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Abstract 

Usually, coherent pairs of orthogonal polynomials have been considered in the wider context of Sobolev orthogonality. 
In this paper, we focus our attention on the problem of coherence between two orthogonal polynomial sequences in 
terms of the corresponding linear functionals. We deduce some conditions about the linear functionals in order that the 
corresponding orthogonal polynomial sequences constitute a coherent pair. 

Keywords: Orthogonal polynomials; Regular linear functionals; Semiclassical linear functionals; Coherent pairs; Symmet- 
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I. Introduction 

Polynomials which are orthogonal with respect to a Sobolev inner product like 

(f,g)s = f f(x)g(x)dgo(X)+ 2 f f'(x)g'(x)dl~,(x), (1.1) 

for 2 >~0, have been introduced in connection with problems of smooth least square data fitting 
(see [7]). 

In [1], a study of  the case d~0(x) = d # l ( x ) =  dx, x E [ -1 ,  1] was introduced. More precisely, 
properties of their zeros as well as some differential operators related to them were found. In [2], a 
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similar study was given for d~0(x) = d/tl(x) = e-Xdx, x E [0,~x~). More recently, some extensions 
of  the above problems were considered in [9, 11, 15]. Furthermore, a more general point of  view 
was presented in [16], when /t0(x) and/~l(x) are semiclassical measures. 

On the other hand, the first general approach to the case when #0 and /~1 are general measures, 
was started by Iserles et al. in [6]. They introduced the concepts of  coherent pairs and symmetrically 
coherent pairs of polynomials as a condition on the measures p0(x) and #l(x), in order that the 
orthogonal polynomials associated with the inner product (1. l)  satisfy some special properties. In 
fact, lserles et al. raised questions about necessary and sufficient conditions for the existence of two 
monic orthogonal polynomial sequences (MOPS) {Pn}~ and {Tn}n, related by 

T,(x) - P'+,(x) an Pn(x),~ n>~l, (1.2) 
n ÷ l  n 

where a~, a2,.., are nonzero real numbers. Also, they gave several examples of them, in particular, 
they showed that Laguerre polynomials are self-coherent and Gegenbauer polynomials constitute a 
simple case of a self-symmetrically coherent pair. 

In [15], Meijer obtains properties of the zeros of the Sobolev orthogonal polynomials in the 
presence of coherence property. Furthermore, new interesting examples of coherent pairs and sym- 
metrically coherent pairs are shown. 

In the present paper, we will study the concept of  coherence in a more general situation; we will 
say that two quasi-definite linear functionals u0 and u~ constitute a coherent pair if  and only if the 
corresponding monic orthogonal polynomial sequences, say {Pn}n and {Tn}n, satisfy a relation like 
(1.2). In the case when {u0, Ul } constitute a coherent pair, we will say that u~ is a "companion" for u0. 

A first approach was given in [6] when {Pn}n is a positive-definite classical family (Hermite, 
Laguerre, Jacobi), with the restriction of the positivity of the companion measure. In [12], the result 
was extended to classical linear functionals (even for the Bessel case when the orthogonality is 
defined with respect to a quasi-definite linear functional). 

A second result deals with a classical family of orthogonal polynomials {T,}n. In [12], necessary 
and sufficient conditions on the sequence {o-n} in order to let {Pn}n be a sequence of orthogonal 
polynomials are obtained. 

More recently, in [11] the authors proved that all coherent pairs can be described in terms of 
semiclassical orthogonal polynomials. They prove that both polynomials are semiclassical and the 
linear functional corresponding to the first one is a rational modification of the second one. 

In this paper, we solve the following problems: 
1. Given a sequence {P,}n of monic orthogonal polynomials, to find {on} such that the sequence 

{T,}n given by (1.2) be orthogonal. Conversely, given a sequence {Tn}n of monic orthogonal poly- 
nomials, to find {an} such that the sequence {P,}n in (1.2) be orthogonal. 

2. To obtain the coherence in the symmetric case as a consequence of  the usual coherence in 
terms of the symmetrization process. 

2. Definitions and preliminary results 

Let P denote the linear space of complex polynomials. Given a linear functional u on P and a 
family of monic polynomials {Pn}n satisfying 
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d e g ( P , ) = n ,  n = 0 , 1 , . . .  

(u, PnPm)=kn(~n,m, kn E (~ \ {0}, n,m = 0,1 . . . .  , 

we will say that {Pn}n is a monic orthogonal polynomial sequence (MOPS) with respect to u. 
If u is a linear functional on P, and a MOPS {P,}, for u exists, then u is called regular or 

quasi-definite. In this case, the polynomials {P~}n of any MOPS satisfy a three term recurrence 
relation (see [3], p. 18]) like 

Po(x) = 1, Pl(x)  = x - r io,  xP,(x) = Pn+l(x) + fl, P~(x) + 7,P,_l(x), n >~ 1, 

where {/3,},~>0 and {7~},~>~ are two sequences of complex numbers with 7,-¢ 0 for n~>l. It is 
important to remark that, according to Favard's Theorem (see [3, p. 21, Theorem 4.4]), the existence 
of such a relation characterizes completely a given MOPS. 

Let us recall that a regular linear functional u is called semiclassical (see [5, 13]), if there exist 
two polynomials ~b(x), O(x), with deg(qS)>~0 and deg(O)~>l, such that u satisfies the following 
distributional differential equation 

D(dpu) = ~bu. (2.1) 

We will say that s >~ 0 is the class of u when 

s = min{max{deg(4~)- 2 , d e g ( O ) -  1}, for every pair of  polynomials qS, ~ satisfying (2.1)}. 

As it is well known, the classical functionals (i.e., those of Laguerre, Jacobi, Hermite and Bessel) 
are semiclassical with deg((b)<~2 and d e g ( O ) =  1, and therefore of  class 0. Many characterizations 
of the classical MOPS's are known (see e.g., [8]). For our purposes, we need only the following 
ones. 

Theorem 2.1. Let u be a regular linear functional, and denote by {P,}, the M O P S  associated 
with u. Then the following assertions are equivalent: 

(C.1) {Pn}~ is a classical family, that is, there exist two polynomials, ~p and ~b, with deg(~b)~<2, 
deg(ff) = 1, such that the functional u satisfies the distributional differential equation 

D(dpu) = ~u. 

(C.2) (Hahn [4]). The monic polynomials 

P'.+l(x) 
P , ( x ) - -  n +  l J ,  

constitute a M O P S  with respect to the moment functional ?¢ = dpu. Furthermore, {/5~} n is also a 
classical family o f  the same type as {P,}n, since ~ satisfies the distributional equation 

D(dpS) = (~h + gp')~. 
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(C.3) (Marcellfin et al. [8]). There exist two sequences o f  complex parameters, dn and en, such 
that 

' dn P ; ( x )  ' P._l(x) 
Pn(x) - P'n+1(X~) + + e n - -  n>~2. (2.2) 

n + l  n n - 1  ' 

3. Coherent pairs, the general case 

Given a linear functional u0, the search of  the companions for u0 arises in a natural way, 
but, also we can pose the converse problem: given a linear functional Ul, find the functionals u0 
such that {u0, ul} is a coherent pair. These questions have been partially solved in [12], where 
the case is considered that one of  the two functionals is a classical one. In this section, we 
will study the general case when {Pn}n and {Tn}n are arbitrary sequences of  monic polynomials, 
satisfying 

deg(Pn) = deg(Tn) = n, n ~> 0, 

as well as the coherence relation (1.2). If  both of  them are MOPS, we shall denote by 

Po(x) = 1,  

To(x) = l, 

Pl(x )  = x -- [30, 

TI ( x )  : x - [30, 

xPn(x) = Pn+l(x) + flnPn(x) + 7nPn-,(x), n>~ 1, 

xTn(x ) = Tn+l(X ) Aw ~nTn(x) Ar ~;nTn_l(X), n>- 1, 

the corresponding three term recurrence relations. 
On the other hand, since {Pn}n is a family of  monic polynomials with deg(Pn) = n, then the 

family of  monic derivatives {(1/(n + 1))P'n+l}n>~O constitutes a basis for P. We can expand the 
polynomial Pn(x) in terms of  the first derivatives 

/ n ! ~-,h(n)Pi(x)  Pn(x) --  Pn+l(X)  + ~..,-i . , n>~O. (3.1) 
F/ - '~ 1 i = 1  l 

In this way, we can prove the following result. 

Proposition 3.1. Let  {Tn}n be the M O P S  associated with the moment  functional  ul, and {Pn}n a 
sequence o f  monic polynomials with deg(Pn) = n, n >>, O. We assume that these sequences satisfy a 
coherence relation like (1.2). I f  the sequence {Pn}n is a M O P S ,  then 

(i) Tn(c) # O, n>~O, where c =/~0 -'~- ffl/0"1; 
(ii) the parameters fin, n >~ 1, satisfy the relation 

~n+l -- (1/fin) b~n+2)/( n + 2)  
-- Tn(c). (3.2) 

O ' n + l  - -  n - - I  1 o k Tj(c) 
v.+,(c) + E - -  V.(c) + E H fik 

k=l fik+lGk k + 2 j=l k=j+l i=1 fii+l~i i + 2 J  
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(3.3) 

taking gl # 0, in such a way that 

T,(c) # 0, n>O, c = & + 2, 

and given rs,,+,, n > 1 from the recursive algorithm (3.2), then {P,}, is a MOPS. 
In this situation, the parameters in the three term recurrence relation for the polynomials (P,), 

satisfy 

(1) Pl = & - Gl + b, 9 

n+l 
Yn+l = - 

n 

b(“, 
-unA ) 1 n31, 

n 

and /30, y1 are arbitrary. 

Proof. Let {P,}, be a MOPS. We can use both recurrence relations 
polynomials P,(x) in terms of their first derivatives (3.1), to obtain 

and the expansions of the 

T,(x) = (x - P,)To(x) = (x - &P{(x) = (x - Pl>p;(x> + (PI - &mx) 

= P;(x) -PI(x) + (pl - &)P;(x) = 7 + (-bj” + ,& - 8,) P;(x). 

By comparison with the coherence relation, for n = 1, we get 

(1) P, = PO - GI + b, . 

If n 2 1, we can use the same argument to deduce 

PL+2(4 
T,+dx)=nf2+ 

b:;” C+,<x> 
Bn+l-B/J-- ~ 

n+l 1 n-t1 

(3.4) 
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By comparison with the coherence relation for n + 1, n/> 1, and including Eq. (3.4), the following 
system can be obtained 

31 = ~0 -- (71 Jr- b% 1), 

h(n+l ) 
~n+l = ]~n --  O'n+l -}- (Tn @ C'n+~l n >~ 1, 

n + l '  

n + l [  
- - -  7 .  + - + - -  - 

Ivl 

I h(n+ 1 ) h(n) 
n ° n -  1 ~n Un- I 

(7,7,  - -  - -  (7~-1~:~ - - -  + 
n - - 1  n + l  n 

h(n+ 1 ) h!n) 
0 - -  --i (Tn ~ t ~ ,  1 ~ i < ~ n  - 2 ,  n > ~ 2 .  

n + l  n 

b(n+l) b(.) 
(Tn - n , 

n + l  n 

(3.5) 

(3.6) 

n~>l, (3.7) 

, n > ~ 2 ,  ( 3 . 8 )  

(3.9) 

Now, we can substitute (3.6) in (3.7), and next in (3.8). Thus, dividing by o.on_l 

1 h(n+3) 
__  _ _  ~ n + l  ~"+' +]7 .  + a .  ~.+2 +/7.+,  +o'n+, - n~>l, (3.10) 

O'n+l (7n+2 (7n+20"n+l n + 3 ' 

holds. In a similar way, if we substitute (3.5) in (3.7) for n = 1, and the result in (3.8), for n = 2, 
if we divide by (71(72, we get 

_ _  _ _  1 b(l 3) ( 3 . 1 1 )  ~1 _j_ /~0 = '~2 _~_ ]~I -[- (71 . . . .  
(71 (72 (7261 3 

Expressions (3.10) and (3.11) allow us to obtain 

h(k+2) 
. . . . .  +/70 + /7 .  + o-. ~ <'k . (3.12) 
(71 6n+1 k=l 6k+l fk  k + 2 

Hence, this expression does not depend on n and we will denote it by  c. If  we define the sequence 

y0 = 1, yl = 71y0, 
(71 

Yn+l=(~n+l k~=l ~l h(k+2)\~) Yn--~-]~n-I fi(Tk (~7-]~ 1 h(i+2) ) - i  
(Tn+l (Tk ffk j=l k=j+l i=l ffi+t(Ti i + 2  y j ,  n >~ l,  

then Eq. (3.12) can be written in the following way  

Y.+l = ( c -  f l . )y .  - ~ .y ._ j ,  n~>0, Y-I = 0. 

Then, we obtain y.  = T . ( c ) ,  n>~O. 

Taking into account the expression for Y.+l, we can deduce that if  

1 b(~ n+2) 
7.+1 (7. n + 2  ¢ 0 '  n~>l, and y . = T . ( c ) # 0 ,  n>~O,  
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then a,+~ can be computed in a recursive way by means of the expression (3.2). The values of  the 
sequences {/~}n>~l and {°/n},~>2 are obtained from Eqs. (3.5)-(3.7). However, the values of  8o and 
?~ are arbitrary. 

Conversely, taking the parameter o1 in such a way that the number c, defined from (3.12), satisfies 
Tn(c) ~ O, n>~O, for the values of the parameters {a~},~>~, {/~,},~>~ and {?~},~>2 given by relations 
(3.2), (3.5)-(3.7), we can easily show that the sequence of  monic polynomials {P,},,  defined by 
(1.2), is a MOPS since it satisfies a three term recurrence relation. [] 

Remark.  We must notice that a sufficient condition for hypothesis (3.3) to be fulfilled, is b(n n+2) = 0, 
h ( n + 2 )  : 0 ,  1 ~< i ~< n, and, thus n ~> 1. Therefore, by using Eq. (3.9), we deduce -i 

- -  h(n+2)PIn+l(X) n >~ 1. PnI+3(x) /~(,+2)P~'+2(x) + u,+l 
P~+2(x) -- n + 3 +~,+2 n + 2 n + l 

In this way, we can conclude that the sequence {P,}, is a classical MOPS, as a consequence of  
characterization (C.3) from Theorem 2.1. 

By using the same type of arguments, we can solve the converse problem. 

Theorem 3.2. Let {Pn}, be a MOPS.  Define a sequence {Tn}, o f  monic polynomials by mean 
o f  the coherence relation (1.2) where {o-~},~>l is a sequence o f  nonzero complex numbers. Then, 
{Tn}, is a M O P S  i f  and only i f  

n - 1  2 
n 

~Tn ~)n 

b(,+l) rb(,+l) b(, ) n + l  

n 
- -  O 'n_  1 ~ n +  1 
n + l  

b ( n + l )  h ( n )  
n - - I  U n - - I  

- k  - -  - -  O-n 
n + l  n 

¢ 0 ,  n>~2. 

The parameters o f  the three term recurrence relation for  the M O P S  {T,},, say {/~,},~>0 and 
{~,},~>l, are given by Eqs. (3.5)-(3.7). 

4. Symmetrically coherent pairs 

Obviously, when both functionals, u0 and u~, are symmetric, the coherence relation studied in 
the previous sections is meaningless. Thus, in the above mentioned work by Iserles et al. [6], they 
introduce the concept of  symmetric coherence: two symmetric linear functionals {u0, ul} constitute 
a symmetrically coherent pair if there exists a sequence of nonzero complex numbers a~, o2, . . . ,  
satisfying 

T n ( x ) -  P'n+l(X) an-1P'n-l(x-----~) n>~2. (4.1) 
n + l  n - 1  ' 

In this situation, the linear functional ul is called a "symmetric companion" for u0. 
Let {Pn}n and {T,}n be the MOPS associated to u0 and uj, respectively. Then, we have 

P , ( - x )  = ( -1)np , (x) ,  Tn(-x)  = ( -1 )"  T,, (x ), Vn ¢ ~. 



274  F. Marcell6n et al./Journal of  Computational and Applied Mathematics 65 (1995) 267 277 

and, in this way, (see [3]) we can write 

P2,(x) = U , ( x 2 ) ,  P2,+~(x) = xUd(x2), 

T2n(X ) __- Vn(X2), T2n+l(X) = xV;(x2).  

(4.2) 
(4.3) 

Let v0 and v~ be the linear functionals defined by means of the relations 

(vo,x") = (uo, x:'), (v,,x') = (u,,x:"), n>.O, (4.4) 

then {U,},  is the MOPS associated with v0 and {U*},  is the MOPS associated with XVo. Analogously, 
{V,},  is the MOPS associated with v~ and {V~}, is the MOPS associated with xv~. 

In the next theorem, we will show that symmetrically coherent pairs and coherent pairs are related 
by means of a symmetrization procedure. In fact, two symmetric MOPS constitute a symmetrically 
coherent pair if  the even component of the first sequence and the odd component of the second 
sequence constitute a coherent pair. 

Theorem 4.1. Let {u0,ul} be a symmetrically coherent pair. Then, with the above notations, 
{Vo, xvl} is a coherent pair, that is 

, u ' + ~ ( x )  ' U'(x) 
V~ (x) -- n + l a2,--,n Vn>. l. (4.5) 

Moreover, the M O P S  {UT} , and {V,} ,  are related in the following way: 

vo(x)- u;(x) u;_,(x) (%:_),(x)] 
2n + l aZn-1 2n----Z- ~ + 2x L 2n + l a2,-1 2 n - 1  j ,  ~'n/>l. (4.6) 

Conversely,/fv0, vl, XVo and xvl are four regular linear functionals, let us suppose that the corre- 
sponding M O P S  { U, },, { Vn },, { U~ }, and { V2 }, are related by means of  the conditions (4.5) and 
(4.6). Then the sequences o f  polynomials {P,} ,  and {T,}n given by (4.2) and (4.3), constitute a 
symmetrically coherent pair. 

Proof. It suffices to substitute (4.2) and (4.3) into the symmetric coherence relation for the even 
and odd polynomials. [] 

The symmetric coherence relation for the MOPS gives an explicit relation between the corre- 
sponding linear functionals. The next result will be proved using a technique based in the properties 
of duality (see [8, 13]). 

Since {P,}, is a basis for P, we can associate the corresponding dual basis {u(,°),n E ~},  where 
u(, °) is the linear functional such that 

(u~°),Pm) = ~n,m. 

In the same way, let {U(1)}n be the dual basis associated to the MOPS {T,},. On the other hand, 
the family of polynomials defined by {t5 = p,+l/n + 1},, is also a basis for P, with deg(P,)  = n. 

r ~(0) Then, we can associate to it a dual basis l u, ,n E ~} .  
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In this way, the definition of symmetric coherent pairs can be given in terms of the dual basis: 

Lemma 4.2. Let {Uo, Ul} be a symmetric coherent pair. Then 

( i )  5 (°), = u~ l) - a,~_l u(]),+2, n >7 0 

( i i )  ( n +  1)u~°+) l = ~,n+luu,+:- ,-,  (l) _ Du(1) ,  n >~O. 

(4.7) 
(4.8) 

Equivalently, (ii) can be expressed as: 

, ,  P n + l ( X )  
(n + l )/Z---flU-\ Uo 

\~0 ,  l n + l  / 
: CTn+lD 

T.+2(x)  

<u,, TL > u, 
- D  

rn(x) 1 ~ u , ] ,  n~>O. (4.9) 

P r o o f .  (i) It suffices to write 

~(0) ~ ,  (n) (1) 
u n = ~ 2  m u m, n>~O,  

m=O 

where 

2(n) , ~(0) Tm)  MO) 5 ! 1, 
= ( " n  ' r m  (Tm-- lPm--2)  - -0" .+1 ,  -'m ---- ~Un ' - -  ---- 

t 0, 

(ii) Taking derivatives in the above expression, we get 

D(5~o)) D(u~,)) O) = - -  g n + l D ( u n + 2 ) .  

Finally, it is very easy to prove that D07~ °)) = - ( n  + lau (°) .' n+l" 

if m = n, 
i f m  = n + 2 ,  
otherwise. 

[] 

By using the same reasoning as in [11], we can deduce that if {u0,u]} constitute a symmetri- 
cally coherent pair, both functionals are semiclassical and they are related by means of a rational 
expression. In fact, 

Proposition 4.3. Let {Uo, u~ } be a symmetrically coherent pair. Then 
(i) u] is a semiclassical functional o f  class less than or equal to 2, i.e., there exist two poly- 

nomials ~bl(x),~l(x), with degrees less than or equal to 4 and 3, respectively, such that 

D(qblUl) = @lUl, 

whose explicit expressions are 

P 2 ( x )  . . ,  , 
q~l(X) = z ~ t ~ 2 t x )  

\t,tO, ~t 2 / 

where 

T,(x) 
C . ( x )  = ~ , _ ,  <u, ,  r~,> 

Pl(x)  
(U0, P12 ) C 3 ( x ) '  

T.-2(x) 
n >~2. 2 " (U,, T;_2) 

., P ; ( x )  . . ~ ,  , P ' l ( x )  . . ,  , 
~l(X) = / - ~ l ~ 2 t x  ) ~ u 0 , 1  2 / ( ~  ('~3tX)' 

(4.10) 
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(ii) There exist two polynomials A4(x) and B4(x) with degrees less than or equal to 4, such that: 

A4(x)uo = B4(X)Ul, 

defined by 

A4(x ) = ~bl(x), B4(x ) : C2(x)C;(x)  - C;(x)C3(x ). 

(iii) Uo is also a semiclassical functional, o f  class at most 10, since it satisfies the distributional 
differential equation 

D( dpoUo ) = ~oUo, 

where ~po(X) and ~bo(X) are polynomials with degrees less than or equal to 12 and 11, respectively, 
whose expressions are given by 

(Oo(X) = (o~(x)B4(x), ~bo(X) = [2(o,(x)B'4(x) + Ol(X)O4(y)] ~bl(X ). 

Proof.  (i) From (4.9), for n = 0 and n = 1, we deduce the following system of  linear equations: 

P i ( x )  C~(X)Ul + C2(x)Dul,  
(uo, P~> u°=  

(4.11) 
2 P2(x)  Uo = C~(x)ul + C3(x)OUl. 

(u0,P2) 

And it suffices to solve the previous system for u~ and Du~, to get the announced result. 
(ii) It suffices to eliminate Dul in the above system. 
(iii) From (i) and (ii), we get 

D( dp~B4uo ) = D( dp,B24 u, ) = 2B4B401Ul + B24D( gp, u, ) 

= 2B4B'4~ p, u, + B42~1 u, = [2~b,g] + ~tlg4] ~blU 0. [] 
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