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1. INTRODUCTION

D’Alarcao [3] and Coudron [2] investigated the following problem: Given
a semilattice G of groups and an inverse semigroup S, what are the inverse
semigroups U such that there is an idempotent separating surjective homo-
morphism from U to .S with G as its kernel normal system ? Their answer
came out in terms of a certain action of S on G and a “factor system”
condition, similar to the classical case of group extensions, but naturally more
involved. Whereas Eilenberg and MacLane [5] could phrase the theory of
group extensions in terms of cohomology theory, the corresponding extension
problem for inverse semigroups was somehow left in the ‘“wilderness,”
similar to Schreier’s original paper [8] on group extensions. Only for a very
special situation, cohomological notions have been introduced [9]. The
purpose of this paper is to provide a cohomological framework for inverse
semigroups which will not only fit the extension problem, but also discuss
some apparently new notions such as complementation and inner auto-
morphism for inverse semigroups.

In Section 2 we introduce the category of S-modules for inverse semigroups
S: an inverse semigroup S is represented as a semigroup of certain endo-
morphisms of a semilattice 4 of abelian groups. Sections 3 and 4 are devoted
to the free, projective, and injective objects in this category. In Section 5
we apply some general results of cohomology theory for abelian categories
to the category of S-modules, and in Section 6 we set up various projective
resolutions of a standard S-module Zg . Section 7 links d’Alarcao’s and
Coudron’s results with cohomology theory for the case where G consists of
abelian groups. It is interesting to note that one has to introduce a dummy
identity element in S to tackle the extension problem. Theorem 7.5 is an
improvement on d’Alarcao’s and Coudron’s results insofar as ““factor systems”
need not be defined on the whole of S x .S but just a certain subset, in order
to determine a unique extension. This fact can be neatly expressed in terms
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of a certain chain homotopy. Section 8 studies certain endomorphisms of
semilattices of groups, generalizing group automorphisms and the group
of outer automorphisms of a group. Section 9 provides an obstruction theory
for extensions using the notions of Section 8, and interprets the third
cohomology group for inverse semigroups. Section 10 develops the notions
of an inner automorphism of an inverse semigroup and complementation of
kernel normal systems which are applied in Section 11 to interpret first
cohomology groups.

Two problems arise: (1) What are the semilattices 4 of abelian groups on
which an inverse semigroup .S can be represented, i.e., make A into an
S-module ? (2) Using left satellites of the first cohomology group of .S, what
are the conditions determining those S which admit a homology theory that
can be interpreted as cohomology in negative dimensions (as in the case of
finite groups)? We hope to attack these questions in another paper. For
definitions and theorems concerning inverse semigroups, the reader is
referred to [1].

Finally the author wants to thank Dr. T. E. Hall, Professor R. McFadden,
and Professor G. B. Preston for their advice resulting from many helpful
discussions.

2. TueE CATEGORY OF S-MODULES

DreriniTION.  Let S be an inverse semigroup and E(S) its semilattice of
idempotents. A semilattice 4 of (additively written) abelian groups together
with a map 4 X S — 4, denoted by (a, s) - as, ac 4, s& S is called an
S-module if

(1) there is an isomorphism & from E(S) to E(A4);
(i) (ay+ ay)s = a3 + ay5, for all @, , a,€ 4, s€ S}
(iil) a(s;$s) == (asy) sy, forallae 4, 5, , 5, € S;

(iv) ae = a - ef, for all ae 4, e e E(S);
(v) (ef))s = (s7les) 6, for all e E(S), se S.

For efl we will write 0, .
DeriniTION.  If S an inverse semigroup, A and B are S-modules, then
a map o: 4 — B is called an S-morphism if

() (a4 + a5) o = @y + aye, for all @, , a, € 4,
(i) (ax)s = (as)a, forallac 4,5e.S;
(i) 0,0 = 0, , for all e € E(S).
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The set of all S-morphisms will be denoted by Homg(4, B). Homg(4, B)
becomes an abelian group by a(a 4+ 8) = ax |- a8, a € 4, «, 8 € Homg(4, B),
a(—o) = —aa, ac A, a € Homg(4, B), and the class of S-modules together
with the sets Homg(A4, B) form a category, denoted by Mod(S). If 4 is an
S-module, ee E(S), then A, will denote the set {acd|a—a =0,
Clearly A, is an abelian group. If a: 4 — B is an S-morphism, then
kera ={acA|an=0,,if ac 4,} is an S-submodule of 4, called the kernel
of o, and if B is a submodule of 4, then A/B ={a -+ B,|ac A4, , ec E(S)}is
called the factor module of A mod B if we define, for e, ¢, , €, € E(S),
(al + Bel) + (a?. + Beg) = (al + a2) + Belez » 1, G € A! (a ‘!_ Be) $ =
as + Bya,,, ac 4, seS. A/B is an S-module and ¢ > ¢+ B,, ac 4,,
defines an S-morphism from A to A/B. We find easily, that Mod(S) is an
abelian category. The zero object of Mod(S) is E(S), additively written,
with (e, 5) — s7les. Direct sums 4 @ B in Mod(S) are given by
(4P B), =A4,® B, with (a, by s = (as, bs),ac 4,,beB,,seS.

3. Free S-MobuLEs
S will always denote an inverse semigroup.

DerFiNiTION. Let /A be a semilattice. A A-set is a disjoint union
T=U{T\|AeA}ofsets Ty,and if T = (J T, and U = | U, are A-sets,
amap «: T — U with T)a C U, is called a A-map. The A-sets together with
the /-maps form a category denoted by Set, .

Remark. Every S-module 4 is an E(S)-set as 4 = (J {4, | ec E(S)} and
every S-morphism is an E(S)-map.

DeriNiTION. An S-module F is said to be free over a subset T CF if
(i) T is an E(S)-subset generating F, and

(i) every E(S)-map from T to any S-module 4 extends uniquely to
an S-morphism from F to A4.

ProrositioN 3.1. For every E(S)-set T there exists an S-module F which

is free over a subset T of F such that T and T are isomorphic in the category
SetE(s) .

Proof. For any e e E(S), define F, to be the abelian group freely generated

by the pairs (t,5), where s7ls = ¢, te Ty, for some fe E(S) such that
ssTt<L f.
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We define an addition and S-action on |J F, by:

Y omt )+ ) e, 6ty §1)

—lo =1¢
8§ ts=e Sl Sl‘l)’l

= Y mltse)+ Y n, . (t,ne)  for e e € E(S)

—lg_. ~1lg .,
$ts=e Sl slfel

Z ny,(t, )8y = Z 7s, (2, $81), for ee E(S), s, €8,

sTlg=¢ s71s=¢

where the sums are finite sums, 7, s, 7; 5 €Z; this definition makes F into
an S-module. Let 4 be an S-module and «: {(¢,¢) | te T, , e E(S)} —~ 4 an
E(S)-map. Then, for i€ Ty, f€ E(S), X s15mg e, {8, ) h = 10 1y (5, f) s
is an S-morphism from F to 4 extending « and is the only such extension. If
we put T ={(t,e) [ te T,, ec E(S)}, the map t — (¢, e) is a bijection from
T to T. Moreover T generates F as an S-module.

DeriNniTION.  We say F is freely generated by T.
CoroLLARY 3.2. Free S-modules are projective in Mod(\S).

CoroLLARY 3.3. Every S-module is a homomorphic image of a free S-
module.

4. INyecTIVE S-MODULES
The purpose of this section is to show that Mod(.S) has enough injectives.

DErFINITION.  ZS denotes the S-module defined by (ZS), = abelian group
freely generated by the symbols (s), where s € S, s71s = e with the operations
defined by

Y ns) + ~Z

sTis=e tlt=e

nft) = Y, nfse) + Y ngte), e, e; € E(S)

s 1ls=e t~ =g,

( > ns(s)) sy = Y, nss;), e€kE(S), s,€8, nel.
LevMa 4.1. Let [ be an S-module. Then [ is injective if and only if, for
every S-submodule I of ZS, every S-morphism from I to | extends to an S-
morphism from ZS to ].

Proof. 'The “only if” part is obvious. Suppose that 4 is an S-submodule
of an S-module B, and ¢: 4 — [ an S-morphism. By Zorn’s Lemma, we
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find an S-submodule 4, of B containing 4 and an S-morphism ¢4 : 45— |
extending ¢ which does not extend to an S-morphism ¢, : 4; — ],
for some S-submodule A4, of B containing A, properly. Suppose
A, << B. Then there exists be B\4,. Let C be the S-submodule of
B generated by {4, , b} and suppose be B,. Then C;, = A, 4 {bs|se S,
sles = f>, feE(S). (By (@) we mean the trivial abelian group.)
Define I = E(ZS) VU {3 nyes) | sles =f, fe E(S), > nbs e Ay}. Then [
is an S-submodule of ZS. Let a: I — A4, be the S-morphism defined
by (Cs-tees Bs(€8)) & == 3 1,5, nbs. Then «gy:l— ] extends to an
S-morphism i: ZS - J. This allows us to define an S-morphism y: C — ],
by (@ 4 X e-105-7 BsDS) x = ady -+ X ny(es) p, which is well-defined as ¢
extends ag, . Hence 4, = B, and ] is injective.

THEOREM 4.2. Every S-module A can be embedded into an injective
S-module.

Proof. Let L be the direct sum of the S-modules (ZS), , « e Homg(, 4),
I running through all S-submodules of ZS, and (ZS), =~ ZS. The element
of (ZS), corresponding to 3 7, (s) in ZS will be denoted by 3 ng (s, «).
Let K be the S-submodule of 4 @ L generated by {3 7,(s) «,
=3 n,.s, ) 1> n,(5) €, « € Homg(Z, A), I an S-submodule of ZS}. Let
D(A) = (4 @ L)/K. Then a— (a,0,) + K is an embedding of A4 into
D(A): for suppose (a, 0,) € K, then —> 7, (5, @) = 0,, > o #e(5) &« = a,
for suitable n,,€Z, ae4,, s71s =e. But L, is an abelian group freely
generated by the elements (s, «) hence n,, = 0, for all pairs s, o, whence
a = 0,. Moreover, every o€ Homg(l, 4) extends to an S-morphism
&:ZS — D(A) by defining (s) & = (0,, (5, o)) + K. Let v be the least infinite
ordinal whose cardinal is larger than that of Z.S. We define D,(4) = D(A4),
D, 1(A4) == D(Dy(A)), Dy(A4) = U,<r D,(A4), if A is a limiting ordinal. Then
D,(A) is injective as, by the choice of », the image of every S-submodule I
of ZS under any S-morphism a:7 - D,(A4) is contained in some Dg(4),
B < v, and hence « extends to an S-morphism & ZS — D, 4(4) C D(4).
Moreover, 4 can be embedded into D,(4).

Remark. 'The proof of this theorem copies exactly the construction of
i4, p. 9.

5. ConsTRUCTION OF A CoHOMOLOGY FuNcTOR oN MOD(S)
This section is devoted to the construction of a cohomology functor Hj

from Mod(S) to the category of abelian groups which is characterized by the
following properties: if 4 € Mod(S), then
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(i) Hg(Ad) =0, fori <0,
(i) H(J) = 0, if [ is injective, { €Z,
(i) HO(A) = {8: E(S) — A | 5 amap with (8) s = (s%es) 5, e € E(S),

se S} and “pointwise” addition.

Note that in the case where S is a group, H is just the ordinary cohomology
functor. As Mod(S) has enough injectives, by the uniqueness theorem
([6, p- 5]) for cohomology functors on abelian categories, there exists at most
one such functor on Mod(S). We will establish the existence of H by standard
methods [6, p. 25]:

Levma 5.1, If W and B are two abelian categories and Y: W — chain
complexes over B an exact functor, then there exists a cohomological functor

H from W to B such that H(A) = ith homology of Y(4).

Lemma 5.2. If P is a projective S-module, | an injective S-module, and
0— A4 - B— C— 0 an exact sequence in Mod(sS), then

0 — Homg(P, 4) — Homy(P, B) — Homy(P, C) — 0
and

0 — Hom(C, J) > Homy(B, J) — Homg(4, J)— 0

are exact sequences of abelian groups.

Proof. 'This is true for any abelian category.

CoroLLARY 5.3. If X is a chain complex of projective S-modules, then
A — Homg(X, A) is an exact functor from NMod(S) to the category of chain
complexes over the category of abelian groups.

CorOLLARY 5.4. If X s a projective resolution of B e Mod(S) then the
cohomology functor arising from Lemma 5.1 is trivial on the injective S-modules
in positive dimensions.

Hence all we have to do, is to find B € Mod(S) such that Homg(B, 4) and
H%(A) as defined at the beginning of this section are naturally isomorphic.

DerFINITION. By Zg we will denote the S-module defined by (Zy), ~ Z,
the additive group of integers, whose elements are the integers labelled by
e € E(.S), such that

n, + my = (n -+ m),,, n,meZ, e feE(S)
neZ, eckE(S), seds.

nes TE g
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Prorostrion 5.5. Homg(Zg , A) o= {8: E(S)— A |8 a map with ede A,
and (e8)s = (s7'es) 8, ec E(S),s€ S} and there is a natural isomorphism
between these groups.

Proof. Let ac Homg(Zs, 4) and denote the group on the right-hand
side of ~ by A4S5. Define #: Homg(Zs, 4) — A5 by e(ofl )= 1,2. Then
of € AS as [eab)] e == (I, o) e, = (L)oo =1, 0 = (e18,)(af), and
(ss ) (08} s = lgmas = (lggm18) & = lgagergx = I = (s7%)(of). Define
6-t: 45 — Homg(Zs , A) by n,(80-1) = n(ed). Then n,(86-1) s = n(ed) s =
n(sles) 8 = n,1,,(8071) = (m,5)(80-"). Hence 80! e Homy(Z; , A). Clearly,
# and 6! are homomorphisms and are the inverses of one another. The
naturality of 4 follows immediately.

COROLLARY 5.6. There exists a cohomological functor, that we shall denote
by Hy , from Mod(S) to the category of abelian groups satisfying conditions
(1)-(ir1).

6. ComputatioN oF Hgi(A)

By the results of the previous section, we have to construct a projective
resolution of Zg . Let T)(.S) = User(s) (T(S)). be the E(S)-set defined by
T(S)e :{[f:susz [ z] \Slsl <fEE(S) SS <sr‘1sr~1’ r _2
sits; =, s,eS, r=1,..,1 for =1 and TS), = {{e]| eeE(S)}.
B 5(S) will denote the S-module freely generated by 7,(S). Next we define
S-morphisms &; : B,(S) — B, 4(S), 7 == 1, by the values of the E(S) maps

G2 Ti(S) — Bia(SS): [, 515 Sz oeves 5105
= ([fs 815 82 0ees Sica]s 82) Z (1)UL, 81 seees S5285 5o i), 7782)

A (= D([57781 s Sg yeees 83, 57785), for 1= 1.

Moreover, we define an S-morphism e: By(S) — Zg by the values of the
E(S)-map &: T(S) >Zs: [l e = 1,, e E(S).

PROPOSITION 6.1. -+ — By(S) % B, |(S)— -+ — B,(.S) =% By(S) —>Zg
is a projective resolution of the S module Zg .

Proof. Let(Ly), = {([f, $1 o0 Ssb, 8) | 17 <57y, 7t =€, [f, 81 4o Si] €
T{S)s2s,}, e € E(S); hence (L;), generates B (S)e freely as an abelian group.
ThenL; = U,cg(s) (Ly), is an E(S)-set. We define E(S)-maps &, : L, — B, 1(S),
120, by ([f,sy, 8] 8)8 = ([f, g 5y 85, ], £74). Then &; extends
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uniquely to an E(S)-map o, : B(S) — B, 4(S) such that o; | (B{(S)), are
group homomorphisms. Furthermore we define an E(S)-map +: Zg — By(S)
byn,r = n([e], e), e € E(S), then = | (Zs), are group homomorphisms. We will
show: 7€ ==idzg, er+ o040y = de () 0054+ 0,04 = =idp (5, 1 > 1.
Once these equalities of E(S)-maps are established, a standard argument
[7, p. 115] proves that —B,(S) —% B; 4(S) — -+ — By(S) —% By —><Zs— 0
i1s exact, We have 1,7¢ = ([e], ) ¢ == 1, ; furthermore if ([f], s) € By(.S),
then

([f), s)em + oper) = 1oy m + ([ 5], 57298,
= (s7AL sy + (S 8) — ([s75], s7%)
= (/19 & swi<f
Let ([f, 51 1 5,], 8) € BAS). Then
(Lfs $150es 8], 8) €405y

i
- ([f S1 yeeny Sy 1] $; 9)01 1 Z -]+l [fx"') $i=15j 30y si}) S)Ui—l

+ (_1) ([Sl $15 525000 ] S)GFl

= ([f, $1 5eeer S1_q » §:5], $75) -+ Z (1Y f, oy 85485 50y 825 ], $71)

A (=D (5751 5 85 5eeer 555 51, ST59).
On:the other hand,
([fs $15eer $i15 8) 03051 = ([fs $1 e 845 8], $719)01 1
= ([f, $15-0s 815 8) — ([fy $1 5-.» 5:5], s715)

A Y (=D frees 518 yees S5 8], 5718,
j—2

Hence 9,0,y + 0,0;; == idp_, Q.E.D.

We may therefore use this resolution for computing H¥A4), for
A € Mod(S). For practical purposes, however, we construct another reso-
lution of Zg for the case where S has an identity element 1:

Let V(S) = Useris) Vi(S), be the E(S)-set defined by

Vi(S)e = {[S1 000 55118, €8, 7 == Lyuiy by 8787 o878y o 8; =€), 1221
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C,(S) will denote the S-module freely generated by I,(S), for i >= 1, and
Cy(S) = ZS. We need the following.

Lemma 6.2. If S has an identity element 1, then ZS is a free S-module.

Proof. Let Vi((S), = @ ife # 1, Vo(S)y = {[ 1}, 2 one- -point set. Then

Vo(S) = Ueerts) VO(.S)e is an E(S)-set. We define an E(S)-mapA: V(S)—ZS
by [ JA = (1). Then A extends uniquely to an S-morphism A from the
S-module F which is free on Vy(S) to ZS. Conversely define a map
wZS —>Fby (s = ([ 1, 5). p is an S-morphism, and A and p are inverses
of one another.

Next we define S-morphisms 8, : C(S) — C;_1(S), 7 = 2 by the values
of the E(S)-maps

Ci Vi(S) = Ciy(S): [sy o0 5:)0:
= ([$1 500 Si1)s 51‘_—11 51_131 T8 48;)

+ Z (_l)z ]+l([51 3 J 157 3. si]’ 5;1 s;131 si)

+ (=17 [sg 50y 53], 5_1 8 51 8

211 Cy(S) —> Cy(S) is defined by the values of the E(S)-map &, : V(S) —
Co(S): [s] &, = (s) — (s71s), and e: Cy(S) —Zg by (s) e = 1,1,. Again we

prove

PROPOSITION 6.3. —C(S) —% C;_(S) — -+ — Cy(S) —% Cy(S) —*

Z; — 0 s an exact sequence of S-modules.

Proof. As before. Let (M), = {([sy,..., 5], §) | t#72 < 578 - 578y 0 s,
t7t = ¢}, where ee E(S), £ > 1. Then (M,), generates C,(S), freely as an
abelian group and M, = U,ep(s) (M), is an E(S)-set. We define E(.S)-maps
Gt M, — C1(S), 7> 1, by

([51 50s 831, 865 = ([5q yerey S5 2], £70870 on 705y =0 s,7).

Then &; extends uniquely to an E(S)-map o, : C;(S) — C;,4(.S) such that
o; | Ci(S). are group homomorphisms. Additionally we define an E(S)-map

Co(S) = Cy(S) by () oy == ([s], s%). Then o4| Cy(S), is a group
homomorphism. Moreover 7: Zg —> Cy(S) defined by n,» = n(e) is an E(S)-
map such that 7 | (Z5), is a group homomorphism. Again it will be sufficient
to show that

Te = 1dygs, €7 + 00y = l.dco(s) ’ 0,0,y + 0,0;4, = l'dci(S), ¢

A%
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The first identity is obvious. Let (5) € Cy(S), then
(S)em - 0y0y) = Va7 -+ ([s], s 19)o;
S (59 () (1) = ().
Let ([5,], 52) € C1(.5), then
([s1]; $2)(G10y - 0185)
= [(s182) — (51 s152)]on -t ([51 5 8], 52757 '5150)0
= ([s182], 8257 "5082) — ([57 s8], 82751 7535) F ([sa], 51 '152)
— ([51 5 $a), 5753 75580) = ([%a], 52 5" 5152)

= ([51], $a)s as  §,55 " < 87l .

Similarly, the general case holds. Q.E.D.

For computational purposes, we will require more projective resolutions
of Zg : Let

WiS), = {[sy s8] | 1 S 5, €8, 1 = Ly iy 870 sy 05y sy =€) @22 1

and Wi(S) = Userts) Wi(.S). . Then the E(S)-set W(S) freely generates an
S-submodule D,(S) of C(S). We put Dy(S) = Cy(S). If we define ¢, , o, as
before and put ([s; ..., 5], 8) = 0,, e = s s7h7 -+ 57l 555, if 5 == 1
orone s, = 1, whenever this expression appears as an image of &;., or o,_,,
then we obtain another projective resolution of Zg .

Let Xy(S), = {[s1yeers sl | 1 £ 5, €8, 1 < <, 55857 <75, 2 < j <,
573, = e}, 1 =1 and X(S) = Userts) Xi(S), - Then the E(S)-set X«(S)
freely generates an S-submodule D,(S) of D/(S). We put Dy(S) = Dy(S).
Then Dy(S) 8; C D;_4(:S), D«S) 0; C D;1(S), t = 1. Also Dy(S) 6, C Dy(S),
as

Dy(S) oy = Do(S) 09 & Dy(S) = Dy(S).

Hence —DJ{S) =% D,_1(S) — =+ — Dy(S) =% Dy(S) —<Zg is a projective
resolution of Zg .
If we define Cy(S) to be the S-submodule of Cy(S) freely generated by

{[81 yoes 851 | 8, € S, 1 < v < 4, 55, € E(S) implies
SeaSk 7= Spe1 OF SiSpi1 7 Skyahy

fori = 1, C)(S) = Cy(S) and define &,, o, as before, putting ([s, ..., 5,1,5) =0, ,
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e = s71g7t 5Tl e 58, 1f ([q eens 85, 8) € Cy(S) whenever such an element
appears as an image under 9, or ¢,_; , we obtain another projective resolution
—>C(S) 5% C;4(S) — === — Cy(S) »% Cy(S) —<Zg over Mod(S).

7. ExtENsioNs aND H%(A)

The first application of the cohomology theory for inverse semigroups
which we have developed deals with the following problem:

Let A be a semilattice of abelian groups and .S an inverse semigroup. Find
all inverse semigroups U such that there is an idempotent-separating homo-
morphism j from U onto S with AC Uand 4 = {ue U | uj e E(S)}.

DeriNiTION. (U, ) is called an extension of 4 by S.

The answer to this problem is well-known for groups [5]. For inverse
semigroups, papers by d’Alarcao [3] and Coudron [2] have dealt with this
question, but without the “structural” approach that was made so success-
fully for groups.

DerFINITION. Two extensions (U,j) and (U,j) of 4 by S are called
equivalent if there is a homomorphism p: U — U of inverse semigroups such
that

(1) n|A =id, and

() w—J
Clearly, “being equivalent’ is an equivalence relation on any set of extensions
of A by S.

The following lemma is well-known (see [10]).

Lemwma 7.1, Let (U, j) be an extension of A by S and p: S — U a “‘trans-
versal,’ i.e., a map p such that pj — ids . Then every ue U can be written
uniquely as (sp)a, s € S, a € A, such that (sp)~(sp) = aa™'.

Remark. 'That A is a semilattice of abelian groups, was not used in the
proof.

Let (U, j) be an extension of 4 by S, ue U, ac A. Then (v lau)j =
(/) (@)(y) € E(S), hence utaue A. As j is idempotent-separating and
sutjective, § | E(U) is an isomorphism from E(U) to E(S). But by definition
of 4, E(U) = E(A). Hence § = (j| E(U))™" is an isomorphism from E(S)
to E(4).

If a;, aye A4, ue U, then uYaya,) u = utaya,uuu = (uau)(u-ta,u)
as uu'e A and A4 is abelian. If ae 4, uy, u, € U, then (w,u,)7! a(uyu,) =



284 HANS LAUSCH

wy N uau) u,  Ifac A, uc U, wje E(S), then u € 4, hence utau = a(uu) =
a[(w)(j1EU) . If e E(S) and ue U, then [we(j| E(U)) ] u]j =
() elwi) € E(S), hence (el | EQU) T u = [a) elw)l(j | ECU)™
Suppose u, u, € U, uj = uj, then, by Lemma 7.1, u = (ujp) a, u; = (uyjp) @, =
(ujp) a, , for some a, a; € A. Then, for b e A, we have

wbu = a uje] ™ buje) a
= (wip)(wp) * alujp)] ™ bl(uie) aluip)liujo) ™ = (wip) b(uip) ™,

as A is abelian. Hence u~'hu does not depend on @ whence u'bu = uj'bu,
if uj = ;4. As j is surjective, we can make 4 an S-module by writing 4
additively and defining as =(sp)~! a{sp).

Proposttion 7.2. If (U, ) and (U,j) are equivalent extensions of 4 by S,
then the S-module structures of A arising from either extension are identical.

Proof. Let p: S— U, p: S — U be the maps such that pf = pj = ids.
uj = uyj. Hence [@~Y(up)]j = s7's € E(S) which implies #Y(up)e 4. As j
is idempotent-separating, we have @' = (up)(up)t. Hence wau?! =
(waut) — () alua) ™ = (wp) (o) 0 = (o) it = g, as
A is abelian. Q.E.D.

The last proposition allows us to restate the extension problem: If 4 is an
S-module, find all extensions (U,7) of 4 by S such that u~lau = a(wj),
forallac 4, uec U.

Another problem is to find all S-modules with some underlying semilattice
A of abelian groups. One may call this a representation problem—but we will
restrict ourselves to the extension problem.

If (U, §) is an extension of 4 by S and p: S — U a map such that pj = id;,
and sy, 5, €, then [(s,0)(s2p)] J = (5152) p- Hence (s10)(52p) = (51%2) p[(81, $2) o],
by Lemma 7.1, where o: § X .S — A is a map such that (s, , 5,) x € As;‘s;‘s1s2 .
If s, , 55, 55 € S, we compute (s;p)(s2p)(s3p) 1n two different ways:

[(s10)(s20)1(s3p) = [(s152) PI(5352) o} (s3p)
= [(515 $2) pI(s3p)(s3p) [(51 » 52) a](53p)
= [(515283) PI[(5252 » $a) a(s3p) " [(51 5 $2) ](s3p);

on the other hand,

(510)[(52p)(83p)] = (s10)[(5283) PI(s2 » 53) ]
== [(518,85) pI1(s1 5 5283) &][(s2, 83) «].
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As both factorizations of (s;p)(sop)(ssp) satisfy the conditions of Lemma 7.1,
we obtain, in additive S-module notation:

(815 82) sy~ (81, $983) o 4 (818, S5) v — (8, §5) ¢ = O, (7.1)

where e = s31s515775,5,8, -

Suppose (U, ) and (U, j) are two equivalent extensions of 4 by S, and
w: U— U is a homomorphism such that p| 4 =id, and j ==j. (U,j)
defines 2 map a: S X S— A4 and (U,j) a2 map & S X S — A satisfying
(7.1). Let p: S — U, p: S — U be maps with pj = pj = ids, and let s& S.
Then, by Lemma 7.1, spp == sp)(s8) where 8: S — A4 is a map such that
sBeder,. If s, s€8, then [(s8) p][(s1, 80) o] = (s1p)(520)[(81 5 $2) o]

whence
[(s182) prel[(s1 5 2} o] = (s1pp)(s2pp) = (519)(51B)(52P)(52)
= (51P)(5:P)[(52)(5:18)(52P)](525)
= (512) pl(s1 5 2) &[(s2P) H(s28)(52P)](528)-
On the other hand,

[(s152) pd[(sy 5 s2) o] = [(sy52) pI[(5182) Blls1 » $2) -

As both factorizations of [(s;8,) pu][(s1, 52) o] satisfy the conditions of
Lemma 7.1, we obtain, in additive S-module notation:

(515 82) o — (51, 82) & = (518) 82 — (5189) B + 8- (7.2)

Before interpreting equations (7.1) and (7.2) in terms of cohomology, we
need the following construction: Let S be an inverse semigroup. Define
S! = S U{I}, where I is a symbol and I ¢ S. On 57 we define a multipli-
cation * by:

51k Sg = $155, if §,8€5,
skl =1Ixs =z, if seS.

This definition makes .57 an inverse semigroup with identity I containing S
such that the maximal subgroups of S7 are those of .S and the trivial group {I}.

For A € Mod(S), we construct an S’-module 4° as follows: 4° = 4 U {0},
where 0; is a symbol. 4% becomes an S’-module containing 4 by defining
an addition -

a + ay, = a; + a,, if a,a,64
a0, =0,+a=a, if acA°
and S’-action o:
aos = as, it aed, seS,
aol = a, if acA°
Oros =0_,, if seS.

481/35/1-3-19
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In order to avoid proliferation of operation symbols, we will write - and —*
for the operations on 57, and -+, - for the S’-module operations on A4°.

Let - —> Dy(ST) —% D,(S") —% D\(S') —% Dy(S!) —<Zg; by the projec-
tive resolution of Z¢r in Mod(ST). We compute 8; and 0,:if [s, 5, 5,] € Wy(ST),
then

(51582, 5315:3 = (51, 8], 3;151_1515233) — ([51 5 s255], 55152“131-]513233)
+ ({5182 5 53], 3;13?51_1315253) — ([525 s3], 5:;15;]'5;1515253)-

If {5, , 5o} € Wo(ST), then

[$15 52]52 = ([s:], sflsﬁz) — ([5:5.], 52_131_15132) - ([s2] 3;13;]5132)-

We note that W,(S), = © as S’ has [ as its only unit. Hence, for any
A e Mod(S), Homg(D(S%), A°) can be identified with the group
of all E(S)-maps from Wy(S") to A4 ¢; induces homomorphisms
8;*: Homg(D,(S"), A°) — Homgi(D, 4(S7), A%) and Hi( A" = ker 2F,,/im &,*.
Hence, for ¢ = 2, ker 0,* is just the group of all mappings « satisfying (7.1)
whereas im 9, * is the group of all mappingsa: S X S — 4 with 8: S — 4,
sB e Ay, satisfying (5,8) 55 — (8,5) B + 38 = (51, 8) «. Hence Eq. (7.2)

means that o — & € ém 0;*. We summarize our results in the following.

ProrosiTioN 7.3.  Each equivalence class of extensions of A by S determines
an element of Hz(A).

Now let ackerd,™ and U ={(s,a)|seS, acd, (s7%)0 = aa}.
Then a: § X §— 4 is a map satisfying (7.1) and if we define a multipli-
cation on U by (s;, ay)(s2, @) = (5185, (81, $2) @ + a;5, + @), then Eq. (7.1)
shows that U is a semigroup. Furthermore E(U) = {(e, —(e, ) « | e € E(S)}.
If e, e; € E(S), then (e, —(ey, &) a)(ez, —(ez, &) @) = (e165, (€1, €) & —
(e, €1) aty — (€2, &) @) = (€3, —(&a, &) )&y, —(ey, &) @), as 0e1e2 =
{([81 s €, €], €165) = ([62 » €15 el]’ elez) - ([el s ey, &), 6192)} 03 == ([ey, &), e165) —
([es, €], €165). Hence the idempotents of E(U) commute. Finally we show
that (s, @) has (s71, —(ss71, ss71) o« — (5, s71) @ — as~1) as its inverse. We have

(s, a)(s71, —(ss7L, ss ) oo — (5, 1) o0 — as7?
= (ss71, ss 1) a)(ss~t, —(ss7%, ss71) a)(s, @)
= (s, (557 8) « — (ss7L, ss71) s + a).
But 0,1, = ([ss71, 5578, 5], s7%) 05 = ([ss7L, ss71, 5) — ([ss7%, 5], s7%). Hence
(s, @) = (s, (557, 8) o — (ss7%, ss71) as -+ @). Further (s, —(ss71, ss71) o —

(5, 5o —as Vs, a) = (s, (5, ) a— (578571 as — (5, 1) as) and
G, (L) — (s ss D) as — (s, s as)(s7, —(ss7L, s — (s, s o —
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asT) = (s7L, (578, s7Y) oo = (7L sy ast — (57, s a — (s, s —
(ss7h s o — (5, 51 o — as7?). But
co-1 = U[s7% 8, 871, o578y - ([s74 857, s571], s 1)}0,
= ([s7Y s], s71)  ([s7s, 78], ss71) — ([, s71], ss71) — ([s571, ss71], ss70).
This proves that (s, @) has an inverse. Hence U is an inverse semigroup.
Let j: U — S be defined by (s, a)j = s, then j is a homomorphism and is
idempotnent-separating; (s, a)j € E(S) if and only if se E(S). Let

A ={(e,a) | ec E(S), (e, a) € U} and define a map v: 4—> A by
a = (e,a— (e, e)a), foracd,.If be 4,, fe E(S), then

(av)(bv) = (e, — (&, ) )/, b — (£, f) &)
=@ (&f)a—(ea—(fflataib)

whereas (@ + b) v = (¢f, a + b — (¢f, ¢f ) o). But

O = {(e. S ef) of) = (e 6. 1, of ) = ([£i S €] ¢f )} O
= ([e.f], of ) + (lef. ef ] ef ) — ([, ), &f ) — (U, £ ], ¢f)-
Hence (a 4 b) v = (av)(bv) a_nd v is 2 homomorphism from 4 to A. Clearly

v is bijective, thus A o A4 as semilattices of abelian groups. Finally,
(as) v = (s71es, as — (s7les, s7Yes) ), for a € 4, and

(5 0a )" Yav)(s, 0,1
= (571, —(ss7%, 557 — (s, s M)a)(e, @ — (e, €)a)(s, 0y,
= (57 (57 @ — (5574, ss7) we — (5, 577) e — (e, €)a + a)(s, 0,a)
= (s7les, (s7%¢, $)o + (s, €) as
— (557, 5571 aes — (5, 571) aes — (e, €) a5 - as)
= (s7'es, as — (s7es, s7les)a),
as

v = {([s71e, s], s7les) + ([s72, €], es) — ([ss7, ss™1], es)
— ([s, 5711, es) — ([e, €], 5) +([s7es, s72es], s~es)} € ker 05,

whence y = 28; for some =z e Dy(S!) and therefore ya = (38;) a =
2(005*) = Ogers -

Thus from each o: S X S — A4 which satisfies (7.1), arises an equivalence
class of extensions of 4 by S.
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Now we show that if « € ker ¢;* and 8: S > 4 is a map satisfying sfe A, 1,
then « and o - 88,* yield equivalent extensions.

Define amap u: U — U, by (s, @) p == (s, @ — sf), where U is the extension
determined by « and U the extension arising from « + 88,*. The properties
of 0, and the definition of u ensure

(1) (¢,a—(e,e)x)p = (e, @ — (e, e)(a -+ B0, %)), for ac 4, ,
(il) p is a homomorphism,
(i) (s, @) and (s, @) p have the same projections in .S.
Hence U and Uy are equivalent.
Summing up, we have constructed a map 7:{equivalence classesof extensions

of 4 by S} — HZ%i(A% and a map { in the opposite direction.
One finds easily that  and { are inverses of one another. Hence

TreoreM 7.4. If S s an inverse semigroup and A an S-module, then the
set of equivalence classes of extensions of A by S is in one-to-one correspondence
with the abelian group Hz(A°).

THEOREM 7.5. Each extension of A by S is uniquely determined by a map
& Xo(S) — A satisfying (7.1), where Xo(S) = {(s1, 52) | 51, 52 €5, s355° << 57510,
i.e., any two maps o, oy from S xS to A satisfying (7.1) and extending
&, determine equivalent extensions, and & always extends to «: S X S — A4
satisfying (7.1).

Proof. Let

D(S): Zis < Dy(S) < Dy(S) < Dy(S) < -+

&5

D(S): Zs <<= D(S) < Dy(S) <~ Dy(S)

be the two projective resolutions of Zg in Section 6. D(S) is a subcomplex of
D(S), hence there is a chain transformation ¢ from D(S) to D(S) which is the
inclusion map in each dimension. By the comparison theorem there exists
a chain transformation y: D(S) — D(S) lifting édz . Hence ix: D(S) — D(S)
is a chain transformation lifting idy_, and vy and idp(s) are chain homotopic.
Moreover, we may choose y such that [s] y = [s], s € S, i.e., x is the identity
in dimension 1.

As 1y and idgi) are chain homotopic, there exist S-morphism
L: D(S) —> D(S), 7 = 0, such that sy — idp(s) = & + . Let & be a map from
Xo(S) to A satisfying (7.1). Define oz S % .S — A by a = x(tdp,(5) — 0:L) &.
Then « satisfies (7.1), as Oyx = O5x& — 840,x{x = x04x, and Oy is the zero-
morphism.
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Furthermore

= iyad — x0x0a = & + 0,0 + 0,0 — ex0sl
= & + 6,{ad — Oyl = «
as ¢y 1s the identity in dimension 1. Hence o extends &. Let o , oy be extensions
of &, satisfying (7.1). Then & = w; = . As yi: D(S) — D(S) is a chain
transformation lifting ddy_, there exist S-morphisms 7: Dy(S) — D;4(S)
such that y« — 1dps) = 10 -+ In. But y& = yx, = o, 4+ 050, + oo, =
o, + Oy(na,), ¥ = 1,2. Hence oy — ap = Gy[n{oy — )] Thus o and oy
determine equivalent extensions, by Theorem 7.4. Q.E.D.

Remark. The condition that y is the identity in dimension 1, shows that
one can take {: D;(S) — Dy(S) to be the zero morphism. The same condition
implies that y: Dy(S) — D,(.S) may be defined by

(515 S2)x = ([515 $2], 55 '5775182) Paxoy
= (515 31_15152]’ 52_131_15152) = ([s152 5 52_151_15152]’ s-'_;151_15152)
A ([52 5 57757 515], 82757 1$182)-
Hence we have
(515 $2)2 = (51, STI818)& — (51525 5357 $182)& + (525 53787 '$18) %

If we remember that (s , 5,) & = [(5;8,) p]~(s1p)(s2p) and substitute this into
formula (7.3), we obtain a direct proof of Theorem 7.5. Such a proof, however,
would have looked accidental and would not have revealed the chain homo-
topies responsible for this result.

8. ENDOMORPHISMS OF SEMILATTICES OF (GROUPS

Let G be a semilattice of groups. Then, in general, the semigroup End G
of endomorphisms of G is not an inverse semigroup.

DeriNiTION. a€ End G is relatively invertible if there exists & € End G,
e, € E(G) such that
(i) gax = ge,, forall ge G,
(ii) gdo = gle,w), for all g € G,

(i) e,o is a right identity on Ga, ¢, is a right identity on Ga.
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The set of all relatively invertible endomorphisms of G will be denoted by
end G.

ProrositioN 8.1.  end G is an inverse semigroup and there is an isomorphism
7: E(G) — E(end G) with g(er) == ge.
Proof. Let «, Beend(G), and geG. Then gaffa = [(gx) €5] & =
(god)(eg) == ge,(esx). Further
le(ea)] o) = gleaB)esiof) = gleaf)les(e.)] B
== gle.oP)esf) = gleap)ef) = (8P enf)
= [(gB)e)] B = gPaep.
Also

(geb)[eales)] o) = (gaB)eaB)esiaB) = [(g)(e.)] Bleslen)) B
= (gaf)esB) = gof

whereas (gBx) e,(esx) = (gBa)(esr) = ((gf) eB) & = ghx. Hence of € end G.
By definition of end G, aka = a, dok = &, for a € end G, and 2 € end G.
Let a € F(end G), then oo = « implies (do)(ax) = &, hence & € E(end G).
Moreover, go = gada = glax)(an) = ge,(e,a). Hence a e E(end G) if and
only if g = ge, for some ¢ € E(G). Define 7: E(G) — E(end G) by g(er) = ge.
Obviously 7 is an isomorphism of semilattices.

DErFINITION. o€ end G is called a relatively invertible inner endomorphism
of G if go = h~'gh, for some h € G and all g€ G. The set of all relatively
invertible inner endomorphisms will be denoted by s G.

Remark. By a kernel normal system K of an inverse semigroup S we shall
mean an inverse subsemigroup K of S with E(K) = E(S) and slkse K,
for all s € S, ke K. This is a slight modification of the definition in [1].

PropostTioN 8.2. Let G be a semilattice of groups. Then

(1) n G is a semilattice of groups under composition,
(it in G is a kernel normal system of end G, determining an idempotent
separating homomorphism of end G,
(i) Z(G) ={z€ G| zg = gz, for g G} is the kernel normal system
of an identity separating homomorphism from G onto in G.

Proof. Define A\: G —inG, by g(hA) = h'gh. Obviously, hrein G,
for every ke G, hence A is surjective. As (I 0 g(hhy) = b3 (7 ehy) Ty
X is a homomorphism. Let e, , ¢, € E(G), then ej'ge, = e3'ge, , for all g e G,
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implies e; = e,; = e, hence A is idempotent separating. Let Ath—'ghh =
h7lgh, for all g € G, then h~'ghh~'h = h~‘hg, that is gh = hg, for all ge G,
whence % € Z(G). Conversely if ke Z(G), then h=Yh~ghh = kW (h'h) gh =
(A hh™) gh = h~'gh whence kA€ E(in G). Thus (i) and (iii) hold. Let
aeend G, hdein G, g € G, then ga(h)) a = (A Y(ga) k) a = (b a)(gaa)(ha) =
(o) gle,)(ho) = gl(e,hr) aA]. Hence &(AX)acin G, and in G is a kernel

normal system for an idempotent separating congruence.

Remark. As usual, the image of the idempotent separating homo-
morphism end G determined by in G will be denoted by end G/in G.

9. EXISTENCE OF EXTENSIONS

Let G be a semilattice of (not necessarily abelian) groups and .S an inverse
semigroup. A pair (U, ) consisting of an inverse semigroup U and a homo-
morphismj: U — § such that is idempotent separating, surjective and has G
as its kernel normal system, is called an extension of G by S. If (U, j) is another
extension of G by S, we say (U, j) and (U, j) are equivalent if there is a homo-
morphism p: U — U such that u | G = id; and uj = j. As for abelian G,
“being equivalent’ is an equivalence relation on any set of extensions of Gby S.
We note that v: U — end G, g(uv) = u'gu is an idempotent separating homo-
morphism, and if u,7 = w7, u; , uy € U, then, by Lemma 7.1, u, = u, 4, for some
he G with uj'u; = hh~'. Hence uw == (uyh) v = (u)(Av), thus u,v and u,v are
mapped to the same element of end G/in G under the idempotent separating
homomorphism determined by iz G. Hence every extension (U, j) determines
amap ¢: S — end Gfin G, and ¢ is an idempotent separating homomorphism
because u,] == §;, U] =8y, U = 5,85, 4, s € U implies wu, = ug, for
some ge G with #~lu = gg~1, by Lemma 7.1. We will call ¢ the abstract
kernel of (U, j). Let p: S — U be a map with pj = idg abd E(S) p C E(U).
Then spv € end G represents s¢ € end Gfin G, epv € E(end G), for e € E(S),
and (ep)(spv) = (sp)Hep)(sp) = (s7'es) p as (sp)™ep)(sp) € E(U).

If 5;,5,€S8, then (s;p)(s20) = [(s152) pI[(51» 2) «], for some map
a8 X S — G with [(s:5) p] 71 (5152) p1 == [(51, $o) «][ (51, 53) &]*. Associa-~
tivity of U implies

(515053) p[(5152 » 83) ][(51 ) $2) ($ap¥)] = (815285) pl(s1 5 $253) &][(52, 85) ]
Both sides of this equation satisfy the conditions of Lemma 7.1, hence

[(s182 5 83) oJ[(s1 5 $2) (s3ov)] = [(51  $253) &][(5 , $3) ],
for all s, 55, 55€ S. 9.1)
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Also, as v: U — end G 1s 2 homomorphism, we have

(s20v)(82pv) = [(s155) pv][(s1 s 52) w]. (9.2

We note that gv == gA, the relatively invertible inner automorphism of G
induced by g. Ase € E(U)if e € E(S), epv € E(end G). Even more, as ep € £(G),
6 = p | E(S) is an isomorphism from E(S) to E(G) and epr = efA. The
equations (ep)(ep)(sp) — (¢p)ep) and (sp)(ep)ep) — (p)(ep), $ € S, e € E(S),
yield (e, es) o == (s7%es) 0, (se, €) o == (es™1s) 6. 9.3)

The following theorem is essentially Coudron’s result [2].

TueoreM 9.1. Given a semilattice G of groups, an inverse semigroup S,
an isomorphism 0: E(S) — E(G), a map ¢: S — end G, and a map
oS X S — G satisfying
(1) ep = (ed) A, the element of in G induced by e,

(i) (e, es) a = (s7Les) O, for e € E(S), (se, &) o = (es™s) b, for e € E(S),
(iii) (5185, 83) o][(s1, $2) ols3B)] = (51, $a83) &][(5 5 85) ],
(V) (515 82) o] € Gts 8 00 5
(V) (5u)(526) = [(5252) BI[(51 5 82) 0],
(vi) (ef)(sd) = (sles) 0.
Then the set U =1{(s,2)|s€ S, geG, (s715) 8 == gg~'} becomes an inverse
semigroup under the multiplication defined by

—

(515 81)(52 82) = (8152, [(51 5 82) ][ ga(s2)] £2)-

(s, &) ] = s defines an idempotent separating, surjective homomoyphismj: U — S,
and gi = ((gg~') 071, g) an injective homomorphism w: G — U. Identifying G
with Gk, (U, j) is an extension of G by S.

Proof. Associativity follows from (iii), (iv), and (v). E(U) = {(e, et) |
e € E(S)} by (i) and (ii). An inverse of (s, g) is (s71, g7 (s 1P){(s, s71) ] 1) by
(i)~(vi), putting s, =5, 5, = 571, s =5 in (jiii). The idempotents of U
commute, by (i), (ili), and (vi), putting, in (iii), § = s, = ¢ € E(S),
53 = ey € E(S), thens, = ¢, ,5, = €,,5; = e;6, , and thens; — ¢, 5 = ¢,
§; == €;€, . j is obviously idempotent separating and surjective, by (i) and
(iii), « is a homomorphism, and « is injective. The kernel normal system for
7 is Gk, by definition of j. QE.D.

TuroreM 9.2. Let (U,]) be an extension of G by S with abstract kernel
1S —end Gfin G, y: end Gfin G — end G a map with E(end Glin G)y C
E(end G), k: end G — end Glin G the idempotent separating, surjective homo-
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morphism associated with the kernel normal system in G, and yk = identity
on end Glin G. Then if ¢ =y, (U,]) is equivalent to an extension (U,j)
described in Theorem 9.1.

Proof. If v: U — end G is the homomorphism defined by g(@v) = #g#,
then we can define a map p: S — U with pj = ids such that spy = s¢.
(U,j) determines a map «: S X S — G satisfying (9.1), (9.2), (9.3). Hence
« satisfies (it), (iii), (iv), (v) of Theorem 9.1 with pv = ¢, and ¢ satisfies (i)
and (vi). Hence « and ¢ determine an extension (U, j) of Theorem 9.1. Now
define p: U — U by (s,2) # = (sp) g- Then p is a homomorphism, by the
definition of the product in U. If g € G, then ((gg~1) 6, g) p = gg7lg == g,
and (s, 2)j = [(sp) g]j = s = sj. Hence (U, ) and (U, j) are equivalent.

QE.D.

Now suppose that : S — end Gfin G is an idempotent separating homo-
morphism. As in Theorem 9.2, define y: end G/in G — end G to be a map
with E(end G/in G) C E(end G), k: end G — end G/in G, the homomorphism
determined by the kernel normal system ¢ G, such that y& is the identity
on end Gjin G, and let ¢: S-—end G be the map ¢ = iy. Suppose
(e0)(sp) = (s7les) 6. We say ¢ is a transversal for . Then

(18)(828) = [(5252) A1[(s1 5 32) oAl (9-4)

where a: S X S - G is a map and A: G — in G is defined, as before, by
g(h) = h~1gh, and (sy5,) x € G.e,,_lsilslsz . Putting §&; = e e E(S), s, = e5, we
find )

(es) = [(es) B](e, es) o],
hence (e, es) aA € E(in G). Therefore we may put (e, es) a = (s7les) 0.
Similarly, put (se, €) « = (es7%s) §. We compute (s;¢)(s,0)(s3¢) in two different
ways:
[(s18)s2B))(s3) = [(s52) BII(51 5 82) A (s3)
= [(5252) P15 ) s [(51 5 52) 2A](539)
= [(815585) 15152 » $3) A (s38) (51 5 $2) A](s5b);
(51D (528)(sab)] = (518)[(5285) BI[(s2 5 53) o]
= [(s15253) B1[(51 » 555) eA][(52 5 83) aA].

By the proof of Proposition 8.2,
(52P) ' [(51 5 82) al(s58) = [eguls1 » S2)ox] (538,

but €50 = (s5557) 0, as k is idempotent separating. Further [(sy557) 6](s:¢) =
ssby as (5857, 85) o = (s37s;) 6. Hence [(s35,, 85) o[(s1, 52) a(s3$)] and



294 HANS LAUSCH

[(s1, 8285} o][(s5 , $3) o] have the same image under A: G— i1 G by Lemma 7.1.
As Z(G) is the kernel normal system for A, there exists a map B: S X & %
S — Z(G) such that

[(s152 5 $3) a][(s1 5 $) als5p)] == [(s1, S83) o = [(s2, 83) ][ (s, 82, 83) BT (9.5)

and (s, Sy, $3) BEZ(G),, e = 53535 5155, . Let e E(S) and put 5; = e,
sy == 5y, then (e, esy, S3) B = (5555 esq85) 05 if 5, = sqe, 55 = ¢, §; == esy,
then (sie, e, esy) B == (s3les7 s185) 0 if 55 = spe, 5, == e, then (s, s, ) f =
(es3s72s,85) 0, using (se, €) o = (es7s) 0, (e, es) o = (s~ tes) 6.

LemMa 9.3. Let : S — end Gjin G be an idempotent separating homo-
morphism. Then Z(G) becomes an S-module if we write Z(G) additively,
0: E(S) ~ E(G), and define

zs = 2(s¢h),

where ¢ is a transversal for s and (ed)(s¢) == (s7'es) 8. Any two such transversals
Jor & determine the same S-module structure of Z(G).

Proof. Let yeend G, z € Z, g€ G. Then, using the definition of end G,

8(zx) = glzx)(ex)

= glex)(2x)

= (&%) x(2x)

= (&%) =1 x

= [=(e0)] x

= (=x)(gxx)

= (2x) glex)

= (2x)(ex) &

= (2x) &-
Hence Z(G) is invariant under end G, hence 2(s¢) € Z(G). That Z(G) is then
an S-module, is straightforward. Let ¢, , ¢, be two transversals for 5. Then
sy = (s¢o)(gA) for some g € G with st = gg-1. Hence 2(s$,) ~= 2(s$,)(gA) ==
g7i2(ss) g = 2(5hy)(g7'g) = (sho)(gg™")- M 2 € Z(G), , then 2(sby) € Z(G)-1.s
and gg~! = s~ acts as a right identity for the elements of Z(G),,, . Hence
2(spy) = 2(s¢py), for all z e Z(G), s S. Q.E.D.

Every « € Homg(Cy(ST), Z(G)®) can be regarded as a map from
S xS X S to Z(G) as I is the identity of .S/ and hence cannot appear in
any [5; , S, 53] of the frec generating set for Cy(S?). As neither [e, es, , 5],
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[s1¢, € esy], nor [s;, s.e, €], e€ E(S) are in Cy(S7), the elements of
Hom(Cy(S"), Z(G)®) are in one-to-one correspondence with all those maps
a: S % S x S— Z(G) which satisfy: (e ey, 55) o, (518, €, es3) a, and
(51, 5.¢ , €) o are idempotents. Referring to such maps, we will identify them
with the corresponding 3-cochains of S7 in Z(G)®. We have thus shown

Lemma 9.4. Let : .S — end Gfin G be an idempotent separating homo-
morphism such that, for one (and hence for every) transversal ¢ for s, we have
(eD)(sp) = (s7es) 8, for e e E(S). Then every transversal ¢ for i determines
an element B, ¢ Homg(Cy(S?), Z(G)Y) and o is the abstract kernel for an
extension of G by S if and only if B, is the zero-homomorphism for some trans-

versal ¢ for .

Lemma 9.5, Under the hypothesis and with the notation of Lemma 9.4,
B, € ker 8,*, for all transversals ¢ for . Here 0,*: Homg(Cy(ST), Z(G)?) —
Homg(C,(SY), Z(G)) is, as usual, the homomorphism induced by

0, 1 Cy(Sh — Cy(Sh.

Proof. We do not go into detail as the proof is a repetition of 7], IV,
Lemma 8.4. The idea is to express

L = (55983, 84) of (5185, 83) (51, $2) (s3)]1(548)

in two ways, first by using formula (9.5) repeatedly, beginning with
[(s1» $2) ](s3¢p). Then

L = (s, 525352) & * (S35 S35¢) o * (8550) « ~ (S, §3, 84) B

(815 Sa835 S0 B (51, 825 53) Bseh)-
Using formula (9.4) first, to evaluate (s;6)(s,), we get

L = (815983, 89) @ = (815, 83) a(8,9) - [(55, 5) «] 72

(815 82) A858a) ¢ - (85, Sa)
and then applying formula (9.5) to get rid of all terms involving ¢, we obtain
L = (51, $98384) o * (S5 Sa84) 0t * (85, 84) & * (S92, S35 84) B = (51, 82, S384) B-

As in both expressions for L, both the product of the terms involving «,
and the product of the terms involving f are in the same maximal subgroup
G, , e = 5775353757 7515,855; , we can cancel the a-terms. Writing the S-terms
additively, and observing that 2(s¢) = 25, 2 € Z(G), s € S, if Z(G) is regarded
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as an S-module, we find that (s;, 5, , 53) Bsy — (515 So, $35) B - (51, 8985, 89§ —

(51525 83, $0) B — (82, 3, 84) B € E(Z(G)), hence 8 € ker &,*. Q.E.D.
The subsequent two lemmas are again adaptations of [7], IV, Lemmas 8.5

and 8.6.

LemMa 9.6.  Under the hypothesis and with the notation of Lemma 9.4,
a change of « in (9.5) produces, for fixed ¢, an element B’ € ker 8,* such that
B — Beimoy*.

Proof. Let o«': S X S-- G be another map satisfying (9.5) with
(515 %) o € Gty and (s, se) o, (e, es) o' € E(G), for e e E(S). As
(5, $5) ad and (s, 5,) oA are in the same maximal subgroup of in G, there is
amap 7: S X S — Z(G) with

(51, 5) & = [(s15 82) o][(s15 52) 7] (9.6)

such that (s;,s,) 7€ Z(G)sg_lsl_] 54500 and (se, €) 7, (e, es) T are elements of
E(Z(G)), for e € E(S). Substitution of (9.6) into (9.5) yields:

(5182 5 85) 7[0Sy 5 80) T(s5)] = [(51 5 $83) 7H(S2 5 $3) 7] [(51 5 825 8)(B" — B)-]

In additive S-module notation, this means

(S15 52, 85)(B" — B) = (51, 82, 55) Oy
Hence B’ — Bem &,*. Q.E.D.
LemyA 9.7. Under the hypothesis and with the notation of Lemma 9.4,

a change of the transversal ¢ for | admits a choice for a new o replacing «,
such that B € ker &,* remains unchanged.

Proof. Let ¢’ be another transversal for ¢ with ed’ € E(end G). Hence
s == (sp)(spA), where p: S — G, such that en € E(G) and (sn)(sn)™ —= (s71s) 0.
Then

(5952 = (3NN s28)smY)
= (1) (59)  [easasr](Sb - (7
() sy 52 (m)sa) - (e

On the other hand,

(s182) " == (8182) Pl(5252) mAl, hence (5152) ¢ = (5152) B'[(s182) ] A
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Hence

(51 )(528) = (51%2) $'([(5282) 117"~ (505 52) @~ (sam)(52) ~ (5:2m)) A-

Now choose «': S X .S — G by
(8182) (15 $2) &7 = (51, 82) &+ (sym)(52) - (sm)- ©.7)
Then, for e € E(S), s €.5, we have
(se) n(se, €) o' = (s6) 7.

As all three elements are in G(,,-14, , We have (se, €) o' = (es™1s) 6. Similarly
(e, es) o’ = (s7les) . We substitute « into formula (9.5). Using formulae (9.4)
and (9.7), we find that o determines the same 3 € ker ¢, as a. QE.D.

Summarizing we obtain the following.

THEOREM 9.8. Let G be a semilattice of groups, S an inverse semigroup,
0: E(S) =~ E(G), 4: S — end GJin G an idempotent separating homomorphism
such that s has a transversal ¢ with (ef)(sp) = (s%es) 8, for all e € E(S). Then
b determines an element B’ of H3(Z(G)) if we regard Z(G) as an S-module
via 25 = 2(s¢). Then i is an abstract kernel of an extension of G by S if and

onlyif ' = 0.

Proof. 1fi is an abstract kernel, then (9.1) shows that 8” = 0. Conversely,
let ¢ satisfy the hypothesis of the theorem and 8 = 0. Then i has a trans-
versal ¢ which determines « and 8 € im &;* satisfying (9.5). Then there exists
v S X 8§ — Z(G) with (51, 8) y € Z(G) 711 s,

(515825 83) B = = (51, $3) V(S3) * {(515 8285) Y17 - (5182, S5) v - [(2, 83) ¥] 72

and (se, e) y, (e, es)y are idempotents, if e € E(S). Let «': S X S — G be
defined by (sy, 55) & == (51, 82) a[(sy, 85) ¥] % Then (51, 85) 'A = (51, &) oA,
as (s, $2) ¥ € Z(G), hence [(s;, 55) ¥]"* A = (s7%s775,5,) OA. Also (se, e) o and
(e, es) o are idempotents, if ee E(S). Hence ¢ and o satisfy(i)«(vi) of
Theorem 9.1, therefore by Theorem 9.2, ¢ is an abstract kernel.

CoRrOLLARY 9.9. Let G be a semilattice of groups with Z(G) = E(G), S an
tnverse semigroup, 0: E(S) ~ E(G), and : S — end Glin G an idempotent
separating homomorphism with a transversal ¢ satisfying (e6)(sd) = (s~tes) 6,
for all ec E(S). Then i has a transversal ¢ which together with a map
S X S — G determines an extension of G by S, where (5;6)(s.4) =
[(5185) P1[(s1 , 85) o], Z.e., b, « satisfy (1)—(vi) of Theorem 9.1.
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Proof. If Z(G) == E(G), then H¥/(Z(G)?) = 0, hence any # is an abstract
kernel.

Remark, Theorem 9.8 does not tell us under what conditions ¢ exists,
with a transversal ¢ satisfying (e0)(s$) == (s7les) 8, for all e € E(S) (see [2]).
Not even if G is abelian can we obtain any information from cohomology
theory. Certainly a necessary condition for the existence of such a i is that
Gy 22 G(oagg, for all s€.S. The main problem, however, is to find
all semilattices G of groups for which the set of idempotent separating
homomorphisms from S to end G/in G is nonempty, i.e., we are confronted
with a representation-theoretical problem. Here we note a marked difference
between inverse semigroups and groups: if G and S are groups, s == class
of idg; , for all s€.S, always gives rise to at least one extension of G by S,
namely § X G.

THEOREM 9.10. Let o be the abstract kernel of the extension (U, j) of G by S.
Then HE(Z(G)) acts as a regular permutation group on the set of equivalence
classes of extensions of G by S with abstract kernel .

Proof. Let ¢ be a transversal of G by S, and a: .S x S — G a function
satisfying conditions (i)~(vi) of Theorem 9.1. If &; : C5(.S") — Cy(S7) is the

Si-morphism of Section 6 and
&y*: Homg(Co(S7), Z(G)") — Hom,(Cy(S?), Z(G)")

the homomorphism induced by &, , then S € ker 93 can be identified with
a function B:S X S Z(G) with (s, 8) B € Z(G) (] 72,5005 (516, €) B
and (e, es;) B are idempotents of Z(G), for ee E(S), and [(s; , 53) B(s;¢)] -
[(51 5 $253) B1 (5185 » $3) BI[(s2 , $3) Bt is an idempotent of Z(G). Replacement
ofabya: S X S— G, (51, 85) & == [(s7,5) o{(sy, 55) B] with ¢ fixed, yields
another extension as (5; , 5,) B € Z(G). If B € im 8,*, where 8, : Co(ST) — Cy(S7),
as usual, then « and o yield equivalent extensions, for a similar reason as in
the abelian case. Hence Hzi(Z(G)?) acts on the equivalence classes of extension
of G by S with abstract kernel . If « and « yield equivalent extensions,
again an argument similar to the abelian case shows that g em 2,*, hence
HZ2(Z(G)°) acts faithfully and fixed-point free. The transitivity of Ha(Z(G)®)
can be shown as follows: Let o/, ¢ satisfy (i)~(vi) of Theorem 9.1. By (9.4)
and Lemma 7.1, oA = o’A. Hence (51, $) B = [(57, 82) o] (51, 5,) o] € Z(G).
Then B e Homg(Cy(SH, Z(G)®). We show Bo,* is the zero-morphism.
Substitute this equation into equation (iii) of Theorem 9.1 and use the

fact that (s, , 5,) 8 € Z(G). Then
[(515 2) BlssP)I(s1 » $283) BI™ = [(s152 > 3) Bl(s2 > 8) BI ™ € E(Z(G))

which, in additive notation just means 5 € ker &,*.
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10. ConjucaTION AND COMPLEMENTATION

Let S be an inverse semigroup and K(S) the kernel normal system of the
maximal idempotent separating congruence. We know ([1, p. 70]) that
K(S) = {s€.5|se = es, for all e E(S)}.

ProrosrTioN 10.1.  Let 7 be a map from E(S) to K(S) satisfying
(i) emre K(S),
(11) (eym) g = (ey6,) m, for all e, , e, € E(S).

Then 7, : s — [(ss7Y) 7|1 s[(s~1s) =] is an automorphism of S such that er, = e,
for alle € E(S).

Proof. Let s;,s,e€S. Then

(5482)7 = [(515252 !

ST sy8e[(5 757 s152))
= [(s0sy )] ™ 08083187 108585 7 08 (57 2]
= [(ss57)7] ™ sy53l(558s5)m].
On the other hand,
(s )(8977) = [(sa50 )] sal(s7 sl (282 )] ™ sal(537s2)]
= [(sus7)m] ™ syl 1)) 252757 sl (05 )] ™ a5 7s2)7]
= [(sa5 )] saf(s7 " sesas2 I [(s susesz ) sl (57 )]
= (s )] sus sasass ol (5 )]
= [(s57)m] 7 sy5al(s3 52)7]-

Hence 7=, is an endomorphism. Furthermore, if ¢ € E(S), then er, ==
(em)y ™t e(em) = e(em)Yem) = e. Lett € Sand s == [(##71) 7] #[(¢-1£) 7]~*. Then
st = [(#t7Y) w] (1Y) 7] t[(2728) =] 2[(¢ 1) 7] = t#~2t1¢ = t. Hence 7, is
surjective. Suppose for s, € S, s7, = tr, . Then

t = [() m][(ss7) 7] s[(s71s) w][(¢71) 7]
== pfLes—Lss—Tst—1¢
= tt1st71g;
hence tt=% <C st~s™! and 71 < 57Ut ts < s~Lse~'t. Therefore 1t < s,

similarly #7% < ss7! and, by symmetry, 1 = 51, t#1 = ss71 whence
t = tt71st71t = ss71ss71s = 5. Hence =, is injective. Q.E.D.
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Prorosition 10.2.

(a) L(S) == {m: E(S) — K(S) | em € K(S),, (e;7) €, = (e1¢,) m,
Jor all ey , e; € E(S)}

is a group under the multiplication

e(mymy) - (em)(emy)
(by InS = {r,| weL(S)}, is a group of idempotent preserving auto-
morphisms of .S.

(¢) The map w— 7, is a group homomorphism and In .S >~ L(S)[Y(S),
where Y(S) == {w € L(.S) | s[(s7%s) 7] == [(ss7%) =] s}

(d) In S is a normal subgroup of Aut S, the group of all automorphisms
of S.

Proof. (a) (em)(emy) € K(S)e and (eym)(eymy) €y == (eym) ex(er7y) € =
[(ere5) 71][(e1€0) o). Hence mym, € L(S). Clearly this multiplication is asso-
ciative, ¢ — e is the identity of L(.S), and e - (em)~! is the inverse of 7.

(b) and (¢) 7 - 7, is surjective and
$TaiTay = (557D me] (o877 s[(T1)m][(s7s)ymo] = s7opr, -

Furthermore [(ss7) o]~ s[(s7%5) ] = s is equivalent to 7 € Y(.5).
(d) Let e Aut S, weL(S), then
satra == {{(ss7Y) o T ] (s ) [(57 1) o)
= [(Ss‘l) oflﬂoc]‘l s[(s‘ls) a‘lmx].

We have to show that a lra € L(S). But ea~lma € K(S),,-100 = K(S), , and
if e, , e, € E(S), then
(eo'ma) ey = (e 'mar)(en o) = [(eom)(e,0™)]

= (o) (esa™)] mar = (ey6,) oo

Hence a7 o == 71, €0 S. Q.E.D.

Remark. We note that there are two distinct notions which are both
generalizations of the group of inner automorphisms, namely ¢ G for semi-
lattices G of groups and In S, for inverse semigroups in general.
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DeriNITION. Let S be an inverse semigroup, G a kernel normal system in
S and U an inverse subsemigroup of .S such that

S =UG UnG=ES).

We say U is a complement of G in S.

Derintrion. Let U be an inverse subsemigroup of G and = e L(S).
Then U7, is called a conjugate of U in S.

ProrositioN 10.3. If G is a kernel normal system of an inverse semigroup S

and U is a complement of G in S, then every conjugate of U is a complement
of Gin S.

Proof. Let meL(S). Since § = UG, we have S = S7, = (Ur,)(Gr,) =
(Ur,) G as g € G implies

& = [(gg™M 71 el(g7"e) 7] = [(g7e) 7] gl(g7g) 7] € G

because G is a kernel normal system. U N G = E(S) implies E(S) =
Ur, N Gr, = Ur, "\ G. Q.E.D.

ProrositioN 10.4. If U is a complement of a kernel normal system G in
an inverse semigroup S, then S is an extension of G by U.

Proof. Let se S, then s =ug, ue U, ge G, hence s = (ugg~)(u"tug).
Define j: S — U by §j = ugg~'. Then j is well-defined as (ugg~)~"L(ugg1) =
gowu = (uwlug)(ulug)! and Lemma 7.1 applies. Let s = ug;,
Sy = UGy, €U, g1,8€G, u'ny =gg', w'u, = g,g;". Then
(5182)] = [(wauo)(u15 "g114280)]] = tytts = (517)(527) as uy 'uy uyuty = g 87Uy =
(#3g18:) (15 g11025)~2. Hence j is a homomorphism, and is clearly surjective.
Moreover, e E(S) implies ¢f = e, and sje E(U) if and only if s = eg,
g2€G, ggl =e¢, ie, seG. Hence § is an idempotent separating homo-
morphism with G as kernel normal system.

11. A~ INTERPRETATION OF H!

Suppose S is an inverse semigroup and A an S-module. We define an
S’-module A by A = A4, , if ec E(S)

At = HYo(A) = {8: E(S) — A | (e,8)e; = (e,6,)5,
for all ¢, , e, € E(S), and &d € 4,}

481/35/1-3/20
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and @ -8 =a+ e, for aeA,, al = a, for all ae 4!, 85 == (ss71) &,
for s € S, extending the .S-module structure of 4. We verify quickly that .41
becomes an ,S’-module by this definition, and using the projective resolution
C(SH) —8 C,y (ST > > Cy(ST) — Zg —< 0, we see that HL(A) --
H(AY), for i == 2. Moreover, ker 8,* can be identified with the group of
all maps a: .S — A such that se e 4,1, and (sy0) s, -+ ($50) = (5;5,) @ while
im 8,* is the group of all maps a:.S - A4 such that there exists some
8 e HY5(A4) with sa = (ss71) 85 — (s715) 8.

Tueorem 11.1. Let S be an inverse semigroup and A a kernel normal
system in S consisting of abelian groups. If A is complemented in S, then In S
acts on the set of complements of A in S by conjugation and the orbits of In S
are in one-to-one correspondence with the elements of H1(AY) where U is any
complement of A in S and A is regarded as a U-module as usual.

Proof. Let U be a complement of 4 in .§ and " another such. Then
u € U can be written uniquely as # = o(ua)™, ve V, vlv == (ua)(ux), for
some uax € 4,1, . As V' is a complement of 4, every v € I is of the form
u(uc), and o 1s a map from U to A with ua € 4,1, . Then uy(u;o) u,(use) =
ui{(uyuy) o], for all wy,u,€ U. On the other hand wu,(ua) uy(uye) =
wyutiy (0) us(upe).  Hence  (wuy) o = [uy (wga) #p](upe). In  U-module
notation this means that o € ker d,*. The same computation in the opposite
direction shows that any «e€ker 6,* gives rise to another complement
V = {u(ue) i ue U} of A in S. Suppose that V' = Ur_, for some 7 & L(S).
Define a map §,: E(U)—> A by: if er = u,a,, u;'u, = a,a,", u,e U,
a,c€ A, then €8, =aecd,. If te U, then tr, = [(tt7) 7| [t 1) 7] =
a;titu 1,4, . Note that (e,8,) e, = (e85) 8, , and that 4 C K(S). Hence
0, €In S, and tr, = tr,_, for all te U. Moreover §, € Hg y)(4). Let
o € ker &, be the map associated with V. Then

wr, — 8, = wu (w) 8,17 u[(uu) 8,].
Hence

w () 8,1 uf(ww) 8] = u. (11.1)

In U-module notation, we have noe == —[(uu™) 6,u — (#u) 8,], forallu e U.
Therefore o € im 8,*. Conversely if « satisfies (11.1), for some 8 € Hp, 5,(4)
in place of §,, then wu(ua) == ury, for all e U, hence we have established
a one-to-one correspondence between the orbits of In S and the elements
of Hyi(AY).

TurorREM 11.2. Let A be an S-module, and H3/(A%) = 0. Then every
extension (U, j) of A by S is such that A is complemented in U.
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Proof. By the proof of Proposition 7.2, there is a transversal p: S — U

which is an injective homomorphism. It follows that Sp is a complement of

4

10

in U.
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