JOURNAL OF APPROXIMATION THEORY 13, 392-394 (1975)

The Banach Approximation Problem

A. M. DAVIE

Mathematical Institute, University of Edinburgh, Edinburgh, Scotland

Communicated by P. L. Butzer

DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SIXTY-FIFTH BIRTHDAY

The problem alluded to in the title is whether every (real or complex Banach space E has the approximation property, i.e., the property that the identity operator on E can be approximated uniformly on each compact subset of E by bounded linear operators of finite-dimensional range. Recently Enflo [2] solved this problem in the negative; a simplified version of his construction can be found in [1]. The object of this paper is to show how the construction in [1] can be framed in terms of some concrete formulations of the problem due to Grothendieck [3].

Grothendieck showed that the following 3 assertions are equivalent:

- (1) every Banach space has the approximation property;
- (2) if $A = (a_{ij} : i, j = 1, 2,...)$ is an infinite matrix satisfying $\sum_i \sup_j |a_{ij}| < \infty$ and $A^2 = 0$ then trace (A) = 0.
 - (3) if f is continuous on the unit square $[0, 1] \times [0, 1]$ and

$$\int_0^1 f(x, t) f(t, y) dt = 0 \quad \text{for all} \quad x, y \in [0, 1]$$

then

$$\int_0^1 f(t,t)\,dt = 0.$$

(in (2) and (3) a_{ij} and f may be assumed to be either real-valued or complex-valued).

A COUNTEREXAMPLE TO (2)

We construct a matrix A which disproves (2) as follows: for k = 0, 1, 2,... let U_k be a unitary matrix of order 3. 2^k Partition U as

$$U = \begin{bmatrix} 2^{k+1/2} P_k \\ 2^{k/2} Q_k \end{bmatrix}$$

where P_k has 2^{k+1} rows and Q_k has 2^k rows. Put

$$A = \begin{bmatrix} P_0^*P_0 & P_0^*Q_1 & 0 & 0 & 0 & \cdot \\ -Q_1^*P_0 & P_1^*P_1 - Q_1^*Q_1 & P_1^*Q_2 & 0 & 0 & \cdot \\ 0 & -Q_2^*P_1 & P_2^*P_2 - Q_2^*Q_2 & P_2^*Q_3 & 0 & \cdot \\ 0 & 0 & -Q_3^*P_2 & P_3^*P_3 - Q_3^*Q_3 & P_3^*Q_4 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix},$$

where the rows and columns are grouped in blocks of 3, 6, 12, 24,.... It is easily checked that $A^2 = 0$, using the relations

$$P_k P_k^* = 2^{-k-1} I_{2^{k+1}}, \qquad Q_k Q_k^* = 2^{-k} I_{2^k}, \qquad P_k Q_k^* = 0, \qquad Q_k P_k^* = 0$$

which follow from U_k being unitary. Moreover the trace of each diagonal block is zero, except the first. Hence to disprove (2) it suffices to show that the U_k can be chosen so that $\sum_i \sup_j |a_{ij}| < \infty$.

In fact we can choose U_k so that each element of the kth block of rows is bounded by $C(k)^{1/2} 2^{-3k/2}(*)$, C being a constant. Since the kth block contains 3.2^k rows this implies $\sum_i \sup_j |a_{ij}| \leq \sum_{k=0}^{\infty} 3C(k)^{1/2} 2^{-k/2} < \infty$ as required. Indeed we have $\sum_i \sup_j |a_{ij}|^p < \infty$ whenever $p > \frac{2}{3}$.

The U_k are constructed by putting on Abelian group structure on $\{1, 2, ..., 3.2^k\}$ (e.g., as a cyclic group), splitting the set of characters on this group into two sets $\{\tau_i : i = 1, ..., 2^{k+1}\}$ and $\{\sigma_i : i = 1, ..., 2^k\}$, and letting the rows of P_k be $3^{1/2} \, 2^{-(2k+1)/2} \tau_i$ and the rows of Q_k be $3^{1/2} \, 2^{-k} \epsilon_i \sigma_i$ where $\epsilon_i = \pm 1$. By a probabilistic argument one shows that for "most" choices of the splitting of characters and of the numbers ϵ_i ($i = 1, ..., 2^k$), the estimate (*) holds. Details may be found in [1].

A COUNTEREXAMPLE TO (1)

Following Grothendieck we can use the matrix A above to construct a space without the approximation property. Let a_i be the ith row of A; we regard a_i as an element of the Banach space c_0 of sequences converging to zero with the supremum norm. Let E be the closed linear span of $\{a_i\}$ in c_0 . Then E does not have the approximation property. To prove this we define a linear functional ϕ on the space B(E) of all bounded linear operators on E by $\phi(T) = \sum_i T(a_i)_i$. Then $|\phi(T)| \leq (\sum_i i^{-5/4}) \sup_i ||T(i^{5/4}a_i)||$ so ϕ is continuous w.r.t. the topology on B(E) of uniform convergence on the compact set $\{i^{5/4}a_i\} \cup \{0\}$. If $S(x) = x_i l_k$ then $\phi(S) = \sum_i a_{ki}a_{ij} = 0$ —since every operator of finite rank is in the closed linear span of such operators S—it follows that $\phi(T) = 0$ for all finite rank T. But $\phi(I) = \text{trace } (A) \neq 0$, which completes the proof.

394 A. M. DAVIE

A similar argument shows that we cannot get a counterexample to (2) satisfying $\sum_i \sup_i |a_{ii}|^{2/3} < \infty$.

Suppose we could. Let $\lambda_i = \sup_j |a_{ij}|$; we may assume $\lambda_i > 0$ for all i. Let $b_{ij} = \lambda_i^{-1/3} \lambda_j^{1/3} a_{ij}$ and let B be the matrix (b_{ij}) . Then $B^2 = 0$, trace $(B) = \operatorname{trace}(A) \neq 0$, and $\sum_i (\sum_j |b_{ij}|^2)^{1/2} < \infty$.

Then we can argue as above with l^2 in place of C_0 , regarding the rows of B as element of l^2 , and get a subspace of l^2 , not having the approximation property, which is impossible.

A COUNTEREXAMPLE TO (3)

Again following Grothendieck we can use the matrix A constructed above to find a function f disproving (3). Let $\rho_i = (10i)^{-1}(1 + \log i)^{-2}$. Since $\sum \rho_i < 1$ we can find a sequence of disjoint intervals I_i on [0, 1] with $|I_i| = \rho_i$. Let ϕ_i be a continuous function vanishing outside I_i with $\int \phi_i^2 = \rho_i$ and $|\phi_i(x)| \leq 2$, $|\phi_i'(x)| \leq 8\rho_i^{-1}$. Put $f(x, y) = \sum_{i,j} a_{ij} \rho_i^{-1} \phi_i(x) \phi_j(y)$.

It is easily checked that f has the desired properties. Indeed f satisfies a Lipschitz condition of order α for each $\alpha < \frac{1}{2}$.

REFERENCES

- A. M. DAVIE, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261–266.
- 2. P. Enflo, A counterexample to the approximation problem, *Acta Math.* **130** (1973), 309–317.
- 3. A. Grothendieck, Produits tensorielles topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).