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Abstract

We define a smooth functional calculus for a non-commuting tuple of (unbounded)
operators A; on a Banach space with real spectra and resolvents with temperate growth, by
means of an iterated Cauchy formula. The construction is also extended to tuples of more
general operators allowing smooth functional calculii. We also discuss the relation to the case
with commuting operators.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

There are many different approaches to functional calculus for one or several
operators acting on a Banach space, a common idea being that in order to define
f(P) where P is some operator and f a function of some suitable class, we represent
f(x) as a superposition of simpler functions w,(x), for which w,(P) can be defined

"M.A. partially supported by the Swedish Research Council, J.S. invited to Géteborg University and
Chalmers.
*Corresponding author.
E-mail addresses: matsa@math.chalmers.se (M. Andersson), johannes@math.polytechnique.fr
(J. Sjostrand).

0022-1236/03/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-1236(03)00141-1


https://core.ac.uk/display/81987146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

342 M. Andersson, J. Sjostrand | Journal of Functional Analysis 210 (2004) 341-375

and then define f(P) as the corresponding superposition of the operators w,(P). For
instance, if P is a self-adjoint operator on a Hilbert space, we have

10) =5 [F e a (1.1)

corresponding to the representation of f* as a superposition of exponential functions

via Fourier’s inversion formula. (Here f denotes the standard Fourier transform of
/. This approach has been developed by Taylor [22] and others.) Another example is
when P is a bounded operator and f is holomorphic in a neighborhood of the
spectrum, ¢(P), of P. Then

1) =5 [ fOE- P (1.2

where y is closed contour around g(P).

For problems of spectral asymptotics and scattering for partial differential
operators, representation (1.1) often has led to the sharpest known results (see
[13,14]), but the price to pay is that one has to get a good understanding of the
associated unitary group for instance via the theory of Fourier integral operators or
via propagation estimates. Often a formula like (1.2) is easier and more practical to

use (see for instance [1,18]). The advantage is that the resolvent (z — P)f1 can be
treated with simple means (like the theory of pseudodifferential operators).
If P is bounded, f(z) is defined with its derivatives on the spectrum of P and has an

extension f to a neighborhood of the spectrum such that Jf vanishes to infinite
order on ¢(P), and if the resolvent only blows up polynomially when z tends to the
spectrum, then Dynkin [11] used the Cauchy—Green formula

fw)=— %/(z —w)'0:f (2)L(dz), L(dz) =d(Rez)d(Imz)
to define

7)== [ Prof @)L, (13

and he studied the corresponding functional calculus (also with other classes of
functions f allowing for wilder resolvent behavior). This work has been very
influencial (see below).

Unknowingly of [11], Helffer and Sjostrand [12] used (1.3) as a practical device in
the study of magnetic Schrédinger operators in the framework of unbounded non-

self-adjoint operators P; f is then the standard almost holomorphic extension of
feCy (R). (We refrain from reviewing here the history of almost holomorphic
extensions with roots in the work of Hérmander, Nirenberg, Dynkin and others.) It
was soon realized that (1.3) is of great practical usefulness for many problems in
spectral and scattering theory and in mathematical physics, because it is simple to
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manipulate without requiring holomorphy of the test functions f. For instance, if P
is an elliptic differential operator and f belongs to a suitable class of functions, it is
very easy to show that f(P) is a pseudodifferential operator [9,12], and other
applications were obtained in cases where f does not necessarily have compact
support [8,15]. Another application of (1.3) is in the area of trace formulae and
effective Hamiltonians: For a given operator P: 3 — #, one sometimes introduces
an auxiliary (so-called Grushin-, or in more special situations Feschbach-) problem:

(P—z)u+Ru_=v, Ryv=nv,. (1.4)

Here the auxiliary operators R, : # —>%, R_:%_ — # should be chosen in such a
way that problem (1.4) has a unique solution

Hosu=FEv+E v, € su =Ev+E v,

for all ve #, vy €% .. Then it is well-known that the operator E_, inherits many of
the properties of P, and typically one looks for spaces ¥, which are “‘smaller” in
some sense, so that the study of E_, may be easier than that of P. For trace formulae
one can show under quite general assumptions that

1 [of

trf(P) = tr; %

@E-" Tt (L) (15)

which is very useful for instance when the spaces %4 are of finite (and here equal)
dimensions.

The approach of Dynkin [11] has had a great influence on many later works
devoted to general problems of functional calculus. In [19] Taylor introduced a
notion of joint spectrum o(P)=C" for several commuting bounded operators
Py, ..., P, on a Banach space, defined in terms of the mapping properties of the
operators. This spectrum is in general strictly smaller than the joint spectrum one
obtains by regarding P; as elements in some Banach subalgebra of #(B). In [20] he
then constructed a general holomorphic functional calculus @(o(P))— ¥ (B) and
proved basic functorial properties. In simple cases, for instance if the function f is
entire, one can use a simple multiple Cauchy formula to represent f(P), but the
general case is intricate, and Taylor’s first construction was based on quite abstract
Cauchy—Weil formulas; later on in [21] he made the whole construction with
cohomological methods. In [2] was given a construction based on a multivariable
notion of resolvent w,_p which permits a representation of the calculus analogous to
formula (1.2). In special cases, for instance when the spectrum is real, such a
representation was known earlier, and was used by Droste [10], following Dynkin’s
approach (1.3), to obtain a smooth functional calculus in the multivariable case for
operators with real spectra. This approach is extended to more general spectra
in [17].

Various versions of functional calculus have been used in the study of the joint
spectrum of several commuting self-adjoint operators [5-7], and for non-self-adjoint
operators with real spectra in [4].
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The case of non-commuting operators is more difficult and more challenging. The
monograph of Nazaikinski et al. [16] gives a nice treatment of such a theory and
contains references to many earlier works of Maslov and others. The authors build
the theory on the approximation of functions of several variables by linear
combinations of tensor products. If f(x1,x2,...,x,) = [[]' fj(x;) is such a tensor
product and P; are operators on the same Banach space, that do not necessarily
commute, it is natural to define f(P, ..., Py) as fi(Pi)o- ofm(Pm), and then
approximate a general f(xy, ..., x,,) by linear combinations of tensor products, and
define f(Py, ..., P,) as the corresponding limit in the space of operators. A prototype
for non-commutative functional calculus is given by the theory of pseudodifferential
operators, with xi,x2,...,x,, Dy, ..., Dy, as the basic set of non-commuting
operators.

Most approaches to the theory of pseudodifferential operators use direct methods
rather than approximation by tensor products. In this paper we shall suggest a direct
approach to smooth non-commutative functional calculus, based on a multivariable
version (3.3) of (1.3). (Another possibility, that will not be explored here is to extend
(1.1) to the multivariable case. Then, under suitable extra assumptions, one could
also consider the Weyl quantization

PPy Py = (2m) / 7 (e ar,

with - P = ZZJP,'.) When Py, ..., P, are pseudodifferential operators with real
principal symbols and f belongs to a suitable symbol class, it will be quite
obvious from our formula that f(Py, ..., P,,) is also a pseudodifferential operator,
by extending the arguments from [9,12]. We hope that the multivariable
formula (3.3) will be a useful complement to existing multivariable functional
calculii. It might provide a more direct alternative to some parts of the theory in [16].
The purpose of the present paper is merely to establish some basis for this approach
and to connect it to the one of Taylor and others [2-4,19,20] in the commutative
case.

The plan of the paper is the following:

In Section 2, we introduce some special almost holomorphic extensions of smooth
functions on the real domain.

In Section 3 we introduce the calculus using formula (3.3) and in Section 4 we
establish some additional properties. Thus we get a Cj°-calculus of several
unbounded and non-commuting operators whose spectra are real and which have
locally temperate growth of the resolvent near the real axis.

In Section 5, we relate our approach to a naive iterative approach, which amounts
to treat the calculus as an operator valued distribution equal to a tensor product of
one-dimensional operator valued distributions.

In Section 6, we review the Cayley transformation and more general Md&bius
transformations of operators, as a tool to reduce many questions about unbounded
operators to the bounded case.
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In Section 7 we consider the commutative case and relate the theory to the Taylor
approach. In particular, we show that the (joint) Taylor spectrum and the support of
our operator valued distribution agree.

In Section 8, we discuss what happens when the operators have non-real spectra.
In some cases there is a direct extension using formulae like (1.3) and (3.3), but there
are also cases where such a functional calculus can be given differently already in the
case of one operator (like for instance if we have a normal operator on a Hilbert
space). The conclusion is that in all cases, one can get a multi-operator calculus by
iterating suitable one dimensional formulae, in a way that is well adapted to the
spectrum of each of the individual operators.

In Section 9, we give some simple examples, and show in particular that the
support (unlike the joint spectrum in the commutative case) is highly unstable under
small perturbations.

In Section 10 we extend the calculus to the case of test functions f* that do not
necessarily have compact support. This is of importance in applications to
differential operators and spectral theory (see [8,15]). For simplicity, in this and
the two remaining sections, only the case of a single operator is considered, with the
hope that the extension to the multi-operator case should be straight forward along
the lines of the previous sections.

In Section 11 we show how to recover a generating operator from a given
homomorphism from test functions into the bounded operators on some Banach
space. In the case of real spectrum it is important to have test functions with a non-
trivial behavior near infinity, and we give an example of a homomorphism defined on
the Schwartz space .%(R) which is not generated by any operator.

In Section 12 we establish the basic composition result f(g(P)) = (fog)(P) within
the framework of the extended calculus of Section 10.

2. Special almost holomorphic extensions

For any f e C;°(R") one can find a function fe Cy° (C™) such that f = / on R”
and

df = O(lIm z|™); (2.1)

such a function f is called an almost holomorphic extension of f. One can even

assume that the support of f is contained in any small neighborhood of supp f in C".
In this paper we introduce a special holomorphic extension, where the condition
Eq. (2.1) holds for each variable separately.

Lemma 2.1. Let feC;°(R"). Then there is a fe Cy° (C™) with support in an
arbitrarily small neighborhood of supp f such that

0, f = 0(Imz|”), 1<j<n. (2.2)
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Recall that if f , fe C;° (C™) are any almost holomorphic extensions of the same
feCy (R™), then

f=7=0(Imz"); (2.3)

this is just a special case of Eq. (2.6) below.
Proof. As a first attempt we take

d 1 iz-¢ o >
f(2) :W/e <1[[1 1({ & >Im Zk))f(f) dé, (2.4)

where f e #(R™) is the Fourier transform of 1,

oy =T+ &P, z-¢=> aé,

k=1

and ye C;°(] — 1, 1]) is equal to 1 in a neighborhood of 0. Notice that the exponential
factor is bounded on the support of the integrand so fe C*(C™), and by modifying

the choice of y we may assume that f has its support in an arbitrarily small tubular
neighborhood of R™.
We have

af,f(z)
— G | ] #(<aoim=) ) <& tr(ceyimz) (@) de
(27‘5) k:l,k;sjy ] 2 ] g

On the support of the integrand we have {¢;» ~1/|Im z;| and using the rapid decay

off we get (2.2). Clearly f|Rm = f. Notice that the mapf»—»f is linear, and at least
formally it is the tensor product of the one-dimensional extension maps

G (R)3gr=(2) = 5. [ 1< Im2)5() . 23

cf., Section 6 below. It is easy to see that (for any almost holomorphic extension ¢)
g(z) = O(lTm z|™) (2.6)

locally uniformly when Rez¢suppg. In fact, if g(x) has the Taylor expansion
>, ay(x — xp)" at some point xo, then any almost holomorphic extension must have
the expansion > a,(z — xo)" at this point.
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Let f have support in /; X --- x I,, where I; are bounded intervals. If J;c cR
are open intervals with LiccJ;, let y,eCy°(J;) be equal to 1 near [; and
consider

Fo =1] ¥ Rez)f (). @7)
1

For Re z;esupp /; we have f(x) = O(]Tm z;|*), so ag/f: O(|Tm z;| ™).
In the general case we first decompose f by a partition of unity into a finite sum of
new functions /", where each /¥ has support in a small box I} x --- x I . Then we get

v, and if we sum the extensions VA
we get an extension of f with support in an arbitrarily small neighborhood of

suppf. O

f" with support arbitrarily close to I} x --- x I

Notice that (2.2) is stronger than the usual requirement for almost holomorphic
extensions:

3 = O(Tm 2| ™). (2.8)

3. The calculus

Let Py, ..., Py, : % — % be densely defined closed operators on the complex Banach
space #. We assume that each P; has real spectrum,

o(P) <R, (3.1)
and that the resolvents have temperate growth locally near R:

For every K< <C there are Ckj, Nx;=0 such that
Iz = P)) M| < Cjltm 2| ™, zeK\R. (3.2)
Definition 1. For f'e C;° (R™) we put
f(Pla aPm)

_ (_ %)m/ /(351 --~5z,,,f)(2— P1>71"'(Zm —Pm)*lL(d21)-~~L(dzm)7 (3.3)

where f is a special almost holomorphic extension as in Lemma 2.1, and L(dz;) is the
Lebesgue measure on C~ R
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We first check that the right-hand side of (3.3) is a bounded operator on % which

depends on f but not on the choice of special extension f~ . Estimates (2.1) remain
valid after differentiation so we have for every j that

05, f = O(lIm 2| ),

Zm

and taking geometrical means we get
. maf O(|Tm z;|™ -+ [Im z,,| ). (3.4)

Using this in (3.3) we see that the integral converges in the space of bounded
operators, and for every K< <R™ there exist constants Cg, Ng >0 such that

1(ll<Ck sup [0°f | (3:5)

|| <Nk

for every f e Cy” (R™) with supp f < K, where I(f) is the right-hand side of (3.3).
Let / be another special extension of f e C;° (R™). Then

1(f)-1()

=£i33 <__>m/ / 0, f f)(zl,...,Zm)>

x <H(1 — x(Im ZJ/*’)))( Pl)71 o (zm — Pm)il ﬁL(de),

1 1

where ye C° (R) is equal to 1 near the origin. Integration by parts gives

In view of (3.2) and (2.7), this limit is 0 and hence definition (3.3) is independent of

the choice of f .
It follows from (3.5) that

1/ (Prs o Pu)[[<Cx Y sup |0 (3.6)

|| <Ng
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for every f'e Cy° (R™) with supp f =K, which means that
C'af—=f(Pi,...,Pn)eZL(B)

is an operator-valued distribution on R™. Let supp(P1, ..., P») denote its support;
clearly f(Py, ..., P,,) is welldefined for any smooth f defined in some neighborhood
of supp(Py, ..., P,,) and vanishing in a neighborhood of infinity.

Next we review Feynman notation:

Notation. If /', P; are as above and n: {1,...,m}—>{1,...,m} is a permutation, we
put
n(1) n(m)
f(P17 s P
1 -1
= _E 0, f 217 ""Zm)(zfr'(m) - Prr‘(m))
| i m
X (Zetm=1) = Prtm=1)) " = (Zz101) = Pror1)) HL(dZi)- (3.7)
1

In simpler words, this is the same as (3.3) except that we rearrange the order of the
resolvents, so that we have

(ij - ij)il(zjm—l - ij—l )71 T (Zjl - P]I )717
with TE(jl) = 1,4)(/2) =2,....

Example 1 (Some examples).

f(Pl,Pz,Pz (——) ///8 02,0:) f (21,22, 23)

X (z1 = P1) ' (z3 — P3) ' (22 — P2) ' L(dz)L(dz2) L(dz3).

When no indices are suspended we use the usual ordering of operators as in
compositions, so for operator (3.3) we have

f(P]7"'7PI11) :f(}n;ll,...,le).

This notation can also be extended to more complicated expressions. If A€ Z(%), we
can define

301 2
f(P1,Py) A

_ (_ %)2/ /(af, 0:) F (21, 22)(z1 — P1) " A(z2 — Py) "' L(d=) L{d=).
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301
Notice that this is not an ordinary composition of (P, P,) and A, while for instance

213 2
f(P1,Py) A= Af(Py, P)

and

2 3 1 1 2
F(P1,Py) A =f(Py,Py)oA.

4. Some further properties

Proposition 4.1. Let feC (R), ge C°(R)), m =k +/, and Py, ..., P, as above.
Then

f(P], ...,Pk)og(Pk+1, ,Pm) = (f@g)(Pl,Pz, ...,Pm), (41)
where (f®g)(x1, ..y Xm) =F (X1, ooy X5)G(Xhi 1 oovy Xim)-

Proof. It follows directly from the definition since we can take (f®g¢g)~ = f ®g
as the special almost holomorphic extension of f ®g. [

Proposition 4.2. Let fe Cy°(R™) and Py, ..., P, as above. If Py = Py for some
ke{l,....k — 1}, then

f(Ph "'7P/C7Pk+1a -~~7Pm) :f(k)(Ph --~7Pk7Pk+27 ---7Pm)v (42)
where Jal eC(‘fo(R"”l) is given by FEXY, oo Xy X2y oy X)) =
S (X1, ooy Xty Xk, Xkt 2y v s Xim), (i€, by restricting f to the subspace xji1 = Xp).

Proof. For simplicity, we only consider the case m = 2, k = 1, so that P, = P, =: P.
Then, using the resolvent identity,

1(bp) = / / 50/ ) (21, 22)(21 = P) (22 = P) ' L(dz1) L(dz2)
:%//(aflafj)(zlazz)(zz —z1)"'(z1 — P) "' L(dz)) L(d=2)
+%//(85135f)(21,22)(21 — )" (22 = P)"'L(dz)) L(dz2)

:_%/(aflf)(zhzl)(zl — P)'L(dz)) — %/(afj)(zz,zz)(zz — P)"'L(d=)
T %/85(17(2’2))(27 P)"'L(dz),
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which gives the result since f(z,z) is an almost holomorphic extension of

f(x,x). O

5. Definition by iteration

It is possible to construct our functional calculus from the single operator case by
iteration. To see this we first extend our previous construction to vector-valued
functions. If f'e Cy° (R™, #) we can find a special almost holomorphic extension and
define f(Py, ..., P,y) in the same way as before, just being careful to put the factor

0z, - 05 f on the right-hand side of all the resolvents in formula (3.3). Again this

m

definition is independent of the particular choice of extension, and estimate (3.6)
holds. Notice that f(Py, ..., P,) = 0 if supp(f ) nsupp(Py, ..., P,) = 0, also when
S is vector valued (where supp(Py, ..., Py,) is the support of our operator-valued
distribution defined initially on scalar valued test functions). For instance, if ¢
is scalar valued, ue#, and f(xi,...,xn) = ¢(x1, ..., Xm)u, then f(Py,...,P,) =
¢(P1, ..., Pp)u. Moreover, if f(x1, ..., Xk, Xi41, ---, Xm) 18 B-valued, and

g(xlv "'axk) :f(X1, "‘7xkapk+la "'aPm)

is defined as before, for each fixed (xi,...,xx), then g(xy,...,x;) is a function in
Cy (R*, %) and

f(P], ...,Pm) = g(Pl, ...,Pk).
301 2
Example 2. One can define, e.g., f (P, P2) 4, cf., Example 1, as g(P,), where

g(x1) = Aof (x1, P2).

Remark 1. Since we use explicit integral formulas the necessary verifications for the
statements above are easily made directly. However, one can also obtain the multi-

operator calculus in a more abstract way. Spaces like C(‘)x(Rk) are nuclear, and
therefore they behave well under topological tensor products. Since

CP(R",2)=CPR® - ®CL (RI®2

it is therefore enough to define the functional calculus on decomposable ele-
ments ¢, (x1)® - ®¢,,(xm) ®u, for ue A, which is done by the single operator
calculus.

As an application we can prove

Proposition 5.1. If Py, ..., P, are as above, then

supp(Pi ..., P) =supp(Py, ..., Pi) X supp(Pii1, ..., Pm).
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Proof. Let P= Py, ..., P and Q = Py.1, ..., Py, and similarly (xi, ..., x,) = (x, &).
If ¢(x,¢) has support outside supp(P) x supp(Q), then & ¢p(x, &) vanishes near
supp(Q) if x belongs to (a neighborhood of) supp(P). Thus x> ¢(x, Q) vanishes in a
neighborhood of supp(P) and hence ¢(P, Q) =0. O

Example 3. For one single operator P, the support coincides with the spectrum ¢ (P),
i.e., the complement of the resolvent set. In fact, suppose that f'e C5° (R) has support

in the resolvent set. Then we may assume that f has support in the resolvent set as
well. However, here the resolvent (z — P)”' is holomorphic, and thus

_%/@ﬂNFJTMWPE%/@@@@—mﬂu@:o

by Stokes’ theorem. Thus supp(P)<=a(P). Conversely, if Q is an open set in the

complement of the support, then the operator valued function ¢(z) = (z— P)” ' has a
holomorphic extension across R in Q. In fact, if F e C;°(Q) is an almost holomorphic
extension of a function f in Cy° (2N R), then it is easy to see that

L(d{)
(—z

for each ze Q\R. For any given point x° in 2 " R we can choose F which is identically
one in a neighborhood, and then the integral provides the holomorphic exten-
sion at x°. One can conclude that Q is contained in the resolvent set of P. Thus

supp(P) = o(P).

—%/d@%ﬂﬁ = (2)F(2)

6. The Cayley transform

In this section we shall consider closed operators on a complex Banach space 4
that are not necessarily densely defined. For such operators P one defines the
spectrum as usual (namely as the complement in C of the set of z for which z — P :
2(P)— % has a bounded inverse, where Z(P) is the domain, equipped with the
graph-norm ||u|| + ||Pu||) and the spectrum o(P) becomes a closed subset of the
complex plane. The point spectrum o,(P)co(P) is the set of ze C such that z — P is
not injective. In this section we only consider operators whose spectrum is not equal
to the whole complex plane.

For any closed operator P on %, we define its extended spectrum & (P) as o(P) if P
is bounded and as ¢(P) u {0} if P is not bounded. Then ¢(P) is a compact subset of

the extended plane C=Cu {o0}. If Y is an automorphism of @7 a Mobius mapping,

such that (o) is outside the point spectrum of P, then (P) is a welldefined
closed operator with extended spectrum (¢ (P)), and it is bounded, if and only if

this set is bounded, i.e., if and only if ' (c0) is outside G(P). Moreover, (P) is
densely defined if and only if the range of P — ! (o0) is dense (excluding the trivial
case when Y maps oo to itself, in which case P and y/(P) have identical domains).
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More precisely, Z(y(P)) = #(P — ' (w)), where Z and # indicate the domain
and the range, respectively. A simple way of checking these facts is to use that if
WY(z) = (myz+mya)/(my 1z 4+ myy), with det M#0, M = {mj-,k}lgj,kgm then the
graph of y(P) is equal to M (graph (P)), where M acts on # x 4 in the natural way
and graph (P) = {(Pu,u); ue Z(P)}.

In this way, any closed operator P such that (P)< ¢(IA3 can be transformed to a
bounded operator. If 6(P) = R, one can use the automorphism

z+1i
= o)
z—1

C(2)

which maps R bijectively to the unit circle T and has the inverse

P _.w—i—l
z=C (w)—zw_l.

Thus C induces a 1-1 correspondence between closed operators A with real spectra
and bounded operators B with ¢(B) < T, such that B — 1 is injective.
We also have the identity

I
WP —1=4—
|z —1|

which implies that [Im z| ~d(w, T), for z close to R (i.e. w close to T) with explicitly
controlled non-uniformity when z— oo (w—1) . Furthermore, with 4, B as above,
we have

dw A—i dz
= 6.1
w—B z—iz—A (6.1)

which implies that (w — B)f1 has temperate growth locally near To = T\{1} if and

only if (z — A)~" has temperate growth locally near R.
If this holds, we can define a functional calculus

G (To) = Z(%), ¢ d(B),

as before, by the formula

L(dw)
w—F

#(8) = [ 0:dm)

where ¢ is an almost holomorphic extension of ¢ with compact support.
Clearly, ¢ € C;°(Ty) if and only if ¢oCe Cy°(R), and as one would expect,

(¢=C)(4) = ¢(B). (6.2)
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To see this, just notice that, by (6.1),

T _/8“’4) —B 221/5 F0)n Wd—w

B.(FoC)) A2 1= 206 yAZ L)

2m z—iz—A z—iz—A

and the last integral is equal to ¢oC(A) by Stokes’ theorem, since

| A—1i 1
z—i)z—A z—i

is holomorphic.

7. Commuting operators

In this section we shall see what happens if we impose the extra condition that
Py, ..., P, commute, but let us first recall the basic elements of Taylor’s theory for
commuting operators, [19,20]. If A;,...,A,, is a tuple of commuting bounded
operators on 4, then there is a compact set 6(4) = o(44, ..., A,;) in C" called the
joint (Taylor) spectrum. If 4/ is a sequence of commuting tuples, all of which
commute mutually, such that 4/ —» A4 in operator norm, then g(4')—>a(A) in the
Hausdorff sense (this is not true in general if they do not commute!). For each
function f which is holomorphic in a neighborhood of ¢(A4) one can define f(A4),
depending continuously on £, such that it coincides with the obvious definition if f is
a polynomial or entire function, and such that (fg)(4) =f(A4)g(4). Moreover, if
f =1, fn,and f(A4) = fi(A), ...,fa(A), then the spectral mapping property holds,
e, a(f(A)) = f(o(A)).

Let us now suppose that the spectrum of each Ay is real. By the spectral mapping
property this holds if and only if the joint spectrum o(A) is contained in R™.
Moreover, we C" is outside the spectrum if and only if there are C; in (4), the closed
subalgebra of (%) generated by Ay, ..., A, such that

Z Ci(4; —wj)

The tuple A4 admits a continuous extension of the real-analytic functional calculus to
a smooth one if and only this holds for each 4;, and this in turn is equivalent to the
fact that the resolvent of each 4; has temperate growth in the Im-direction; it is also
equivalent to that

le" ]S <M, reR™,

for some M >0, see, e.g., [4]. If 4 admits such a smooth functional calculus that
extends the real-analytic functional calculus (induced in the natural way by the
holomorphic functional calculus), then it is unique and the support of the



M. Andersson, J. Sjostrand | Journal of Functional Analysis 210 (2004) 341-375 355

corresponding operator-valued distribution is precisely o(A4). Moreover, there is then
an operator-valued form w._4 of bidegree (m,m — 1) in C"\g(A4), representing the
resolvent of 4, with

o2 all < Cltm 2|,

and the smooth functional calculus can be represented by
f(A) = _/5:]7/\(1)2an (71)

if f is a standard almost holomorphic extension of f € C* (R"), i.e., such that |5Zf| =
O(|Im z|™), see [4].

As long as Ay are bounded, our functional calculus, constructed by means of (3.3),
is defined for any f € C* (R™), and we claim that it in fact coincides with (7.1). To see
this, let us first assume that f is the restriction of an entire function F. Then we can
take our special almost holomorphic extension to be equal to F in a neighborhood of
R™, and it then follows from the iterated Cauchy formula that (3.3) gives the
holomorphic functional calculus. Since the entire functions are dense in C* (R"), the
claim follows. From representation (7.1) it immediately follows that the support of
the functional calculus, supp(4), is equal to a(A4). The same statements hold if R™ is
replaced by the real torus T".

Let us now go back to our unbounded closed operators with real spectra. We say
that two such operators P, P, commute if the resolvents (z; — Pl)f1 and (z; — Pz)il
commute for all z; and z; in the resolvent sets. This holds if and only if the Cayley
transforms C(P;) and C(P,) commute. If P; and P, are bounded this just means
that they commute themselves. Now let Py, ..., P,, be as before, i.e., resolvents with
temperate growth, but, in addition, commuting. It is convenient to extend our
functional calculus to the algebra

o = G (R @(1),

of all smooth functions which are constant in some neighborhood of co.
Observe that if P; are commuting, then

S(Pryocoy Py) =f(P1y ..., Pn)

for any permutation .
From Propositions 4.1 and 4.2 we get

Proposition 7.1. Suppose that P, ..., P,, are as above and commuting. Then
f(Pla~~~7Pm)g(Pla~~~aPm):(fg)(Plv--me)v f,gGUQ{. (72)

Let C(x1,...,xm) = (C(x1), ..., C(xy)) be the multiple Cayley transform, and
suppose that P; are commuting and have real spectra. Then each C(P;) has spectrum
contained in T so the joint spectrum of C(P) is contained in T™. If all P; are
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bounded, then C(z) is holomorphic in a neighborhood of ¢(P) and thus ¢(C(P)) is
contained in Tf{ = (T\{l1})" by the spectral mapping theorem. By another
application of the same theorem it follows that

a(P) = C'(a(C(P))nTP. (7.3)
When P; are unbounded and commuting let us take (7.3) as the definition of o (P).

Proposition 7.2. If A; are as above (real spectra and temperate resolvents) and in
addition commuting, then

supp() = a(4).
Proof. Let B= C(A4). We are to prove that ¢(B)nT{' is equal to the support of
G (T5)=2(#), f—=1(B). (7.4)

By repeated use of (6.2) we have that C(supp(4)) is equal to the support of (7.4), and
so the proposition will follow.
To begin with, we shall extend (7.4) to a multiplicative mapping

G(T") - L(8B), (7.5)

where 4(T™) is the class of functions in C*(T™) that are real analytic in a
neighborhood of T"™\T{'. Let y,(¢) be a smooth function on T which is 1 in a
neighborhood of a given compact set K = T and 0 in a neighborhood of 1. One can
find an almost holomorphic extension j, to a complex neighborhood of T such that
70 1s 1 in a complex neighborhood of K, and 0 in a complex neighborhood of 1. Then

7o) =1 =TT 200m)
j=1

is identically 0 in a complex neighborhood of K™ and identically 1 in a complex
neighborhood of T™\T{'. After multiplication by a cutoff function (which is 1 in a
neighborhood of T™), we may assume that 7 has compact support in C”. Now take
f€%(T™) and let F be the holomorphic extension at T"™\Tg’, and fo a special almost
holomorphic extension near Tj'. Then

f=TF+0=0/

is a special almost holomorphic extension of f which is even holomorphic in a
complex neighborhood of T"\T§'.
Since we have temperate growth of the resolvents in Tj', we can now define

_ 1" i -z L{dw)  L(dwn)
f(B) = (— E) / /&,‘,]...<9w,,,fw1 R — . (7.6)
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It is readily verified as in Section 3 that the integral is independent of the choice of f~ .
Also the multiplicativity follows by means of the resolvent identity as in Proposition
4.2 so we get homomorphism (7.5).

Clearly (7.5) extends to a multiplicative mapping from functions which are C* in
a neighborhood of the support of (7.4) and real-analytic in a neighborhood of
T™T{'. In particular; if we T is outside this support, then (7.5) applies to

Wi — X

b (x) = 5
[w — x|
and since »; ¢/(B)(w; — B;) =1 it follows that w¢o(B). Thus o(B)nT{ is
contained in the support of (7.4).
We claim that (7.5) coincides with the holomorphic functional calculus when f is

real-analytic on the whole of T"™. In fact, iffis an extension with compact support in
C™ which is holomorphic in a complex neighborhood of T, then it follows from
Cauchy’s formula that

F@=(=2) [ oo [ e, J oy H), Ll

Wi —Z1 W — Zm

there. Therefore, see e.g., [20], formula (7.6) defines f(B) in the holomorphic
functional calculus sense, and thus it coincides with our definition.

Lemma 7.3. Suppose that fe C*(T™) is real analytic in UcT". Then there are f,,
0<e< 1, holomorphic in some e-independent neighborhood of T™, and a complex

neighborhood U of U, such that fy—f in C*(T") and f,—f in 0(U).

To prove the lemma one defines f, by means of convolution with a Gaussian
approximation of unity, and since we can make contour deformation in a complex
neighborhood of U, we also get the convergence in Cf‘(f] ) for a suitable U.

To see that the support of (7.4) is contained in ¢(B), take any ¢ Cy° (T{') with
support outside o(B). If ¢, are as in the lemma, then ¢,—¢ in %(T"), so
¢.(B)—>¢(B). On the other hand, since ¢, are holomorphic in a complex
neighborhood of o(B), and ¢,—0 there, ¢,(B)—0 by the continuity of the
holomorphic functional calculus so ¢(B) = 0. Thus Proposition 7.2 is proved. [

Remark 2. If B is a tuple of bounded operators with ¢(B)=T" there is an operator
valued (m,m — 1)-form w,,_p in C"\o(B) such that

f(B) = 7/8_wf/\ww7B; (77)

if f coincides with the holomorphic function f in a neighborhood of ¢(B) and
has compact support. If B is as in the preceding proof, it is even possible to choose
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w,,—p such that

[|ww—g|| S d(w, '[I'm)_M

uniformly on compact sets in Tg'; this follows since one can define such a form w,,_p
as the functional calculus (7.5) acting on s A (8,s)" ", where

s = Z ¢/ (x)dw;/2mi.

By Lemma 7.3, or by a direct computation, one verifies that (7.7) can be used to

define the functional calculus (7.5) (if ]7 is an almost holomorphic extension which is
holomorphic in a neighborhood of T™\T{') and from this formula it is obvious that
the support of (7.4) is contained in g(B).

Proposition 7.4. Let A; be as above (real spectra and temperate resolvents) and in
addition commuting. If ¢y, ..., d, €/, then ¢;(A) is a commuting tuple (of bounded
operators) and o(p(A)) = ¢(a(A4)).

Proof. We first prove that if f;e%(T"), then f(o(B)) = a(f(B)). If wéf(a(B)),
then ¢;(x) = (W —fON /1 f(x) = w|* are analytic near o(B), and according to
the previous proof, > .(w; —f;j(B))$;(B) =1, and hence w¢o(f(B)). Thus
a(f(B))=f(a(B)).

We may assume that f is real. Assume that f(x°) = w and that w¢ a(f(B)). Then
(since o ( f(B)) is real) we can find C;, by the holomorphic functional calculus, commuting
with all By, such that >, (w; — f;(B))C; = I. However, for each j we can solve

Fi(x) = wp =D = X ()

with W (x) in %(T"). Tt follows that »°, (Bx —x}) >, Gy (B) =1, and hence

x"¢ g (B). Thus wé¢f(a(B)).
We already know that ¢;(4) are bounded and commuting. By the definition of

a(A), (6.2), and the first part of the proof, we have

a(¢(4)) =a(p-C™(C(4))) = ¢p=C™(a(C(4)))

We shall now see that ¢(A4) admits a smooth functional calculus if
¢=a¢,...,0,€/ and Ay are as in Proposition 7.4. From the proposition we have
that

a(¢(4)) ={&+in; (&;n)ea(Rep(4),Im p(A)}.
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Moreover, if g is smooth in a neighborhood of ¢(a(4)), then go¢p€.o7, in the sense
that it coincides with an element in ./ in a neighborhood of a(A4); thus go¢(A4) is
defined.

Proposition 7.5. Let Ay be as in Proposition 7.4 and let ¢ = ¢y, ..., o, €. If ¢ is real
then the resolvent of each ¢;(A) has temperate growth.
If g is a smooth function in a neighborhood of o(¢(A)), then

gop(4) = g(¢(4)) (7.8)

holds, if the right-hand side is defined as §(Re ¢(A),Im ¢(A)), where G(&, n) =
g(& +in).

Proof. If g(w) is any polynomial in C”, then go¢ €.o/ and (7.8) holds by Proposition
7.1. However, if ¢ is entire, gy are polynomials, and gy — ¢, then gyo¢p > god in of
and hence (7.8) holds for all entire g.

If ¢ is real, it follows that

le? | <Cley™M, 1eR™,

and this implies (is actually equivalent to) that the resolvent of each ¢;(4) has
temperate growth in the Im zj-direction. It also implies that ¢(4) admits an
extension of the holomorphic functional calculus to a smooth functional calculus,
and moreover, that gy(¢(A4))—g(p(A4)) if gy are entire functions (or polynomials)
and gy — ¢ in C* in a neighborhood of o(¢p(A4)) in R”. It follows that (7.8) holds for
such g. The case with a complex ¢ follows by considering Re ¢, Im ¢p. [

8. Extension to operators with non-real spectra

In this section we shall indicate an extension of the functional calculus to
operators with not necessarily real spectrum.

Let (5”“(@) be the space of smooth functions on ([AZ, or equivalently the space of
smooth functions f(z), ze C with f(z) = g(1/z), for |z| > 1, where g is smooth on the
unit disc. If K = C is closed, let &(K) be the space of germs of &(C)-functions near K.
We say that a closed operator 4 with 6(4) < C admits a smooth functional calculus

T: 8(6(A)) - L (B), (8.1)

if T is a continuous algebra homomorphism that extends the holomorphic functional
calculus O0(6(A4))—> Z(#). Such a T is an ¥ (%)-valued distribution with support
supp (7T') contained in 6(A4), and from applying T to ¢(z) = 1/(z — w), wésupp (T),
it follows that supp (7)) = a(A4).

If 4 is bounded, then Re z and Im z are in &(a(A4)), so Re 4 and Im A4 are bounded
and continuous. It also follows that they both have real spectrum, and the continuity
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of T implies that their resolvents have temperate growth. We claim that
d(Re A,Im A) = {(x,y); x +iyea(A4)}. (8.2)

In fact, if we define 4* = Re A —iIm A, then o(4,A4*) is the image in C?> of
d(Re A,Im A) under the biholomorphic mapping

(&m(z,w) = (E+in, & — in),
by the spectral mapping property of the holomorphic functional calculus. Therefore,
o(A4, 4" ) {(z,w)eC?; w = z},

and since ¢(A) is the image of o(A4, A*) under (z,w) -z, (8.2) follows. It should be
emphasized that such an extension 7" of the holomorphic functional calculus in
general is not unique.

We now claim that the holomorphic functional calculus

dpr—Pp(Red,Im A)

has an extension to all ¢ e&p2(0(Re 4,Im A4)), i.e., functions ¢ that are smooth in
some neighborhood of ¢(Re 4,Im A) in R?. In fact, there is a closed #(%)-valued d-
closed (2,1)-form (¢ )—(re 4,im 4) 1IN C*\o(Re 4,Im A) such that e m—(Re 4,im 4)ll
has temperate growth when Im(&,#)—0, in view of the discussion in the previous
section. If @(&, ) is an almost holomorphic extension of ¢ to C?, with compact
support, then

¢(Red,ImA4) = — /(E2 Dz ® AOE )~ (Re AIm 4) (8.3)

is an absolutely convergent integral.
For fe&(a(A)), let f(x,y) = f(x + iy). This gives rise to an isomorphism

&(0(A))~Ep(Re 4,Im A),

and we claim that

f(A) =f(Re 4,Im A) (8.4)

forall f € &(a(A4)), where the right-hand side is defined by (8.4) and the left-hand side
is T(f). To begin with, (8.4) clearly holds if f is a real analytic polynomial, since the
left-hand side is multiplicative by assumption and the right-hand side has the same
property as part of the holomorphic functional calculus. The general case follows by
approximation. Thus, we have found a representation of T(f ) = f(4) as an explicit
absolutely convergent integral over C* for f e &(a(A)).

If we have (8.1) but 4 is unbounded, then we just apply first an automorphism

of C, that maps A to a bounded operator W (A) and then express T(f ) =f(4) =
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f oy (y(A4)) as an absolutely convergent integral

5 -1
——/QWWW ) AOE )~ (Re (A),Im (4)

where F o1~ is an almost holomorphic extension of £ o', Cé«‘n, o) [RQMZ\,,J,, and X’ +

' =(x+iy).
If we have several operators A; that admit smooth functional calculii,
6(a(A;))— Z(B), we can define

@@(H a(Aj)) ) (8.5)

as an iterated integral as in Section 3, just taking for f(zy,...,z,)€&([[0(4))), a
special almost holomorphic extension F to C*" of

f(xl7y17 "'axmvym) :f(x+iyl7 ceey Xm +1J’m)

such that

|8_€“l¢’71552;'72 “'8_5;”:'7:”Fv(é? ’7)| = (C(|Im(élvnl)‘x ‘Im(éma ”m)|3c)

in a neighborhood of ¢(Re 4;,Im 4;) x --- x 6(Re 4,,,Im 4,,). In case all 4; are
bounded we then get the formula

f(Ay, ..., 4n)
= +/ / Ql ?71842 " Cm N (é ]7)
[SEU Sl
W& )~ (Re Ay Im A) N AD(E, p )—(Re Ay, Im A,,)-

For each unbounded A4; we first have to make an appropriate transformation with a
Mobius mapping  as described above, but we omit the general resulting formula.

Remark 3. If 7; denotes the operator-valued distribution
Tjd = d(4)),

then (8.5) is just the tensor product
I'®:-®Ty

and it could have been defined in a more abstract way; cf. Remark 1.
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9. Some further examples

The following example shows that small non-commutative perturbations of a pair
of operators can blow up the support.

Example 4. Let # = C? and A4 the operator given by the matrix
10
A= ,
00

then o(4) = {0,1} and hence by the spectral mapping theorem for commuting
operators

(4, 4) = {(0,0), (1, 1)}.
Now let 4, = U;'AU,, where
cose sing
U:. = < . )7
—sing cose

i.e., rotation with &. Then clearly 4,—»A in norm when ¢—0. We claim that
supp(4, 4,) is the whole product set {0, 1} x {0, 1}. Let us show that it contains the
point (0, 1). To see this, take smooth functions ¢;(x;) with small supports such that
¢,(x1) is 1 in a neighborhood of 0 and ¢,(x,) is 1 in a neighborhood of 1. Then

(rbZ(AE) = Ug_quZ(A)UE = Au

and

A straightforward computation shows that f(A4, 4,) = ¢, (4)p,(A4,) is like

(- 2)

Let P; and Q; be tuples as before. Using that

-P) ' —(z-0)"'=C-P)(Q-P)z-0)",

it is easy to check that

1/(Q) =/ (PIslIQ =Pl =110 - .
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Thus if / has support outside the spectrum of P, then || f(Q)|| <||Q — P||, so even
though not zero we can at least say that f(Q) is small if Q is close to P.

Example 5. If P and Q are bounded (or at least if [P, 0] is bounded), then
(=P =0 1=C=P) ' (w=0) '[P, Q- Q) (w—P)",
and from this formula we get that
L/ (P, Q) = f(Q, Pl < I[P, Qlll

It also follows that f (P, Q) — f(Q, P) is compact if [P, Q] is compact.

10. Extended functional calculus

Even though everything could be reduced by means of Cayley transformation to
the case of a bounded operator, we prefer a more direct treatment. We also restrict
the attention from now on, to the case of one single operator, and hope that the
extension to the case of several operators will turn out to be straightforward.

10.1. The function space &

We define &(R) = & = C*(R) to be the space of smooth functions on R, which
posess an asymptotic expansion,

f(X)~iakX’k, x— 0, (10.1)
0
with a; € C, in the sense that for every NeN:
flx) = XN: ax 4+ x N v (x), x> 1, (10.2)
0
where ry,1(x) is bounded with all its derivatives.

Proposition 10.1. A4 continuous function on R belongs to & iff it has a bounded

extension ]7 to C with the property that gl is bounded and satisfies

o

5z () = Ony (<25 “NiiIm z)™), YNy, N eN. (10.3)

Proof. Assume first that f €&. For |x|> 1, we introduce y = —1/x, g(y) = f(x), and
observe that the existence of an asymptotic expansion (10.1), (10.2) is equivalent to
the fact that ge C* (] — 1, 1]) with ao = g(0). Let §(y)e C*(D(0,1)) be an almost
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holomorphic extension of g with

é(y) = On(Tmy|"), VYNeN, (10.4)

Considerf(x) = g(—1/x), xeC, |x|>1. Using that

9 _0x0 _ () 9 _ o
oy 0Oyox \Ox %

and that Im y = |x| > Im x, we see that

of [Tm x|
S — N.
0% W( Y ) v

In other words,f :fsatisﬁes (10.3) in the region |x|> 1, and combining this with the

standard construction in a bounded region, we get the desired extension f .

Now let f'e C(R) posess a bounded continuous extension f which satisfies (10.3).
Put

g(z) = — g{; (w)(w — 2)" " L(aw), (10.5)

and notice that the integral converges and that § is a bounded function which
satisfies

g of

0z 0z

Consequently, f — g is a bounded entire function on C and hence a constant, so

f(z)=ao+g(z), aoeC. (10.6)
So far we only used that
o7
a_J;(Z) = 0(<zy7179), (10.7)

for some ¢>0, and under this weaker assumption, we see that § is continuous and
§(z) =0, [z] - oo.
Now we use the full strength of (10.3), and write

- Z T 72). (10.8)
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Using this in (10.5), we get

52 =3 22 [ Xyt 1)

- ) ow
N

T w—2Zz 1

with the obvious definition of ai, ry. Using (10.3), we see that rN‘Ris smooth and
bounded together with all its derivatives. This and (10.6) imply that fe&. O

Let % be the space of functions f € & for which the series in (10.1) converges and is
equal to f(x) for |x| sufficiently large. In other words, ¢ is the space of smooth
functions on R with a bounded holomorphic extension to a domain {zeC;|z|> R}
for some R>0.

Proposition 10.2. A continuous function f on R belongs to 9 iff it has a bounded
extension f to C, such that g—{ has compact support and satisfies
oF
—Ji:@(|lmz|N), VNeN. (10.10)
0z
The proofis just a slight variation of the one of Proposition 10.1 and will be omitted.

10.2. The operator

Let 4 be a complex Banach space and P : % — % a densely defined closed operator.
We assume
o(P) =R, (10.11)

so that (z — P) "' e #(#) is well-defined and depends holomorphically on zeC\R.
Assume,

Iz = P) < O(Im 2|0 (2 ) M), (10.12)
for some fixed NJ, N{ eR.

For the %-calculus, we will replace (10.12) by the weaker assumption (3.2) (with
P=P).

10.3. The calculus

For fe& as in (10.1), we recall that we have (10.6) where g is given by (10.5). If
P: % — % satisfies (10.11) and (10.12), we define

7(P) = apl f% %(z)(zfp)*m(dz). (10.13)
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In view of (10.3) and (10.2), this clearly defines a bounded operator, but we need to
check that the right-hand side of (10.13) only depends on f and not on the choice of

bounded extension f satisfying (10.3). Let f be a second extension of /" with the same
properties. Then it is a standard fact that (2.7) holds for the difference of the two
extensions, and this estimate can also be applied to the difference §(w) — g(w), where

Ggow) =f (=1/w), §(w) = f(=1/w), |[w|<1. We conclude that for all Ny, N, €N,

(f_f)(z) = @N()7N1(|ImZ|NO<Z>7N1)a (1014)

for ze C. From this fact and (10.12), it is easy to see as in Section 3, that
o [T -NEE= P L =0
n) 0% -

so definition (10.13) is indeed independent of the choice of f .

Notice that the map &>/ '+ f(P)e £ (%) is linear and continuous. (& is a Frechet
space with C*-topology for the restriction of f € & to any bounded interval and the
C*(] — 1, 1])-topology for the function f(—1/y).)

Example 6. If (¢ C\R, then ({—-)"'e& and ({—-)"")(P)=((—P)" is the
resolvent.

Let us establish a basic calculus result:

Proposition 10.3. If f1,/, €&, then fif, €&, and
(NL2)(P) = fi(P)f2(P). (10.15)

Proof. Write f; = ag; + g;, with g;(x) ~ai jx~' 4+ a»;x> + ..., and recall that

Lo

n) Ow

(w)(w — 2)"" L(dw) % %9 (10.16)

gi(2) = T ow . Ow

Then,

S1(P)A(P) = (aoy + g1(P))(ao2 + g2(P))

= (ao,1a02 + a0,192 + g1a02)(P) + g1(P)g2(P),

so it suffices to show (10.15) with f; replaced by g;. This verification can be done as in
the proof of Proposition 4.2 and we omit the details. [
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Application: If fe &, then o( f(P)) =f(R), and if (e C\f(R), then

C-re” = () )

Now consider the %-calculus and let P satisfy (10.11) and (3.2). If fe¥, we still

define f(P) by (10.13) and show that it does not depend on the choice of f as in
Proposition 10.2. Proposition 10.3 remains valid for the %-calculus, and so does the
application.

10.4. Relation to the Cayley transformation

Consider the Cayley(-Mo6bius) transform C of Section 6.
Iff:R->C, g: T—C, are related by

f=19°C, (10.17)

o~

then feé = &(R) iff ge&(T) = C*(T). Let fe&, ge C*(T) be related by (10.17).
With P as before, define Qe ¥ (%), by

0= C(P), (10.18)

where the right-hand side can either be defined by our calculus or more directly (but
equivalently) as

C(P)=(P+i)(P—i)"'=1+2iP—i)"
We know that ¢(C(P))<=T, and as in Section 6 we get

9(Q) =/ (P), (10.19)

where G(Q) is defined as prior to (6.2).
We have the same results for the %-calculus. (If f €4 = %(R), then g belongs to the
space 4(T) of C*-functions on T that are analytic near 1.)

11. Recovering P from the functional calculus

In this section we show that every functional calculus &5 f+ Op(f )€ Z(B) with
suitable properties, is of the form Op(f ) = f(P) for some operator P as above. We
will also get the corresponding result for the %-calculus.

Assume we have a continuous linear map

E3f—0p(f)eZ(B), (11.1)
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with the property

Op(/1)Op(f2) = Op(f1f2), fi€é. (11.2)
We further assume
Z R(0p(g)) is dense in A, (11.3)
ge Gy (R)
N +(Op(g)) =0, (11.4)
ge Cy°

where /" = “null space of ’, Z = “range of ”.

Lemma 11.1. If goe & satisfies go(x)#0 for all xeR, then Op(gy) is injective with
dense range.

Proof. If ge Cy°, then k = g/goe Cy°, g = kgo, so
Op(g) = Op(g0)Op(k) = Op(k)Op(g0)-
Hence

#(0p(g)) = 2(0p(g0)), A (Op(g)) > A" (Op(go)),

and the lemma follows. [
Put w.(x) = 1/(z — x), so that w. €& for ze C\R.

Lemma 11.2. 2 = Z(Op(w.)), ze C\R is independent of the choice of z.

Proof. Let z, we C\R, so that w,,/w., ®./w, €&. The lemma follows from applying
Op to the relations

Definition 2. For u = Op(w.)ve?, zeC\R, ve#, we put Pu= Op(w-(x)x)v =
Op(=)v-

We need to check that this definition does not depend on the choice of z, v,
in the representation of u, so assume that we also have u = Op(w:)(?), ZeC\R,
7e%. Using that Op(w.), Op(w;:) are injective, we see that &= Op(w./w:)v,
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and hence,

-

Op(x0:()0 = Op(x2)0p (22 )0 = Op x0: 2 ) o = Op(xas o

Hence the definition of P does not depend on the choice of z, v.
We also see that P : #— 4 is a closed operator with domain 2, with ¢(P) =R, and
with
(z— P)~' = Op(w.). (11.5)
On the other hand, if ¢ is a seminorm on &, then

g(02:) < Coltm z| %5 ()M (11.6)

for some N{,N{eN, and combining this with (11.5) and the fact that Op is
continuous on & with values in ¥ (%), we obtain

Iz = )7 [|< Goltm 2| M (M, (11.7)
for some NJ, NVeN.
Proposition 11.3. Op(f) =f(P) for all f€é.
Proof. From (10.5) and (10.6), we get by restriction to the real axis

f:%—% %@%MM7 (11.8)

where f~ is an almost holomorphic extension of /" as in Proposition 10.1. Now (11.8)
converges in &, so

op(f) =ant - 7 [ L (:0p(.)1(ck)
—al -~ [ L L) =),

where we used (11.5) for the second equality and (10.13) for the last one. [
% is not a Frechet space but rather a limit of such spaces: limg_, o, ¥g, Where

Yr ={f€%9,; f extends to a bounded holomorphic function in |z|> R}.
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A sequence of functions converges in ¥ iff there is some R> 0 such that it converges
in ¥x. Assume that we have a (sequentially) continuous map

Gsf—>O0p(f)e L (B), (11.9)

satisfying (11.2)—(11.4). Then we can still define a closed densely defined operator
as above. Instead of (5.7), we get (3.2) and by the same proof as above,
we have

Proposition 11.4. Op(f') =f(P) for all f€ .

Remark 4. In view of Proposition 11.3 it is natural to ask whether any continuous
algebra homomorphism

®:6(R) > 2 () (11.10)

corresponds to a closed operator A (with a resolvent with temperate growth as

before) such that ®(¢) = ¢(A) for pe&(R). Given such a @, there is a unique
homomorphism

&:C*(T)-> L (A),

such that &(f) = &(f-C). If B= &(id) = &(C) (where id(w) = w, weT), then
&(f)=f(B) for feC*(T), 6(B) =T, and the resolvent has temperate growth near
T (just apply to f(z) = 1/(w — z)). If the operator A4 exists, then C(4) = ¢(C) = B,
so therefore B — 1 must be injective. Conversely, if B — 1 is injective, it is easy to
check that 4 = C~'(B) defines @. (Notice that conditions (11.3) and (11.4) ensure
that B — 1 is injective and has dense range, respectively.)

The same conclusions hold if &(R) is replaced by %(R).

If we instead consider a similar homomorphism from & (R) or Cj°(R) things
are different; then there is not necessarily always an operator like B. To see
this, let

f(x) = x(2 4 sin x™),

where 3<me N and notice that f*, i.e. the composition with /| induces a continuous
homomorphism ' (R)—%(R). If # = H'(R), we can define a continuous
homomorphism &% — #(H'(R)), by letting ®(¢) be multiplication on H'(R) by
[ ¢ = ¢of . Tt is easy to see that this @ cannot be extended to any function ¢(x) =
1/(z— x), and therefore it does not correspond to any operator like 4 or B
above. O
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12. A g(f(P)) = (9o )(P) result

As a preparation, we construct a suitable almost holomorphic extension of

Rax— ({ —f(x))"", when feé&, (¢/(R). Let f(z) be an almost holomorphic
extension of f with

of Im z[\ ¥
§—6N(1)<<Z>2) . YN0 (12.1)
and
Vf (z) = 0(<z> 7). (12.2)
Then
f(z)=f(Rez) + a(?:;). (12.3)
Let () = dist ({,f(R)). From (12.3), it follows that
F o) —t>60/2 it M esq. (12.4)
(z)
Let ye Cy°(R) be equal to 1 near 0, and put
C|I
%s(2) = x(5|<;i|>, (12.5)

where C >0 is large enough, but independent of J,z. Notice that when 6 >0 is large

enough, then ys5(z) = 1, for all zeC.
oy

As an almost holomorphic extension of x+— ({ — f(x))”, we take
1
F(L,2) = 15 — 12.6
(¢ 2) 73()(Z)§_f(z) ( )
By construction, we have
o)
F =—=. 12.7
Further,
9 9, 1 A 1
52 P(62) = g o () -5 o1 O e @ (128)
Here,

3 _,(Cllmz]\ 8 (C|Imz]
%,{5@(2)—%(5<Z>2)£<5<Z>2)
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has its support in a region

|Im z|

3¢5 )

(12.9)

)

and since

g<c1mz|> o(1)

Z\5(z>2) " 6<z”

we see that the first term on the right-hand side of (12.8) is @(5‘2 {z) *2) and has its

N
support in a region (12.9). The second term is @(1);—2(‘2“;‘) for all N>0. We

conclude that

0 ooy |Imz] N
—_— = p > . .
82F(C’2) On(1)o <<z>2 , VYN=0 (12.10)
Essentially, the same estimates show that
V.F((,z) = 0(1)62(z) 72 (12.11)

We also notice that

c—} @ Fea= (1 B ‘<§|<Im>2|>>c —117 @)

is different from 0 only when

Imz| _ 1
—>_~’
0(z¥*" C

i.e. for

C|Im z|
5(()<7<Z>2 . (12.12)

Now let g be continuous on f(R) with a bounded uniformly Lipschitz extension
d(0), {eC satisfying

‘321_ O(dist (¢, £ (R))™). (12.13)

Consider
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By the chain rule,

Using that

dist(f (2)./(R)) = @(EZZJ) ’

and the Lipschitz properties of §, f , we get

oh [tm z[\ ¥
%@N(1)<<z>2> , VN0 (12.14)

It is also clear that /1 is a bounded continuous extension of gof with

Vh=0({z)7?). (12.15)
Consider
. o 8g 1
o) == [ SO L), (12.16)
For {eC\f(R), we have
_ 1 [0 _
C=re)" = [ GNP L) (12.17)

and hence,

o/ (P =(—)//@”' — P L)L)

—- 2 2(-3 %@)@ﬂ(@ﬂ@—mquwx (12.18)

where the first double integral converges in operator norm, so the same holds for the
J(...)L(dz) integral in the last expression, which we can view as

limfl/(l fxs(z))%(...)(zfP)*IL(dz). (12.19)

e—0 T
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Consider
1 (04
- | SHOFEAL@)
1[04 1 1 [0G ., 1= xs0)(2)
=—— | =) ——=—L(d - | =) ——=———L{d
O gt G0 ZF L
_ i+ [0 0@,
=00 @)+ [ GO —ZF L,
As already observed, the integrand in the last integral is # 0 only for 6({) < O(1) E;Zzh
and using that g—?(() = 0(5(0)”), we see that
1 [Forcara -ai@+en (B2 a2
nJ o ’ (z)?

Using this in the last integral in (12.18), represented as a limit as in (12.19), together
with the temperate growth of the resolvent, we get

o (P) == [ ST ENE-P L) = (@ (P (1221
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