
by (32)

)
. (48)

We now consider the following two cases based on the statement of the lemma.

Case 1: W max > q+3
2q+4 and a0 ��� 2(M − h)(1 − W max). Since Wmax >

q+3
2q+4 , 2Wmax − 1 > 1

q+2 holds. By (46),

LAG(τ ′, th − 1, S ′) � LAG(τ , th + 1, S) − ∣∣τ 3
∣∣ · 1

q + 2
− ∣∣τ 4

∣∣ · (2Wmax − 1) + ∣∣τ 5
∣∣ · (2 − 2Wmax)

� LAG(τ , th + 1, S) − ∣∣τ 3
∣∣ · (2Wmax − 1) − ∣∣τ 4

∣∣ · (2Wmax − 1) + ∣∣τ 5
∣∣ · (2 − 2Wmax)(

because as mentioned above, 2Wmax − 1 >
1

q + 2

)
= LAG(τ , th + 1, S) − a0 · (2Wmax − 1) + (M − h − a0) · (2 − 2Wmax)

(
by (47) and (48)

)
= LAG(τ , th + 1, S) − a0 + (M − h) · (2 − 2Wmax)

� LAG(τ , th + 1, S)
(
because 2(M − h) · (1 − Wmax) � a0 for this case

)
� qM + 1

(
by (T1)

)
. (49)

Case 2: W max ��� q+3
2q+4 and a0 ��� (M−h)·(q+1)

q+2 . Since Wmax � q+3
2q+4 , 2 · Wmax − 1 � 1

q+2 holds. As with Case 1, by (46),

LAG(τ ′, th − 1, S ′) � LAG(τ , th + 1, S) − ∣∣τ 3
∣∣ · 1

q + 2
− ∣∣τ 4

∣∣ · (2Wmax − 1) + ∣∣τ 5
∣∣ · (2 − 2 · Wmax)

� LAG(τ , th + 1, S) − ∣∣τ 3
∣∣ · 1

q + 2
− ∣∣τ 4

∣∣ · 1

q + 2
+ ∣∣τ 5

∣∣ · (2 − 2 · Wmax)(
because 2 · Wmax − 1 � 1

q + 2

)

� LAG(τ , th + 1, S) − ∣∣τ 3
∣∣ · 1

q + 2
− ∣∣τ 4

∣∣ · 1

q + 2
+ ∣∣τ 5

∣∣ · 2q + 2

2(q + 2)(
because Wmax � q + 3

2(q + 2)

)

= LAG(τ , th + 1, S) − a0 · 1

q + 2
+ (M − h − a0) · q + 1

q + 2

(
by (47) and (48)

)
= LAG(τ , th + 1, S) − a0 + (M − h) · q + 1
q + 2
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� LAG(τ , th + 1, S)

(
because a0 � (M − h) · (q + 1)

q + 2
for this case

)
� qM + 1

(
by (T1)

)
. (50)

The lemma follows from (49) and (50), and by the conditions of Cases 1 and 2, respectively. �
In completing Case C, we make use of this auxiliary algebraic lemma, proved in Appendix A.

Lemma 36. The roots of f (Wmax)
def= 2(M − h)(q + 1)W 2

max − (q + 2)(M − h)Wmax − ((q − 1)M + 1 + h) = 0 are Wmax =
(q+2)(M−h)±

√
9q2(M−h)2+Δ

4(M−h)(q+1)
, where Δ = 4(M − h)(M(q − 1) + h(2q2 + q + 1) + 2q + 2).

We conclude this case by establishing the following lemma.

Lemma 37. If either (Wmax � q+3
2q+4 and a0 >

(M−h)·(q+1)
q+2 ) or (Wmax >

q+3
2q+4 and a0 > 2(M − h)(1 − Wmax)), then LAG(τ , th +

1, S) < qM + 1.

Proof. We consider two cases based on the statement of the lemma.

Case 1: W max > q+3
2q+4 and a0 > 2(M − h)(1 − W max). By (30),

LAG(τ , th + 1, S) < a0 · Wmax + a0
q(q + 1)Wmax + aq−1 · q · Wmax + a1

q

(
(q + 2)Wmax − 1

) + a2
q

(
(q + 3)Wmax − 2

)
< a0 · Wmax + a0

q(q + 1)Wmax + (
aq−1 + a1

q

)(
(q + 2)Wmax − 1

) + a2
q

(
(q + 3)Wmax − 2

)
(

by the conditions of Case 1, Wmax >
q + 3

2q + 4
� 1

2
; thus, q · Wmax < (q + 2)Wmax − 1 holds

)
< a0 · Wmax + a0

q(q + 1)Wmax + (
aq−1 + a1

q + a2
q

)(
(q + 2)Wmax − 1

)
(because Wmax < 1)

� a0 · Wmax + (M − h − a0) · ((q + 2)Wmax − 1
)

(
by (32) because a0

q = 0 by the conditions of Case C
)

= a0 · (1 − (q + 1)Wmax
) + (M − h) · ((q + 2)Wmax − 1

)
< 2(M − h)(1 − Wmax) · (1 − (q + 1)Wmax

) + (M − h) · ((q + 2)Wmax − 1
)

(
because Wmax >

q + 3

2q + 4
� 1

q + 1
for all q � 1, 1 − (q + 1)Wmax < 0; also,

by the conditions of Case 1, a0 > 2(M − h)(1 − Wmax)

)
= 2(M − h)(q + 1)W 2

max − (q + 2)(M − h)Wmax + M − h.

We next show that LAG(τ , th +1, S) < qM +1 holds (if (W) holds). Suppose to the contrary that LAG(τ , th +1, S) � qM +1;
then by the derivation above

2(M − h)(q + 1)W 2
max − (q + 2)(M − h)Wmax − (

(q − 1)M + 1 + h
)
> 0. (51)

By Lemma 36, the roots of f (Wmax) = 2(M − h)(q + 1)W 2
max − (q + 2)(M − h)Wmax − ((q − 1)M + 1 + h) = 0 are Wmax =

(q+2)(M−h)±
√

9q2(M−h)2+Δ

4(M−h)(q+1)
, where Δ = 4(M − h)(M(q − 1)+ h(2q2 + q + 1)+ 2q + 2). Let Wmax,1 = (q+2)(M−h)+

√
9q2(M−h)2+Δ

4(M−h)(q+1)

and Wmax,2 = (q+2)(M−h)−
√

9q2(M−h)2+Δ

4(M−h)(q+1)
. Since 0 < h < M and q � 1 hold, Δ > 0 holds, and hence,

√
9q2(M − h)2 + Δ is

greater than 3q(M −h). Note that Wmax,1 >
(q+2)(M−h)+3(M−h)q

4(M−h)(q+1)
= 4q+2

4q+4 > 0. Also, because h < M , 3q(M −h) � (q +2)(M −h)

for all q � 1. Therefore, Wmax,2 < 0. The first derivative of f (Wmax) with respect to Wmax is given by f ′(Wmax) = 4(M −
h)(q + 1)Wmax − (q + 2)(M − h), which is positive for Wmax >

q+2
4q+4 . Hence, f (Wmax) is an increasing function of Wmax for

Wmax � q+2
4q+4 ; further, the following hold: Wmax,1 >

4q+2
4q+4 >

q+2
4q+4 , f (Wmax,1) = 0, and f (Wmax) is quadratic. Therefore, we

have f (Wmax) < 0 for Wmax,2 < 0 < Wmax < Wmax,1. Because as mentioned earlier, Wmax,1 >
(q+2)(M−h)+3(M−h)q

4(M−h)(q+1)
= 4q+2

4q+4 >

q+2
q+3 , it follows that, for all 0 < Wmax � q+2

q+3 , f (Wmax) < 0. By (W), Wmax � q+2
q+3 holds, and hence, (51) does not hold,

implying that LAG(τ , th + 1) < qM + 1. Thus, by the conditions of Case 1, if Wmax >
q+3

2q+4 and a0 > 2(M − h)(1 − Wmax),
then LAG(τ , th + 1, S) < qM + 1 follows.
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Case 2: W max ��� q+3
2q+4 and a0 > (M−h)·(q+1)

q+2 . Because q+3
2q+4 � 2

3 , for all q � 1, q · Wmax � (q + 3)Wmax − 2 holds. Hence, by
(30), we have

LAG(τ , th + 1, S) < a0 · Wmax + (
aq−1 + a2

q

)
q · Wmax + a0

q(q + 1)Wmax + a1
q

(
(q + 2)Wmax − 1

)
= a0 · Wmax + (

aq−1 + a2
q

)
q · Wmax + a1

q

(
(q + 2)Wmax − 1

)
(
because a0

q = 0 by the conditions of Case C
)
. (52)

We consider two subcases based on the value of Wmax.

Subcase 2(a): 1
2 < W max ��� q+3

2q+4 . For this case, (q + 2)Wmax − 1 > q · Wmax holds. Hence, by (52), we have

LAG(τ , th + 1, S) < a0 · Wmax + (
aq−1 + a2

q + a1
q

)(
(q + 2)Wmax − 1

)
� a0 · Wmax + (M − h − a0) · ((q + 2)Wmax − 1

) (
by (32) because a0

q = 0
)

= a0 · (1 − (q + 1)Wmax
) + (M − h) · ((q + 2)Wmax − 1

)
. (53)

Let f (a0, Wmax)
def= a0 · (1 − (q + 1)Wmax) + (M − h) · ((q + 2)Wmax − 1), the right-hand side of the above inequality. Our

goal is to determine an upper bound for f (a0, Wmax). We first show that f (a0, Wmax) is an increasing function of Wmax for
all a0 � 0, and a decreasing function of a0, for any Wmax � 1

q+1 . (In the description that follows, we assume a0 and Wmax

are non-negative.) The first derivative of f (a0, Wmax) with respect to Wmax is (M − h)(q + 2) − a0(q + 1). Therefore, since
a0 � M − h and M − h > 0, it follows that (M − h)(q + 2) − a0(q + 1) is positive for all q � 0. Hence, f (a0, Wmax) is an
increasing function of Wmax for all valid a0. Further, f (a0, Wmax) is a non-decreasing function of a0 for all Wmax � 1

q+1 , and

is a decreasing function of a0 for all Wmax > 1
q+1 . Therefore, since Wmax � q+3

2q+4 , a0 � M − h, and a0 � 1 (by Lemma 18),

f (a0, Wmax) is maximized when either Wmax = q+3
2q+4 and a0 = 1 or Wmax = 1

q+1 and a0 = M − h. It can easily be verified

that f (a0,
q+3

2q+4 ) = a0 · (−q2−2q+1
2q+4 ) + M · ( q+1

2 ) − h · ( q+1
2 ) < qM + 1 for all a0 � 1. It can also be verified that f (a0,

1
q+1 ) =

M−h
q+1 < qM + 1 for all a0. Hence, f (a0, Wmax) < qM + 1, and therefore, LAG(τ , th + 1, S) < qM + 1 holds.

Subcase 2(b): W max ��� 1
2 . For this case, (q + 2)Wmax − 1 � q · Wmax holds. Hence, by (52), we have

LAG(τ , th + 1, S) < a0 · Wmax + (
aq−1 + a1

q + a2
q

) · q · Wmax

� a0 · Wmax + (M − h − a0) · q · Wmax
(
by (32) because a0

q = 0
)

= a0 · Wmax(1 − q) + (M − h) · q · Wmax

� (M − h) · q · Wmax (because q � 1)

< qM + 1.

By the reasoning in Subcases 2(a) and 2(b), it follows that if Wmax � q+3
2q+4 and a0 � (M−h)·(q+1)

q+2 , then LAG(τ , th + 1, S) <

qM + 1.

Finally, the lemma holds by the conclusions drawn in Cases 1 and 2. �
By Lemmas 35 and 37, for any a0 and Wmax, either LAG(τ , th + 1, S) < qM + 1 or LAG(τ ′, th − 1, S ′) � qM + 1 holds.

Thus, either (T1) or Definition 5 is contradicted.

3.9. Case D: (A0
q = A1

q = ∅)

Lemma 38. If A0
q = A1

q = ∅, then LAG(τ , th + 1) < qM + 1.

Proof. Because a0
q = a1

q = 0, and a0, aq−1, and a2
q are independent of Wmax, as explained earlier (when (31) was established),

we bound LAG(τ , th + 1) assuming Wmax � 2/3. Hence, by (31), and A0
q = A1

q = ∅, we have LAG(τ , th + 1) < a0 · Wmax +
((q + 3)Wmax − 2) · (a2

q + aq−1), which, by (32), equals a0 · Wmax + ((q + 3)Wmax − 2) · (M − h − a0).
Contrary to the statement of the lemma, assume LAG(τ , th + 1) � qM + 1. This assumption implies that a0 · Wmax + ((q +

3)Wmax − 2) · (M − h − a0) > qM + 1, which, in turn, implies that Wmax > f
def= (q+2)M−2h−2a0+1

(q+3)M−(q+3)h−(q+2)a0
. We now determine a

lower bound for f and show that f lies outside the range of values assumed for Wmax and arrive at a contradiction. Let Y
denote the denominator of f . The first derivative of f with respect to h is given by q(q+3)M−2a0+q+3

2 , which is non-negative

Y
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for all M � 1, a0 � 1, and q � 1. The first derivative of f with respect to a0 is given by M(q2+q−2)+2h+q+2
Y 2 , which is also

non-negative for all M � 1, q � 1, and h � 0. Hence, since h and a0 are greater than zero, f is minimized when h = a0 = 1,
for which f = (q+2)M−3

(q+3)M−2q−5 >
q+2
q+3 holds, for all q � 1, M > 1. This violates (W), and hence, our assumption is false, and the

lemma follows. �
By Lemmas 20, 27, 35, 37, and 38, if (W) is satisfied, then either LAG(τ , th + 1) < qM + 1 or there exists another task

system with LAG under EPDF at least qM + 1 at th − 1. Thus, either (T1) or the minimality of th is contradicted. So, task
system τ as defined in Definition 6 does not exist, and Theorem 2 holds.

Theorem 2 implies that if each task weight is at most Wmax, then tardiness under EPDF is at most � 3·Wmax−2
1−Wmax

	, and we
have the following corollary.

Corollary 1. If the weight of each task in a feasible GIS task system τ is at most Wmax , then EPDF ensures a tardiness bound of
max(1, � 3·Wmax−2

1−Wmax
	) for τ .

Proof. Assume to the contrary that the tardiness for some subtask in τ is q, where q > max(1, � 3·Wmax−2
1−Wmax

	). Then, q >

max(1, 3·Wmax−2
1−Wmax

) holds, which implies that q > 1 and Wmax <
q+2
q+3 . This contradicts Theorem 2. �

4. Conclusion

We have presented counterexamples that show that, in general, tardiness under the EPDF Pfair algorithm can exceed
a small constant number of quanta for feasible recurrent real-time task systems. Thus, the conjecture that EPDF ensures
a tardiness bound of one quantum for all feasible task systems is proved false. We have also presented sufficient per-task
utilization restrictions that are more liberal than those previously known for ensuring a tardiness of q quanta under EPDF,
where q � 1. EPDF is more efficient than known optimal Pfair algorithms and may be preferable for systems instantiated on
less-powerful platforms, systems with soft timing constraints, and systems whose task composition can change at run-time.

For q = 1, our result presents an improvement of 50% over the previous one. This improvement is mainly due to the
categorization of subtasks (presented in Section 3.1) and the ability to bound the number of miss initiators and successors
of miss initiators scheduled in a slot with a hole (Lemmas 21–26), and the technique of relating the lag of a task system at
a given time to that at an earlier time, developed for reasoning about Case C (presented in Section 3.8). Though we have
not shown the per-task utilization restriction derived to be tight and do not believe it to be the case, we do believe that
this result cannot be improved upon without adding significantly to the complexity of the analysis.
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Appendix A. Proofs omitted in the main text

In this appendix, we present all proofs omitted in the main paper. We begin with Claim 1.

A.1. Proof of Claim 1

Claim 1. There is no hole in any slot in [td − 1, td + q) in S ′ .

Proof. By Definition 3, (S1), and (S2), exactly one subtask in σ has a tardiness of q + 1. Let Ti denote that subtask. By (S1)
again, the deadline of Ti is at td , and hence, Ti is scheduled at time td + q.

The proof of the claim is by induction on decreasing time t . We start by showing that there is no hole in slot td + q − 1.

Base case: t = td + q − 1. Let Th denote the predecessor, if any, of Ti . Because the deadlines of any two successive subtasks
of the same task differ by at least one time unit, d(Th) � td − 1 holds. Therefore, by Definition 3, the tardiness of Th is at
most q, and Th completes executing by td + q − 1. Hence, no subtask of T is scheduled in slot td + q − 1. Thus, there is no
hole in slot td + q − 1; otherwise, EPDF would schedule Ti there.

Induction hypothesis. Assume that there is no hole in any slot in [t′, td + q), where td − 1 < t′ < td + q.

Induction step: t = t′ − 1. We show that there is no hole in slot t′ − 1. The deadline of every subtask scheduled in t′ is at
most td . Hence, the release time and the eligibility time of every such subtask is at or before td −1. Since td −1 � t′−1, every
subtask scheduled at t′ can be scheduled at t′ − 1 unless its predecessor is scheduled there. By the induction hypothesis,



U.C. Devi, J.H. Anderson / Journal of Computer and System Sciences 75 (2009) 388–420 413
there is no hole in slot t′ . Hence, if there is a hole in t′ − 1, then at most M − 1 of the M subtasks scheduled at t′ can have
their predecessors scheduled at t′ −1, implying that at least one of the subtasks scheduled at t′ should have been scheduled
at t′ − 1, which is a contradiction. Therefore, there can be no hole in t′ − 1. �
A.2. Proofs from Section 3.1

Lemma 10. The allocation received by a k-dependent subtask in its first slot in the ideal schedule are as follows.

(a) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a periodic task T with wt(T ) < 1
in the first slot of its window is at most k · T .e

T .p − (k − 1) − 1
T .p , for all k � 0.

(b) The allocation A(ideal, Ti, r(Ti)) received in the ideal schedule by a k-dependent subtask Ti of a GIS task T in the first slot of its
window is at most k · T .e

T .p − (k − 1) − 1
T .p , for all k � 0.

(c) Let Ti , where i � k + 1 and k � 1, be a subtask of T with wt(T ) < 1 such that |ω(Ti)| � 3 and b(Ti−1) = 1. Let the number of
subtasks in Ti−1 ’s dependency group be at least k. Then, A(ideal, Ti, r(Ti)) � k · T .e

T .p − (k − 1) − 1
T .p .

Proof. Each part is proved below in turn.

Proof of part (a). The proof is by induction on k.

Base case: k = 0. Because wt(T ) < 1, and T .e and T .p are integral, T .e � T .p − 1. Thus, by (9), A(ideal, Ti, r(Ti)) � wt(T ) =
T .e/T .p � (T .p − 1)/T .p = 1 − 1/T .p, and the lemma holds for the base case.

Induction step. Assuming that the lemma holds for (k − 1)-dependent subtasks, we show that it holds for k-dependent
subtasks, where k � 1. Because k � 1, by the definition of k-dependency, i > 1 and T is heavy. Hence, by Lemma 1, |ω(Ti−1)|
is either two or three. We consider two cases.

Case 1: |ω(T i−1)| = 2. Since k � 1, Ti−1 is (k − 1)-dependent. Therefore, by the induction hypothesis,

A
(
ideal, Ti−1, r(Ti−1)

)
� (k − 1) · (T .e/T .p) − (k − 2) − (1/T .p). (54)

Because |ω(Ti−1)| = 2, by (8), A(ideal, Ti−1,d(Ti−1) − 1) = 1 − A(ideal, Ti−1, r(Ti−1)). Hence, by (54), A(ideal, Ti−1,d(Ti−1) −
1) � (k − 1) + (1/T .p) − (k − 1) · (T .e/T .p). Because Ti is k-dependent, where k � 1, by Lemma 8(c), b(Ti−1) = 1, and by
Lemma 3, A(ideal, Ti, r(Ti)) = (T .e/T .p) − A(ideal, Ti−1,d(Ti−1) − 1) � k · (T .e/T .p) − (k − 1) − (1/T .p).

Case 2: |ω(T i−1)| = 3. By the contra-positive of Lemma 8(c), Ti−1 is 0-dependent; hence, Ti is 1-dependent, i.e., k = 1. By
Lemma 8(c), b(Ti−1) = 1, and hence, by Lemma 3,

A
(
ideal, Ti, r(Ti)

) = T .e

T .p
− A

(
ideal, Ti,d(Ti−1) − 1

)
� T .e

T .p
− 1

T .p
(by 10). �

Proof of part (b). It follows from part (a) and the definition of GIS tasks. (The allocation that Ti receives in each slot of its
window is identical to the allocation that it would receive if T were periodic.) �
Proof of part (c). Since |ω(Ti)| � 3, by Lemma 8(c), Ti is 0-dependent and is the first subtask in its group. Hence, Ti−1 is
the final subtask in its dependency group, and since there are at least k subtasks in Ti−1’s group, Ti−1 is at least (k − 1)-
dependent. Hence, by Lemma 10(b), A(ideal, Ti−1, r(Ti−1)) � (k − 1) · T .e

T .p − (k − 2) − 1
T .p . (What follows is similar to the

reasoning used in the induction step in the proof of Lemma 10(a).) If |ω(Ti−1)| = 2, then, by (8), A(ideal, Ti−1,d(Ti−1)−1) �
1 − ((k − 1) · T .e

T .p − (k − 2) − 1
T .p ) = (k − 1) − (k − 1) · T .e

T .p + 1
T .p . By the statement of the lemma, b(Ti−1) = 1, and hence,

by Lemma 3, A(ideal, Ti, r(Ti)) = wt(T ) − A(ideal, Ti−1,d(Ti−1) − 1) � k · T .e
T .p − (k − 1) − 1

T .p . Thus, the lemma holds when
|ω(Ti−1)| = 2.

On the other hand, if |ω(Ti−1)| � 3, then by Lemma 8(c), Ti−1 is 0-dependent. By (10), A(ideal, Ti−1,d(Ti−1) − 1) �
1

T .p , and hence, because b(Ti−1) = 1, by Lemma 3, A(ideal, Ti, r(Ti)) = wt(T ) − A(ideal, Ti−1,d(Ti−1)) � T .e
T .p − 1

T .p . By the
statement of the lemma, |ω(Ti)| = 3, and hence, Ti is also 0-dependent. Thus, Ti−1 is the only subtask in its group, and
hence, k = 1. (Note that k here denotes the number of subtasks that are in the same dependency group as Ti−1.) Therefore,
the lemma holds for this case too. �
Lemma 11. Let Ti be a k-dependent subtask of a task T for k � 0, and let the tardiness of Ti be s for some s � 1 (that is, T i is scheduled
at time d(Ti) + s − 1). Then lag(T ,d(Ti) + s) < (k + s + 1) · wt(T ) − k.
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Proof. By the statement of the lemma, Ti and all prior subtasks of T are scheduled in [0,d(Ti)+ s). Hence, lag(T ,d(Ti)+ s)
depends on the number of subtasks of T after Ti (that is, successors of Ti ) released prior to d(Ti) + s, the allocations they
receive in the ideal schedule, and when they are scheduled in S . It can be verified from (1) and (2) that at most s + 1
successors of Ti — Ti+1, . . . , Ti+s+1 — are released before d(Ti) + s. Hence, the lag of T at d(Ti) + s in S is maximized
if all those subtasks are present and are released without any IS separations and S has not scheduled any of them by
time d(Ti) + s. We will assume that this is the case. (The statement of the lemma implies that none of those subtasks is
scheduled by d(Ti) + s.) By Lemma 2, at most one successor of Ti , namely Ti+1, can have a release time that is before
d(Ti). Further, r(Ti+1) � d(Ti) − 1 holds. Hence, lag(T ,d(Ti) + s) � A(ideal, Ti+1,d(Ti) − 1) + A(ideal, T ,d(Ti),d(Ti) + s). If
r(Ti+1) > d(Ti) − 1 holds, then A(ideal, Ti+1,d(Ti) − 1) = 0. On the other hand, if r(Ti+1) = d(Ti) − 1, then by (4), b(Ti) = 1.
Further, either |ω(Ti+1)| = 2 or |ω(Ti+1)| > 2. In the former case, T is heavy, and because b(Ti) = 1, by the definition of
k-dependency (and given by Lemma 8(a)), Ti+1 belongs to the same dependency group as Ti and is (k + 1)-dependent.
Hence, by Lemma 10(b), A(ideal, Ti+1, r(Ti+1)) � (k + 1) · wt(T ) − k − 1

T .p . If the latter holds, i.e., |ω(Ti+1)| > 2, we reason
as follows. Since Ti is k-dependent, the number of subtasks in Ti ’s group is at least k + 1. Therefore, since b(Ti) = 1,
Lemma 10(c) applies for Ti+1 and it follows that A(ideal, Ti+1, r(Ti+1)) � (k + 1) · wt(T ) − k − 1

T .p . Thus, in either case,

A(ideal, Ti+1,d(Ti) − 1) = A(ideal, Ti+1, r(Ti+1)) � (k + 1) · wt(T ) − k − 1
T .p .

By (7), A(ideal, T ,d(Ti),d(Ti)+ s) � s · wt(T ). Hence, lag(T ,d(Ti)+ s) � A(ideal, Ti+1,d(Ti)− 1)+ A(ideal, T ,d(Ti),d(Ti)+
s) � (k + s + 1) · wt(T ) − k − 1

T .p < (k + s + 1) · wt(T ) − k. �
A.3. Proofs from Section 3.4

Lemma 18. There exists a subtask W� scheduled at th with e(W�) � tb , d(W�) = th + 1, and S(W , t) = 0, for all t ∈ [tb, th). Also,
there is no hole in any slot in [tb, th). (Note that, by this lemma, A0(th) �= ∅.)

Proof. We first show that the first subtask to be displaced upon U j ’s removal (where U j is as defined in Definition 8) has
properties as stated for W� , i.e., is eligible at or before tb and has its deadline at th + 1.

Let τ ′ be the task system obtained by removing U j from τ , and let S ′ be the EPDF schedule for τ ′ . Let Δ1 =
〈X (1), t1, X (2), t2〉 be the first valid displacement, if any, that results due to the removal of U j . Then, X (1) = U j , t1 = tb ,
and by Lemma 5,

t2 > t1 = tb. (55)

We first show that t2 � th .
Assume to the contrary that t2 < th . Then, by (55) and Definition 7, T is not in B(th). Therefore, T is in I(th) or in A(th).

In either case,

d
(

X (2)
)
� th. (56)

To see this, note that if T ∈ I(th), then because T is not active at th , by Definition 1, d(X (2)) � th . On the other hand, if
T ∈ A(th), then consider T ’s subtask, say Tk , scheduled at th . By Lemma 16, d(Tk) � th + 1. Because X (2) is scheduled at
t2 < th , X (2) is an earlier subtask of T than Tk , and hence, by (1) and (2), d(X (2)) � th . Because is U j is U ’s critical subtask
at th and U is in B(th), by Lemma 17, we have

d(U j) = th + 1. (57)

By (56) and (57), d(U j) > d(X (2)). However, since EPDF selects U j over X (2) at time tb (which follows because the displace-
ment under consideration is valid), this is a contradiction. Thus, our assumption that t2 < th holds is false.

Having shown that t2 � th , we next show t2 = th . Assume, to the contrary, that t2 > th . Since displacement Δ1 =
〈U j, tb, Ti, t2〉 is valid, e(X (2)) � tb . This implies that X (2) is eligible to be scheduled at th (i.e., T is not scheduled at th), and
because there is a hole in th , it should have been scheduled there in S , and not later at t2. It follows that t2 = th .

Finally, because U j is scheduled at tb in preference to X (2) , d(Ti) � d(U j) = th +1 (from (57)), which by Lemma 15 (since
X (2) is scheduled in slot th) implies that

d
(

X (2)
) = th + 1. (58)

Thus, the first subtask, if any, to be displaced upon U j ’s removal satisfies the properties specified for W� in the statement
of the lemma. Hence, if a subtask with such properties does not exist, then U j ’s removal will not lead to any displacements.

Next, we show that unless the other two conditions specified in the lemma also hold, no subtask will be displaced
upon U j ’s removal. For this, first note that by (57) and (58) X (2) and U j have equal deadlines, and hence, X (2) is not U j ’s
successor. Next, note that because 〈U j, tb, X (2), th〉 is valid, no subtask of T prior to X (2) is scheduled in [tb, th), and also if
there is a hole in any slot t in [tb, th), then EPDF would have scheduled X (2) at t .

Thus, if the lemma is false, then removing U j does not result in any displacements. We now show that, in such a case,
LAG(τ ′, th +1, S ′) � qM +1. LAG(τ ′, th +1, S ′) = A(ideal, τ ′,0, th +1)−A(S ′, τ ′,0, th +1). τ ′ contains every subtask that is in
τ except U j . U j is scheduled before th in S , and by (57), d(U j) = th +1. Therefore, U j receives an allocation of one quantum
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by time th + 1 in the ideal schedule for τ , and hence, A(ideal, τ ′,0, th + 1) = A(ideal, τ ,0, th + 1) − 1. Similarly, since no
subtask other than U j of τ is displaced or removed in S ′ , the total allocation to τ ′ in S ′ up to time th +1, A(S ′, τ ′,0, th +1),
is A(S, τ ,0, th + 1) − 1. Therefore, LAG(τ ′, th + 1, S ′) = A(ideal, τ ,0, th + 1) − A(S, τ ,0, th + 1) = LAG(τ , th + 1, S) � qM + 1
(by (T1)). To conclude, we have shown that, τ ′ with one fewer subtask than τ also has a LAG of at least qM + 1 at th + 1,
which contradicts (T2). �
Lemma 19. Let tm � th be a slot in which an MI is scheduled. Then, the following hold.

(a) For all t, where tm − (q + 2) < t < tm, there is no hole in slot t, and for each subtask Vk that is scheduled in t, d(Vk) � tm − q + 1.
(b) Let W be a task in B(tm) and let the critical subtask W� of W at tm be scheduled before tm. Then, W� is scheduled at or before

tm − (q + 2).

Proof of part (a). The proof is by induction on decreasing t . We start with t = tm − 1.

Base case: t = tm − 1. Let Ti be an MI scheduled at tm . (By the statement of the lemma, at least one MI is scheduled in tm .)
Then, d(Ti) = tm − q + 1, and S(T , tm − 1) = 0, from the definition of an MI. Hence, Ti is eligible at tm − 1. Because Ti is not
scheduled at tm − 1, it follows that there is no hole in tm − 1 and that the priority of every subtask Vk scheduled at tm − 1
is at least that of Ti , i.e., d(Vk) � d(Ti) = tm − q + 1.

Induction hypothesis. Assume that the claim in part (a) holds for all t , where t′ + 1 � t � tm − 1 and tm − (q + 1) <

t′ + 1 < tm .

Induction step. We now show that the claim holds for t = t′ . By the induction hypothesis, there is no hole in t′ + 1 and
d(Ti) � tm − q + 1 holds for every subtask Ti scheduled in t′ + 1. Therefore, since wt(T ) < 1, by (1), r(Ti) � tm − q − 1.
Thus, there are M subtasks with a release time at or before tm − q − 1 and deadline at or before tm − q + 1 scheduled
at t′ + 1 � tm − q. If there is either a hole in t′ or a subtask with deadline later than tm − q + 1 scheduled in t′ , then
there is at least one subtask scheduled in t′ + 1 whose predecessor is not scheduled in t′ . Such a subtask is eligible at t′ ,
since its release time is at or before tm − q − 1 � t′ . Hence, if there is a hole in t′ , then the work-conserving behavior of
EPDF is contradicted. Otherwise, the pseudo-deadline-based scheduling of EPDF is contradicted. Hence, the claim holds for
t = t′ . �
Proof of part (b). By Definition 2, d(W�) � tm + 1. Hence, since q � 1, this part easily follows from part (a). �
A.4. Proofs from Section 3.8

Lemma 28. The following properties hold for subsets τ i
s and τ i defined in Section 3.8, where 1 � i � 8.

(a) For every task T , there is at most one subtask in (τ 1
s ∪ τ 2

s ∪ τ 6
s ).

(b) Let Ti scheduled at th be the subtask of a task T in Aq(th) or Aq−1(th). Then, Ti is in τ 5
s .

(c) τ 7 ⊆ τ 1 and τ 8 ⊆ τ 2 .
(d) Subsets τ i , where 1 � i � 6, are pairwise disjoint.

Proof. Each of the above properties is proved below.

Proof of part (a). We first show that each task T has at most one subtask in τ 1
s . Let Ti in τ 1

s be the critical subtask at th
of T , which is in B(th). Then, by Lemma 17, d(Ti) = th + 1 holds. Because wt(T ) < 1, by (1), r(Ti) � d(Ti) − 2 = th − 1 holds.
Hence, by the definition of a critical subtask in Definition 2, Ti is critical at th − 1 also. Thus, if T has a critical subtask Ti
at th and T is in B(th), then T cannot have a subtask that is different from Ti that is critical at th − 1. Hence, it follows that
each task has at most one subtask in τ 1

s .
We next show that each task can have at most one subtask in τ 2

s ∪ τ 6
s . Note that a subtask is in τ 2

s or τ 6
s only if it

is scheduled at th − 1. Further, each task T can have at most one subtask scheduled at th − 1. Hence, if T ’s subtask Ti
scheduled at th − 1 has its deadline at or after th , then Ti is in τ 2

s ; else, in τ 6
s .

Finally, we show that if T has a subtask Ti in τ 1
s , then it does not have a subtask in τ 2

s ∪ τ 6
s , and vice versa. If Ti is in

B(th − 1), then T cannot have a subtask scheduled at th − 1, and hence, cannot have a subtask in τ 2
s ∪ τ 6

s (because every
subtask in these sets is scheduled at th − 1). On the other hand, if Ti is in B(th) and is T ’s critical subtask at th , then note
the following. (i) τ 1

s is non-empty only if t′
b exists; (ii) by Lemma 17, d(Ti) = th + 1 holds; and (iii) Ti is scheduled at or

before t′
b , whereas a subtask in τ 2

s ∪ τ 6
s is scheduled at th − 1. By (44), t′

b � th − (q + 3). Thus, by (ii) and (iii), no subtask of
T with a deadline at or before th can be scheduled at th − 1, and hence, can be in τ 2

s ∪ τ 6
s . On the other hand, if a subtask

of T with a deadline after th is scheduled at th − 1, then it contradicts the fact that Ti is T ’s critical subtask at th . So, no
such subtask can be in τ 2

s ∪ τ 6
s either. �
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Proof of part (b). By the conditions of Case C, no c-MI, where c > 0, is scheduled at th . Further, because T is in Aq(th)

or Aq−1(th), tardiness of Ti is greater than zero. Hence, by the definition of c-MI and because T is not a c-MI, T is also
scheduled at th − 1. Therefore, Ti is in τ 5

s . �
Proof of part (c). Immediate from the definitions. �
Proof of part (d). By part (a), every task T has at most one subtask in τ 1

s ∪ τ 2
s ∪ τ 6

s . Therefore, τ 1, τ 2, and τ 6 are pairwise
disjoint. By (25) and (26), A0, Aq , and Aq−1 are pairwise disjoint, and hence, by their definitions, τ 3

s , τ 4
s , and τ 5

s are pairwise
disjoint, and subtasks in them are scheduled at th . However, by the definitions of τ 1

s , τ 2
s , and τ 6

s , no task of a subtask in
any of these subsets is scheduled at th . Therefore, a task in τ 1, τ 2, or τ 6 is not in

⋃5
i=3 τ i , that is τ 1 ∪ τ 2 ∪ τ 6 is disjoint

from
⋃5

i=3 τ i . Since τ 1, τ 2, and τ 6 are pairwise disjoint, as are τ 3, τ 4, and τ 5, all six subsets are pairwise disjoint. �
We make the following two claims before proving the remaining lemmas.

Claim 4. No subtask with deadline at or before th − 1 is removed or displaced in S ′ .

Proof. It follows from the fact that the deadline of every subtask removed, that is, the deadline of every subtask in τ R
s

(refer 45), is at or after th . Hence, because ties in S and S ′ are resolved identically, the removed subtasks cannot impact
how subtasks with earlier deadlines are scheduled, and hence, cannot cause such subtasks to be displaced. (Subtasks in τ 1

s
are critical subtasks at th or at th − 1, and hence their deadlines are at or after th . Similarly, subtasks in τ 3

s are scheduled
at th and have a tardiness of zero, implying that their deadlines are at or after th + 1.) �
Claim 5. The release time of every subtask in τ is at or before th.

Proof. Because there is a hole in th (by (H)), by Lemma 15, no subtask scheduled at or before th can have a deadline after
th + 1, implying that the release time of every such subtask is at or before th . Hence, a subtask with release time after
th is scheduled after th in S . For every such subtask, allocations in both the ideal schedule and S are zero in [0, th + 1).
Therefore, the LAG of τ at th + 1 does not depend on such a subtask. Further, if such a subtask is removed, the schedule
before th + 1 is not impacted and no subtask scheduled at or after th + 1 can shift to th or earlier. Hence, the LAG of τ at
th + 1 is not altered. Thus, the presence of subtasks released after th contradicts (T2). �
Lemma 29. Let T be a task with a subtask in τ 1

s or τ 2
s . Then, lag(T , th − 1, S ′) = lag(T , th + 1, S).

Proof. By (11),

lag(T , th − 1, S ′) = A
(
ideal′τ , T ,0, th − 1

) − A(S ′, T ,0, th − 1). (59)

To prove this lemma, we will express the allocation to T in ideal′τ and S ′ in terms of its allocations in idealτ and S ,
respectively. We will establish some properties needed for this purpose.

By Lemma 28(a), T has exactly one subtask in τ 1
s ∪ τ 2

s . Let Ti denote the distinct subtask of T that is in τ 1
s or τ 2

s ,
and T j , its predecessor in τ 7

s or τ 8
s , respectively, if any. Note that T j does not exist if d(Ti) = th , and need not necessarily

exist otherwise.
Regardless of whether Ti is in τ 1

s or τ 2
s , Ti is scheduled at or before t′

b in S , which by (44), is before th − 1. Hence,
because there is a hole in th , by Lemma 15, d(Ti) � th + 1 holds. We next show that the following holds.

(D) No subtask of T has its deadline after th + 1.

Since T is not scheduled in th and there is a hole in th , Ti ’s successor, if any, cannot have its eligibility time at or before th
and deadline after th + 1. By Claim 5, no subtask in τ has a release time at or after th + 1. Thus, (D) holds.

We next claim that of T ’s subtasks, only Ti and/or T j may receive non-zero allocations in the ideal schedule for τ in
slots th − 1 and/or th . For this, note that the following hold: (i) since d(T j) = th (by the definitions of τ 7

s and τ 8
s ), no

subtask of T prior to T j has its deadline after th − 1; (ii) because there is a hole in th , and T is not scheduled at th

in S (by the definitions of τ 1
s and τ 2

s ), no subtask of T released after Ti has its eligibility time, and hence, release time
at or before th . Hence, by (6), no subtask of T other than Ti and T j receives any allocation in th − 1 and/or th . By (i)
and (ii) above and because τ ′ contains every subtask of T that is in τ except Ti and T j , we have A(ideal′τ , T ,0, th − 1) =
A(idealτ , T ,0, th + 1) − A(idealτ , Ti,0, th + 1) − A(idealτ , T j,0, th + 1). Because the deadlines of Ti and T j are at most th + 1,
both these subtasks receive ideal allocations of one quantum each by th + 1. Hence,

A
(
ideal′τ , T ,0, th − 1

) =
{

A(idealτ , T ,0, th + 1) − 2, if T j exists,

A(ideal , T ,0, t + 1) − 1, if T does not exist.
(60)
τ h j
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We now express the allocation to T in S ′ in terms of its allocation in S . If Ti is in τ 1
s , then, in S , Ti is scheduled at or

before t′
b � th − (q + 3) � th − 1 (refer (44)); if it is in τ 2

s , then Ti is scheduled at th − 1. Thus, in either, case Ti is scheduled
at or before th − 1 in S . Hence, T j , if it exists, is scheduled at or before th − 1 in S . As for where other subtasks of T
are scheduled in S , there is a hole in th , and (by the definitions of τ 1

s and τ 2
s ) T is not scheduled at th . Therefore, if some

subtask of T is scheduled after th , then its eligibility time is at or after th +1, and hence its deadline is after th +1. However,
by (D), no subtask of T has a deadline after th + 1. Hence, there does not exist a subtask of T that is scheduled after th
in S , which implies that there does not exist a subtask of T that is scheduled after th in S and before th − 1 in S ′ . Further,
because no subtask can displace to the right, there does not exist a subtask of T that is scheduled before th − 1 in S , and
at or after th − 1 in S ′ . As already mentioned, every subtask of T except Ti and T j is present in τ ′ . Therefore,

A(S ′, T ,0, th − 1) =
{

A(S, T ,0, th + 1) − 2, if T j exists,

A(S, T ,0, th + 1) − 1, if T j does not exist.
(61)

By (59)–(61), regardless of whether T j exists, lag(T , th − 1, S ′) = A(idealτ , T ,0, th + 1) − A(S, T ,0, th + 1) = lag(T , th +
1, S). �
Lemma 30. Let T be a task with a subtask in τ 3

s . Then, lag(T , th − 1, S ′) > lag(T , th + 1, S) − 1/(q + 2).

Proof. Let Ti be T ’s subtask in τ 3
s . In S , Ti is scheduled at th and is ready at or before th −(q+3). Therefore, by Lemma 7(a),

r(Ti) � th − (q + 3) holds. Since T is in A0(th), and Ti is scheduled at th in S , the tardiness of Ti is zero in S . Therefore,
d(Ti) � th + 1 holds, which by (H) and Lemma 16 implies that

d(Ti) = th + 1. (62)

Hence, |ω(Ti)| = d(Ti) − r(Ti) � q + 4 holds, and using Lemma 1, it can be shown that wt(T ) < 1/(q + 2). By Lemma 12(c),
lag(T , th + 1, S) < wt(T ), and hence, because wt(T ) < 1/(q + 2), it follows that

lag(T , th + 1, S) < 1/(q + 2). (63)

We next show that lag(T , th − 1, S ′) = 0. For this, we need to show that the total allocation to T in [0, th − 1) is equal
in ideal′τ and S ′ . We first show that the total allocation in [0, th − 1) to subtasks of T released after Ti is zero in both S ′
and ideal′τ . By (62) and Lemma 2, the release time of the successor, T j , if any, of Ti is at or after th . Hence, the allocation
to every subtask of T released after Ti is zero in [0, th − 1) in the ideal schedule for τ ′ . Also, because Ti is scheduled at th
in S , T j is scheduled at or after th + 1 in S . Hence, by Lemma 7(a), e(T j) � th holds. Therefore, every subtask of T released
after Ti is scheduled at or after th in S ′ , that is, receives zero allocation in [0, th − 1) in S ′ .

We now show that subtasks of T released before Ti receive equal allocations in [0, th − 1) in both ideal′τ and S ′ . Since Ti
is ready at or before th − (q + 3), Ti ’s predecessor, if any, and all prior subtasks of T , if any, complete executing at or before
th − (q + 3) in S , and hence, in S ′ , as well (because no subtask can displace to the right). Furthermore, as discussed above,
r(Ti) � th − (q + 3) holds, and hence, by Lemma 2, the deadline of Ti ’s predecessor is at or before th − (q + 2). Hence, all
subtasks released before Ti complete executing by th − (q + 2) in ideal′τ as well.

Therefore, because Ti is not present in τ ′ , the total allocation to all the subtasks of T in τ ′ in [0, th − 1) is equal in S ′
and ideal′τ . Hence, lag(T , th − 1, S ′) = 0, and because (63) holds, the lemma follows. �
Lemma 31. Let T be a task with a subtask in τ 4

s . Then, lag(T , th − 1, S ′) � lag(T , th + 1, S) − 2 · Wmax + 1.

Proof. First, we show that (R) below holds.

(R) No subtask of T is removed.

For this, note that because T is in τ 4, by Lemma 28(d), T is not in τ i , where 1 � i � 6 and i �= 4. Hence, by Lemma 28(c),
T is also not in τ 7 or in τ 8. Thus, T does not have a subtask in τ R

s , and hence, (R) holds.
Let Ti be T ’s subtask in τ 4

s and let tc = th − (q + 3). Then, Ti is not ready at tc in S . We show that Ti is not ready at tc

in S ′ also. Let T j denote Ti ’s predecessor, if any, in τ .
We now show that no subtask of T that is scheduled at or after th − 1 in S is scheduled before th − 1 in S ′ . Note

that Ti is scheduled at th in S . Hence, it suffices to show that Ti is not scheduled before th − 1 in S ′ (which would imply
that no later subtask is scheduled before th − 1), and if T j is scheduled at th − 1 in S , then it is not scheduled earlier
in S ′ .

Because Ti is scheduled at th in S and Ti is not ready at tc in S , Lemma 7(a) implies that either r(Ti) > tc , or r(Ti) � tc

and T j exists and does not complete executing by tc . If the former holds, then because r(Ti) > tc and Ti is scheduled at
th > th − (q + 3) = tc in S , by Lemma 7(a), e(Ti) > tc holds, and hence, Ti is not eligible, and hence, not ready, at tc in S ′
either. If the latter holds, then by Lemma 2, d(T j) � tc + 1 � th − (q + 2) holds, and hence, by Claim 4, T j is not displaced,
and does not complete executing by tc in S ′ also. Therefore, Ti is not ready at tc in this case too.
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Given that Ti is not ready at tc in S ′ , it is easy to show that Ti is not scheduled before th − 1 in S ′ . For this, note that by
Claim 4, no subtask with deadline at or before th − 1 is displaced or removed. Hence, since (C) holds, no subtask scheduled
in [th − (q + 2), th − 1) is displaced or removed. Therefore, because Ti is not ready at or before tc = th − (q + 3), Ti cannot
be scheduled before th − 1 in S ′ .

We next show that if Ti ’s predecessor T j exists and is scheduled at th − 1 in S , then it is not scheduled earlier in S ′ .
Because Ti is scheduled at th and T is in A0(th), Ti ’s tardiness is zero, and hence, by Lemma 16, d(Ti) = th + 1. Hence,
d(T j) � th holds. If d(T j) < th holds, then, by Claim 4, T j is not displaced. In the other case, namely, d(T j) = th , by Lemma 2,
r(Ti) � th − 1, and hence, |ω(Ti)| = d(Ti) − r(Ti) � (th + 1) − (th − 1) = 2 holds. Therefore, by Lemma 1, |ω(T j)| � 3, and
hence, r(T j) � d(T j) − 3 = th − 3. If T j is scheduled at th − 1 in S , then by Lemma 7(a), e(T j) � th − 3. However, because
q � 1, by (C), the deadline of every subtask scheduled in [th − 3, th − 1) is at or before th − q, and hence, by Claim 4, no
such subtask is displaced or removed. Therefore, in this case too, if T j is scheduled at th − 1 in S , it is not scheduled earlier
in S ′ . Thus, no subtask of T that is scheduled at or after th − 1 in S is scheduled before th − 1 in S ′ .

We are now ready to establish the lag of T at th − 1 in S ′ . By (11), we have

lag(τ ′, th − 1, S ′) = A
(
ideal′τ , T ,0, th − 1

) − A(S ′, T ,0, th − 1)

= A(idealτ , T ,0, th + 1) − A(idealτ , T , th − 1, th + 1) − (
A(S, T ,0, th + 1) − A(S, T , th − 1, th + 1)

)
(
because, by (R), no subtask of T is removed, and no subtask of T scheduled at or after th − 1

in S is scheduled before th − 1 in S ′)
� A(idealτ , T ,0, th + 1) − 2 · Wmax − (

A(S, T ,0, th + 1) − A(S, T , th − 1, th + 1)
) (

by (7) and (29)
)

� A(idealτ , T ,0, th + 1) − 2 · Wmax − A(S, T ,0, th + 1) + 1(
because at least subtask Ti of T is scheduled in [th − 1, th + 1) in S

)
= lag(T , th + 1, S) − 2 · Wmax + 1. �

Lemma 32. Let T be a task with a subtask in τ 5
s . Then, lag(T , th − 1, S ′) � lag(T , th + 1, S) + 2 − 2 · Wmax .

Proof. As with Lemma 31, we first show that no subtask of T is removed. Because T is in τ 5, by Lemma 28(d), T is not
in τ i , where 1 � i � 6 and i �= 5. Hence, by Lemma 28(c), T is also not in τ 7 or in τ 8. Thus, T does not have a subtask
in τ R

s , and hence, no subtask of T is removed.
We next show that the subtasks of T scheduled at th or th − 1 are not displaced.
Let Ti be T ’s subtask scheduled at th . By the definition of Aq and Aq−1, the tardiness of Ti is greater than zero, and

hence, d(Ti) � th . Let T j be Ti ’s predecessor. By the definition of τ 5
s , T j exists. Further, d(T j) � th − 1 holds and T j is

scheduled at th − 1.
We now show that Ti and T j are not displaced. For this, observe that because d(T j) � th − 1 holds, T j is not displaced

by Claim 4. Therefore, because Ti is T j ’s successor, Ti is not ready to be scheduled until th , and hence, is not displaced
either.

The above facts can be used to determine the lag of T at th − 1 in S ′ as follows. By (11), we have

lag(τ ′, th − 1, S ′) = A
(
ideal′τ , T ,0, th − 1

) − A(S ′, T ,0, th − 1)

= A(idealτ , T ,0, th + 1) − A(idealτ , T , th − 1, th + 1) − (
A(S, T ,0, th + 1) − A(S, T , th − 1, th + 1)

)
(because no subtask of T is removed, and because neither Ti nor T j is displaced, no subtask

of T scheduled at or after th − 1 in S is scheduled before th − 1 in S ′)

� A(idealτ , T ,0, th + 1) − 2 · Wmax − (
A(S, T ,0, th + 1) − A(S, T , th − 1, th + 1)

) (
by (7) and (29)

)
= A(idealτ , T ,0, th + 1) − 2 · Wmax − A(S, T ,0, th + 1) + 2(

because exactly two subtasks of T , Ti and T j, are scheduled in [th − 1, th + 1)
)

= lag(T , th + 1, S) − 2 · Wmax + 2. �
Lemma 33. Let T be a task with a subtask in τ 6

s . Then, lag(T , th − 1, S ′) > lag(T , th + 1, S).

Proof. Let Ti denote T ’s subtask in τ 6
s . Because there is a hole in th (by (H)) and T is not scheduled at th , the eligibility

time, and hence, the release time of Ti ’s successor is at least th + 1. However, by Claim 5, the release time of every subtask
in τ is at most th . Therefore, Ti does not have a successor.

Since Ti is not in τ 2
s , d(Ti) � th − 1 holds. Thus, all subtasks of T have their deadlines by th − 1 and complete executing

by th in both idealτ and S . Therefore, T ’s lag at th + 1 in S is zero.
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Because d(Ti) � th − 1 and Ti does not have a successor, by Claim 4, no subtask of T is displaced. Thus, in the ideal
schedule for τ ′ , subtasks of T complete executing by th − 1, whereas Ti is not complete until th in S ′ . Thus, lag(T , th −
1, S ′) > 0, from which the lemma follows. �
Lemma 34. Let T be a task in τ c . Then, lag(T , th − 1, S ′) = lag(T , th + 1, S).

Proof. Because T is in τ c , T does not contain a subtask in sets τ i
s , where 1 � i � 8. Hence, T does not have a subtask that

is removed. We next show that T does not have a subtask that is scheduled at th or th − 1.
If T has a subtask Ti that is scheduled at th , then T is in A. By the condition of this case (Case C), A0

q = ∅ and A0
q−1 = ∅.

Hence, by (25), T is in one of A0(th), A1
q(th), A2

q(th), and Ai
q−1(th), where i � 1. However, if T is in A0(th), then Ti is in τ 3

s

or τ 4
s . On the other hand, if T is in one of the remaining sets, then Ti has a tardiness greater than zero, but is not a c-MI,

and hence, T is scheduled at th − 1; therefore, Ti is in τ 5
s . Thus, Ti is in one of τ 3

s , τ 4
s , and τ 5

s , and hence, T is in one of
τ 3, τ 4, and τ 5. This contradicts the fact that T is in τ c . Therefore, T cannot have a subtask scheduled at th .

We now show that T does not have a subtask scheduled at th − 1. By the definitions of τ 2
s and τ 6

s , any subtask that is
scheduled at th − 1, but does not have a later subtask of its task scheduled at th , is in one of these two subsets. Therefore,
if T has a subtask Ti scheduled at th − 1, then because T is in τ c (and hence not in τ 2 or τ 6), T is scheduled at th also.
But as was shown above, T is not scheduled at th , and hence, is not scheduled at th − 1 either. Thus, T is not scheduled in
either th or th − 1.

By Claim 5, no subtask of T is released at or after th + 1. Therefore, because there is a hole in th , and T is not scheduled
in either th or th − 1, every subtask of T is scheduled before th − 1, and completes executing by th − 1 in S . Hence, because
there is a hole in th , by Lemma 15, the deadline of every subtask of T is at or before th + 1.

To complete the proof, we show that the deadline of every subtask of T is at most th − 1. Suppose to the contrary some
subtask of T has its deadline after th − 1. Let Ti be such a subtask with the largest index. Then, Ti is the critical subtask of
T at either th or th − 1 or at both times. Because T is not scheduled at either th or th − 1, Ti is scheduled before th − 1.
Hence, T is in B(th − 1) or B(th) or both. Also, because d(Ti) � th holds, by Definition 9, t′

b exists and T is scheduled at or
before t′

b . But then, by the definition of τ 1
s , Ti is in τ 1

s , which contradicts the fact that Ti is in τ c . Therefore, our assumption
that T has a subtask with deadline after th − 1 is incorrect.

Thus, all subtasks of T complete executing by th − 1 in both the ideal schedules. Hence, the lag of T in S at th + 1 is
zero.

Because no subtask of T is removed or displaced, and every subtask of T is scheduled before th − 1 in S , all subtasks of
T complete executing by th − 1 in S ′ also. Therefore, lag(T , th − 1, S ′) = 0. The lemma follows. �
Lemma 35. The roots of f (Wmax) = 2(M − h)(q + 1)W 2

max − (q + 2)(M − h)Wmax − ((q − 1)M + 1 + h) = 0 are Wmax =
(q+2)(M−h)±

√
9q2(M−h)2+Δ

4(M−h)(q+1)
, where Δ = 4(M − h)(M(q − 1) + h(2q2 + 2q + 1) + 2q + 2).

Proof. The roots of f (Wmax) are given by (q+2)(M−h)±
√

(q+2)2(M−h)2+8(M−h)(q+1)((q−1)M+1+h)

4(M−h)(q+1)
. Let I = (q + 2)2(M − h)2 +

8(M − h)(q + 1)((q − 1)M + 1 + h) (the term within the square root). Then,

I = (q + 2)2(M − h)2 + 8(M − h)(q + 1)
(
(q − 1)M + 1 + h

)
= q2(M − h)2 + (4q + 4)(M − h)2 + 8q2(M − h)2 − 8q2(M − h)2 + 8(M − h)(q + 1)

(
(q − 1)M + 1 + h

)
(
splitting the first term, and adding and subtracting 8q2(M − h)2)

= 9q2(M − h)2 + 4(M − h)
(
M(q − 1) + h

(
2q2 + q + 1

) + 2q + 2
)

= 9q2(M − h)2 + Δ. � (64)
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