A NOTE ON LATIN SQUARES WITH RESTRICTED SUPPORT

Roland HÄGGKVIST
Matematiska Institutionen, Stockholms Universitet, Box 6701, 113 85 Stockholm, Sweden

The purpose of this note is to give a simple theorem which hopefully will inspire some reader to more profound explorations. First we give some definitions. A partial \(n \times n \) column-latin square \(L \) on 1, 2, \ldots, \(n \) is an \(n \times n \) array filled with the symbols 1, 2, \ldots, \(n \) in such a way that every cell contains at most one symbol, and every symbol occurs at most once in every column. The array \(L \) is a latin square if, in addition, every symbol occurs exactly once in every row and column.

Theorem. Let \(n = 2^k \) and let \(L \) be a partial \(n \times n \) column-latin square on 1, 2, \ldots, \(n \) with empty last column. Then there exists an \(n \times n \) latin square \(A \) on the same symbols which differs from \(L \) in every cell.

Proof. We use induction on \(k \). The theorem is obviously true when \(k = 0 \). Assume that the theorem has been proved for order \(m \) and let \(n = 2m \). By rearranging rows if necessary (and filling in some empty cells perhaps), we may assume that the \(m \)th column of \(L \) has the entries 1, 2, \ldots, 2\(m \) in that order. If we suppress the symbols 1, 2, \ldots, \(m \) in the upper left \(m \times m \) quadrant \(B \) and the lower right \(m \times m \) quadrant \(E \) in \(L \), we find ourselves with a pair of partial column-latin squares \(H \) and \(I \) on \(m + 1, m + 2, \ldots, 2m \) which both have empty last columns. Therefore we can find a pair of latin squares \(F \) and \(G \) on \(m + 1, m + 2, \ldots, 2m \), without any entries in common with \(H \) and \(I \) respectively, and certainly not with \(B \) and \(E \) either. Similarly, by suppressing the symbols \(m + 1, m + 2, \ldots, 2m \) in the upper right \(m \times m \) quadrant \(C \) and lower left \(m \times m \) quadrant \(D \) in \(L \), and applying the theorem, we find a pair of latin squares \(J \) and \(K \) on the symbols 1, 2, \ldots, \(m \), which fit into the upper right and lower left corner of \(L \) respectively, without any entries in common with \(C \) and \(D \). Together \(F, J, G \) and \(K \) make up \(A \). \(\square \)

The theorem is not valid for every \(n \) as seen by example below.

\[
\begin{array}{cc}
1 & 1 * \\
3 & 2 * \\
2 & 3 *
\end{array}
\]

\(\copyright 1989 \) Elsevier Science Publishers B.V. (North-Holland)
However, this is likely to be the only exception. In general perhaps the following is true for some positive constant c, which could be as large as $\frac{1}{3}$, say.

Conjecture. Let L be an $n \times n$ array of m-sets from a set of symbols $1, 2, \ldots, n$ where every symbol is used at most $m \leq cn$ times in each row and column. Then there exists an $n \times n$ latin square A on $1, 2, \ldots, n$ with entries in the complement of L.

A positive answer could have some impact on the following question.

Dinitz' problem.

Given an $m \times m$ array of m-sets, is it always possible to choose one element from each set, keeping the chosen elements distinct in every row and column?

For some related material see the references.

References