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Abstract

In this paper we consider a model of particles jumping on a row of cells, called in physics the
one-dimensional totally asymmetric exclusion process (TASEP). More precisely, we deal with the
TASEP with open or periodic boundary conditions and with two or three types of particles. From the
point of view of combinatorics a remarkable feature of this Markov chain is that it involves Catalan
numbers in several entries of its stationary distribution.

We give a combinatorial interpretation and a simple proof of these observations. In doing this we
reveal a second row of cells, which is used by particles to travel backward. As a byproduct we also
obtain an interpretation of the occurrence of the Brownian excursion in the description of the density
of particles on a long row of cells.
© 2004 Elsevier Inc. All rights reserved.
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1. Jumping particles

We shall consider a model of jumping particles on a row ofncells that was exactly solved
in the early 1990s in physics, under the nameone-dimensional totally asymmetric exclusion
process with open boundaries, or TASEP for short. Roughly speaking, the TASEP consists
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Fig. 1. An informal illustration of the TASEP.

Fig. 2. A basic configuration withn = 10 cells.

of black particles entering a row ofn cells from an infinite reservoir on the left-hand side
and randomly hopping to the right with the simple exclusion rule that each cell may contain
at most one particle (Fig. 1).

The TASEP is usually defined as a continuous-time Markov process on a finite set of
configurations of particles on a line. We shall use an alternative definition as a finite state
Markov chain—with discrete time—which is more convenient for our combinatorial pur-
pose. One could insist on calling our chain the TASEC, with “C” for chain instead of “P”
for process, but as we will argue later, there is no need for this distinction. Another cosmetic
modification we allow ourselves consists in putting a white particle in each empty cell, so
as to make explicit the left–right particle–hole symmetry of the chain.

1.1. Definition of the TASEP

A TASEP configurationis a row ofn cells, each containing either one black particle or
one white particle (see Fig.2). These cells are delimited byn + 1 walls: the left border (or
wall 0), theith separation wall fori = 1, . . . , n − 1, and the right border (or walln).

The TASEP is a Markov chainS0
��� defined on the set of TASEP configurations for any

three parameters�, � and� in the interval]0, 1]. From timet to t + 1, the chain evolves
from the configuration� = S0

���(t) to a configuration�′ = S0
���(t + 1) as follows:

• A wall i is chosen uniformly at random among then + 1 walls, and then may become
activewith probability�(i), with �(i) = � for i = 1, . . . , n−1,�(0) = � and�(n) = �.

• If the wall does not become active, then nothing happens:�′ = �.
• Otherwise from� to �′ some changes may occur near the active wall:

(a) If the active wall is not a border (i ∈ {1, . . . , n − 1}) and has a black particle on its
left-hand side and a white one on its right-hand side, then these two particles swap:
•||◦ → ◦|•.

(b) If the active wall is the left border (i = 0) and the leftmost cell contains a white
particle, then this particle leaves the system and is replaced by a black one:||◦ → |•.

(c) If the active wall is the right border (i = n) and the rightmost cell contains a black
particle, then this particle leaves the system and is replaced by a white one:•|| → ◦|.

(d) Otherwise the configuration is left unchanged:�′ = �.
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Fig. 3. An example of an evolution, withn = 4 and� = � = � = 1. The active wall triggering each transition is
indicated by the symbol||.

As illustrated by Fig.3, black particles travel from left-to-right and white particles do the
opposite. The entire chain forn = 3 is shown in Fig. 11. The four cases (a)–(d) define an
applicationϑ : (�, i) �→ �′ from the set of configurations with an active wall into the set of
configurations. The definition of the TASEP can be rephrased in terms of this application
as: at timet choose a random walli = I (t) and set

S0
���(t + 1) =

{
ϑ(S0

���(t), i) with probability�(i),

S0
���(t) otherwise.

The parameters�, � and� control the rate at which particles try to move inside the system
and at the borders. In particular, we shall callmaximal rate regimethe special case� = � =
� = 1, in which the rate at which particles try to move is maximal, and denoteS0 = S0

111
the corresponding chain.

1.2. Continuous-time descriptions of the TASEP

In the physics literature, the TASEP is usually described in the following terms. The time
is continuous, and one considers each wall independently: during any small time interval
dt, wall i has probability�(i) dt to trigger a move� �→ ϑ(�, i). The rate�(i) is often
normalised as�(0) = �̃, �(n) = �̃, and�(i) = 1 otherwise, with̃� and�̃ two positive real
numbers. Up to setting̃� = �/� and�̃ = �/� and rescaling time, it is equivalent to take
�(i) as above in terms of the three parameters�, �, � in ]0, 1].

Following the probabilistic literature[8], one can give a formulation which is again
equivalent to the previous one, but already closer to ours. In this description, each wall
waits for an independent exponential random time with rate 1 before waking up (in other
terms, at any time, the probability that walli will still be sleeping aftert seconds ise−t ).
When walli wakes up, it has probability�(i) to become active. If this is the case, then the
transition� → ϑ(�, i) is applied to the current configuration�. In any case the wall falls
again asleep, restarting its clock.

This continuous-time TASEP is now easily coupled to the Markov chainS0
���. Let the

time steps ofS0
��� correspond to the succession of moments at which a wall wakes up. Then

in both versions, the index of the next wall to wake up is at any time a uniform random
variable on{0, . . . , n}, and when a wall wakes up the transition probabilities are identical.
This implies that the stationary distributions of the continuous-time TASEP and its Markov
chain replica are the same.
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1.3. A remarkable stationary distribution

Among many results on the TASEP, Derrida et al.[3,5] proved the following nice prop-
erties of the chainS0 = S0

111, in which particles enter, travel and exit at the same maximal
rate. First,

Prob(S0(t) contains 0 black particles) −→
t→∞

1

Cn+1
, (1.1)

whereCn+1 = 1
n+2

(2n+2
n+1

)
is the(n+1)th Catalan number. More generally, for all 0�k�n,

Prob(S0(t) containsk black particles) −→
t→∞

1
n+1

(
n+1

k

)(
n+1
n−k

)
Cn+1

, (1.2)

where the numerators are called Narayana numbers.
The model is a finite state Markov chain which is clearly ergodic so that the previous

limits are in fact the probabilities of the same events in the unique stationary distribution
of the chain[7]. More generally, Derrida et al. provided expressions for the stationary
probabilities of the chainS0

��� for generic�, �, �. Since their original work a number of
papers have appeared providing alternative proofs and further results on correlations, time
evolutions, etc. Recent advances and a bibliography can be found for instance in the article
[6]. General books about this kind of particle processes are[8,10].

However, the remarkable appearance of Catalan numbers in the stationary distribution
of S0 is not easily understood from the proofs in the physics literature. As far as we know,
these proofs rely either on amatrix ansatz, or on aBethe ansatz, both being then proved by
a recursion onn.

1.4. Combinatorial results

Our main ingredient to study the TASEP consists in the construction of a new Markov
chainX0

��� on a set�0
n of complete configurationsthat satisfies two main requirements: on

the one hand, the stationary distribution of the chainS0
��� can be simply expressed in terms

of that of the chainX0
���; on the other hand, the stationary behavior of the chainX0

��� is
easy to understand.

The complete configurations that we introduce for this purpose are made of two rows
of n cells containing black and white particles. The first requirement is met by imposing
that, disregarding what happens in the second row, the chainX0

��� simulates in its first

row the chainS0
���. As illustrated by Fig.4, the second row will be used by black and

white particles to return to their start point, thus revealing a circulation of the particles.
The second requirement is met by adequately choosing the complete configurations and the
transition rules so thatX0

��� has a simple stationary distribution: in particular in the case

� = � = � = 1, X0 = X0
111 will have a uniform stationary distribution.

The chainX0
��� is described in Section2, together with a fundamental property of its

transition rules. Our main result, presented in Section3, is the combinatorial interpretation
of the stationary distribution of the chainS0

���, and in particular of Formulas (1.1)–(1.2).
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Fig. 4. The circulation of black particles in the complete chain.

It is known in the literature that some of the results on the TASEP can be extended to
models with three particle types[1,3]. We show that this is the case of Formulas (1.1)–(1.2)
by adapting our approach in Section4 to the 3-TASEP, a Markov chainS���ε in which there
are 3 types of particles,•,×and◦ and transitions of the form

•||×→×|•, •||◦ → ◦| • and ×||◦ → ◦|×.

Our main results for the 3-TASEP are obtained by a relatively simple modification of the
complete chain. In particular, our combinatorial approach yields the following variant of
Formula (1.1)–(1.2) for the chainS = S1111

2
: for anyk + � + m = n,

Prob(S(t) containsk •, �×, andm◦) −→
t→∞

�+1
n+1

(
n+1

k

)(
n+1
m

)
1
2

(2n+2
n+1

) .

The TASEP and 3-TASEP are sometimes also defined with periodic boundary conditions:
instead of giving special rules for walls 0 andn, one identifies these two walls and applies
the same rule to every wall. With these boundary conditions, the stationary distribution of
the TASEP is easily seen to be uniform. In Section5, we apply our method to study the more
interesting distribution of the 3-TASEP with periodic boundary conditions. In this chain the
number of particles of each type is fixed (since they cannot leave the system), and, fork •,
� ×, m◦, with k + � + m = n, we recover the known result:

Prob(Ŝ(t) = |×· · ·×︸ ︷︷ ︸
�

| ◦ · · · ◦︸ ︷︷ ︸
m

| • · · · •︸ ︷︷ ︸
k

|) −→
t→∞

1(
n
k

)(
n
m

) .

A different combinatorial proof of this later formula was recently proposed by Angel[2].

2. The complete chain

2.1. Complete configurations

A complete configurationof �0
n is a pair of rows ofn cells satisfying the following

constraints:

(i) The balance condition: The two rows contain togethern black andn white particles.
(ii) The positivity condition: On the left of any vertical wall there are at least as many black

particles as white ones.
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Fig. 5. A complete configuration withn = 10, and a pair of rows violating the positivity condition at wall 4.

An example of complete configuration is given in Fig.5, together with a pair of rows that
violates the positivity condition.

Given a complete configuration of lengthn, and an integerj, 0�j �n, let B(j) and
W(j) be respectively the numbers of black and white particles lying in the firstjth columns
(from left to right), and setE(j) = B(j)−W(j). In other terms, the quantitiesB(j), W(j)

andE(j) represent the number of black particles, the number of white particles, and their
difference on the left of wallj. In particular,E(0) = E(n) = 0, and Condition (ii) of the
definition of complete configurations readsE(j)�0 for j = 0, . . . , n (this is why we call
it a positivity condition). Readers with background in enumerative combinatorics may have
recognized here complete configurations withn columns as bicolored Motzkin paths with
n steps, or Dyck paths with 2n + 2 steps in disguise[11, Chapter 6]. In particular these
characterizations yield the following lemmas. A direct proof of these lemmas is given in
Section7 for completeness.

Lemma 2.1. The number|�0
n| of complete configurations isCn+1 = 1

n+1

(2n+2
n

) =
1

n+2

(2n+2
n+1

)
.

Lemma 2.2. Let k, m, n be non-negative integers withk + m = n. The number|�0
k,m| of

complete configurations of�0
n with k black and m white particles on the top row, and m

black and k white particles on the bottom row is1
n+1

(
n+1

k

)(
n+1
m

)
.

A first hint to our interest in complete configurations should follow from the comparison
of the lemmas with the probabilities in (1.1) and (1.2).

2.2. First definition of the complete chain

The Markov chainX0
��� on�0

n will be defined in terms of an applicationT from the set

�0
n ×{0, . . . , n} to the set�0

n that extends the applicationϑ. Given a complete configuration
� and an active walli, the action ofT on the top row of� does not depend on the second
row, and mimics the action ofϑ as defined by cases (a)–(d) of the description of the TASEP.
In particular in the top row, black particles travel from left-to-right and white particles
from right-to-left. As opposed to that, in the bottom row,T moves black and white particles
backward, as illustrated by Fig.4. In order to describe how these moves are performed, we
first introduce the concept of sweep (see Fig.6):

• A white sweepbetween wallsi1 andi2 consists in all white particles that are in the bottom
row between wallsi1 andi2 simultaneously hopping to the right (some black particles
thus being displaced to the left in order to fill the gaps). For well definiteness a white
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i1 i2 i2i1

Fig. 6. A white sweep and a black sweep.

i
white black

?

j1

j2i

i
? white

?black

Fig. 7. Sweeps occurring below the transition(•||◦ → ◦|•).

sweep betweeni1 and i2 can occur only if the particle on the right-hand side ofi2 is
black.

• A black sweepbetween wallsi1 andi2 consists in all black particles that are in the bottom
row between wallsi1 and i2 simultaneously hopping to the left (some white particles
thus being displaced to the right in order to fill the gaps). For well definiteness a white
sweep betweeni1 andi2 can occur only if the particle on the left-hand side ofi1 is white.

Next, given a complete configuration and a walli, we distinguish the following walls: if
there is a black particle on the left-hand side of walli in the top row, letj1 < i be the
leftmost wall such that there are only white particles in the top row between wallsj1 and
i − 1; if there is a white particle on the right-hand side ofi in the top row, letj2 > i be the
rightmost wall such that there are only black particles in the top row between wallsi + 1
andj2.

With these definitions, we are in the position to describe the action ofT. Given a complete
configuration� ∈ �0

n and a walli ∈ {0, . . . , n}, the cases (a)–(d) of the transition ruleϑ
describe the top row of the imageT (�, i), and they are complemented as follows to describe
the bottom row of the image:

(a) In this case,i ∈ {1, . . . , n−1} and this wall separates a black and a white particle in the
top row of�. The moves in the bottom row then depend on the particle on the bottom
right of wall i in �: if it is black, a white sweep occurs betweenj1 andi, otherwise it
is white and a black sweep occurs betweeni + 1 andj2 + 1 (or betweeni + 1 andn if
j2 = n). These moves are illustrated by Fig.7 (see also Figs.9 and10, left and middle).

(b) In this casei = 0 and the leftmost particle of the top row of� is white. Then the
leftmost column of� is a | ◦

• |-column. These two particles exchange (so that a black
particle enters in the top row in agreement with rule (b) for (ϑ), and a black sweep
occurs between the left border and wallj2 + 1, or between the left and right borders if
j2 = n (see Fig.10, right).
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Fig. 8. An example of actual evolution withn = 4 and� = � = � = 1.

(c) In this casei = n and the rightmost particle of the top row of� is black. Then the
rightmost column of� is a | •

◦ |-column. These two particles exchange (so that a white
particle enters in the top row in agreement with rule (c) forϑ), and a white sweep occurs
between wallj1 and the right border (see Fig.9, right).

(d) Otherwise nothing happens.

The fact that the configurationT (�, i) produced in each case satisfies the positivity con-
straint is not difficult to prove and it is explicitly checked in the next section.

The Markov chainX0
��� on the set�0

n of complete configurations with lengthn is defined
from T exactly as the TASEP is described fromϑ: the evolution rule from timet to t + 1
consists in choosingi = I (t) uniformly at random in{0, . . . , n} and setting

X0(t + 1) =
{

T
(
X0(t), i

)
with probability�(i),

X0(t) otherwise.

By construction, the Markov chainsS0
��� andX0

��� are related by

S0
��� ≡ top(X0

���),

where top(�) denotes the top row of a complete configuration�, and the≡ is intended as
identity in law at any time, providedS0

���(0) and top(X0
���(0)) are equally distributed.

An appealing interpretation from a combinatorial point of view is that we have revealed
a circulation of the particles, that use the bottom row to travel backward and implement the
infinite reservoirs, as illustrated by Fig.4. An example of evolution is given by Fig.8. The
TASEP and complete chain with two particles forn = 3 are represented in Figs. 11 and 12.

2.3. Restatement of the transition rules: the bijectionT̄

Theorem 2.3. The application T is the first component�0
n×{0, . . . , n} → �0

n of a bijection
T̄ from�0

n × {0, . . . , n} into itself.

Proof. In order to define the application̄T , we shall partition the set�0
n × {0, . . . , n} into

classesAa′ , Aa′′ , Ab, Ac, andAd , and describe, for each classA, its imageB = T̄ (A). From
now on in this section,(�, i) and(�′, j), respectively, denote an element of the current
class and its image, andj1 andj2 are defined from(�, i) as in Section2.2.
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j1 j1

T 

Aa′

Ba′ 

T T

Ac

Bc

R

P i

R

P i
white

white

0
white

n

Q

P

white

white

white

?  ?  ?  ?   ?

?  ?  ?  ?   ?

?  ?  ?  ?   ?

?  ?  ?  ?   ? ?  ?   ?   ?

?  ?   ?   ?

Q Q

Fig. 9. Moves in casesAa′ andAc. Below the two left-hand side configurations, the white sweep in the bottom
row is illustrated on an exemple.

We are going to describe the image(�′, j) of (�, i) by T̄ in terms of deletions and
insertions of| •

◦ |- or | ◦
• |-columns or of• | ◦ -diagonals. One advantage of these operations is

that they clearly preserve the balance and positivity conditions, so we will directly know in
each case that the image�′ belongs�0

n. The reader is invited to check, using Figs.9 and
10, that the configuration�′ obtained in each case is, as claimed in the theorem, the same
as the configurationT (�, i) that was described in terms of sweeps in the previous section:

• If the wall i separates in the top row of � a black particle P and a white particle
Q. There are two cases depending on the type of the particleR that is belowQ in �:

Aa′ The particle R is black. Thenj = j1 and�′ is obtained by moving the| ◦
• |-

column|Q
R

| from the right-hand side of walli to the right-hand side of wallj (Fig.
9, left-middle).

The imageBa′ of the classAa′ consists of pairs(�′, j) such that: the wallj is
the left border (j = 0) or it has a black particle on its left-hand side in the top
row, there is a| ◦

• |-column on the right-hand side of wallj, and the sequence of
white particles on the right-hand side of wallj in the top row is followed by a
black particle.

Aa′′ The particle R is white. Thenj = j2 and�′ is obtained by moving the particles
P andR from wall i (where they form a• | ◦ -diagonal) to wallj so that they form a
• | ◦ -diagonal ifj < n (Fig. 10, left), or a| •

◦ |-column if j = n (Fig. 10, middle).
The imageBa′′ of the classAa′′ consists of pairs(�′, j) with a | ◦

◦ |-column or
the border on the right-hand side of wallj of �′ and such that there is a non-empty
sequence of black particles on the left-hand side of wallj in the top row, followed
by a white particle.

Ab If i = 0 and there is a white particle Q in the leftmost top cell of �. The cell
underQ then contains a black particleP (Fig. 10, right). Thenj = j2 and�′ is
obtained by movingP andQ to wall j so that they form a• | ◦ -diagonal ifj < n or
a | •

◦ |-column if j = n.
The imageBb of the classAb consists of pairs(�′, j) with a | ◦

◦ |-column or the
border on the right-hand side of wallj of �′ and such that there is a non-empty
sequence of black particles on the left-hand side of wallj in the top row, ending at
the left border.



10 E. Duchi, G. Schaeffer / Journal of Combinatorial Theory, Series A 110 (2005) 1–29

black
j2

Aa"

Ba"  

black

Ab

Bb

j2

T T T 

black

iP

black

iP

R

n

black

0
black

P

Q

?  ?  ?  ?  ?

?  ?  ?  ?  ? ?  ?  ?  ? ?  ?  ?  ?  ?

?  ?  ?  ?  ??  ?  ?  ?

R

Q Q

Fig. 10. Moves in the casesA′′
a andAb. Below the two left-hand side configurations, the black sweep in the bottom

row is illustrated on an exemple.

Ac If i = n and there is a black particle P in the rightmost top cell of �. The
cell underP then contains a white particleQ (Fig. 9, right). Thenj = j1 and�
is obtained by movingP andQ to wall j so that they form a| ◦

• |-column on its
right-hand side.

The imageBc of the classAc consists of pairs(�′, j) such that: the wallj is the
left border (j = 0) or it has a black particle on its left-hand side in the top row,
there is a| ◦

• |-column on the right-hand side of wallj, and the sequence of white
particles on the right-hand side of wallj in the top row ends at the right border.

Ad This class contains all the remaining pairs (�, i). These configurations are left
unchanged bȳT , so thatBd = T̄ (Ad) = Ad .

In each case of the definition, the transformation described is reversible: from(�′, k) in one
of the image classes, the walli and then the configuration�are easily recovered.The theorem
thus follows from the fact that{Ba′ , Ba′′ , Bb, Bc, Bd} is a partition of�0

n ×{0, . . . , n}. �

3. Stationary distributions

The Markov chainX0
��� is clearly aperiodic and we check in Section6that it is irreducible,

i.e. that there is an evolution between any two configurations. This implies that the chain
X0

��� is ergodic, i.e. it has a unique stationary distribution, to whichX0
���(t) converges ast

goes to infinity[7]. Our aim in this section is to find this distribution and to use it to give a
combinatorial interpretation to that ofS0

���.
We first deal with the maximal rate regime, for which all ingredients are now ready. Then

we discuss the generic case.

3.1. The maximal rate regime� = � = � = 1

Theorem 3.1. The Markov chainX0 has a uniform stationary distribution.

Proof. As illustrated by Fig. 12, Theorem2.3says that the vertices of the transition graph
of the chain have equal in- and out-degrees. Moreover, then + 1 possible transitions from
a configuration� have equal probabilities to be chosen, since the active wall is chosen
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1/14
3/14

2/14 2/14
3/14

1/14

1/141/14

Fig. 11. The TASEP configurations forn = 3 and transitions between them. The starting point of each arrow
indicates the wall triggering the transition. The numbers are the stationary probabilities for� = � = � = 1.

Fig. 12. The 14 complete configurations forn = 3 and transitions between them. The starting point of each arrow
indicates the wall triggering the transition (loop transitions are not indicated). For� = � = � = 1, the stationary
probabilities are uniform (equal to114) since each configuration has equal in- and out-degrees. Ignoring the bottom
rows reduces this Markov chain to the chain of Fig. 11.

uniformly in {0, . . . , n}. The uniform distribution on�0
n hence clearly satisfies the local

stationarity equation at each configuration�: assuming that at timet the distribution is
uniform,

Prob(X(t) = �) = 1

|�0
n|

for all �,

then at timet + 1, it remains uniform, since

Prob(X(t + 1) = �′) =
∑

(�,i)∈T −1(�′)
Prob(X(t) = �)

1

n + 1

=
∣∣∣T −1(�′)

∣∣∣ 1

|�0
n|

1

n + 1
= 1

|�0
n|

,
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whereT −1(�′) denotes the set of preimages of�′, respectively, byT. The last equality
follows from the facts thatT −1(�′) = {T̄ −1(�′, j) | j = 0, . . . , n}, and thatT̄ is a
bijection. �

The relationS0 ≡ top(X0) now allows us to derive from Theorem3.1 the announced
combinatorial interpretation of Formulas (1.1) and (1.2).

Theorem 3.2. Let top(�) denote the top row of a complete configuration�. Then for any
initial distribution S0(0) and X0(0) with S0(0) ≡ top(X0(0)), and any TASEP
configuration�,

Prob(S0(t) = �) = Prob(top(X0(t)) = �) −→
t→∞

∣∣{� ∈ �0
n | top(�) = �}|

|�0
n|

.

In particular, for anyk + m = n, we obtain combinatorially the formula:

Prob(S0(t) containsk black and m white particles)

−→
t→∞

|�0
k,m|

|�0
n|

=
1

n+1

(
n+1

k

)(
n+1
m

)
Cn+1

.

As discussed in Section8, this interpretation sheds a new light on some recent results of
Derrida et al. connecting the TASEP to Brownian excursions[4].

3.2. Arbitrary�, � and�

In order to express the stationary distribution of the general chainX0
���, we associate a

weightq(�) to each complete configuration�, which is defined in terms of two combina-
torial statistics.

By definition, a complete configuration� is a concatenation of four types of columns
| •
• |, | •

◦ |, | ◦
• | and | ◦

◦ |, subject to the balance and positivity conditions. In particular, the
concatenation of two complete configurations of�0

i and�0
j with i+j = n yields a complete

configuration of�0
n. Let us callprimea configuration that cannot be decomposed in this way.

A complete configuration� can be uniquely written as a concatenation� = �1 · · ·�m of
prime configurations. These prime factors can be of three types:| •

◦ |-columns,| ◦
• |-columns,

andblocksof the form| •
• |�′| ◦

◦ | with �′ a complete configuration. The inner part�′ of a
block� = |•

• |�′| ◦
◦ | is referred to as itsinside.

Now, given a complete configuration�, let us assign labels to some of the particles of its
bottom row: first, each white particle is labeledz if it is not in a block, and then, each black
particle is labeledy if it is not in the inside of a block and there are noz labels on its left.
The number of labels of typey and the number of labels of typez in a configuration� will
be denotedny(�) andnz(�), respectively. Then theweightof a configuration� is defined
as

q(�) = �n�n
( �
�

)ny(�)
(

�
�

)nz(�)

= �ny(�)+nz(�)�n−ny(�)�n−nz(�).
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y y y y y y y z

Fig. 13. A configuration� with weightq(�) = �8�10�16. Labels are indicated below particles.

In other terms, there is a factor� per label, a factor� per unlabeled black particle and
a factor� per unlabeled white particle. For instance, the weight of the configuration of
Fig. 13 is�8�10�16, and more generally the weight is a monomial with total degree 2n.

Theorem 3.3. The Markov chainX0
��� has the following unique stationary distribution:

Prob(X0
���(t) = �) −→

t→∞
q(�)

Z0
n

, where Z0
n =

∑
�′∈�0

n

q(�′),

whereq(�) is the previously defined weight on complete configurations.

SinceX0
��� is aperiodic and irreducible, it is sufficient to show that the distribution induced

by the weightsq is stationary. The result is based on a further property of the bijectionT̄

of whichT is the first component.

Lemma 3.4. The bijectionT̄ : �0
n ×{0, . . . , n} → �0

n ×{0, . . . , n} transports the weights:

�(i) q(�) = �(j) q(�′) f or all (�′, j) = T̄ (�, i), (3.1)

where�(i) = � for i ∈ {1, . . . , n − 1}, �(0) = � and�(n) = �.

Proof. Let � be a complete configuration belonging to�0
n. The following properties will

be useful:

• Property 1. In a local configuration| •
?| ◦

• | the black particle in the bottom row never
contributes a label y.

The black particle of a| ◦
• |-column can contribute a labely only if it is not in the inside

of a block. This happens only if the particle? is white and is not in a block. But then this
particle carries a labelz which is on the left of the black particle.

• Property 2. The bottom white particle of a| ◦
◦ |-column never contributes a label z.

This property is immediate since a| ◦
◦ |-column is always in a block.

• Property i. The deletion/insertion of a| ◦
• |-column does not change the labels of other

particles.

When a| ◦
• |-column is inserted or removed in the inside of a block, the block structure

is unchanged and there is no effect on labels. When it is inserted or removed at a position
no included in a block it may contribute a labely, but this has no effect on other labels.

• Property ii. The deletion/insertion of a• | ◦ -diagonal taking the form| •
?| ◦

◦ | ↔ |◦
?| does

not change the labels of other particles.
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The situation| •
◦ | ◦

◦ | ↔ |◦
◦ | can be view as the insertion or deletion of a| •

◦ |-column in
the inside of a block, which has no effect. The other situation| •

• | ◦
◦ | ↔ |◦

• | may occur
outside a block, in which case a white particle is added or removed on the bottom row,
but in a small block| •

• | ◦
◦ |.

The relation is checked using these properties by comparingq(�) andq(�′) in each case
of the definition of the bijection̄T .

Aa′ If j �= 0 (Fig. 9, left), according to Property 1 the particleR does not contribute a
label y neither in� nor in �′. Moreover, according to Property i, the displacement
of the | ◦

• |-column does not affect labels of other particles. Henceq(�) = q(�′), in
agreement with�(i) = �(j) = �.

If insteadj = 0 (Fig.9, middle), Property 1 applies only to�: in �′, the displaced
| ◦
• |-column is the leftmost one, so that its black particle contributes a supplementary

y label. Thereforeq(�′) = q(�)
�
� , in agreement with�(i) = �, �(0) = �.

Aa′′ If j �= n (Fig. 10, left), from Property 2 we see that the particleRdoes not contribute
a labely neither in� nor in �′. Observe, moreover, that the displacement of a• | ◦ -
diagonal does not affect labels of other particles according to Property ii. Henceq(�) =
q(�′), in agreement with�(i) = �(j) = �.

If j = n (Fig.10, middle), Property 2 applies only to�: the move amounts to deleting
a • | ◦ -diagonal and inserting a| •

◦ |-column at the right border. The white particle of
this column thus contributes az label. Thereforeq(�′) = q(�)

�
� , in agreement with

�(i) = � and�(n) = �.
Ab If j �= n (Fig. 10, right), the move consists in deleting a| ◦

• |-column, which is the
leftmost and thus contributes ay label in �, and inserting a• | ◦ -diagonal, which
according to Property 2 does not contribute az label. According to Property i and
ii the other labels are left unchanged. Thereforeq(�′) = q(�) �

� , in agreement with
�(0) = � and�(j) = �.

If j = n, q(�′) = q(�) �
�

�
� = q(�) �

� , in agreement with�(0) = � and�(n) = �.

Ac If j �= 0 (Fig. 9, right), �′ is obtained by deleting a| •
◦ |-column on the left-hand

side of the walln and inserting a| ◦
• |-column on the right-hand side ofj1. According

to Property i only the labels of displaced particles can be affected. Since the deleted
| •
◦ |-column is the rightmost column, its white particle contributes az label in�. As

opposed to that, Property 1 forbids the| ◦
• |-column to contribute a label in�′. Therefore

q(�′) = q(�)
�
� , in agreement with�(n) = � and�(j) = �.

If j = 0, q(�′) = q(�)
�
�

�
� = q(�)

�
� , in agreement with�(n) = � and

�(0) = �. �
Proof of Theorem 3.3. In order to see that the distribution induced byq is stationary, let
us assume that

Prob(X0
���(t) = �) = q(�)

Z0
n

for all � ∈ �0
n

and try to compute Prob(X0
���(t+1) = �′). For this, recall thatI (t) denotes the random wall

selected at timet and defineJ (t +1) as follows: ifI (t) becomes active so thatX0
���(t +1) =
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T (X0
���(t), I (t)), then defineJ (t + 1) by T̄ (X0

���(t), I (t)) = (X0
���(t + 1), J (t + 1));

otherwise setJ (t + 1) = I (t). Then, sinceT is given as the first component ofT̄ ,

Prob
(
X0

���(t + 1) = �′) =
n∑

j=0

Prob
(
X0

���(t + 1) = �′, J (t + 1) = j
)
.

Now, by definition of the Markov chainX0
���, for all �′ andj,

Prob
(
X0

���(t + 1) = �′, J (t + 1) = j
)

= �(i)Prob
(
X0

���(t) = �, I (t) = i
)

+(1 − �(j))Prob
(
X0

���(t) = �′, I (t) = j
)
,

where(�, i) = T̄ −1(�′, j). Since the random variableI (t) is uniform on{0, . . . , n}, we
get

Prob
(
X0

���(t + 1) = �′, J (t + 1) = j
)

= �(i)
q(�)

Z0
n

1

n + 1
+ (1 − �(j))

q(�′)
Z0

n

1

n + 1
.

But sinceT̄ preserves the weights via Relation (3.1), �(i)q(�) = �(j)q(�′) and the terms
involving � cancel. Finally

Prob(X0
���(t + 1) = �′) =

n∑
j=0

q(�′)
Z0

n

1

n + 1
= q(�′)

Z0
n

and this completes the proof that the distribution induced byq is stationary. �

4. The 3-TASEP

The combinatorial approach we developed in the previous sections can be extended to a
slightly more general model, the 3-TASEP, which we now define. The 3-TASEP is similar
to the TASEP but each time a black or a white particle exits, there is a certain probability
ε that the particle that enter in its place is a neutral particle×. On the one hand, as in the
TASEP, black particles always travel from left-to-right and white particles always do the
opposite. On the other hand, neutral particles have no preferred direction and get displaced
in opposite direction by black and white particles. An informal illustration of the 3-TASEP
is given by Fig.14.

4.1. Definition of the 3-TASEP

A 3-TASEP configurationis a row ofn cells, each containing one particle, which can be
of type•, × or ◦. An example of configuration is given by Fig.15. The local configuration
around a walli in a configuration� is denoted�[i]: for i ∈ {1, . . . , n − 1}, �[i] is the
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Fig. 14. The 3-TASEP.

Fig. 15. A 3-TASEP configuration withn = 14 cells.

element of the set{•||×, •||◦, •||•,×||•,×||×,×||◦, ◦||•, ◦||×, ◦||◦} that describes the two cells
surrounding walli, for i = 0, �[0] ∈ {||•, ||×, ||◦}, and fori = n, �[n] ∈ {•||,×||, ◦||}.

The 3-TASEP is a Markov chainS���ε defined on the set of 3-TASEP configurations
in terms of four parameters�, � and� in ]0, 1] andε in [0, 1]. From timet to t + 1, the
chain evolves from the configuration� = S���ε(t) to a configuration�′ = S���ε(t + 1) as
follows:

• A wall i is chosen uniformly at random among then + 1 walls.
• Depending on the local configuration�[i] around walli, a transition may be triggered:

◦ unstable local configurations in the middle (i ∈ {1, . . . , n − 1}):
(a1) Case•||◦, a transition•||◦ → ◦|• occurs with probability�(•||◦) := �.
(a2) Case×||◦, a transition×||◦ → ◦|×occurs with probability�(×||◦) := �.
(a3) Case•||×, a transition•||×→×|• occurs with probability�(•||×) := �.

◦ unstable local configurations on the left border (i = 0):
(b1) Case||◦, the particle exits with total probability�(||◦) := �, in 2 possible ways:
(b′

1) a transition||◦ → |• occurs with probability(1 − ε) �,

(b′′
1) or a transition||◦ → |×with probabilityε� (neutralization),

(b2) Case||×, a transition||×→ |• occurs with probability�(||×) := (1 − ε)� �/�.
◦ unstable local configurations on the right border (i = n):

(c1) Case•||, the particle exits with total probability�(•||) := �, in 2 possible ways:
(c′

1) a transition•|| → ◦| occurs with probability(1 − ε) �,
(c′′

1) or a transition•|| →×| with probabilityε� (neutralization),
(c2) Case×||, a transition×|| → ◦| occurs with probability�(×||) := (1 − ε)� �/�.

◦ stable local configurations:
(d) Cases•||•, ×||×, ◦||◦, ◦||×, ◦||•, ×||•, ||• and◦||, no transition occur:�(•||•) =

�(×||×) = �(◦||◦) = �(◦||×) = �(◦||•) = �(×||•) = �(||•) = �(◦||) := 0.
• If a transition occurs, the new configuration�′ is obtained from� by applying the tran-

sition to the local configuration around the chosen wall. Otherwise,�′ = �.

In order to explain the role of the parameters�, �, � andε a few remarks are useful:

• The equality�(×||◦) = �(||◦) translates the idea that a white particle feels the same
attraction to the left in front of a neutral particle as it feels for exiting at the left border.
A similar interpretation holds for�(•||×) = �(•||) and black particles.
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Fig. 16. A complete configuration withn = 14.

• The equality�(×||)/�(×||◦) = (1− ε)�(•||)/�(•||◦) says that the ratio between entry and
movement rates for white particles is the same in presence of black or neutral particles.
A similar interpretation holds for black particles.

• The fact that the same quantityε controls the probability that a× particles enters instead
of a black particle or instead of a white particle may be thought of as a curious restriction:
it is dictated by technical considerations in the proof, and at the present state we do not
know whether it can be easily circumvented or not.

The TASEP with parameter�, � and� is recovered by takingε = 0. Indeed, in this case,
after the initial neutral particles have exit the system, no new neutral particles are created
and the rules are exactly those of the TASEP as presented in Section1.

It will be useful to reformulate again the transition of the 3-TASEP in terms of applications
from the set of configurations with a chosen wall into the set of configurations. Since there
are two possible transitions in the cases||◦ and•|| we introduce the following two applic-
ations:

• The applicationϑ1 : (�, i) → �′ performing at walli the transitions prescribed by cases
(a1)–(a3), (b′

1) and(b2), (c′
1) and (c2).

• The applicationϑ2 : (�, i) → �′ performing at walli the transitions prescribed by cases
(a1)–(a3), (b′′

1) and (b2), (c′′
1) and (c2).

Then the transitions of the chainS���ε can be described as follows: choosei = I (t)

uniformly at random in{0, . . . , n} and set

S���ε(t + 1) =


ϑ1(�, i) with probability (1 − ε)�(�[i])
ϑ2(�, i) with probability ε�(�[i]),
� otherwise,

where� = S���ε(t), and�[i] denotes the local configuration around walli in �.

4.2. Complete configurations for the 3-TASEP

The complete configurations for the 3-TASEP are concatenations of complete configura-
tions for the TASEP separated by|××|-columns: more explicitly, each complete configuration

� with � ×-particles in the first row can be uniquely written�0|××|�1 · · · |××|�� where each
�i belongs to�ni

for someni �0. In other terms, these complete configurations are pairs
of rows of cells containing particles such that the×-particles always form|××|-columns and

such that between two|××|-columns the balance and positivity conditions are satisfied. Let
�n denote the set of complete configurations of lengthn.

An example of a complete configuration is given in Fig.16: from left-to-right the sub-
configurations have successively length 3, 0, 1, and 7. The local configuration around wall
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j1

Aa′

Ba′

j1  = 0

j1 i
white

white

?????

?  ?  ?  ?  ? ?  ?  ?  ?  ?

?  ?  ?  ?  ?

Aa’

Ba’ 

j1 i
white

white

i
white

white

or 

?

?

Fig. 17. Cases•||◦ and×||◦ for the bijectionsT̄1 andT̄2.

i in a complete configuration�, describing the one or two columns surrounding walli, is
denoted�[i]. The following enumerative lemmas are proved in Section7.

Lemma 4.1. The cardinality of�n is 1
2

(2n+2
n+1

)
.

Lemma 4.2. For anyk + � + m = n, the cardinality of the set��
k,m of complete config-

urations of�n with � |××|-columns, and k black and m white particles on the top row is
�+1
n+1

(
n+1

k

)(
n+1
m

)
.

Lemma 4.3. For any� + p = n, the cardinality of the set��
n of complete configurations

of �n with � |××|-columns is�+1
n+1

(2n+2
n−�

)
.

4.3. The complete chainX���ε

We shall directly define the chainX���ε in terms of two bijectionsT̄1 and T̄2 from
�n × {0, . . . , n} to itself. To do this, we partition the set�n × {0, . . . , n} into classes, and
we first describe for each classA the image(�′, j) of a pair(�, i) ∈ A by T̄1. The bijection
T̄2 is then described as a simple variation onT̄1.

As in Section2.2, given a complete configuration� with top row � and a walli, we
distinguish the following walls: if the local configuration�[i] is •||◦,×||◦, •|| or×||, then let
j1 < i be the leftmost wall such that there are only white particles in the top row between
wallsj1 andi − 1; if the local configuration�[i] is •||◦, •||×, ||◦ or ||×, then letj2 > i be the
rightmost wall such that there are only black particles in the top row between wallsi + 1
andj2.

The action ofT̄1 is described separately for the different cases of local configuration�[i]:
• unstable local configurations in the middle (i ∈ {1, . . . , n − 1}):

Aa′ . Cases•?|| ◦
• and×

×|| ◦
• . Thenj = j1, and�′ is obtained by moving the| ◦

• |-column
from the right-hand side of walli to the right-hand side of wallj (Fig. 17).

The imageBa′ of this class consists of pairs(�′, j) such that: the wallj is the
left border (j = 0) or there is a black or a× particle on its left-hand side, there
is a | ◦

• |-column on its right-hand side, and the sequence of white particles on the
right-hand side of wallj in the top row is followed by a black or a× particle.
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black
j2

j2  =n Aa″

Ba″ 

black
j2

Aa″

Ba″ 
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j2

black

i

or 

black

i

?   ?   ?   ?   ? ?   ?   ?   ?   ?

?   ?   ?   ?   ??????

black

i

Fig. 18. Cases•||◦ and•||× with black sweep for the bijections̄T1 andT̄2.

Aa′′ . Cases•?|| ◦
◦ or •

◦ ||××. Thenj = j2, and�′ is obtained by removing the two particles
that form the• | ◦ -diagonal or the| •

◦ |-column at walli and replacing them at wallj
so that they form a• | ◦ -diagonal if there is a white particle on the right-hand side
of wall j in the top row, or a| •

◦ |-column otherwise (Fig.18).
The imageBa′′ of this class consists of pairs(�′, j) with a | ◦

◦ |-column, an
|××|-column, or the border on the right-hand side of wallj and such that there is
a non-empty sequence of black particles on the left-hand side of wallj in the top
row, followed by a white or an× particle.

• unstable local configurations on the left border(i = 0) (Fig. 19):
Ab′ . Case|| ◦

• . Thenj = j2, and�′ is obtained by removing the two particles that form
the| ◦

• |-column on the left border and replacing them at wallj so that they form a
• | ◦ -diagonal if there is a white particle on the right-hand side of wallj in the top
row, or a| •

◦ |-column otherwise.
The imageBb′ of the classAb′ by T̄1 consists of pairs(�′, j) with a| ◦

◦ |-column,
an |××|-column, or the border on the right-hand side of wallj of �′ and such that
there is a non-empty sequence of black particles on the left-hand side of wallj in
the top row, ending at the left border.

Ab′′ . Case||××. Then�′ = � andj = 0. The imageBb′′ of the classAb′′ by T̄1 consists

of pairs(�′, 0) with a |××|-column on the left border.
• unstable local configurations on the right border (i = n):

Ac′ Case•
◦ ||. Thenj = j1, and�′ is obtained by removing the rightmost| •

◦ |-column
and forming a| ◦

• |-column on the right-hand side of wallj.
The imageBc′ of the classAc′ by T̄1 consists of pairs(�′, j) such that: the wall

j is the left border (j = 0) or it has a black or a× particle on its left-hand side,
there is a| ◦

• |-column on its right-hand side, and the sequence of white particles
on the right-hand side of wallj in the top row ends at the right border.

Ac′′ . Case××||. Then�′ = � andj = n. The imageBc′′ of the classAc′′ by T̄1 consists

of pairs(�′, n) with a |××|-column on the right border.

Finally, letAd denote the set of pairs(�, i) such that the local configuration around wall
i of � is stable. The mappinḡT1 has no effect on these pairs, andBd = Ad .

The application is invertible in each case and the sets{Ba′ , Ba′′ , Bb′ , Bb′′ , Bc′ , Bc′′ , Bd}
form a partition of�n × {0, . . . , n}. HenceT̄1 is a bijection from�n × {0, . . . , n} onto
itself.
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Fig. 19. The application̄T1 on the borders.
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Fig. 20. The application̄T2 on the borders.

The applicationT̄2 differs from T̄1 only at the borders. Consider the involutionY on
�n × {0, . . . , n} that acts only on a pair(�, i) by changing, ifi = 0 or i = n, the local
configuration�[i] according to the following rules:

|| ◦
• ↔ ||×× and •

◦ || ↔ ×
×||.

Then the image of(�, i) by T̄2 is defined to be the image ofY (�, i) by T̄1. In particularT̄2,
being the composition̄T1 ◦ Y of two bijections is itself a bijection. The action ofT̄2 on the
borders is illustrated by Fig.20.

Let now T1 and T2, denote, respectively, the first component ofT̄1 and T̄2. Then the
Markov chainX���ε is defined in terms of theT1 andT2 exactly asS���ε is defined in terms
of theϑ1 andϑ2: choosei = I (t) uniformly at random in{0, . . . , n} and set

X���ε(t + 1) =


T1(�, i) with probability (1 − ε)�(�[i]),
T2(�, i) with probability ε�(�[i]),
� otherwise,

where� = X���ε(t), and� = top(�).

4.4. The stationary distribution ofX���ε andS���ε

The parameterny andnz of Section3.2are extended in a straightforward way to complete
configurations of�n by putting labels independently in each subconfiguration delimited
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by |××|-columns or borders. Then for� ∈ �n, set

q(�) = �n�n(1 − ε)n
( �
�

)ny(�)
(

�
�

)nz(�) (
�2ε

��(1 − ε)

)�(�)

,

where�(�) denotes the number of|××|-columns in�.
Then Theorem3.3extends verbatim:

Theorem 4.4. The Markov chainX���ε has the following unique stationary distribution:

Prob(X���ε(t) = �) −→
t→∞

q(�)

Zn

, where Zn =
∑

�′∈�n

q(�′),

whereq(�) is the previously defined weight on the complete configurations of the3-TASEP.

Again this theorem immediately yields a combinatorial interpretation of the stationary
distribution of the chainS���ε, via the relationS���ε = top(X���ε). In particular in the case
� = � = � = 1, ε = 1

2, we obtain the following corollary onS = S1111
2

andX = X1111
2
:

Corollary 4.5. Let top(�) denote the top row of a complete configuration�. Then for any
initial distributionsS(0) andX(0) with top(X(0)) = S(0), and any basic configuration�,

Prob(S(t) = �) = Prob(top(X(t)) = �) −→
t→∞

∣∣{� ∈ �n | top(�) = �}|
|�n| .

In particular, for anyk + � + m = n, we obtain combinatorially the formula:

Prob(S(t) contains k black and m white particles)

−→
t→∞

|��
k,m|

|�n| =
�+1
n+1

(
n+1

k

)(
n+1
m

)
1
2

(2n+2
n+1

) .

Theorem4.4 is an easy consequence of the fact that the two bijections preserve weights
in the sense of the following lemma. Recall that� describes the transition probabilities for
each possible local configuration.

Lemma 4.6. The applicationsT̄1 and T̄2 transport together the weight� in the following
sense: for all (�′, j) ∈ � × {0, . . . , n},

(1 − ε)�(�1[i1]) q(�1) + ε�(�2[i2]) q(�2) = �(�′[j ]) q(�′),

where(�1, i1) = T̄ −1
1 (�′, j) and(�2, i2) = T̄ −1

2 (�′, j).

Proof. This lemma is easily verify by a case by case analysis similar to that of
Lemma3.4. �



22 E. Duchi, G. Schaeffer / Journal of Combinatorial Theory, Series A 110 (2005) 1–29

(a) (b)

Fig. 21. A basic and a complete configuration of the 3-TASEP with periodic boundary conditions.

Proof of Theorem 4.4. This proof exactly mimics the proof of Theorem3.3, using Lemma
4.6 instead of Lemma3.4. �

5. Periodic boundary conditions

A standard alternative to our definition of the TASEP is to consider periodic boundary
conditions: the leftmost cell is considered on the right-hand side of the rightmost cell, or
equivalently, the configurations are arranged on a circle (see Fig.21a, the circle is rigid, not
subject to rotation).

Since there are no border walls in these configurations, the Markov chainŜ��� is defined
using only Cases(a1)–(a3) of the transition of the 3-TASEP. Observe that the numbersk, �

andmof black,×and white particles do not change during the evolution. The case without
× particle is easily seen to have a uniform stationary distribution, so we concentrate on the
case with at least one× particle.

Our approach is easily adapted to deal with this case. Let�̂n be a new set of complete
configurations that are made of two rows of cells arranged on a circle and that are such that
the subconfigurations between two|××|-columns, when read in clockwise direction, satisfy
the balance and positivity constraints. More precisely, we are interested in the subset�̂

�

k,m

of configurations of̂�n that have� |××|-columns,k black andm white particles in the top
row. The following lemma is proved in Section7.

Lemma 5.1. The cardinality of̂�
�

k,m is
(
n
k

)(
n
m

)
.

CasesAa′ and Aa′′ of the definition of T̄1 allow to define a bijection̂T from
�̂

�

k,m × {0, . . . , n − 1} to itself and an associated Markov chain̂X��� such that̂S��� ≡
top(X̂���). The same argument as in Section3.1 for the chainX0 then immediately yields
the fact that̂X = X̂111 has a uniform stationary distribution. In particular:

Prob(X̂(t) = �) −→
t→∞

1

|�̂�

k,m|
= 1(

n
k

)(
n
m

) .

Furthermore, the statisticsny andnz are immediately extended to configurations of�̂n

by putting label independently on every subconfiguration between|××|-columns. Lemma
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4.6 adapts in a straightforward way (withε = 0), and allows to express the stationary
distribution in the general case:

Theorem 5.2. The Markov chain̂X��� has the following unique stationary distribution:

Prob(X̂���(t) = �) −→
t→∞

q(�)

Ẑn

, where Ẑn =
∑

�′∈�̂n

q(�′),

whereq(�) = �n�n(�/�)ny(�)(�/�)nz(�).

Finally, the stationary distribution ofS��� is recovered from the relation̂S��� ≡ X̂���. In
particular, for̂S = Ŝ111,

Prob(Ŝ(t) = �) −→
t→∞

|{� ∈ �̂
�

k,m | top(�) = �}|
|�̂�

k,m|
.

For instance, a configuration� of the form

|×| ◦ · · · ◦︸ ︷︷ ︸
m1

| • · · · •︸ ︷︷ ︸
k1

|×| ◦ · · · ◦︸ ︷︷ ︸
m2

| • · · · •︸ ︷︷ ︸
k2

|×| · · · |×| ◦ · · · ◦︸ ︷︷ ︸
m�

| • · · · •︸ ︷︷ ︸
k�

|

for somek1 + . . . + k� = k, m1 + . . . + m� = m corresponds to only one complete
configuration

|××| ◦
• · · · ◦

•︸ ︷︷ ︸
m1

| •
◦ · · · •

◦︸ ︷︷ ︸
k1

|××| ◦
• · · · ◦

•︸ ︷︷ ︸
m2

| •
◦ · · · •

◦︸ ︷︷ ︸
k2

|××| · · · |××| ◦
• · · · ◦

•︸ ︷︷ ︸
m�

| •
◦ · · · •

◦︸ ︷︷ ︸
k�

|

(because of the positivity constraints on blocks between|××|-columns), and thus has proba-

bility 1/
(
n
k

)(
n
m

)
in the stationary distribution of̂S.

6. Irreducibility

In this section we verify that the Markov chainsX0, X̂ andXare irreducible, i.e. that there
is a positive probability to go from any configuration� to any other one�′. In other terms,
we need to prove that the transition graphs of these three chains are connected. The proof
is based on an observation about iterating the bijectionsT̄ , or T̄1 or T̄2, and on induction
onn.

To every pair(�, i) of �n ×{0, . . . , n} we associate a reduced configuration�i in �n−1,
obtained from� by deleting two particles around the walli in a way that depends on the
local configuration:

• Cases•
?|| ◦

• , ×
×|| ◦

• and || ◦
• . The reduced configuration�i is obtained by removing the

| ◦
• |-column on the right-hand side of walli.

• Case •
?|| ◦

◦ . The reduced configuration�i is obtained by removing the two particles
forming the• | ◦ -diagonal around walli.
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• Cases•◦ ||×× and•
◦ ||. The reduced configuration�i is obtained by removing the| •

◦ |-column
on the left-hand side of walli.

• Cases||×× and×
×||. The reduced configuration is obtained by removing the|××|-column on

the border.

Lemma 6.1. Let �̃ be a configuration of�n−1. Let S(�̃) be the set of pairs(�, i) of
�n×{0, . . . , n} having�̃ as reduced configuration, i.e. such that�i = �̃. In particular,
let �0 be the configuration|××|�̃ and�n be the configuratioñ�|××|, and defineS0(�̃) =
S(�̃) \ {(�0, 0), (�n, n)}. Then:

• The setS0(�̃) is a cyclic orbit ofT̄1: given(�, i) ∈ S0(�̃), all other elements ofS0(�̃)

can be reached by successive applications ofT̄1.
• The setS(�̃) is a cyclic orbit ofT̄2.
• If �̃ ∈ �0

n−1 thenS0(�̃) ⊂ �0
n andS0(�̃) is a cyclic orbit ofT̄ .

Proof. As can be checked on Figs.9and17, starting from a pair(�, i) of the corresponding
classes and iteratinḡT1, T̄2 or T̄ , the selected wall moves to the left with the pair of black
and white particles, and successively stops on the right-hand side of every black or×particle
of the top row, until it reaches the left border. Similarly, as can be checked on Figs.10and
18, iteratingT̄1, T̄2 or T̄ from a pair(�, i) of the corresponding classes, the selected wall
moves to the right with the pair of black and white particles, stopping on the left-hand side
of every white and×particle of the top row, until it reaches the right border.

As shown by Figs.19 and20, the applicationT̄2, and the applications̄T1 or T̄ behave
differently when the border is reached:T̄2 visits the configurations�0 or �n while T̄1 or T̄

skips them and immediately restart moving in the opposite direction.
Starting from an element(�, i) all other elements ofS(�̃) (respectively,S0(�̃)) are thus

visited in a cycle by successive applications ofT̄2 (respectively,T̄1 or T̄ ). �
Lemma6.1 provides us with cycles in the transition graph on�n, and each cycle is

associated to a reduced configuration of�n−1. The next lemma transports transitions from
�n−1 to �n.

Lemma 6.2. Let (�̃′, j) = T̄1(�̃, i) be a transition between two configurations of�n−1.
Then there existk, i+, j+ and �, �′ such that(�, k) ∈ S(�̃), (�′, k) ∈ S(�̃), and
(�′, j+) = T̄1(�, i+). The same holds for̄T2.

Proof. For T̄1 observe that in each case of Fig.17, and on the second leftmost case of Fig.
19, a | ◦

• |-column can be inserted on the left border without interfering with the action of
T̄1: take� = |◦

• |�̃, �′ = | ◦
• |�̃, k = 0, i+ = i + 1, j+ = j + 1. Similarly in each case

of Fig. 18, and on the leftmost case of Fig.19, a | •
◦ |-column can be inserted on the right

border without interfering with the action of̄T1: take� = �̃| •
◦ |, �′ = �̃| •

◦ |, k = n, i+ = i,
j+ = j .

For T̄2 observe that in each case of Figs.18–20, an|××|-column can be inserted, either on

the left or on the right border, without interfering with the action ofT̄2. �
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Lemma6.2 gives a transition between an element of the cycle associated to�̃ and an
element of the cycle associated to�̃′. Taking the connectivity of the transition graph on
�n−1 as induction hypothesis, we conclude that all cycles of Lemma6.1belong to the same
connected component of the transition graph defined byT̄2 on�n. Since every element of
�n belong to a cycle, this concludes the proof of the irreducibility ofX.

As opposed to this the transition graph defined byT̄1 is seen to connect only configurations
with the same number of|××|-columns. In particular the chainX���0 with ε = 0 is not

irreducible, but, the transition graph defined byT̄ (or T̄1) on�0
n is connected and the chain

X0
��� is irreducible.

Finally the chain̂T is seen to be irreducible in a similar manner as soon as there is at
least one|××|-column.

7. The number of complete configurations and the cycle lemma

Lemma 4.1. . The cardinality of�n is 1
2

(2n+2
n+1

)
.

Proof. Let�n+1 be the set of (unconstrained) configurations ofn+1 black andn+1 white
particles distributed between two rows ofn+1 cells, so that|�n+1| = (2n+2

n+1

)
. Among these

configurations, we restrict our attention to the subset�n+1 of those ending with| •
◦ |- or a

| •
• |-column. Exchanging• and◦ particles is a bijection between�n+1 and its complement

in �n+1, so that|�n+1| = 1
2

(2n+2
n+1

)
.

The proof of the lemma consists in a bijection� between�n and�n+1 (see Fig.22). Given
� ∈ �n, its image�(�) is obtained as follows: First, if the number of|××|-columns of� is

even, add a| •
◦ |-column at the end of�, otherwise add to it an|××|-column. Then replace the

first-half of the|××|-columns by| ◦
◦ |-columns, and the remaining half by| •

• |-columns (from

left-to-right). By construction the resulting�(�) belongs to�n+1. Conversely, consider
� ∈ �n+1, and letd = min(E(j)) be thedepthof �. Then setji = min{j | E(j) = −2i},
andj ′

i = max{j | E(j − 1) = −2i}, for i = 1, . . . , |d/2|, and define the application�
that first changes columnsji andj ′

i into |××|-columns for alli = 1, . . . , |d/2|, and then
removes the last column. By construction the blocks between two of the modified columns
of � satisfy the positivity condition, so that�(�) ∈ �n+1. Finally, the applications� and
� are clearly inverse of each other.�

Lemmas2.2 and 4.2. For any k + � + m = n, the cardinality of the set��
k,m of com-

plete configurations with� |××|-columns, k black and m white particles in the top row is
�+1
n+1

(
n+1

k

)(
n+1
m

)
.

Proof. The statement is verified using the cycle lemma (see[9, Chapter 11], or [11, Chapter
5]). Denote by��+1

n the set of configurations withp = n−� = k +m black andp +2�+2
white particles distributed between two rows ofn + 1 cells. Then the cardinality of the
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(i) (ii)

0   2   2   0 0 0   2   2   2   4   20  0 00  -2 -4 -4  -2  -2 0   0  0  2   0  -2 0022 0

Fig. 22. From (i) an element of�n+1, to (ii) one of �n. The (B(j) − W(j))j=0..n+1 are given under both
configurations and graphically represented.

subset��+1
k,m of elements of��+1

n that havek black particles in the top row and the other
m in the bottom row is

(
n+1

k

)(
n+1
m

)
. In such a configuration the number of white particles

exceeds by 2�+2 that of black particles, so thatE(n+1) = −2�−2. Given� in ��+1
k,m , let

d = min(E(j)) be the depth of�, and setji = min{j | E(j) = d + 2i}, for i = 0, . . . , �.

By construction, these� + 1 columns are| ◦
◦ |-columns. On the one hand, let�̄

�+1
k,m be the set

of pairs(�, j) where� ∈ ��+1
k,m andj ∈ {j0, . . . , j�}, so that|�̄�+1

k,m | = (
n+1

k

)(
n+1
m

) · (�+1).

On the other hand, define the set�̄
�+1
k,m of pairs(�′, i) where�′ is obtained from an element

of ��
k,m by adding a final|××|-column, andi ∈ {0, . . . , n}. By construction,|�̄�+1

k,m | =
|��

k,m| · (n + 1).

The proof of the lemma consists in a bijection� between�̄
�+1
k,m and �̄

�+1
k,m (see Fig.

23). Given (�, j) ∈ �̄
�+1
k,m , let �1 denote the firstj columns of�, and�2 the n + 1 − j

others. Then by construction ofj, the concatenation�2|�1 satisfiesE(i) > −2� − 2
for i = 1, . . . , n, andE(n + 1) = −2� − 2. This implies that�2|�1 decomposes as
a sequence�′

0, �′
1, . . . , �′

� of � + 1 (possibly empty) blocks that satisfy the positivity
constraint, each followed by a| ◦

◦ |-column. Let�′ be obtained by replacing these� + 1

| ◦
◦ |-columns by|××|-columns. Then the map(�, j) → (�′, n+1− j) is a bijection of�̄

�+1
k,m

onto�̄
�+1
k,m : the inverse bijection is readily obtained by first replacing the|××|-columns into

| ◦
◦ |-columns, and then recovering the factorization�2|�1 from the fact that�2 hasn+1−j

columns. �

Lemmas2.1 and 4.3. The cardinality of the set��
n of complete configurations of�n that

have� |××|-columns is�+1
n+1

(2n+2
n−�

)
.

Proof. The proof uses the same arguments than the proof of Lemma4.2. The only difference
is that, instead of counting elements of��+1

k,m with k black particles in the top row andm

in the bottom row, we count elements of��+1
n , the set of configurations ofn − � black

particles andn + 2 + � white particles distributed in two rows. Hence, the previous factor
|��+1

k,m | = (
n+1

k

)(
n+1
m

)
is replaced by|��+1

n | = (2n+2
n−�

)
. �

Lemma 5.1. The number|�̂�

k,m| of configurations of|�̂n| having� |××|-columns, k black
particles at the top, and m at the bottom is

(
n
k

)(
n
m

)
.
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0  2  2  0 0 2  2  2  4  20   0 0 0

(iii)

0  2  2  0 -2 -4  -4  -4 -4 -4 -4 -2-6 -6  -6  -80  0  0 02  -2 -4 -2 -2 -4 -6  -8-10 -10-8-8

(i) (ii)

Fig. 23. (i) An element of̄�
�+1
k,m (with � = 3 and columnj = 6 colored), (ii) its conjugate (with columnn + 1− j

colored), and (iii) the corresponding element of��
k,m. The sequence(B(j) − W(j))j=0..n+1 is given under each

configuration and graphically represented.

Proof. Recall that��
k,m denotes configurations of lengthn with k black andm + � white

particles in the top row, andm black andk + � white particles in the bottom row, so that

|��
k,m| = (

n
k

)(
n
m

)
. In order to prove the statement of the lemma we show that��

k,m and�̂
�

k,m

are in bijection. Let	 ∈ ��
k,m, and consider its depthd = min(E(i)) and the� columns

ji = min{j | E(j) = d + 2i}, i = 0, . . . , � − 1, as in the proof of Lemma2.1. By
definition of these columns, the positivity condition is satisfied by each block between two
of them. Moreover, by definition ofj0 andj�−1, the positivity condition is also satisfied by
the concatenation��|�0 of the final block�� and the initial block�0. Hence transforming
the columnsj0, . . . , j� into |××|-columns, and arranging the two rows in a circle by fusing

walls 0 andnat the apex yields a configuration�(	) of �̂
�

k,m (recall that these configurations

are not considered up to rotation). Conversely, given� in �̂
�

k,m, a unique element	 of ��
k,m

such that�(	) = � is obtained by opening at the apex and transforming|××|-columns into
| ◦
◦ |-columns. �

8. Conclusions and relations to Brownian excursions

The starting point of this paper was a “combinatorial Ansatz”: the stationary distribution
of the two particle TASEP with boundaries can be expressed in terms of Catalan numbers
hence should have a nice combinatorial interpretation. In our interpretation, configurations
of the TASEP are completed by a (usually hidden) second row in which particles go back.
In the most interesting case� = � = � = 1, the resulting chain has a uniform stationary
distribution so that the probability of a given TASEP configuration just reflects the diversity
of possible rows hidden below it.
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We do not claim that our combinatorial interpretation is of any physical relevance. How-
ever, apart from explaining the “magical” occurrence of Catalan numbers in the problem,
it sheds new light on the recent results of Derrida et al.[4] connecting the TASEP with
Brownian excursion. More precisely, using explicit calculations, Derrida et al. show that
the density of black particles in configurations of the two particle TASEP can be expressed
in terms of a pair(et , bt ) of independent processes, a Brownian excursionet and a Brownian
motionbt . In our interpretation these two quantities appear at the discrete level, associated
to each complete configuration� of �0

n:

• The role of the Brownian excursion for� is played by the halved differencese(i) =
1
2(B(i) − W(i)) between the number of black and white particles sitting on the left of
wall i, for i = 0, . . . , n. By definition of complete configurations,(e(i))i=0,...,n is a
discrete excursion, that is,e(0) = e(n) = 0, e(i)�0 and|e(i) − e(i − 1)| ∈ {0, 1}, for
i = 0, . . . , n.

• The role of the Brownian motion is played for� by the differencesb(i) = Btop(i) −
Bbot(i) between the number of black particles sitting in the top and in the bottom row,
on the left of walli, for i = 0, . . . , n. This quantity(b(i))i=0,...,n is a discrete walk, with
|b(i) − b(i − 1)| ∈ {0, 1} for i = 0, . . . , n.

Sincee(i) + b(i) = 2Btop(i) − i, the functionseandb allow one to describe the cumulated
number of black particles in the top row of a complete configuration. Accordingly, the
density of black particles in a given segment(i, j) is (Btop(j) − Btop(i))/(j − i) = 1

2 +
e(j)−e(i)

2(j−i)
+ b(j)−b(i)

2(j−i)
. This is a discrete version of the quantity considered by Derrida et al.

in [4].
Now the two walkse(i) andb(i) are correlated since one is stationary when the other is not,

and vice-versa:|e(i)−e(i−1)|+|b(i)−b(i−1)| = 1. Given�, letIe = {�1 < . . . < �p} be
the set of indices of| •

• |- and| ◦
◦ |-columns, andIb = {�1 < . . . < �q} the set of indices of| •

◦ |-
and| ◦

• |-columns (p+q = n).Then the walke′(i) = e(�i )−e(�i−1) is the excursion obtained
from eby ignoring stationary steps, and the walkb′(i) = b(�i ) − b(�i−1) is obtained from
b in the same way. Conversely given a simple excursione′ of lengthp, a simple walkb′ of
lengthq and a subsetIe of {1, . . . , p+q} of cardinalityp, two correlated walkseandb, and
thus a complete configuration� can be uniquely reconstructed. The consequence of this
discussion is that the uniform distribution on�0

n corresponds to the uniform distribution of
triples(Ie, e′, b′) where, givenIe, the processese′ andb′ are independent.

A direct computation shows that in the largen limit, with probability exponentially close
to 1, a random configuration� is described by a pair(e′, b′) of walks of roughly equal
lengthsn/2+ O(n1/2+ε). In particular, up to multiplicative constants, the normalized pairs
(

e′(tn/2)

n1/2 ,
b′(tn/2)

n1/2 ) and(
e(tn)

n1/2 ,
b(tn)

n1/2 ) both converge to the same pair(et , bt ) of independent
processes, withet a standard Brownian excursion andbt a standard Brownian walk.

Another possible outcome of our approach could be an explicit construction of a contin-
uum TASEP by taking the limit of the Markov chainX, viewed as a Markov chain on pairs
of walks. An appealing way to give a geometric meaning to the transitions in the continuum
limit could be to use a representation in terms of parallelogram polyominos[11], using the
processe(t) (or et in the continuum limit) to describe the width of the polyominos and the
processb(t) (or bt in the continuum limit) to describe the vertical displacement of its spine.
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