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The present paper is devoted to the study of the well-posedness
issue for the density-dependent Euler equations in the whole
space. We establish local-in-time results for the Cauchy problem
pertaining to data in the Besov spaces embedded in the set

of Lipschitz functions, including the borderline case B
N
p +1

p,1 (RN ).
A continuation criterion in the spirit of the celebrated one by Beale,
Kato and Majda (1984) in [2] for the classical Euler equations, is
also proved.
In contrast with the previous work dedicated to this system in the
whole space, our approach is not restricted to the L2 framework
or to small perturbations of a constant density state: we just
need the density to be bounded away from zero. The key to that
improvement is a new a priori estimate in Besov spaces for an
elliptic equation with nonconstant coefficients.
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The evolution of the density ρ = ρ(t, x) ∈ R
+ and of the velocity field u = u(t, x) ∈ R

N of a non-
homogeneous incompressible fluid satisfies the following density-dependent Euler equations:

⎧⎨⎩
∂tρ + u · ∇ρ = 0,

ρ(∂t u + u · ∇u) + ∇Π = ρ f ,

div u = 0.

(1)

Above, f stands for a given body force and the gradient of the pressure ∇Π is the Lagrangian mul-
tiplier associated to the divergence free constraint over the velocity. We assume the space variable x
to belong to the whole R

N with N � 2.
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A plethoric number of recent mathematical works have been devoted to the study of the classical
incompressible Euler equations {

∂t u + u · ∇u + ∇Π = f ,

div u = 0,
(2)

which may be seen as a special case of (1) (just take ρ ≡ 1).
In contrast, not so many works have been devoted to the study of (1) in the nonconstant density

case. In the situation where the equations are considered in a suitably smooth bounded domain of R
2

or R
3, the local well-posedness issue has been investigated by H. Beirão da Veiga and A. Valli in [3–5]

for data with high enough Hölder regularity. The case of data with W 2,p regularity has been studied
by A. Valli and W. Zaja̧czkowski in [18] and by S. Itoh and A. Tani in [13]. The whole space case R

3

has been addressed by S. Itoh in [12]. There, the local existence for initial data (ρ0, u0) such that ρ0 is
bounded, bounded away from 0 and such that (∇ρ0, u0) is in H2 × H3 has been obtained. In [9], we
have generalized [12]’s result to any dimension N � 2 and any Sobolev space Hs with s > 1+ N/2 and

have studied the inviscid limit in this framework. There, data in the limit Besov space B
N
2 +1

2,1 are also
considered. Finally, let us mention that in [20], Y. Zhou has established the local well-posedness for

(1) in the case where the density is a small perturbation of a positive constant in B
N
p +1

p,1 (1 < p < ∞).
According to the work by J. Marsden in [15], the finite energy solutions to (1) may be interpreted

in terms of the action of geodesics. This latter study is motivated by the fact that, as in the homoge-
neous situation, system (1) has a conserved energy, namely

∥∥(
√

ρu)(t)
∥∥2

L2 = ‖√ρ0u0‖2
L2 + 2

t∫
0

∫
RN

(ρ f · u)(τ , x)dτ dx. (3)

Motivated by the fact that, in real life, a fluid is hardly homogeneous, we here want to study whether
the classical results for homogeneous fluids remain true in the nonhomogeneous framework. More
precisely, we aim at investigating the existence and uniqueness issue in the whole space and in the
L p framework for densities which may be large perturbations of a constant function: we only require
the density to be bounded and bounded away from zero and to have enough regularity. We shall also
establish blow-up criteria in the spirit of the celebrated one by Beale–Kato–Majda criterion [2] for (2).

The functional framework that we shall adopt – Besov spaces embedded in the set C0,1 of bounded
globally Lipschitz functions – is motivated by the fact that the density and velocity equations of (1)
are transport equations by the velocity field. Hence no gain of smoothness may be expected during
the evolution and conserving the initial regularity requires the velocity field to be at least locally
Lipschitz with respect to the space variable. In fact, the spaces that we shall use are exactly those
that are suitable for (2). We thus believe our results to be optimal in terms of regularity.

Compared to the classical Euler equations, handling the gradient of the pressure is much more
involved. To eliminate the pressure, the natural strategy consists in solving the elliptic equation

div(a∇Π) = div F with F := div( f − u · ∇u) and a := 1/ρ.

If a is a small perturbation of a constant function a then the above equation may be rewritten

a�Π = div
(
(a − a)∇Π

) + div F .

Now, if 1 < p < ∞ then the standard L p elliptic estimate may be used for absorbing the first term
in the right-hand side. Hence we expect to get the same well-posedness results as for (2) in this
situation. As a matter of fact, this strategy has been successfully implemented by Y. Zhou in [20,21]

to get the well-posedness in B
N
p

p,1 in the case where the density is a small perturbation of a constant.
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In the general case of large perturbations of a constant density state, solving the above equation in
the R

N framework for F ∈ L p may be a problem (unless p = 2 of course). In fact, to our knowledge,
even if a is smooth, bounded and bounded away from zero, there is no solution operator H : F → ∇Π

such that

‖∇Π‖L p � C‖F‖L p

unless p is “close” to 2 (see the work by N. Meyers in [16]). However that closeness is strongly related
to whether a itself is close to a constant hence no result for all p may be obtained by this process.

In the present work, we shall overcome this difficulty by requiring the data to satisfy a finite
energy condition so as to ensure that F is in L2. Indeed, starting from the classical L2 estimate for
elliptic equations, we will be able to get estimates in high order Besov spaces Bs

p,r .
This is the conducting thread leading to the first two well-posedness results stated in the next

section. The rest of the paper unfolds as follows. In Section 2, we introduce the Littlewood–Paley de-
composition and recall the definition of the nonhomogeneous Besov spaces Bs

p,r . Then, we define the
paraproduct and remainder operators and state a few classical results in Fourier analysis. Section 3
is devoted to the proof of existence results and a priori estimates for an elliptic equation with non-
constant coefficients in the Besov space framework. To our knowledge, most of the results that are
presented therein are new. Sections 4, 5 and 6 are dedicated to the proof of our main existence and
continuation results. Some technical lemmas have been postponed in Appendices A and B.

Notation. Throughout the paper, C stands for a harmless “constant” whose exact meaning depends on
the context.

For all Banach space X and interval I of R, we denote by C(I; X) (resp. Cb(I; X)) the set of con-
tinuous (resp. continuous bounded) functions on I with values in X . If X has predual X∗ then we
denote by C w(I; X) the set of bounded measurable functions f : I → X such that for any φ ∈ X∗, the
function t 
→ 〈 f (t),φ〉X×X∗ is continuous over I . For p ∈ [1,∞], the notation L p(I; X) stands for the
set of measurable functions on I with values in X such that t 
→ ‖ f (t)‖X belongs to L p(I). We denote
by L p

loc(I) the set of those functions defined on I and valued in X which, restricted to any compact
subset J of I , are in L p( J ).

Finally, for any real valued function a over R
N , we denote

a∗ := inf
x∈RN

a(x) and a∗ := sup
x∈RN

a(x).

1. Main results

As explained in the introduction, we hardly expect to get any well-posedness result if the initial
velocity is not in C0,1. It is well known (see e.g. [1, Chap. 2]) that the nonhomogeneous Besov space
Bs

p,r is continuously embedded in C0,1 if and only if the triplet (s, p, r) ∈ R × [1,∞]2 satisfies the
following condition:

s > 1 + N/p or s � 1 + N/p and r = 1. (C )

This motivates the following statement concerning the existence of smooth solutions with finite en-
ergy:

Theorem 1. Let (s, p, r) satisfy condition (C) with 1 < p < ∞. Let u0 be a divergence-free vector-field with co-
efficients in L2 ∩ Bs

p,r . Suppose that the body force f has coefficients in L1([−T0, T0]; Bs
p,r)∩ C([−T0, T0]; L2)

for some T0 > 0. Assume that ρ0 is positive, bounded and bounded away from zero and that ∇ρ0 ∈ Bs−1
p,r . If

p < 2, suppose in addition that (ρ0 − ρ) ∈ L p∗
with p∗ := 2p/(2 − p) for some positive real number ρ .

There exists a time T ∈ (0, T0] such that system (1) supplemented with initial data (ρ0, u0) has a unique
local solution (ρ, u,∇Π) on [−T , T ] × R

N with:
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• ρ±1 ∈ Cb([−T , T ] × R
N ), Dρ ∈ C w([−T , T ]; Bs−1

p,r ) (and (ρ − ρ) ∈ C([−T , T ]; L p∗
) if p < 2),

• u ∈ C 1([−T , T ]; L2) ∩ C w([−T , T ]; Bs
p,r),

• ∇Π ∈ C([−T , T ]; L2) ∩ L1([−T , T ]; Bs
p,r).

Besides, the energy equality (3) is satisfied for all t ∈ [−T , T ], and time continuity holds with respect to the
strong topology, if r < ∞.

A few comments are in order:

• For the classical incompressible Euler equations (2), the above result statement (without the L2

assumption) belongs to the mathematical folklore. It has been established in e.g. [19] in the case
1 < p < ∞ and in e.g. [1, Chap. 7] in the case 1 � p � ∞.

• The above statement covers the borderline case B
N
p +1

p,1 without any smallness assumption. Thus, up

to the lower order L2 assumption which is needed to control the low frequencies of the pressure,
it extends the result [20] by Y. Zhou mentioned in the introduction.

• If one makes the stronger assumption that (ρ0 − ρ) ∈ Bs
p,r for some positive constant ρ then we

get in addition (ρ − ρ) ∈ C([−T , T ]; Bs
p,r) (or C w([−T , T ]; Bs

p,r) if r = ∞).

• If 1 < p � 2 then u0 ∈ Bs
p,r implies that u0 ∈ L2. Furthermore, in dimension N � 3, the assumption

that (ρ0 − ρ) ∈ L p∗
may be omitted if p > N/(N − 1). Therefore, except if N = 2 and p < 2 or if

N � 3 and p � N/(N − 1), the density need not to tend to some constant at infinity.
• In contrast with the homogeneous case, in dimension N = 2, the global well-posedness issue

for (1) with nonconstant density is an open (and challenging) problem. Indeed, the vorticity ω :=
∂1u2 − ∂2u1 satisfies

∂tω + u · ∇ω + ∂1

(
1

ρ

)
∂2Π − ∂2

(
1

ρ

)
∂1Π = 0,

hence is no transported by the flow of u if the density is not a constant.

Under the assumptions of Theorem 1, the solutions to (1) satisfy the following Beale–Kato–Majda type
continuation criterion. For simplicity, we state the result for positive times only.

Theorem 2. Consider a solution (ρ, u,∇Π) to (1) on [0, T )×R
N with the properties described in Theorem 1.

If in addition

T∫
0

(‖∇u‖L∞ + ‖∇Π‖Bs−1
p,r

)
dt < ∞ (4)

then (ρ, u,∇Π) may be continued beyond T into a solution of (1) with the same regularity.
Moreover, in the case s > 1 + N/p, the term ∇u may be replaced by curl u in (4).

Remark 1. The above statement has two important consequences:

• First, as condition (C) implies that Bs−1
p,r is embedded in L∞ , one can show by means of an easy

bootstrap argument that for data in Bs
p,r , the lifespan of a solution in Bs

p,r is the same as the

lifespan in B
N
p +1

p,1 (which is the larger space in this scale satisfying condition (C)).
• Second, by combining the previous remark with an induction argument, we see that if we start

with smooth data (a0, u0) such that the derivatives at any order of ∇a0 and u0 are in L p then we
get a local-in-time smooth solution with the same properties. In addition, as above, the lifespan
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for that smooth solution is only determined by the B
N
p +1

p,1 regularity. This generalizes prior results
in the Hölder spaces framework in the case of a bounded domain (see [5]).

In the two-dimensional case, the assumption that u0 ∈ L2 is somewhat restrictive since if, say, the
initial vorticity is in the Schwartz class then u0 ∈ L2 implies that the vorticity has average 0 over R

N .
This motivates the following statement which allows for any suitably smooth initial vector-field with
compactly supported vorticity.

Theorem 3. Let T0 be in ]0,∞[ and let (s, p, r) satisfy condition (C) with 2 � p � 4. Let u0 be a divergence-
free vector-field with coefficients in Bs

p,r . Assume that ρ0 is positive, bounded and bounded away from zero,

and that ∇ρ0 ∈ Bs−1
p,r . Finally, suppose that the body force f has coefficients in L1([−T0, T0]; Bs

p,r) and that

the potential part Q f of f is in C([−T0, T0]; L2).
There exists a time T ∈ (0, T0] such that system (1) supplemented with initial data (ρ0, u0) has a unique

local solution (ρ, u,∇Π) on [−T , T ] × R
N with:

• ρ±1 ∈ Cb([−T , T ] × R
N), Dρ ∈ C w([−T , T ]; Bs−1

p,r ),
• u ∈ C w([−T , T ]; Bs

p,r),

• ∇Π ∈ C([−T , T ]; L2) ∩ L1([−T , T ]; Bs
p,r).

Besides, time continuity holds with respect to the strong topology, if r < ∞, and the continuation criterion
stated in Theorem 2 also holds under the above assumptions.

As regards the well-posedness theory, the study of the limit case p = ∞ is of interest for different
reasons. First, the Besov space B1∞,1 is the largest one for which condition (C) holds. Second, the
usual Hölder spaces belong to the family Bs∞,r (take r = ∞) and are suitable for the study of the
propagation of tangential regularity in (1), and of vortex patches than we plan to do in future works.
Here we shall prove the following result.

Theorem 4. Assume that u0 ∈ Bs∞,r ∩ L p , f ∈ L1([−T0, T0]; Bs∞,r ∩ L p) and ρ0 ∈ Bs∞,r for some p ∈ (1,∞)

and some s > 1 (or s � 1 if r = 1). There exists a constant α > 0 depending only on s and N such that if, for
some positive real number ρ , we have

‖ρ0 − ρ‖Bs∞,r
� αρ, (5)

then there exists some T > 0 such that system (1) has a unique solution (ρ, u,∇Π) with

• ρ ∈ C([−T , T ]; Bs∞,r) (or C w([−T , T ]; Bs∞,r) if r = ∞),
• u ∈ C([−T , T ]; L p ∩ Bs∞,r), (or u ∈ C([−T , T ]; L p) ∩ C w([−T , T ]; Bs∞,r) if r = ∞),
• ∇Π ∈ L1([−T , T ]; Bs∞,r).

Note that our result holds for small perturbations of a constant density state only. The reason why
is that, in contrast with the previous statements, here bounding the pressure relies on estimates for
the ordinary Laplace operator �. In other words, the heterogeneity (a − a)∇Π is treated as a small
perturbation term. We expect this smallness assumption to be just a technical artifact. However, re-
moving it goes beyond the scope of this paper.

2. Tools

Our results mostly rely on the use of a nonhomogeneous dyadic partition of unity with respect to
the Fourier variable, the so-called Littlewood–Paley decomposition. More precisely, fix a smooth radial
function χ supported in (say) the ball B(0, 4

3 ), equals to 1 in a neighborhood of B(0, 3
4 ) and such that

r 
→ χ(r er) is nondecreasing over R
+ , and set ϕ(ξ) = χ(

ξ
2 ) − χ(ξ).
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The dyadic blocks (�q)q∈Z are defined by1

�q := 0 if q � −2, �−1 := χ(D) and �q := ϕ
(
2−q D

)
if q � 0.

We also introduce the following low frequency cut-off:

Squ := χ
(
2−q D

) =
∑

p�q−1

�p for q � 0.

The following classical properties will be used freely throughout in the paper:

• for any u ∈ S ′ , the equality u = ∑
q �qu makes sense in S ′;

• for all u and v in S ′ , the sequence (Sq−1u �q v)q∈N is spectrally supported in dyadic annuli.
Indeed, as Suppχ ⊂ B(0, 4

3 ) and Suppϕ ⊂ {ξ ∈ R
n / 3

4 � |ξ | � 8
3 }, we have

Supp
(

F (Sq−1u�q v)
) ⊂

{
ξ ∈ R

N
/ 1

12
· 2q � |ξ | � 10

3
· 2q

}
.

One can now define what a Besov space Bs
p,r is:

Definition 1. Let u be a tempered distribution, s a real number, and 1 � p, r � ∞. We set

‖u‖Bs
p,r

:=
(∑

q

2rqs‖�qu‖r
L p

) 1
r

if r < ∞ and ‖u‖Bs
p,∞ := sup

q
2qs‖�qu‖L p .

We then define the space Bs
p,r as the subset of distributions u ∈ S ′ such that ‖u‖Bs

p,r
is finite.

The Besov spaces have many nice properties which will be recalled throughout the paper whenever
they are needed. For the time being, let us just recall that if condition (C) holds true then Bs

p,r is an

algebra continuously embedded in the set C0,1 of bounded Lipschitz functions (see e.g. [1, Chap. 2]),
and that the gradient operator maps Bs

p,r in Bs−1
p,r . The following result will be also needed:

Proposition 1. Let F be a smooth homogeneous function of degree 0 on R
N \ {0}. Then for all p ∈ (1,∞),

operator F (D) is a self-map on L p . In addition, if r ∈ [1,∞] and s ∈ R then F (D) is a self-map on Bs
p,r .

Proof. The continuity on L p stems from the Hörmander–Mihlin theorem (see e.g. [11]). The rest of
the proposition follows from the fact that if u ∈ Bs

p,r then one may write, owing to F (2−qξ) = F (ξ)

for all q � 0 and ξ �= 0,

F (D)u = F (D)�−1u +
∑
q�0

(F ϕ̃)
(
2−q D

)
�qu

where ϕ̃ is a smooth function with compact support away from the origin and value 1 on the support
of ϕ . Note that F −1(F ϕ̃) is in L1. Therefore, the standard convolution inequality implies that∥∥(F ϕ̃)

(
2−q D

)
�qu

∥∥
L p � C‖�qu‖L p

1 Throughout we agree that f (D) stands for the pseudo-differential operator u 
→ F −1( f F u).
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while the L p continuity result implies that∥∥F (D)�−1u
∥∥

L p � ‖�−1u‖L p .

Putting these two results together entails that F (D) maps Bs
p,r in itself. �

Remark 2. Both the Leray projector P over divergence free vector-fields and Q := Id − P satisfy the
assumptions of the above proposition. Indeed, in Fourier variables, we have for all vector-field u with
coefficients in S ′(RN ),

Q̂u(ξ) = − ξ

|ξ |2 ξ · û(ξ).

The following lemma (referred in what follows as Bernstein’s inequalities) describes the way deriva-
tives act on spectrally localized functions.

Lemma 1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any couple (p,q) in [1,∞]2

with q � p � 1 and any function u of L p , we have for all λ > 0,

Supp û ⊂ B(0, λR) �⇒ ∥∥Dku
∥∥

Lq � Ck+1λ
k+N( 1

p − 1
q )‖u‖L p ;

Supp û ⊂ {
ξ ∈ R

N / rλ � |ξ | � Rλ
} �⇒ C−k−1λk‖u‖L p �

∥∥Dku
∥∥

L p � Ck+1λk‖u‖L p .

The first Bernstein inequality entails the following embedding result:

Proposition 2. The space Bs1
p1,r is embedded in the space Bs2

p2,r whenever

1 � p1 � p2 � ∞ and s2 � s1 − N/p1 + N/p2.

Remark 3. Recall that for all s ∈ R, the Besov space Bs
2,2 coincides with the nonhomogeneous Sobolev

space Hs . Furthermore if, for k ∈ N, we denote by W k,p the set of L p functions with derivatives up to
order k in L p then we have the following chain of continuous embedding:

Bk
p,1 ↪→ W k,p ↪→ Bk

p,∞.

Let us now recall a few nonlinear estimates in Besov spaces. Formally, any product of two tem-
pered distributions u and v , may be decomposed into

uv = Tu v + T v u + R(u, v) (6)

with

Tu v :=
∑

q

Sq−1u�q v, T v u :=
∑

q

Sq−1 v�qu and R(u, v) :=
∑

q

∑
|q′−q|�1

�qu �q′ v.

The above operator T is called “paraproduct” whereas R is called “remainder”. The decomposition (6)
has been introduced by J.-M. Bony in [6]. We shall sometimes use the notation

T ′
u v := Tu v + R(u, v).

The paraproduct and remainder operators have many nice continuity properties. The following ones
will be of constant use in this paper (see the proof in e.g. [1, Chap. 2]):
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Proposition 3. For any (s, p, r) ∈ R × [1,∞]2 and t < 0, the paraproduct operator T maps L∞ × Bs
p,r in

Bs
p,r , and Bt∞,∞ × Bs

p,r in Bs+t
p,r . Moreover, the following estimates hold:

‖Tu v‖Bs
p,r

� C‖u‖L∞‖∇v‖Bs−1
p,r

and ‖Tu v‖Bs+t
p,r

� C‖u‖Bt∞,∞‖∇v‖Bs−1
p,r

.

For any (s1, p1, r1) and (s2, p2, r2) in R × [1,∞]2 such that s1 + s2 > 0, 1/p := 1/p1 + 1/p2 � 1 and
1/r := 1/r1 + 1/r2 � 1 the remainder operator R maps Bs1

p1,r1 × Bs2
p2,r2 in Bs1+s2

p,r .

Combining the above proposition with Bony’s decomposition (6), we easily get the following “tame
estimate”:

Corollary 1. Let a be a bounded function such that ∇a ∈ Bs−1
p,r for some s > 0 and (p, r) ∈ [1,∞]2 . Then for

any b ∈ Bs
p,r ∩ L∞ we have ab ∈ Bs

p,r ∩ L∞ and there exists a constant C depending only on N, p and s such
that

‖ab‖Bs
p,r

� C
(‖a‖L∞‖b‖Bs

p,r
+ ‖b‖L∞‖Da‖Bs−1

p,r

)
.

The following result pertaining to the composition of functions in Besov spaces will be needed for
estimating the reciprocal of the density.

Proposition 4. Let I be an open interval of R and F : I → R, a smooth function. Then for all compact subset
J ⊂ I , s > 0 and (p, r) ∈ [1,∞]2 there exists a constant C such that for all function a valued in J and with
gradient in Bs−1

p,r , we have ∇(F (a)) ∈ Bs−1
p,r and

∥∥∇(
F (a)

)∥∥
Bs−1

p,r
� C‖∇a‖Bs−1

p,r
.

Proof. This is a variation on the proof of the classical composition lemma in Besov spaces based on
Meyer’s paralinearization method. We decompose F (a) into

F (a) = F (S1a) +
∑
j�1

m j� ja with m j :=
1∫

0

F ′(S ja + τ� ja)dτ .

Under our assumptions, one may show (see e.g. Lemma 2.63 in [1]) that for all multi-index α, there
exists a constant Cα such that

‖∂αm j‖L∞ � Cα2 j|α| for all j ∈ N.

Note that, owing to the localization properties of the Littlewood–Paley decomposition, the function a
may be replaced by a − S0a in every term � ja with j � 1. Now, as ∇a ∈ Bs−1

p,r , the function a − S0a
belongs to Bs

p,r and there exists a constant C such that

‖a − S0a‖Bs
p,r

� C‖∇a‖Bs−1
p,r

.

Therefore, mimicking the proof of the classical composition lemma, we gather that F (a) − F (S1a) is
in Bs

p,r and satisfies

∥∥F (a) − F (S1a)
∥∥

Bs � C‖∇a‖Bs−1 .

p,r p,r
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Now, we notice that

∇(
F (S1a)

) = F ′(S1a)∇ S1a.

Bersntein’s inequality ensures that all the derivatives of ∇ S1a belong to L p . So combining the chain
rule and the Leibniz formula, one may conclude that all the derivatives of ∇(F (S1a)) are in L p . In
particular, ∇(F (S1a)) is in Bs−1

p,r and satisfies the desired inequality. �
Our results concerning Eq. (1) rely strongly on a priori estimates in Besov spaces for the transport

equation {
∂t f + v · ∇ f = g,

f |t=0 = f0.
(T )

We shall often use the following result, the proof of which may be found in e.g. [1, Chap. 3], or in the
appendix of [7].

Proposition 5. Let 1 � p, r � ∞ and σ > 0. Let f0 ∈ Bσ
p,r , g ∈ L1([0, T ]; Bσ

p,r) and v be a time dependent

vector-field in Cb([0, T ] × R
N ) such that for some p1 � p, we have

∇v ∈ L1([0, T ]; B
N
p1
p1,∞ ∩ L∞)

if σ < 1 + N

p1
,

∇v ∈ L1([0, T ]; Bσ−1
p1,r

)
if σ > 1 + N

p1
, or σ = 1 + N

p1
and r = 1.

Then Eq. (T ) has a unique solution f in

• the space C([0, T ]; Bσ
p,r) if r < ∞,

• the space (
⋂

σ ′<σ C([0, T ]; Bσ ′
p,∞)) ∩ C w([0, T ]; Bσ

p,∞) if r = ∞.

Moreover, for all t ∈ [0, T ], we have

e−C V (t)
∥∥ f (t)

∥∥
Bσ

p,r
� ‖ f0‖Bσ

p,r
+

t∫
0

e−C V (t′)∥∥g(t′)
∥∥

Bσ
p,r

dt′ (7)

with

V ′(t) :=

⎧⎪⎨⎪⎩
‖∇v(t)‖

B
N
p1
p1,∞∩L∞

if σ < 1 + N
p1

,

‖∇v(t)‖Bσ−1
p1,r

if σ > 1 + N
p1

, or σ = 1 + N
p1

and r = 1.

If f = v then, for all σ > 0, estimate (7) holds with V ′(t) := ‖∇v(t)‖L∞ .

3. Elliptic estimates

In this section, we want to prove high regularity estimates in Besov spaces for the following elliptic
equation

−div(a∇Π) = div F in R
N (8)
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where a = a(x) is a given suitably smooth bounded function satisfying

a∗ := inf
x∈RN

a(x) > 0. (9)

Let us recall that in the case a ≡ 1 the following result is available:

Proposition 6. If a ≡ 1 and p ∈ (1,∞) then there exists a solution map F 
→ ∇Π continuous on L p .

Proof. We set ∇Π = ∇(−�)−1 div F . Obviously the pseudo-differential operator ∇(−�)−1 div satis-
fies the conditions of Proposition 1. Hence F 
→ ∇Π is a continuous self-map on L p . �

We now turn to the study of (8) for nonconstant coefficients. For the convenience of the reader let
us first establish the following classical result pertaining to the L2 case.

Lemma 2. For all vector-field F with coefficients in L2 , there exists a tempered distribution Π , unique up to
constant functions, such that ∇Π ∈ L2 and Eq. (8) is satisfied. In addition, we have

a∗‖∇Π‖L2 � ‖F‖L2 . (10)

Proof. The existence part of the statement is a consequence of the Lax–Milgram theorem. Indeed, for
λ > 0, consider the following bilinear map:

bλ(u, v) = (a∇u | ∇v)L2 + λ(u | v)L2 for u and v in H1(
R

N).
Obviously bλ is continuous and coercive, hence, given F ∈ (L2(RN ))N , there exists a unique Πλ ∈
H1(RN ) so that

bλ(u,Πλ) = (u | F )L2 for all u ∈ H1(
R

N).
Taking u = Πλ and using the Cauchy–Schwarz inequality, we see that (10) is satisfied by Πλ . Hence
(∇Πλ)λ>0 is bounded in L2 and there exist some Q ∈ (L2(RN ))N and a sequence (λn)n∈N converging
to 0, such that ∇Πλn ⇀ Q weakly in L2. Note that this implies that Q satisfies div(aQ ) = div F in
the distributional sense, and also that Q is the gradient of some tempered distribution Π . Besides,
we have

‖∇Π‖L2 = ‖Q ‖L2 � lim inf ‖∇Πλn‖L2 � a−1∗ ‖F‖L2 .

As regards uniqueness, it suffices to check that the constant functions are the only tempered solutions
with gradient in L2 which satisfy (8) with F ≡ 0. So let us consider Π ∈ S ′ with ∇Π ∈ L2 and
div(a∇Π) = 0. We thus have ∫

a∇u · ∇Π dx = 0 for all u ∈ H1. (11)

By taking advantage of the Fourier transform and of Parseval equality, it is easy to check that for n > 0,
the tempered distribution Πn := (Id − χ(nD))Π (where the cut-off function χ has been defined in
Section 2) belongs to H1. Hence one may take u = Πn in (11) and we get∫

a∇Π · ∇Πn dx = 0 for all n > 0.

As ∇Πn tends to ∇Π in L2 and a � a∗ > 0, this readily implies that ∇Π = 0. �
Let us now establish higher order estimates.



2140 R. Danchin / J. Differential Equations 248 (2010) 2130–2170
Proposition 7. Let 1 < p < ∞ and 1 � r � ∞. Let a be a bounded function satisfying (9) and such that
Da ∈ Bs−1

p,r for some s > 1 + N/p or s � 1 + N/p if r = 1.

• If σ ∈ (1, s] and ∇Π ∈ Bσ
p,r satisfies (8) for some function F such that div F ∈ Bσ−1

p,r then we have for
some constant C depending only on s, σ , p, N,

a∗‖∇Π‖Bσ
p,r

� C
(‖divF‖Bσ−1

p,r
+ a∗

(
1 + a−1∗ ‖Da‖Bs−1

p,r

)σ ‖∇Π‖L p
)
.

• If 2 � p < ∞ and F is in L2 and satisfies divF ∈ Bσ−1
p,r for some σ ∈ (1 + N/p − N/2, s] then Eq. (8) has

a unique solution Π (up to constant functions) such that ∇Π ∈ L2 ∩ Bσ
p,r . Furthermore, inequality (10)

is satisfied and there exists a positive exponent γ depending only on σ , p, N and a positive constant C
depending only on s, σ , p, N such that

a∗‖∇Π‖Bσ
p,r

� C
(‖divF‖Bσ−1

p,r
+ (

1 + a−1∗ ‖Da‖Bs−1
p,r

)γ ‖F‖L2

)
.

• If σ > 1 and 1 < p < ∞ then the following inequality holds:

a∗‖∇Π‖Bσ
p,r

� C
(‖divF‖Bσ−1

p,r
+ ‖∇a‖L∞‖∇Π‖Bσ−1

p,r
+ ‖∇Π‖L∞‖∇a‖Bσ−1

p,r

)
.

Proof. Throughout, (cq)q�−1 denotes a sequence in the unit sphere of �r .
The proof relies on two ingredients:

(i) the following commutator estimates (see Lemmas 6 and 7 in Appendix A)

∥∥div[a,�q]∇Π
∥∥

L p � Ccq2−q(σ−1)‖∇a‖Bs−1
p,r

‖∇Π‖Bσ−1
p,r

, (12)∥∥div[a,�q]∇Π
∥∥

L p � Ccq2−q(σ−1)
(‖∇Π‖L∞‖∇a‖Bσ−1

p,r
+ ‖∇a‖L∞‖∇Π‖Bσ−1

p,r

)
(13)

which hold true whenever σ ∈ (0, s] and (s, p, r) satisfies condition (C) (as regards (12)) and
whenever σ > 1 (as concerns (13));

(ii) a Bernstein type inequality (see Lemma 8 in Appendix B).

For proving the first part of the lemma, apply the spectral cut-off operator �q to (8). We get

−div(a�q∇Π) = div�q F + div
([�q,a]∇Π

)
for all q � 0.

Hence, multiplying both sides by |�qΠ |p−2�qΠ and integrating over R
N , we get

−
∫

|�qΠ |p−2�qΠ div(a�q∇Π)dx =
∫

|�qΠ |p−2�qΠ div�q F dx

+
∫

|�qΠ |p−2�qΠ div
([�q,a]∇Π

)
dx.

Apply Lemma 8 to bound by below the left-hand side of the above inequality. Using Hölder’s inequal-
ity to handle the right-hand side, we get for all q � 0,

a∗22q‖�qΠ‖p
L p � C‖�qΠ‖p−1

Lp

(‖div�q F‖L p + ‖div[�q,a]∇Π‖L p
)
. (14)
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To deal with the last term, one may now take advantage of inequality (12). Since, for q � 0, we
have ‖�q∇Π‖Lp ≈ 2q‖�qΠ‖Lp according to Lemma 1, we get after our multiplying inequality (14) by
2q(σ−1):

a∗2qσ ‖�q∇Π‖L p � C
(
2q(σ−1)‖�q div F‖L p + cq‖∇a‖Bs−1

p,r
‖∇Π‖Bσ−1

p,r

)
for all q ∈ N.

Taking the �r norm of both sides and adding up the low frequency block pertaining to �−1∇Π , we
get

a∗‖∇Π‖Bσ
p,r

� C
(‖divF‖Bσ−1

p,r
+ ‖∇a‖Bs−1

p,r
‖∇Π‖Bσ−1

p,r
+ a∗‖�−1∇Π‖L p

)
. (15)

Observe that ‖�−1∇Π‖Lp � C‖∇Π‖Lp , and that the following interpolation inequality is available
(recall that 0 < σ − 1):

‖∇Π‖Bσ−1
p,r

� C‖∇Π‖
1
σ
L p ‖∇Π‖1− 1

σ

Bσ
p,r

.

Then, applying a suitable Young inequality completes the proof of the first part of the proposition.
Let us now tackle the proof of the second part of the proposition. As F ∈ L2, the existence of

a solution ∇Π in L2 is ensured by Lemma 2. Let us admit for a while that ∇Π ∈ Bσ
p,r and let us

prove the desired inequality. As p � 2, we have

L2 ↪→ B
N( 1

p − 1
2 )

p,∞ .

Hence, as Bσ−1
p,r is an interpolation space between B

N( 1
p − 1

2 )

p,∞ and Bσ
p,r (here comes the assumption that

σ − 1 > N/p − N/2), one may write for some convenient exponent θ = θ(p, σ , N) ∈ (0,1),

‖∇Π‖Bσ−1
p,r

� C‖∇Π‖θ
L2‖∇Π‖1−θ

Bσ
p,r

.

In addition, as p � 2, Bernstein’s inequality implies that

‖�−1∇Π‖L p � C‖∇Π‖L2 .

Hence, plugging the last two inequalities in (15) and using (10) yields

a∗‖∇Π‖Bσ
p,r

� C
(‖divF‖Bσ−1

p,r
+ ‖F‖L2 + a−1∗ ‖F‖θ

L2‖∇a‖Bs−1
p,r

(
a∗‖∇Π‖Bσ

p,r

)1−θ )
.

Then applying Young’s inequality completes the proof.
Remark that inequality (15) remains valid whenever ∇Π is in Bσ−1

p,r . Starting from the fact that

the constructed solution ∇Π is in B
N( 1

p − 1
2 )

p,∞ , a straightforward induction argument allows to conclude
that ∇Π is indeed in Bσ

p,r . This completes the second part of the proof.
For proving the last part of the proposition, the starting point is inequality (14) which implies that

a∗2qσ ‖∇�qΠ‖L p � C2q(σ−1)
(‖�q div F‖L p + ∥∥div[�q,a]∇Π

∥∥
L p

)
.

Now, taking advantage of inequality (13) then summing up over q � −1, we readily obtain the desired
result. �
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4. Proof of the first local well-posedness result

As a preliminary step, let us observe that system (1) is time reversible. That is, changing (t, x) in
(−t,−x) restricts the study of the Cauchy problem to the evolution for positive times. To simplify the
presentation, we shall thus focus on the unique solvability of the system for positive times only.

In the first part of this section, we establish the uniqueness part of Theorem 1. When proving
existence, it is convenient to treat the two cases p � 2 and p < 2 separately. The reason why is that
the proof strongly relies on Proposition 7 which enables to compute the pressure only if p � 2 (if
p < 2 then only an a priori estimate is available).

So, we shall first prove the existence part of Theorem 1 in the case p � 2. The third subsection is
devoted to the proof of Theorem 2 in the case p � 2. It will be needed for proving Theorem 1 in the
case p < 2. The following part of this section is devoted to the proof of Theorems 1 and 2 in the case
p < 2. In the last paragraph, we justify the claim pertaining to the case p > N/(N − 1) (see just after
the statement of Theorem 1).

For expository purpose, we shall assume in this section and in the rest of the paper that r < ∞.
For treating the case r = ∞, it is only a matter of replacing the strong topology by weak topology
whenever regularity up to index s is involved.

4.1. Uniqueness

Uniqueness in Theorem 1 is a consequence of the following general stability result for solutions
to (1).

Proposition 8. Let (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) satisfy (1) with exterior forces f1 and f2 . Assume in ad-
dition that ρ1 and ρ2 are bounded and bounded away from zero, that δu := u2 −u1 and δρ := ρ2 − ρ1 belong
to C 1([0, T ]; L2), that δ f := f2 − f1 is in C([0, T ]; L2) and that ∇Π1 , ∇ρ1 and ∇u1 belong to L1([0, T ]; L∞).
Then for all t ∈ [0, T ], we have

∥∥δρ(t)
∥∥

L2 + ∥∥(
√

ρ2δu)(t)
∥∥

L2

� e A(t)

(∥∥δρ(0)
∥∥

L2 + ∥∥(
√

ρ2δu)(0)
∥∥

L2 +
t∫

0

e−A(τ )‖√ρ2δ f ‖L2

)
(16)

with A(t) := ∫ t
0 (‖ ∇ρ1√

ρ2
‖L∞ + ‖ ∇Π1

ρ1
√

ρ2
‖L∞ + ‖∇u1‖L∞)dτ .

Proof. On the one hand, as

∂tδρ + u2 · ∇δρ = −δu · ∇ρ1,

taking the L2 inner product with δρ and integrating by parts in the second term of the left-hand side
yields

∥∥δρ(t)
∥∥

L2 �
∥∥δρ(0)

∥∥
L2 +

t∫
0

∥∥(
√

ρ2δu)
∥∥

L2

∥∥∥∥ ∇ρ1√
ρ2

∥∥∥∥
L∞

dτ . (17)

On the other hand, denoting ∇δΠ := ∇Π2 − ∇Π1, we notice that

ρ2(∂tδu + u2 · ∇δu) + ∇δΠ = ρ2

(
δ f + δρ

ρ ρ
∇Π1 − δu · ∇u1

)
.

1 2
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So taking the L2 inner product of the second equation with δu, integrating by parts and using the
fact that div δu = 0 and that

∂tρ2 + u2 · ∇ρ2 = 0,

we eventually get

∥∥(
√

ρ2δu)(t)
∥∥

L2 �
∥∥(

√
ρ2δu)(0)

∥∥
L2

+
t∫

0

(
‖√ρ2δ f ‖L2 + ‖δρ‖L2

∥∥∥∥ ∇Π1

ρ1
√

ρ2

∥∥∥∥
L∞

+ ‖∇u1‖L∞‖√ρ2δu‖L2

)
dτ .

Adding up inequality (17) to the above inequality and applying Gronwall lemma completes the proof
of the proposition. �
Proof of uniqueness in Theorem 1. Consider two solutions (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) of (1) with
the same data. Under the assumptions of Theorem 1, it is clear that the velocity and pressure
fields satisfy the assumptions of the above proposition. As concerns the density, we notice that
ui ∈ C([0, T ]; L2) and ∇ρi ∈ C([0, T ]; L∞) for i = 1,2 implies that ∂tρi ∈ C([0, T ]; L2). Hence we
have δρ ∈ C 1([0, T ]; L2). Therefore inequality (16) implies that (ρ1, u1,∇Π1) ≡ (ρ2, u2,∇Π2) on
[0, T ] × R

N .

4.2. The proof of existence in Theorem 1: the case 2 � p < ∞

We notice that, formally, the density-dependent incompressible Euler equations are equivalent to2

⎧⎨⎩
∂ta + u · ∇a = 0 with a := 1/ρ,

∂t u + u · ∇u + a∇Π = f ,

−div(a∇Π) = div(u · ∇P u) − div f .

(18)

Let us give conditions under which this equivalence is rigorous.

Lemma 3. Let u be a time-dependent vector-field with coefficients in C 1([0, T ] × R
N ) and such that Qu ∈

C 1([0, T ]; L2). Assume that ∇Π ∈ C([0, T ]; L2). Let ρ be a continuous bounded function on [0, T ]×R
N which

is positive and bounded away from 0.
If in addition div u(0, ·) ≡ 0 in R

N then (ρ, u,∇Π) is a solution to (1) if and only if (a, u,∇Π) satis-
fies (18).

Proof. If (ρ, u,∇Π) satisfies (1) then, owing to ρ > 0, we see that a := 1/ρ verifies the first equation
of (18). Next, applying operator div to the velocity equation of (1) divided by ρ , and using that P u = u
yields the third equation of (18).

Conversely, if (a, u,∇Π) satisfies (18), it is obvious, owing to positivity, that ρ := 1/a satisfies
the density equation of (1). In order to justify that the other two equations are satisfied, it is only
a matter of proving that div u ≡ 0. For that, one may apply Q to the second equation. Then, using the
third equation, we discover that

∂t Qu + Q(u · ∇Qu) = 0.

2 Recall that P stands for the Leray projector over divergence free vector-fields and that Q := Id −P .
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Recall that Qu ∈ C 1([0, T ]; L2). Therefore, taking the L2 inner product with Qu, we get

1

2

d

dt
‖Qu‖2

L2 + (
Q(u · ∇Qu)

∣∣ Qu
)

L2 = 0.

As QT = Q and Q2 = Q, we thus get after integrating by parts in the second term:

d

dt
‖Qu‖2

L2 =
∫

|Qu|2 div u dx,

and, as Qu(0, ·) = 0, Gronwall lemma entails that Qu ≡ 0. Hence div u = 0. �
As explained in Lemma 3, it suffices to solve system (18). So, for T > 0, let us introduce the set

ET of functions (a, u,∇Π) such that

a ∈ Cb
([0, T ] × R

N
)
, ∇a ∈ C

([0, T ]; Bs−1
p,r

)
,

u ∈ C 1
([0, T ]; L2

)∩ C
([0, T ]; Bs

p,r

)
, ∇Π ∈ C

([0, T ]; L2
)∩ L1

([0, T ]; Bs
p,r

)
.

We denote

a∗ := inf
x∈RN

a0(x), a∗ := sup
x∈RN

a0(x), ρ∗ := inf
x∈RN

ρ0(x) and ρ∗ := sup
x∈RN

ρ0(x).

Note that if ρ is bounded and bounded away from zero, and satisfies ∇ρ ∈ Bs−1
p,r then the same

properties hold for a (and conversely). This may be easily shown by combining Propositions 2 and 4.
Moreover, there exists some constant C depending only on a∗ , a∗ , N and on the regularity parameters
such that

C−1‖∇ρ‖Bs−1
p,r

� ‖∇a‖Bs−1
p,r

� C‖∇ρ‖Bs−1
p,r

.

This fact will be used repeatedly in the rest of the paper.

Step 1. Construction of a sequence of approximate solutions. As a first step for solving (18), we construct
a sequence (an, un,∇Πn)n∈N of global approximate solutions which belong to E T for all T > 0.

For doing so, one may argue by induction. We first set (a0, u0,∇Π0) := (a0, u0,0). Next, we as-
sume that (an, un,∇Πn) has been constructed over R

+ , belongs to the space ET for all T > 0 and
that there exists a positive time T ∗ such that for all t ∈ [0, T ∗],

a∗ � an(t, x) � a∗, (19)∥∥∇an(t)
∥∥

Bs−1
p,r

� 2‖∇a0‖Bs−1
p,r

, (20)∥∥√ρn(t)un(t)
∥∥

L2 �
√

ρ∗a∗(4‖√ρ0 u0‖L2 + 8
√

ρ∗‖ f ‖L1
t (L2)

)
with ρn := 1/an, (21)

U n(t) � 4U0(t) + C0ρ
∗ A0‖div f ‖L1

t (Bs−1
p,r )

+ C0(ρ
∗ A0)

γ +1(‖u0‖L2 + ‖ f ‖L1
t (L2)

)
, (22)

a∗
∥∥∇Πn

∥∥
L1

t (Bs
p,r)

� C

( t∫
0

(
Un(τ )

)2
dτ + ‖div f ‖L1

t (Bs−1
p,r )

+ (ρ∗ A0)
γ
(‖u0‖L2 + ‖ f ‖L1

t (L2)

))
, (23)

∥∥∇Πn
∥∥

L1(L2)
dτ �

√
ρ∗‖√ρ0 u0‖L2 + 3ρ∗‖ f ‖L1(L2) (24)
t t
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with A0 := a∗ +‖∇a0‖Bs−1
p,r

, U0(t) := ‖u0‖Bs
p,r

+‖ f ‖L1
t (Bs

p,r )
and Un(t) := ‖un(t)‖Bs

p,r
. The positive expo-

nent γ is given by Proposition 7. The constants C0 and C depend only on (s, p, r) and N , and may be
made explicit from the following computations (in fact one can take C0 = 2C2 with C large enough).

Denoting by ψn the flow of un , (which belongs to C 1(R+ × R
N ) owing to un ∈ C(R+; Bs

p,r) and to

Bs−1
p,r ↪→ Cb), we set

an+1(t, x) := a0
((

ψn
t

)−1
(x)

)
and ρn+1(t, x) := ρ0

((
ψn

t

)−1
(x)

)
.

As ψn
t is a diffeomorphism over R

N for all t � 0, we have∥∥an+1(t)
∥∥

L∞ = ‖a0‖L∞ = a∗ and
∥∥ρn+1(t)

∥∥
L∞ = ‖ρ0‖L∞ = ρ∗.

Hence (19) is satisfied by an+1. In addition, we have

∂ta
n+1 + un · ∇an+1 = 0

so that for all i ∈ {1, . . . , N},

∂t∂ia
n+1 + un · ∇∂ia

n+1 = −∂iu
n · ∇an+1.

As ∂ia
n+1
|t=0 = ∂ia0 ∈ Bs−1

p,r by assumption, (a slight generalization of) Proposition 5 combined with Gron-

wall lemma guarantees that ∇an+1 ∈ C(R+; Bs−1
p,r ) and that

∥∥∇an+1(t)
∥∥

Bs−1
p,r

� eC
∫ t

0 Un(τ )dτ ‖∇a0‖Bs−1
p,r

. (25)

So if we assume that T ∗ has been chosen so that

C

T ∗∫
0

Un(t)dt � log 2 (26)

then an+1 satisfies (20). Next, we want to define un+1 as the unique solution in C(R+; Bs
p,r) of the

transport equation:

∂t un+1 + un · ∇un+1 = −an+1∇Πn + f , un+1
|t=0 = u0. (27)

That the right-hand side belongs to L1
loc(R

+; Bs
p,r) is a consequence of Corollary 1 and of the embed-

ding Bs−1
p,r ↪→ L∞ . In addition, we have for a.e. positive time∥∥an+1∇Πn

∥∥
Bs

p,r
� C

(∥∥an+1
∥∥

L∞ + ∥∥∇an+1
∥∥

Bs−1
p,r

)∥∥∇Πn
∥∥

Bs
p,r

. (28)

So finally, the existence of un+1 ∈ C(R+; Bs
p,r) is ensured by Proposition 5, and we have

∥∥un+1(t)
∥∥

Bs
p,r

� eC
∫ t

0 Un(τ )dτ

(
‖u0‖Bs

p,r
+

t∫
0

e−C
∫ τ

0 Un(τ ′)dτ ′

× ((∥∥an+1
∥∥

L∞ + ∥∥∇an+1
∥∥

Bs−1
p,r

)∥∥∇Πn
∥∥

Bs
p,r

+ ‖ f ‖Bs
p,r

)
dτ

)
. (29)



2146 R. Danchin / J. Differential Equations 248 (2010) 2130–2170
Therefore, if we restrict our attention to those t that are in [0, T ∗] with T ∗ satisfying (26), we see
that for all t ∈ [0, T ∗],

Un+1(t) � 2U0(t) + C A0

t∫
0

∥∥∇Πn
∥∥

Bs
p,r

dτ with A0 := a∗ + ‖∇a0‖Bs−1
p,r

.

So if we assume that T ∗ and C0 have been chosen so that

2C2ρ∗ A0

T ∗∫
0

Un(t)dt � 1 and C0 = 2C2 (30)

then taking advantage of inequalities (22) and (23), we see that un+1 satisfies (22) on [0, T ∗].
Let us now prove (21) for un+1. First, we notice that the right-hand side of (27) belongs to

C(R+; L2) so that un+1 is in C 1(R+; L2). As ρn+1 is bounded and C 1 with respect to the time and
space variables, this allows us to take the L2 inner product of the equation for un+1 with ρn+1un+1.
We readily get

1

2

d

dt

∥∥√ρn+1 un+1
∥∥2

L2 −
∫

ρn+1un+1 · f dx = 1

2

∫
ρn+1

∣∣un+1
∣∣2 div un dx − (∇Πn

∣∣ un+1)
L2 . (31)

Let us point out that un and un+1 need not be divergence-free, so that the right-hand side may be
nonzero. However, from the above inequality, it is easy to get

∥∥(√ρn+1 un+1)(t)∥∥L2 � ‖√ρ0 u0‖L2

+
t∫

0

(√
a∗∥∥∇Πn

∥∥
L2 +√

ρ∗‖ f ‖L2 + 1

2

∥∥√ρn+1un+1
∥∥

L2

∥∥divun
∥∥

L∞

)
dx.

So, if we assume that C has been taken large enough in (26) then Gronwall’s lemma implies that

∥∥(√ρn+1 un+1)(t)∥∥L2 � 2
(‖√ρ0 u0‖L2 +√

ρ∗‖ f ‖L1
t (L2) + √

a∗∥∥∇Πn
∥∥

L1
t (L2)

)
. (32)

Now, putting the above inequality together with inequality (24) ensures that inequality (21) is also
satisfied by un+1 on [0, T ∗].

To finish with, we have to construct the approximate pressure Πn+1. For that, we aim at solving
the elliptic equation

div
(
an+1∇Πn+1) = div

(
f − un+1 · ∇P un+1) (33)

for every positive time.
We have already proved that an+1 satisfies the required ellipticity condition through (19). More-

over, as un+1 ∈ C(R+; Bs
p,r), Remark 2 ensures that ∇P un+1 is in C(R+; Bs−1

p,r ). As Bs−1
p,r ↪→ L∞ and

un+1 ∈ C(R+; L2), we thus have un+1 · ∇P un+1 ∈ C(R+; L2) and

∥∥un+1 · ∇P un+1
∥∥

L2 �
√

a∗∥∥√ρn+1un+1
∥∥

L2

∥∥∇P un+1
∥∥

L∞ ,

� C
√

a∗∥∥√ρn+1 un+1
∥∥

L2

∥∥∇un+1
∥∥

Bs−1 .

p,r
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Therefore Lemma 2 guarantees that (33) has a solution ∇Πn+1 in C(R+; L2) which satisfies

a∗
∥∥∇Πn+1

∥∥
L1

t (L2)
� ‖ f ‖L1

t (L2) + C
√

a∗
t∫

0

Un+1
∥∥√ρn+1un+1

∥∥
L2 dτ . (34)

Let us insert inequality (32) in the above inequality. We see that if T ∗ has been chosen so that

4Ca∗ρ∗
T ∗∫

0

Un+1 dτ � 1 (35)

then inequality (34) implies that

∥∥∇Πn+1
∥∥

L1
t (L2)

� 3

2
ρ∗‖ f ‖L1

t (L2) + 1

2

√
ρ∗‖√ρ0u0‖L2 + 1

2

∥∥∇Πn
∥∥

L1
t (L2)

,

hence inequality (24) is satisfied by ∇Πn+1 on [0, T ∗].
In order to prove that ∇Πn+1 belongs to L1

loc(R
+; Bs

p,r), one may apply the second part of Propo-

sition 7. Indeed, because, owing to div P un+1 = 0, we have

div
(
un+1 · ∇P un+1) = ∇un+1 : ∇P un+1

and as Bs−1
p,r is an algebra, the term div(un+1 · ∇P un+1) is in Bs−1

p,r and

∥∥div
(
un+1 · ∇P un+1)∥∥

Bs−1
p,r

� C
(
Un+1)2

.

Hence Proposition 7 implies that for all t ∈ R
+ ,

a∗
∥∥∇Πn+1

∥∥
L1

t (Bs
p,r)

� C

( t∫
0

(
Un+1)2

dτ + ‖div f ‖L1
t (Bs−1

p,r )

+ (
1 + ρ ∗ ∥∥Dan+1

∥∥
L∞

t (Bs−1
p,r )

)γ (‖ f ‖L1
t (L2) + ∥∥un+1 · ∇P un+1

∥∥
L1

t (L2)

))
,

whence, using (20) at rank n + 1 and Hölder inequality, we get

a∗
∥∥∇Πn+1

∥∥
L1

t (Bs
p,r)

� C

( t∫
0

(
Un+1)2

dτ + ‖div f ‖L1
t (Bs−1

p,r )

+ (ρ∗ A0)
γ

(
‖ f ‖L1

t (L2) + √
a∗∥∥√ρn+1un+1

∥∥
L∞

t (L2)

t∫
0

Un+1 dτ

))
.

Taking advantage of inequality (21) at rank n+1 one can now conclude that if (35) holds then ∇Πn+1

satisfies (23).
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At this stage we have proved that if inequalities (19) to (24) hold for (an, un,∇Πn) then they also
hold for (an+1, un+1,∇Πn+1) provided T ∗ satisfies inequalities (26), (30) and (35). Note that (30) is the
strongest condition. Obviously it is satisfied if we take for T ∗ the supremum of{

t > 0
/
ρ∗t A0

(
U0(t) + ρ∗ A0‖div f ‖L1

t (Bs−1
p,r )

+ (ρ∗ A0)
γ +1(‖u0‖L2 + ‖ f ‖L1

t (L2)

))
� c

}
(36)

for a small enough constant c depending only on s, p and N .

Step 2. Convergence of the sequence. Let ã n := an − a0. In this step, we shall establish that
( ã n, un,∇Πn)n∈N is a Cauchy sequence in C([0, T ∗]; L2).

Let δan := ã n+1 − ã n , δun := un+1 − un and δΠn := Πn+1 − Πn . We have for n � 2,⎧⎪⎨⎪⎩
∂tδan + un · ∇δan = −δun−1 · ∇an,

∂tδun + un · ∇δun = −δun−1 · ∇un − an∇δΠn−1 − δan∇Πn,

div
(
an−1∇δΠn−1

) = −div
(
δun−1 · ∇P un + un−1 · ∇Pδun−1 + δan−1∇Πn

)
.

(37)

For all n ∈ N, we have ∂t ãn+1 = −un · ∇an+1. So, given that, according to the previous step, un ∈
C([0, T ∗]; L2) and ∇an+1 ∈ Cb([0, T ∗]×R

N), and that ãn|t=0 = ã n+1
|t=0 = 0, we discover that ã n , ã n+1, and

thus also δan , are in C 1([0, T ∗]; L2). Taking the L2 inner product of the equation for δan with δan , we
thus get

1

2

d

dt

∥∥δan
∥∥2

L2 = 1

2

∫ (
δan)2

div un dx −
∫

δun−1 · ∇anδan dx,

whence for all t ∈ [0, T ∗],

∥∥δan(t)
∥∥

L2 � 1

2

t∫
0

∥∥div un
∥∥

L∞
∥∥δan

∥∥
L2 dτ +

t∫
0

∥∥∇an
∥∥

L∞
∥∥δun−1

∥∥
L2 dτ . (38)

Next, taking the L2 inner product of the equation for δun with ρn+1δun , performing integration by
parts and using the equation for ρn+1, we get

1

2

d

dt

∫
ρn+1

∣∣δun
∣∣2 dx = 1

2

∫
ρn+1

∣∣δun
∣∣2 div un dx

−
∫

ρn+1δun · (δun−1 · ∇un + an∇δΠn−1 + δan∇Πn)dx.

Hence

∥∥√ρn+1(t)δun(t)
∥∥

L2 � 1

2

t∫
0

∥∥div un
∥∥

L∞
∥∥√ρn+1δun

∥∥
L2 dτ

+
t∫

0

(∥∥∇un
∥∥

L∞
∥∥δun−1

∥∥
L2 + ∥∥an

∥∥
L∞

∥∥∇δΠn−1
∥∥

L2 + ∥∥∇Πn
∥∥

L∞
∥∥δan

∥∥
L2

)
dτ .

(39)
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Adding up inequalities (38) and (39), applying Gronwall lemma and using the fact that ρn+1 � ρ∗ and
the bounds stated in the first step, we thus get for all t ∈ [0, T ∗],

∥∥(δan, δun)(t)∥∥L2 � CT ∗

( t∫
0

∥∥(δan−1, δun−1)∥∥
L2 dτ +

t∫
0

∥∥∇δΠn−1
∥∥

L2 dτ

)
, (40)

where the constant CT ∗ depends only on T ∗ and on the initial data.
In order to bound ∇δΠn−1, we shall use that for any C 1 vector-fields a and b, we have

div(a · ∇b) = div(b · ∇a) + div(a div b) − div(b div a).

Applying this to a = un−1 and b = P δun−1 and bearing in mind that div P δun−1 = 0, we deduce from
the third equation of (37) that

div
(
an−1∇δΠn−1) = div

(
Pδun−1 div un−1 − Pδun−1 · ∇un−1 − δun−1 · ∇P un − δan−1∇Πn).

Therefore, Lemma 2 and the fact that ‖P ‖L(L2;L2) = 1 guarantee that

a∗
∥∥∇δΠn−1

∥∥
L2 �

∥∥δun−1
∥∥

L2

(∥∥div un−1
∥∥

L∞ + ∥∥∇un−1
∥∥

L∞ + ∥∥∇P un
∥∥

L∞
)+ ∥∥δan−1

∥∥
L2

∥∥∇Πn
∥∥

L∞ .

Using the uniform bounds of the previous step, we thus get for all t ∈ [0, T ∗],∥∥∇δΠn−1
∥∥

L2 � CT ∗
(∥∥δun−1

∥∥
L2 + ∥∥δan−1

∥∥
L2

)
. (41)

Plugging inequality (41) in inequality (40), we end up with (up to a change of CT ∗ ),

∥∥(δan, δun)(t)∥∥L2 � CT ∗

t∫
0

∥∥(δan−1, δun−1)(τ )
∥∥

L2 dτ .

Arguing by induction, one may conclude that

sup
t∈[0,T ∗]

∥∥(δan, δun)(t)∥∥L2 � (CT ∗ T ∗)n

n! sup
t∈[0,T ∗]

∥∥(δa0, δu0)(t)∥∥L2 .

It is now obvious that both (̃a n)n∈N and (un)n∈N are Cauchy sequences in C([0, T ∗]; L2), hence con-
verge to some functions ã and u in C([0, T ∗]; L2). Taking advantage of (41), it is also clear that
(∇Πn)n∈N converges to some function ∇Π in C([0, T ∗]; L2).

Step 3. Final checking. Let a := a0 + ã. We now have to check that (a, u,∇Π) is indeed a solution to
(1) and that it has the properties stated in Theorem 1. From the previous step, we already know that
(a − a0), u and ∇Π are in C([0, T ∗]; L2). Moreover:

• As (∇an)n∈N is bounded in L∞([0, T ∗]; Bs−1
p,r ) and as Besov spaces have the Fatou property, we

deduce that ∇a belongs to L∞([0, T ∗]; Bs−1
p,r ). Since (an)n∈N is bounded in L∞([0, T ∗] × R

N ), we

also have a ∈ L∞([0, T ∗] × R
N ).

• As (un)n∈N is bounded in L∞([0, T ∗]; Bs
p,r), we deduce that u ∈ L∞([0, T ∗]; Bs

p,r).

• Finally, as (∇Πn)n∈N is bounded in L1([0, T ∗]; Bs
p,r) we deduce that ∇Π belongs

to L1([0, T ∗]; Bs
p,r).
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Arguing by interpolation, we see that the above sequences converge strongly in every intermediate
space between C([0, T ∗]; L2) and C([0, T ∗]; Bs

p,r) which is more than enough to pass to the limit in
the equations satisfied by (an, un,∇Πn). Hence (a, u,∇Π) satisfies (18).

Passing to the limit in (31), we see that, in addition, (ρ, u) satisfies the energy equality (3).
Finally, the continuity properties of the solution with respect to the time may be recovered by

using the equations satisfied by (a, u,∇Π), and Proposition 5.

4.3. A continuation criterion

The key to the proof of Theorem 2 is the following lemma:

Lemma 4. Let (s, p, r) satisfy condition (C) with 1 < p < ∞. Consider a solution (ρ, u,∇Π) to (1) on
[0, T [×R

N such that3 u ∈ C([0, T ); Bs
p,r) and

ρ∗ � ρ � ρ∗, ρ ∈ C
([0, T ) × R

N) and ∇ρ ∈ C
([0, T ); Bs−1

p,r

)
.

If in addition

T∫
0

(‖∇u‖L∞ + ‖∇Π‖Bs−1
p,r

)
dt < ∞ (42)

then

t∫
0

‖∇Π‖Bs
p,r

dτ + sup
0�t<T

(∥∥u(t)
∥∥

Bs
p,r

+ ∥∥∇ρ(t)
∥∥

Bs−1
p,r

)
< ∞.

Proof. By virtue of Proposition 4, the function a := 1/ρ satisfies the same assumptions as ρ . Therefore
we shall rather work with a, for convenience. Recall that

∂t∂ka + u · ∇∂ka = −∂ku · ∇a for k = 1, . . . , N. (43)

So, applying operator �q to the above equality and using that div u = 0, one may write (with the
summation convention)

∂t�q∂ka + u · ∇�q∂ka = −�q(∂ku · ∇a) + ∂ j
[
u j,�q

]
∂ka.

Therefore for all t ∈ [0, T ),

∥∥�q∂ka(t)
∥∥

L p � ‖�q∂ka0‖L p +
t∫

0

∥∥�q(∂ku · ∇a)
∥∥

L p dτ +
t∫

0

∥∥∂ j
[
u j,�q

]
∂ka

∥∥
L p dτ . (44)

According to Proposition 3, the term ∂ku · ∇a belongs to Bs−1
p,r and satisfies

‖∂ku · ∇a‖Bs−1
p,r

� C
(‖∂ku‖L∞‖∇a‖Bs−1

p,r
+ ‖∇a‖L∞‖∂ku‖Bs−1

p,r

)
3 With the usual convention if r = ∞.
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while Lemma 7 ensures that for all q � −1,

∥∥∂ j
[
u j,�q

]
∂ka

∥∥
L p � Ccq2q(s−1)

(‖∂ka‖L∞‖∇u‖Bs−1
p,r

+ ‖∇u‖L∞‖∂ka‖Bs−1
p,r

)
.

Using the definition of the norm in Bs−1
p,r , we thus get after summation in (44) that

∥∥∇a(t)
∥∥

Bs−1
p,r

� ‖∇a0‖Bs−1
p,r

+ C

t∫
0

(‖∇u‖L∞‖∇a‖Bs−1
p,r

+ ‖∇a‖L∞‖∇u‖Bs−1
p,r

)
dτ . (45)

In order to bound the velocity, let us apply the last part of Proposition 5 to the velocity equation, and
the following inequality (which stems from Corollary 1):

‖a∇Π‖Bs
p,r

� C
(
a∗‖∇Π‖Bs

p,r
+ ‖∇Π‖L∞‖∇a‖Bs−1

p,r

)
.

We get for all t ∈ [0, T ),

∥∥u(t)
∥∥

Bs
p,r

� eC
∫ t

0 ‖∇u‖L∞ dτ

(
‖u0‖Bs

p,r
+

t∫
0

e−C
∫ τ

0 ‖∇u‖L∞ dτ ′(‖ f ‖Bs
p,r

+ Ca∗‖∇Π‖Bs
p,r

+ C‖∇Π‖L∞‖∇a‖Bs−1
p,r

)
dτ

)
. (46)

In order to bound the pressure term, one may use the fact that

div(a∇Π) = div f − div(u · ∇u)

and apply the last part of Proposition 7. Performing a time integration and using that

∥∥div(u · ∇u)
∥∥

Bs−1
p,r

= ‖∇u : ∇u‖Bs−1
p,r

� C‖∇u‖L∞‖∇u‖Bs−1
p,r

,

we get

a∗‖∇Π‖L1
t (Bs

p,r)
� C

(
‖div f ‖L1

t (Bs−1
p,r )

+
t∫

0

(‖∇u‖L∞‖∇u‖Bs−1
p,r

+ ‖∇a‖L∞‖∇Π‖Bs−1
p,r

+ ‖∇Π‖L∞‖∇a‖Bs−1
p,r

))
dτ .

Let us insert this latter inequality in (46). Then adding up inequality (45) and applying Gronwall
lemma we end up with
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∥∥∇a(t)
∥∥

Bs−1
p,r

+ ∥∥u(t)
∥∥

Bs
p,r

� C exp

( t∫
0

∥∥(∇a,∇u,∇Π)
∥∥

L∞ dτ

)

×
(

‖∇a0‖Bs−1
p,r

+ ‖u0‖Bs
p,r

+ ‖ f ‖L1
t (Bs

p,r)
+

t∫
0

‖∇a‖L∞‖∇Π‖Bs−1
p,r

dτ

)
(47)

for some constant C depending only on the regularity parameters and on N , a∗ and a∗ .
Now, let us notice that ∇a is bounded on [0, T ) × R

N . Indeed, from Eq. (43) and Gronwall lemma,
we see that ∥∥∇a(t)

∥∥
L∞ � e

∫ t
0 ‖∇u‖L∞ ‖∇a0‖L∞ .

As ∇Π is in L1([0, T ); Bs−1
p,r ) and ∇u is in L1([0, T ); L∞) by assumption and as Bs−1

p,r ↪→ L∞ , we dis-
cover that both the last term in (47) and the exponential term are bounded on [0, T ). This completes
the proof of the lemma. �

The following lemma implies the first part of Theorem 2 in the case p � 2.

Lemma 5. Let (s, p, r) satisfy condition (C) with 2 � p < ∞. Consider a solution (ρ, u,∇Π) to (1) on
[0, T [ × R

N such that4

• ρ∗ � ρ � ρ∗ , ρ ∈ C([0, T ) × R
N ) and ∇ρ ∈ C([0, T ); Bs−1

p,r ),

• u ∈ C([0, T ); Bs
p,r) ∩ C 1([0, T ]; L2),

• ∇Π ∈ C([0, T ); L2) ∩ L1([0, T ); Bs
p,r).

If in addition condition (42) is satisfied then (ρ, u,∇Π) may be continued beyond T into a solution of (1)

with the above regularity.

Proof. Lemma 4 ensures that ‖u‖L∞
T (Bs

p,r )
and ‖Da‖L∞

T (Bs−1
p,r )

are finite. So one may set

ε := c(ρ∗ A0)
−1(U0(T ) + ρ∗ A0‖div f ‖L1

T (Bs−1
p,r )

+ (ρ∗ A0)
γ +1(‖u0‖L2 + ‖ f ‖L1

T (L2)

))−1

where c is the small constant (depending only on N and (s, p, r)) defined in (36).
Then we know from the proof of Theorem 1 in the case p � 2 that for any T ′ < T , system (1) with

data (ρ(T ′), u(T ′), f (T ′ + ·)) has a unique solution up to time ε. Taking T ′ = T − ε/2 we thus get
a continuation of (ρ, u,∇Π) up to time T + ε/2. �

Let us now justify the last part of Theorem 2. It stems from the following logarithmic interpolation
inequality (see e.g. [14]):

‖∇u‖L∞ � C
(
1 + ‖∇u‖Ḃ0∞,∞ log

(
e + ‖∇u‖Bs−1

p,r

))
with ‖∇u‖Ḃ0∞,∞ := sup

q∈Z

∥∥ϕ(
2−q D

)∇u
∥∥

L∞

which holds true whenever the embedding of Bs−1
p,r is not critical (that is s > 1 + N/p).

4 With the usual convention if r = ∞.
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Then, arguing exactly as in Proposition 5.3 of [9], we discover that condition (42) may be replaced
by the following weaker condition:

T∫
0

(‖∇u‖Ḃ0∞,∞ + ‖∇Π‖Bs−1
p,r

)
dt < ∞. (48)

Now, it is classical (see e.g. [1, Chap. 7]) that there exists some constant C such that

‖∇u‖Ḃ0∞,∞ � C‖curl u‖L∞ .

This completes the proof of Theorem 2 in the case p � 2.

4.4. The case 1 < p < 2

Note that by virtue of Proposition 2, the data satisfy the assumptions of the theorem for the triplet
(s − N/p + N/2,2, r). Hence, applying the theorem in the case p = 2 supplies a local solution with
the Bs−N/p+N/2

2,r regularity. However, proving that the Bs
p,r regularity is also preserved, is not utterly

obvious. We shall proceed as follows:

i) first, we smooth out the data so as to get a solution in H∞ := ∩σ Hσ for which the Bs
p,r regularity

is also preserved;
ii) second, we establish uniform bounds in Bs

p,r on a fixed suitably small time interval;
iii) third, we show the convergence of the sequence of smooth solutions and that the limit has the

required properties.

Step 1. Smooth solutions. Set

an
0 := Sna0, un

0 := Snu0 and f n := Sn f

where Sn is the low frequency cut-off introduced in Section 2.
Note that for all large enough n ∈ N and t ∈ [0, T0], we have

a∗/2 � an
0 � 2a∗,

∥∥Dan
0

∥∥
Bs−1

p,r
� C‖Da0‖Bs−1

p,r
, (49)∥∥un

0

∥∥
Bs

p,r
� C‖u0‖Bs

p,r
, (50)∥∥ f n

∥∥
L1

t (Bs
p,r)

� C‖ f ‖L1
t (Bs

p,r)
and

∥∥ f n(t)
∥∥

L2 �
∥∥ f (t)

∥∥
L2 . (51)

It is also clear that (with obvious notation) ∇an
0 and un

0 are in B∞
p,r (hence also in H∞) and that

f n ∈ C([0, T0]; H∞) ∩ L1([0, T0]; B∞
p,r).

Finally, taking advantage of Lebesgue’s dominated convergence theorem one may prove, if r < ∞,
that5

Dan
0 −→ Da0 in Bs−1

p,r and
(
an

0 − a
) → (a0 − a) in Lp∗

with a := 1/ρ,

un
0 −→ u0 in Bs−1

p,r ,

f n −→ f in L1([0, T0]; Bs
p,r

)∩ C
([0, T0]; L2).

As usual, the strong convergence has to be replaced by the weak convergence if r = ∞.

5 Recall that (ρ0 − ρ) ∈ Lp∗
by assumption.
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Applying Theorem 1 in the case p = 2 and using the fact that the lifespan does not depend on the
index of regularity (see Remark 1), we get a local maximal solution (an, un,∇Πn) with Dan , un and
∇Πn in C([0, T ∗

n ); H∞), and

a∗/2 � an � 2a∗. (52)

Note that as an and ρn are just transported by the (smooth) flow of un , we also have∥∥(ρn(t) − ρ
)∥∥

L p∗ = ∥∥ρn
0 − ρ

∥∥
L p∗ � C‖ρ0 − ρ‖L p∗ for all t ∈ [

0, T ∗
n

)
(53)

(and similarly for an) and ∇an and ∇ρn belong to C([0, T ∗
n ); Bs−1

p,r ).

Let us now establish that ∇Πn is in L1([0, T ]; Bs
p,r) for all T ∈ [0, T ∗

n ). Fix some T ∈ [0, T ∗
n ). Apply-

ing operator div to the momentum equation of (1) and using that div un = 0 yields

�Πn = div
(
ρn f n)− div

(
ρnun · ∇un)− ∇ρn · ∂t un. (54)

According to Proposition 1, F 
→ D2Π is a self-map on Bs
p,r . Hence, in order to show that ∇Πn ∈

L1([0, T ]; Bs
p,r), it suffices to establish that ∇Πn ∈ L1([0, T ]; L p) and that �Πn ∈ L1([0, T ]; Bs−1

p,r ).

Let us first show that all the terms of the right-hand side of (54) are in L1([0, T ]; Bs−1
p,r ). Since, by

assumption, f n ∈ L1([0, T ]; Bs
p,r) and as it as been established that ρn ∈ L∞ and ∇ρn ∈ Bs−1

p,r , Corol-

lary 1 implies that div(ρn f n) ∈ L1([0, T ]; Bs−1
p,r ). For the next term, we use that for all i ∈ {1, . . . , N},

(
ρnun · ∇un)i =

∑
j

T ′
ρn(un) j ∂ ju

n + T∂ j(un)i ρn(un) j
.

For fixed time, by embedding, ρnun and ∇un are in L p∗
(recall that p∗ > 2 > p) and, arguing as for

ρn f n , one can check that ρnun is in H∞ . Of course, ∇un is also in H∞ . Given that 1/p = 1/p∗ + 1/2,
continuity results for the paraproduct and remainder in the spirit of Proposition 3 (see [17]) ensure
that ρnun · ∇un is in Bs−1

p,r .
For the last term in (54), one may write that

∇ρn · ∂t un = T ′
∂t un · ∇ρn + T∇ρn · ∂t un.

As, by embedding, ∂t un ∈ L1([0, T ]; L∞), and as ∇ρn ∈ L∞([0, T ]; Bs−1
p,r ), continuity results for the

paraproduct ensure that the first term in the right-hand side is in L1([0, T ]; Bs−1
p,r ). Concerning the

second term, one may use that ∇ρn ∈ L∞([0, T ]; L p∗
) (by embedding) and that ∂t un ∈ L1([0, T ]; H∞)

(from the equation). Hence �Πn is indeed in L1([0, T ]; Bs−1
p,r ), as claimed above.

In order to establish that ∇Πn ∈ L1([0, T ]; L p), we use the fact that, owing to div ∂t un = 0, one
may write

�Πn = div
(
ρn f n − ρnun · ∇un − (

ρn − ρ
)
∂t un). (55)

Hence, it suffices to check that ρn f n , ρnun · ∇un and (ρn − ρ)∂t un are in L1([0, T ]; L p). For ρn f n

this is obvious as, by embedding, f n ∈ L1([0, T ]; L p) and un ∈ Cb([0, T ] × R
N ). By embedding, we also

have ∇un ∈ C([0, T ]; L2) and un ∈ C([0, T ]; L p∗
), hence ρnun · ∇un is in L1([0, T ]; L p).

To deal with the last term in (55) the property that (ρn − ρ) ∈ C([0, T ]; L p∗
) comes into play.

Indeed, from the velocity equation, as the solution is in H∞ , one easily gathers that ∂t un belongs to
C([0, T ]; L2). Hence Hölder’s inequality ensures that (ρn − ρ)∂t un ∈ C([0, T ]; L p).
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To finish this step, one has to prove that un is in C([0, T ∗
n ); Bs

p,r). In fact, from the product laws in
Besov spaces and the properties of regularity that have been just established for the pressure and the
density, we get

∂t un + un · ∇un = f n − an∇Πn ∈ L1
loc

([
0, T ∗

n

); Bs
p,r

)
.

As un
0 ∈ Bs

p,r , Proposition 5 ensures that un ∈ C([0, T ∗
n ); Bs

p,r).

Step 2. Uniform estimates. Let us remark that, by Sobolev embedding and owing to (49), (50), (51), one
may find some index σ > N/2 + 1 such that (Dan

0)n∈N , (un
0)n∈N and ( f n)n∈N are bounded in Hσ−1,

Hσ and C([0, T0]; L2)∩ L1([0, T0]; Hσ ), respectively. Taking advantage of Theorem 1 in the case p = 2
and of the lower bound provided by (36) we thus deduce that there exists some time T > 0 and some
M > 0 such that for all n ∈ N, we have T ∗

n > T and∥∥∇an
∥∥

L∞
T (Hσ−1)

+ ∥∥un
∥∥

L∞
T (Hσ )

+ ∥∥∇Πn
∥∥

L1
T (Hσ )

� M. (56)

Of course the energy equality (3) is satisfied on [0, T ] by any solution (an, un,∇Πn). Recall that in
addition, according to the previous step of the proof, (53) is satisfied and

∇an ∈ C
([0, T ]; Bs−1

p,r

)
, un ∈ C

([0, T ]; Bs
p,r

)
and ∇Πn ∈ L1([0, T ]; Bs

p,r

)
.

We claim that, up to a change of T , the norm of the solution may be bounded independently of n in
the space ET defined in Section 4.2. In all that follows, we denote by CM a “constant” depending only
on (s, p, r, N,a∗,a∗) and on M .

From Proposition 5, we have

∥∥∇an(t)
∥∥

Bs
p,r

�
∥∥∇an

0

∥∥
Bs

p,r
e

C
∫ t

0 ‖∇un‖
Bs−1

p,r
dτ

(57)

and, arguing as for proving inequality (28),

∥∥un(t)
∥∥

Bs
p,r

� e
C
∫ t

0 ‖∇un‖
Bs−1

p,r
dτ

(∥∥un
0

∥∥
Bs

p,r

+
t∫

0

e
−C

∫ τ
0 ‖∇un‖

Bs−1
p,r

dτ ′(∥∥ f n
∥∥

Bs
p,r

+ (
a∗ + ∥∥∇an

∥∥
Bs−1

p,r

)∥∥∇Πn
∥∥

Bs
p,r

)
dτ

)
. (58)

In order to bound ∇Πn , we apply the first part of Proposition 7 to the following equation:

div
(
an∇Πn) = div

(
f n − un · ∇un).

Using that Bs−1
p,r is an algebra and the relation div(un · ∇un) = ∇un : ∇un , we end up with

a∗
∥∥∇Πn

∥∥
L1

t (Bs
p,r)

� C

(∥∥ f n
∥∥

L1
t (Bs

p,r)

+
t∫ ∥∥un

∥∥2
Bs

p,r
dτ + a∗

(
1 +

‖Dan‖L∞
t (Bs−1

p,r )

a∗

)s∥∥∇Πn
∥∥

L1
t (L p)

)
. (59)
0
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In order to “close the estimate”, we have to bound ∇Πn in L p . For that, we apply the standard L p

elliptic estimate stated in Proposition 6 to (55), and Hölder inequality so as to get

∥∥∇Πn
∥∥

L1
t (L p)

� C

(
ρ∗

(∥∥ f n
∥∥

L1
t (L p)

+
t∫

0

∥∥un
∥∥

L p∗
∥∥∇un

∥∥
L2 dτ

)
+ ∥∥ρn − ρ

∥∥
L∞

t (L p∗
)

∥∥∂t un
∥∥

L1
t (L2)

)
.

Note that, by Sobolev embedding, we have∥∥un
∥∥

L p∗ � C
∥∥un

∥∥
Hσ .

So finally, there exists some constant CM such that∥∥∇Πn
∥∥

L1
T (L p)

� CM .

Plugging this latter inequality in (59), we thus get

a∗
∥∥∇Πn

∥∥
L1

t (Bs
p,r)

� C

(∥∥ f n
∥∥

L1
t (Bs

p,r)
+

t∫
0

∥∥∇un
∥∥2

Bs−1
p,r

dτ + a∗CM

(
1 +

‖Dan‖L∞
t (Bs−1

p,r )

a∗

)s
)

.

It is now easy to conclude this step: denoting

Un(t) := ∥∥un(t)
∥∥

Bs
p,r

and An(t) := a∗ + ∥∥Dan(t)
∥∥

Bs−1
p,r

,

and assuming that T � T has been chosen so that

C

T∫
0

∥∥∇un
∥∥

Bs−1
p,r

dτ � log 2, (60)

the above inequalities and (49), (50), (51) imply that for all t ∈ [0, T ] we have

An(t) � 2A0 with A0 := a∗ + ‖Da0‖Bs−1
p,r

and

Un(t) � 2

(
U0(t) + Cρ∗ A0

t∫
0

(‖ f ‖Bs
p,r

+ (
Un)2 + CMa∗ As

0

)
dτ

)
.

So finally, there exists a nondecreasing function F depending only on the norm of the data and such
that for all t ∈ [0, T ], we have

Un(t) � 2F (t) + Cρ∗ A0

t∫ (
Un(τ )

)2
dτ .
0
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Therefore, if in addition

2C A0

T∫
0

Un(τ )dτ � a∗ (61)

then we have Un � 4F on [0, T ].
By arguing exactly as in the case p � 2, it is easy to see that condition (61) is satisfied if T is

small enough (an explicit lower bound may be obtained in terms of the data). So finally, we have
found a positive time T so that (an, un,∇Πn)n∈N is bounded in the space ET .

Step 3. Convergence of the sequence. Let δun := un+1 − un , δρn := ρn+1 − ρn and δΠn = Πn+1 − Πn .
Applying inequality (16) to the solutions (ρn, un,∇Πn) and (ρn+1, un+1,∇Πn+1) and using the uni-
form bounds that have been established in the previous step, and (52) ensures that there exists some
M > 0 such that for all t ∈ [0, T ] and n ∈ N, we have

∥∥δρn(t)
∥∥

L2 + ∥∥δun(t)
∥∥

L2 � M

(∥∥δρn(0)
∥∥

L2 + ∥∥δun(0)
∥∥

L2 +
t∫

0

∥∥δ f n
∥∥

L2 dτ

)
. (62)

Now, from the definition of an
0 and the mean value theorem, we get for large enough n,∥∥δρn(0)

∥∥
L2 � C2−n‖Da0‖L2 .

Similarly, we have ∥∥δun(0)
∥∥

L2 + ∥∥δ f n
∥∥

L1
T (L2)

� C2−n(‖δu0‖L2 + ‖δ f ‖L1
T (L2)

)
.

So inequality (62) entails that (ρn − ρ0)n∈N is a Cauchy sequence in C([0, T ]; L2) and that (un)n∈N

is a Cauchy sequence in C([0, T ]; L2). Then, using for instance (55), we see that (∇Πn)n∈N is also
a Cauchy sequence in C([0, T ]; L2).

Finally, from the bounds in large norm that have been stated in the previous step, and the Fatou
property for the Besov space, one may conclude that the limit (a, u,∇Π) to (an, un,∇Πn)n∈N con-
verges to some solution of (1) and has the desired properties of regularity. As similar arguments have
been used for handling the case p � 2, the details are left to the reader.

Let us now establish Theorem 2 in the case p < 2. Let (ρ, u,∇Π) be a solution with the properties
described in Theorem 1. Note that Lemma 4 is also true if p < 2. So the only change lies in the proof
of Lemma 5 which now uses the (new) lower bound for the lifespan that may be obtained from the
computations of step 2, instead of (36). This gives the first part of Theorem 2. As in the case p � 2,
the last part of the proof of the theorem is a mere consequence of the logarithmic interpolation
inequality stated in [14].

4.5. Removing the assumptions on the low frequency of the data

We claim that in dimension N � 3, the supplementary assumption (ρ0 − ρ) ∈ L p∗
is not needed if

p > N/(N − 1).
In order to see that, one may repeat the proof of the theorem in the case 1 < p � 2. As before,

bounding ∇Πn in L1
T (L p) is the main difficulty. For that, one may decompose ∇Πn into two terms

∇Πn
1 and ∇Πn

2 such that

�Πn
1 = div

(
ρn f n − ρnun · ∇un) and �Πn

2 = −∇ρn · ∂t un.
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On the one hand, as before, one may write that∥∥∇Πn
1

∥∥
L p � Cρ∗(∥∥ f n

∥∥
L p + ∥∥un

∥∥
L p∗

∥∥∇un
∥∥

L2

)
.

On the other hand, we have

∇Πn
2 = (−�)−1∇(∇ρn · ∂t un).

Recall that in dimension N � 2, the kernel of operator (−�)−1∇ behaves as |x|1−N . Hence, according
to the Hardy–Littlewood–Sobolev inequality, if 1/p + 1/N < 1 then we have

∥∥∇Πn
2

∥∥
L p � C

∥∥∇ρn · ∂t un
∥∥

Lq with
1

q
= 1

p
+ 1

N
.

As (∇ρn)n∈N may be bounded in C([0, T ]; L p) and, by embedding, (∂t un)n∈N may be bounded in
L1([0, T ]; LN ), in terms of Sobolev norms only, it is thus possible to bound ∇Πn

2 in L1([0, T ]; L p) in
terms of the initial data. The rest of the proof goes by the steps that we used before.

5. The proof of Theorem 3

For T > 0, let us introduce the set F T of functions (a, u,∇Π) such that

a ∈ Cb
([0, T ] × R

N
)
, Da ∈ C

([0, T ]; Bs−1
p,r

)
,

u ∈ C
([0, T ]; Bs

p,r

)
, ∇Π ∈ C

([0, T ]; L2
)∩ L1

([0, T ]; Bs
p,r

)
.

Uniqueness in Theorem 3 stems from Proposition 8. Indeed, we see that, as p � 4, any solution
(ρ, u,∇Π) in F T satisfies u ∈ C([0, T ]; W 1,4) (according to Proposition 2 and to the remark that
follows) and ∇Π ∈ C([0, T ]; L2). Therefore, using the velocity equation and Hölder’s inequality, we
get

(∂t u − f ) = −(u · ∇u + a∇Π) ∈ C
([0, T ]; L2). (63)

Note that, as u and ∇ρ are in C([0, T ]; L4), we have

∂tρ = −u · ∇ρ ∈ C
([0, T ]; L2). (64)

Now, consider two solutions (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) in F T , corresponding to the same data.
Then (63) implies that δu := u2 −u1 belongs to C 1([0, T ]; L2) while (64) guarantees that δρ := ρ2 −ρ1
is in C 1([0, T ]; L2). So Proposition 8 applies and yields uniqueness.

Let us now tackle the proof of the existence part of the theorem. We claim that if we restrict our
attention to solutions which are F T then the assumptions of Lemma 3 are fulfilled so that it suffices
to solve system (18). Indeed, it is only a matter of checking whether Qu is in C([0, T ]; L2). Applying
Q to the velocity equation of (18), we get

∂t Qu = Q f − Q(a∇Π) − Q(u · ∇u).

From the assumptions on f , the definition of F T and the fact that Q maps L2 in L2, we see that the
first two terms in the right-hand side are in C([0, T ]; L2). Concerning the last term, we just use the
fact that, as pointed out above, u · ∇u belongs to C([0, T ]; L2) so Q(u · ∇u), too.
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Let us now go to the proof of the existence of a local-in-time solution for (18) under the as-
sumptions of Theorem 3. Compared to Theorem 1, the main change is that we do not expect to have
u ∈ C([0, T ]; L2) any longer (i.e. the energy may be infinite). However, as the pressure satisfies

−div(a∇Π) = div(u · ∇P u) − div f ,

Lemma 2 will ensure that ∇Π ∈ C([0, T ]; L2) anyway if u · ∇P u belongs to C([0, T ]; L2). In view of
Proposition 2, Remark 2 and Hölder’s inequality, this latter property is guaranteed by the fact that
u ∈ C([0, T ]; Bs

p,r) for some p � 4.
Once this has been noticed, one may use the same approximation scheme as in Theorem 1: we first

set (a0, u0,∇Π0) :≡ (a0, u0,0). Next, we assume that (an, un,∇Πn) has been constructed over R
+ ,

belongs to the space F T for all T > 0 and that there exists a positive time T ∗ such that (19) is
satisfied for all t ∈ [0, T ∗] and, for suitable constants C0 and C (one can take C0 = 2C2),

∥∥∇an+1(t)
∥∥

Bs−1
p,r

� 2‖∇a0‖Bs−1
p,r

for all t ∈ [0, T ∗], (65)

Un(t) � 4U0(t) + C0ρ
∗ A0

(‖div f ‖L1
t (Bs−1

p,r )
+ (ρ∗ A0)

γ ‖Q f ‖L1
t (L2)

)
, (66)

a∗
∥∥∇Πn

∥∥
L1

t (Bs
p,r)

� C

(
‖div f ‖L1

t (Bs−1
p,r )

+ (ρ∗ A0)
γ

t∫
0

((
Un)2 + ‖Q f ‖L2

)
dτ

)
(67)

with A0 := a∗ + ‖Da0‖Bs−1
p,r

, U0(t) := ‖u0‖Bs
p,r

+ ‖ f ‖L1
t (Bs

p,r )
and Un(t) := ‖un(t)‖Bs

p,r
.

Arguing exactly as in the proof of Theorem 1, we see that if we define an+1 as the solution to

∂ta
n+1 + un · ∇an+1 = 0, an+1

|t=0 = a0

then (19) is satisfied for all time, ∇an+1 ∈ C(R+; Bs−1
p,r ) and

∥∥∇an+1(t)
∥∥

Bs−1
p,r

� eC
∫ t

0 Un(τ )dτ ‖∇a0‖Bs−1
p,r

. (68)

So if we assume that T ∗ has been chosen so that

C

T ∗∫
0

Un(t)dt � log 2 (69)

then an+1 satisfies (65). Next, we take un+1 to be the unique solution in C(R+; Bs
p,r) of the transport

equation (27). As before, the right-hand side of (27) belongs to C(R+; Bs
p,r) and one may use (28). So

finally, the existence of un+1 ∈ C(R+; Bs
p,r) is ensured by Proposition 5, and we have

∥∥un+1(t)
∥∥

Bs
p,r

� eC
∫ t

0 Un(τ )

(
‖u0‖Bs

p,r

+
t∫

e−C
∫ τ

0 Un(τ ′)dτ ′((∥∥an+1
∥∥

L∞ + ∥∥∇an+1
∥∥

Bs−1
p,r

)∥∥∇Πn
∥∥

Bs
p,r

+ ‖ f ‖Bs
p,r

)
dτ

)
.

0
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Therefore, if we restrict our attention to those t that are in [0, T ∗] with T ∗ satisfying (69), and use
inequality (68), we see that for all t ∈ [0, T ∗],

Un+1(t) � 2U0(t) + C A0

t∫
0

∥∥∇Πn
∥∥

Bs
p,r

dτ with A0 := a∗ + ‖∇a0‖Bs−1
p,r

.

So if we assume that C0 = 2C2 and that T ∗ has been chosen so that

C2ρ∗ A0

T ∗∫
0

Un(t)dt � 1

2
(70)

then taking advantage of inequality (67), we see that un+1 satisfies (66) on [0, T ∗].
To finish with, in order to construct the approximate pressure Πn+1, we solve the elliptic equa-

tion (33) for every positive time. Recall that we have div(un+1 · ∇P un+1) ∈ Bs−1
p,r and that

∥∥div
(
un+1 · ∇P un+1)∥∥

Bs−1
p,r

� C
(
Un+1)2

.

Next, given our assumptions on (s, p, r) we have Bs
p,r ↪→ W 1,4. Therefore, since P maps L4 in L4, one

may write

∥∥un+1 · ∇P un+1
∥∥

L2 �
∥∥un+1

∥∥
L4

∥∥∇P un+1
∥∥

L4

� C
∥∥un+1

∥∥
L4

∥∥un+1
∥∥

W 1,4

� C
(
Un+1)2

.

Therefore, the second part of Proposition 7 ensures that ∇Πn+1 is well defined in C(R+; L2) ∩
L1

loc(R
+; Bs

p,r) and that

a∗
∥∥∇Πn+1

∥∥
L1

t (Bs
p,r)

� C

(
‖div f ‖L1

t (Bs−1
p,r )

+ (
1 + ρ∗∥∥Dan+1

∥∥
L∞

t (Bs−1
p,r )

)γ t∫
0

((
Un+1)2 + ‖Q f ‖L2

)
dτ

)
.

Taking advantage of inequality (65) at rank n + 1, one can now conclude that ∇Πn+1 satisfies (67).
At this stage we have proved that if inequalities (65), (66) and (67) hold for (an, un,∇Πn) then

they also hold for (an+1, un+1,∇Πn+1) provided T ∗ satisfies inequality (70). One may easily check
that this is indeed the case if we set

T ∗ := sup
{

t > 0
/
ρ∗ A0t

(
U0(t) + ρ∗ A0‖div f ‖L1

t (Bs−1
p,r )

+ (ρ∗ A0)
γ +1‖Q f ‖L1

t (L2)

)
� c

}
(71)

for a small enough constant c depending only on s, p and N .
Once the bounds in F T ∗ have been established, the last steps of the proof are almost identical to

those of Theorem 1. Indeed, introducing

ã n(t, x) := an(t, x) − a0(x) and ũ n(t, x) := un(t, x) − u0(x) −
t∫

f (τ , x)dτ
0
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and observing that δun := un+1 − un = ũ n+1 − ũ n , one can use exactly the same computations as
before for bounding δan , δun and ∇δΠn . As a consequence (̃a n, ũ n,∇Πn)n∈N is a Cauchy sequence in
C([0, T ∗]; L2). Next, the bounds (65), (66) and (67) enable us to show that the limit is indeed in F T

and satisfies (18). The details are left to the reader.
Let us finally establish the continuation criterion. Note that Lemma 4 still applies in the context of

infinite energy solutions. Hence, repeating the proof of Lemma 5 and using the logarithmic interpola-
tion inequality of [14] yields the result. This completes the proof of Theorem 3.

6. The proof of Theorem 4

In this section, we aim at investigating the well-posedness issue of system (1) in Hölder spaces C s

(which coincide with the Besov spaces Bs∞,∞ if s is not an integer), and, more generally, in Besov
spaces of type Bs∞,r . Of particular interest is the case of the Besov space B1∞,1 which is the largest
one for which condition (C) holds.

The main difficulty is that the previous proofs where based on the elliptic estimate stated in
Proposition 7 which fails in the limit case p = ∞. In this section, we shall see that the case of a small
perturbation of a constant density state may be handled by a different approach, similar to that used
in [20].

6.1. The proof of uniqueness

Note that in the case p > 4 the solution provided by Theorem 4 need not satisfy ∇Π ∈
L1([0, T ]; L2). Hence ∂t u need not be in L1([0, T ]; L2) and the assumptions of Proposition 8 are not
satisfied.

So, in order to prove uniqueness, we shall prove stability estimates in L p rather than in L2. These
estimates will be also needed in the last step of the proof of the existence part of Theorem 4.

Consider two solutions (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) of (1). Let a1 := 1/ρ1 and a2 := 1/ρ2. As
usual, denote δa := a2 − a1, δu := u2 − u1, ∇δΠ := ∇Π2 − ∇Π1 and δ f := f2 − f1. First, as div u2 = 0
and

∂tδa + u2 · ∇δa = −δu · ∇a1,

one may write

∥∥δa(t)
∥∥

L p �
∥∥δa(0)

∥∥
L p +

t∫
0

‖∇a1‖L∞‖δu‖L p dτ . (72)

Next, as

∂tδu + u2 · ∇δu = δ f − δu · ∇u1 − δa∇Π1 − a2∇δΠ,

we have

∥∥δu(t)
∥∥

L p �
∥∥δu(0)

∥∥
L p +

t∫
0

(‖δ f ‖L p + ‖∇u1‖L∞‖δu‖L p + ‖∇Π1‖L∞‖δa‖L p

+ a∗‖∇δΠ‖L p
)

dτ . (73)

Finally, we notice that ∇δΠ satisfies the elliptic equation

div(a2∇δΠ) = div δ f − div(δa∇Π1) − div(δu · ∇u1) − div(u2 · ∇δu). (74)
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The key point here is that, owing to div u2 = div δu = 0, we have

div(u2 · ∇δu) = div(δu · ∇u2).

Hence equality (74) rewrites

a∗�δΠ = div δ f + div
(
(a∗ − a2)∇δΠ

) − div(δa∇Π1) − div
(
δu · ∇(u1 + u2)

)
so that the L p elliptic estimate stated in Proposition 6 implies that

a∗‖∇δΠ‖L p � C
(‖δ f ‖L p + (a∗ − a∗)‖∇δΠ‖L p + ‖∇Π1‖L∞‖δa‖L p + ∥∥∇(u1 + u2)

∥∥
L∞‖δu‖L p

)
.

If the quantity a∗/a∗ − 1 is small enough then we thus have, up to a change of C ,

a∗‖∇δΠ‖L p � C
(‖δ f ‖L p + ‖∇Π1‖L∞‖δa‖L p + ∥∥∇(u1 + u2)

∥∥
L∞‖δu‖L p

)
.

Plugging this latter inequality in (73) then adding up inequality (72), we get

∥∥(δa, δu)(t)
∥∥

L p �
∥∥(δa, δu)(0)

∥∥
L p + C

t∫
0

(‖δ f ‖L p + (‖∇u1‖L∞ + ‖∇u2‖L∞

+ ‖∇a1‖L∞ + ‖∇Π1‖L∞
)∥∥(δa, δu)

∥∥
L p

)
dτ .

Applying Gronwall’s lemma yields the following result which obviously implies the uniqueness part
of Theorem 4:

Proposition 9. Let (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) be two solutions of (1) on [0, T ] × R
N such that for

some p ∈ (1,∞),

• δa := a2 − a1 and δu := u2 − u1 are in C([0, T ]; L p),
• ∇δΠ := ∇Π2 − ∇Π1 is in L1([0, T ]; L p),

and for some positive real numbers a∗ and a∗ such that a∗ � a∗ ,

a∗ � a1,a2 � a∗.

There exists a constant c depending only on p and on N such that if

a∗ − a∗ � ca∗

and if for all t ∈ [0, T ],

V (t) :=
t∫

0

(‖∇u1‖L∞ + ‖∇u2‖L∞ + ‖∇a1‖L∞ + ‖∇Π1‖L∞
)

dτ < ∞

then the following inequality is satisfied:

∥∥(δa, δu)(t)
∥∥

L p � eC V (t)

(∥∥(δa, δu)(0)
∥∥

L p + C

t∫
0

e−C V (τ )
∥∥δ f (τ )

∥∥
L p dτ

)
.
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6.2. A priori estimates

Here we assume that (ρ, u,∇Π) is a solution to (1) on the time interval [0, T ] with the Bs∞,r
regularity. We want to show that if T has been chosen small enough then the size of the solution at
time t � T is of the same order as the size of the data.

First, it is clear that we have

a∗ � a � a∗ on [0, T ] × R
N .

Moreover, one may write thanks to Proposition 5:

∥∥∇a(t)
∥∥

Bs−1∞,r
� e

C
∫ t

0 ‖u‖Bs∞,r
dτ ‖∇a0‖Bs−1∞,r

, (75)

and for the velocity, we have, as in the case p < ∞,

∥∥u(t)
∥∥

Bs∞,r
� e‖C

t∫
0

‖u‖Bs∞,r
dτ

(
‖u0‖Bs∞,r

+
t∫

0

e
−C

∫ τ
0 ‖u‖Bs∞,r

dτ ′(‖ f ‖Bs∞,r
+ ‖a‖Bs∞,r

‖∇Π‖Bs∞,r

)
dτ

)
. (76)

Note that applying standard L p estimates for the transport equation yields

∥∥u(t)
∥∥

L p � ‖u0‖L p +
t∫

0

‖ f ‖L p dτ + a∗
t∫

0

‖∇Π‖L p dτ . (77)

As Propositions 6 and 7 fail in the limit case p = ∞, in order to bound the pressure, we have to resort
to other arguments. Now, dividing the velocity equation of (1) by ρ and applying div, we get

a�Π = div f − div(u · ∇u) + div
(
(a − a)∇Π

)
with a := 1/ρ (78)

and, by virtue of the Bernstein inequality, we have

‖∇Π‖Bs∞,r
� ‖�−1∇Π‖Bs∞,r

+ ∥∥(Id − �−1)∇Π
∥∥

Bs∞,r

� C‖∇Π‖L p + ∥∥(Id − �−1)∇Π
∥∥

Bs∞,r
.

On the one hand, in order to bound the L p norm of ∇Π , we simply apply the standard L p elliptic
estimate (see Proposition 6) to (78). We get

a‖∇Π‖L p � C
(‖Q f ‖L p + ‖u‖L p ‖∇u‖L∞ + ‖a − a‖L∞‖∇Π‖L p

)
.

Hence, if a∗/a − 1 is small enough then

a‖∇Π‖L p � C
(‖Q f ‖L p + ‖u‖L p ‖∇u‖L∞

)
. (79)
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On the other hand, for bounding the high frequency part of the pressure, one can use the fact that
operator ∇(−�)−1(Id − �−1) is homogeneous of degree −1 away from a ball centered at the origin,
hence maps Bs−1

p,r in Bs
p,r (see e.g. [1, Chap. 2]). Therefore we have

a
∥∥(Id − �−1)∇Π

∥∥
Bs∞,r

� Ca‖�Π‖Bs−1∞,r
,

� C
(‖div f ‖Bs−1∞,r

+ ∥∥div(u · ∇u)
∥∥

Bs−1∞,r
+ ∥∥div

(
(a − a)∇Π

)∥∥
Bs−1∞,r

)
.

In order to bound the second term, one may combine the Bony decomposition and the fact that
div u = 0. This gives

div(u · ∇u) =
∑
i, j

(
2T∂i u j ∂ ju

i + ∂i R
(
u j, ∂ ju

i)).
Thus applying Proposition 3, we may write∥∥div(u · ∇u)

∥∥
Bs−1∞,r

� C‖∇u‖L∞‖u‖Bs∞,r
.

Finally, as Bs∞,r is a Banach algebra, we have∥∥div
(
(a − a)∇Π

)∥∥
Bs−1∞,r

� C‖a − a‖Bs∞,r
‖∇Π‖Bs∞,r

.

Putting this together with (79), one may conclude that there exists a constant c such that if

‖a − a‖L∞
T (Bs∞,r)

� ca (80)

then

a
(‖∇Π‖L p + ‖∇Π‖Bs∞,r

)
� C

(‖Q f ‖L p + ‖div f ‖Bs−1
p,r

+ ‖u‖L p∩Bs∞,r
‖∇u‖L∞

)
. (81)

Let us assume that T has been chosen so that

C

T∫
0

‖∇u‖Bs−1∞,r
� log 2 (82)

and that the initial density is such that

‖a0 − a‖Bs−1∞,r
� c

2
a.

Then (80) is fulfilled and, combining inequalities (76), (77) and (81), we get

U (t) � 2U0(t) + Cρ‖a0‖Bs∞,r

t∫
0

(‖Q f ‖L p + ‖div f ‖Bs−1
p,r

+ U 2)dτ

with

U (t) := ∥∥u(t)
∥∥

L p∩Bs∞,r
and U0(t) := ‖u0‖L p∩Bs∞,r

+
t∫
‖ f ‖L p∩Bs∞,r

dτ .
0
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It is now easy to find a time T > 0 depending only on the data and such that both condition (82) and

U (t) � 4U0(t) for all t ∈ [0, T ]

are satisfied.

6.3. The proof of existence

This is mainly a matter of making the above estimates rigorous. We have to be a bit careful though
since the data which are considered here do not enter in the framework of Theorems 1 and 3.

As a first step, we construct a sequence of smooth solutions. In order to enter in the Sobolev
spaces framework, one may proceed as follows.

For the density, one may consider ρn
0 := ρ + Sn(φ(n−1·)(ρ0 − ρ)) where φ is a smooth compactly

supported cut-off function with value 1 on the unit ball of R
N . Obviously, ρn

0 − ρ is in H∞ and
converges weakly to ρ0 − ρ when n goes to infinity. In addition, by using the fact that φ is smooth
and that Bs∞,r is an algebra, one may establish that there exists some constant C such that for all
n ∈ N, ∥∥ρn

0 − ρ
∥∥

Bs∞,r
� C‖ρ0 − ρ‖Bs∞,r

.

Similarly, for the velocity, one may set un
0 := Sn(φ(n−1·)u0) and for the source term, f n :=

αn �t (Sn(φ(n−1·) f )) where the convolution is taken with respect to the time variable only and
(αn)n∈N is a sequence of mollifiers on R.

Applying Theorem 1 thus provides a sequence of continuous-in-time solutions with values in H∞ ,
defined on a fixed time interval. Then applying the above a priori estimates, it is easy to find a time T
independent of n for which the sequence (ρn, un,∇Πn)n∈N is bounded in the desired space.

For proving convergence, one may take advantage of the stability estimates in L p . The proof is
similar to that of Theorem 1 in the case 1 < p � 2 and is thus omitted.

6.4. A continuation criterion

This paragraph is dedicated to the proof of the following continuation criterion:

Proposition 10. Assume that s > 1 (or that s � 1 if r = 1). Consider a solution (ρ, u,∇Π) to (1) on
[0, T [ × R

N such that for some p ∈ (1,∞) we have

• ρ ∈ C([0, T ); Bs∞,r),
• u ∈ C([0, T ); Bs∞,r ∩ L p),

• ∇Π ∈ L1([0, T ); Bs∞,r ∩ L p).

There exists a constant c depending only on N and s such that if for some ρ > 0 we have

sup
0�t<T

∥∥ρ(t) − ρ
∥∥

Bs∞,r
� cρ and

T∫
0

‖∇u‖L∞ dt < ∞

then (ρ, u,∇Π) may be continued beyond T into a Bs∞,r solution of (1).

Proof. Applying the last part of Proposition 5 and product estimates to the velocity equation of (1)
yields for all t ∈ [0, T ),

∥∥u(t)
∥∥

Bs∞,r
� eC

∫ t
0 ‖∇u‖L∞ dτ

(
‖u0‖Bs∞,r

+
t∫

e−C
∫ τ

0 ‖∇u‖L∞ dτ ′(‖ f ‖Bs∞,r
+ ‖a‖Bs∞,r

‖∇Π‖Bs∞,r

)
dτ

)
.

0
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Let us bound the pressure term according to inequality (81). Combining with (77) and (79), we even-
tually get

∥∥u(t)
∥∥

L p∩Bs∞,r
� eC

∫ t
0 ‖∇u‖L∞ dτ

(
‖u0‖Bs∞,r

+ ρ

t∫
0

e−C
∫ τ

0 ‖∇u‖L∞ dτ ′ ‖a‖Bs∞,r

(‖ f ‖L p∩Bs∞,r
+ ‖u‖L p∩Bs∞,r

‖∇u‖L∞
)

dτ

)
.

So applying Gronwall’s lemma ensures that u belongs to L∞([0, T ); L p ∩ Bs∞,r). From this point, com-
pleting the proof is similar as for the previous continuation criteria. �
Remark 4. As in the Bs

p,r framework, an improved continuation criterion involving ‖∇u‖Ḃ0∞,∞ instead

of ‖∇u‖L∞ may be proved for the Bs∞,r regularity, if s > 1. The details are left to the reader.
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Appendix A. Commutator estimates

Here we prove two inequalities that have been used for bounding the pressure. The first result
reads:

Lemma 6. Let (s, p, r) satisfy condition (C). Let ς be in (−1, s − 1]. There exists a constant C depending only
on s, p, r, ς and N such that for all k ∈ {1, . . . , N}, we have∥∥∂k[a,�q]w

∥∥
L p � Ccq2−qς‖∇a‖Bs−1

p,r
‖w‖Bς

p,r
for all q � −1,

with ‖(cq)q�−1‖�r = 1.

Proof. We follow the proof of Lemma 8.8 in [9]. Let ã := a − �−1a. Taking advantage of the Bony
decomposition (6), we rewrite the commutator as6

∂k
([a,�q]w

) = ∂k
([Tã,�q]w

)︸ ︷︷ ︸
R1

q

+ ∂k T ′
�q wã︸ ︷︷ ︸
R2

q

− ∂k�q T ′
wã︸ ︷︷ ︸

R3
q

+ ∂k[�−1a,�q]w︸ ︷︷ ︸
R4

q

. (83)

From the localization properties of the Littlewood–Paley decomposition, we gather that

R1
q =

∑
|q′−q|�4

∂k
([Sq′−1̃a,�q]�q′ w

)
.

Note that R1
q is spectrally supported in an annulus of size 2q . Hence, combining Bernstein’s inequality

and Lemma 2.97 in [1], we get∥∥R1
q

∥∥
L p � C

∑
|q′−q|�4

‖∇ Sq′−1̃a‖L∞‖�q′ w‖L p ,

6 Recall the notation T ′
u v := Tu v + R(u, v).
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whence for some sequence (cq)q�−1 in the unit sphere of �r ,∥∥R1
q

∥∥
L p � Ccq2−qς‖∇a‖L∞‖w‖Bς

p,r
. (84)

To deal with R2
q , we use the fact that, owing to the localization properties of the Littlewood–Paley

decomposition, we have

R2
q =

∑
q′�q−2

∂k(Sq′+2�q w�q′̃a ).

Hence, using the Bernstein and Hölder inequalities and the fact that ã has no low frequencies,

∥∥R2
q

∥∥
L p � C

∑
q′�q−2

‖Sq′+2�q w‖L∞‖�q′∇ ã‖L p ,

� C2−qς 2q( N
p +1−s)

∑
q′�q−2

2(q−q′)(s−1)
(
2q(ς− N

p )‖�q w‖L∞
)(

2q′(s−1)‖�q′∇ ã‖L p
)
.

Therefore, by virtue of convolution inequalities for series and because N/p + 1 − s � 0,∥∥R2
q

∥∥
L p � Ccq2−qς‖∇a‖Bs−1

p,r
‖w‖

B
ς− N

p
∞,r

. (85)

Next, Proposition 3 ensures that, under the assumptions of the lemma, the paraproduct and the re-
mainder map Bς

p,r × Bs
p,r in Bς

p,r . As moreover we have

‖̃a‖Bs
p,r

� C‖∇a‖Bs−1
p,r

, (86)

one may conclude that ∥∥R3
q

∥∥
L p � Ccq2−qς‖∇a‖Bs−1

p,r
‖w‖Bς

p,r
. (87)

Finally, as the last term R4
q is spectrally localized in a ball of size 2q , Bernstein’s inequality ensures

that ∥∥R4
q

∥∥
L p � C2q

∥∥[�−1a,�q]w
∥∥

L p .

Then, resorting again to Lemma 2.97 in [1], we get∥∥R4
q

∥∥
L p � Ccq2−qς‖∇a‖L∞‖w‖Bς

p,r
. (88)

Putting inequalities (84), (85), (87) and (88) together and using Proposition 2 completes the proof of
the lemma. �
Lemma 7. Let ς > 0 and 1 � p, r � ∞. There exists a constant C such that∥∥∂k[a,�q]w

∥∥
L p � Ccq2−qς (‖∇a‖L∞‖w‖Bς

p,r
+ ‖w‖L∞‖∇a‖Bς

p,r

)
for all q � −1,

with ‖(cq)q�−1‖�r = 1.
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Proof. We use again decomposition (83). We have already proved in (84) and (88) that R1
q and R4

q

satisfy the desired inequality. Concerning R2
q , recall that

∥∥R2
q

∥∥
L p � C

∑
q′�q−2

‖Sq′−1�q w‖L∞‖�q′∇a‖L p ,

whence ∥∥R2
q

∥∥
L p � C2−qς

∑
q′�q−2

2(q−q′)ς‖w‖L∞ 2q′ς‖�q′∇ ã‖L p .

As ς > 0, convolution inequalities for series yield the desired inequality for R2
q .

According to Proposition 3, we have∥∥T ′
wã

∥∥
Bς+1

p,r
� C‖w‖L∞‖̃a‖

Bς+1
p,r

.

Hence, as ‖̃a‖
Bς+1

p,r
� C‖∇a‖Bς

p,r
, the term R3

q satisfies the required inequality. �
Appendix B. A Bernstein-type inequality

Lemma 8. Let 1 < p < ∞ and u ∈ L p such that Supp û ⊂ {ξ ∈ R
N/R1 � |ξ | � R2} for some real numbers

R1 and R2 such that 0 < R1 < R2 . Let a be a bounded measurable function over R
N such that a � a∗ > 0 a.e.

There exists a constant c depending only on N and R2/R1 , and such that

ca∗
(

p − 1

p2

)
R2

1

∫
|u|p dx � (p − 1)

∫
a|∇u|2|u|p−2 dx = −

∫
div(a∇u)|u|p−2u dx. (89)

Proof. The case a ≡ 1 has been treated in [8] and readily entails the left inequality in (89) for one
may write, owing to the case a ≡ 1,

ca∗R2
1

∫
|u|p dx � p2

∫
a∗|∇u|2|u|p−2 dx � p2

∫
a|∇u|2|u|p−2 dx.

Let us now justify the right equality in (89). In the case p � 2, it stems from a straightforward inte-
gration by parts.

Let us focus on the case 1 < p < 2 which is more involved. Smoothing out a if needed, one may
assume with no loss of generality that a is in C0,1. Let Tε(x) = √

x2 + ε2 for x ∈ R and ε > 0. We have

−
∫

RN

div(a∇u)
(
Tε(u)

)p−1
T ′
ε(u)dx = (p − 1)

∫
RN

a|∇u|2∣∣T ′
ε(u)

∣∣2(Tε(u)
)p−2

dx

+
∫

RN

a|∇u|2T ′′
ε (u)

(
Tε(u)

)p−1
dx. (90)

In view of the monotonous convergence theorem,

lim
ε→0

∫
N

a|∇u|2∣∣T ′
ε(u)

∣∣2(Tε(u)
)p−2

dx =
∫

N

a|∇u|2|u|p−2 dx ∈ R
+.
R R
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Next, we notice that ∣∣div(a∇u)
(
Tε(u)

)p−1
T ′
ε(u)

∣∣ � |u|p−1
∣∣div(a∇u)

∣∣. (91)

Now, as a ∈ C0,1 and u is a smooth function with all derivatives in L p (owing to the spectral localiza-
tion), one may write

div(a∇u) = a�u + ∇a · ∇u,

hence div(a∇u) is in L p and the right-hand side of (91) is an integrable function. So finally Lebesgue’s
dominated convergence theorem entails that

lim
ε→0

∫
RN

div(a∇u)
(
Tε(u)

)p−1
T ′
ε(u)dx =

∫
RN

u|u|p−2 div(a∇u)dx.

Therefore, as the last term of (90) is nonnegative,

(p − 1)

∫
RN

a|∇u|2 |u|p−2 dx � −
∫

RN

u|u|p−2 div(a∇u)dx < ∞. (92)

In fact, equality does hold. Indeed, whenever x �= 0, the term T ′′
ε (x)Tε(x)p−1 tends to 0 when ε goes

to 0 and

T ′′
ε (x)Tε(x)p−1 = |x|p−2 (ε/x)2

(1 + (ε/x)2)2− p
2

� |x|p−2.

Therefore, as, according to (92), the function |∇u|2 |u|p−2 is integrable over R
N , we get

lim
ε→0

∫
u �=0

a|∇u|2T ′′
ε (u)

(
Tε(u)

)p−1
dx = 0.

On the other hand, as u is real analytic,∫
u=0

a|∇u|2T ′′
ε (u)

(
Tε(u)

)p−1
dx = εp−2

∫
u=0

a|∇u|2 = 0.

This completes the proof of the lemma. �
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