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AbStlXCt 

Let r(w) denote the number of reduced words for an element w in a Coxeter group w. Stanley 
proved a formula for r(w) when W is the symmetric group A,,, and he suggested looking at 
r(w) for the ffie group Aln. We prove that for any afline Coxeter group R, there is a finite 
number of types of elements in xX, such that to every element w can be associated (I) a type t, 
(2) an element u in the &rite group X,, and (3) an n-tuple (mt,mz,...,m,) of integers rn: 2 0. 
Then r(w) = $(ml, . . . , m,), and for every r: and for large enough mi, a homogeneous linear 
~~rnen~o~ recurrence holds. For A”,, this takes a nice cornbi~to~~ form. We also discuss a 
canonical reduced word for w associated to its n-tuple. 

Soit r(w) le nombre de mots r6duits pour un element w d’un groupe de Coxeter. Stanley a 
dkmontr4 une formule pour r(w) dans le cas du groupe s~~que A,, et il a pod le probi&me 
d’&udier r(w) pour le groupe aBne A.. Nous montrons qu’il y a, pour tout groupe de Coxeter 
aEne Zn, un nombre fini de types d’&ments tels qu’on peut associer a chaque element w (1) un 
type t, (2) un Clement u du groupe Eni AL, et (3) une suite (mr,mz,. . . ,m,) d’entiers rni 3 0. 
Alors, T(W) = ry(ml,. . . , m,) et pour mi assez grands, r,” satisfait ii une recurrence homogene 
linkaire n-dimensionelle. Pour d,, cela prend une forme combinatoire agrkble. Nous pr&entons 
aussi une decomposition mduite canonique pour w, associe ir la suite des mi. 

1. IntrocIuctlon 

For an element w of a Coxeter group (W,S), a reduced word for w is obtained by 
writing w as a minimal product of generators. Let r(w) denote the number of reduced 
words for w. 

Stanley [6] and Greene and Edehnan [l] studied the number of reduced words for 
elements in A,, showing an intimate relationship with standard tableaux of the corre- 
sponding shape. Haiman [3] generalized their work to include the finite Coxeter group 
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B,, as well. Thus, for most finite Coxeter groups, the combinatorics of I(W) is very 
well understood. In his paper [6], Stanley also suggested that one should study the 
number of reduced words in the afhne group 2,. This is our purpose here. 

We will mainly work in the Coxeter complex, where reduced words correspond to 
minimal galleries. We shall show that for any a&e Coxeter group X, corresponding 
to a finite Coxeter group X,, there is a finite number of types of elements in Xn, such 
that to every element w can be described by an index of the form ;(mt,m2,. , . ,m,), 

where t is a type, x is an element of the finite group X,, and ml,rn~,. . .,m, are 
nonnegative integers. Thus, for any type t and element xf X,, we can define the 

easier-to-handle function c(ml, . , . , m.)d”=:(f(ml, m2,. . . ,m,)). Every rf is then shown 
to satisfy a homogeneous linear n-dimensional recurrence. For any fixed type t, the 
same recurrence will hold for every x but with different start values depending on the 
element x. An obvious application .of the recurrences would be to find as~ptotics for 
r;‘. To the author’s knowledge, no work in this area has been done as yet. 

The description of the recurrence is geometrical in nature. However, for the afEne 
groups A”,, a combinatorial form of the recurrence can be obtained by digging into the 
geometry. This is presented in Section 6. 

We will also discuss a canonical reduced word for w related to U, t and (ml,. . . , m,). 

2. The alcove complex and weak order of an afhe Coxeter group 

A Coxeter group (or, more precisely, a Coxeter system) ( W,S) is a group W together 
with a distinguished set {at, 02,. . . } of generators, and integers mij where mii = 1 and 
mij 2 2 for i # j, such the group is defined by the relations (rriflj)“Q = e (the identity 
of the group). mu may be 00, in which case Oiaj has in&rite order in W. We refer to 
H~p~~s’s book 143 for details on Coxeter group theory. 

2.1. The alcooe complex 

In this paper we will mainly take the hyperplane arrangement approach to Coxeter 
groups, since this provides the best intuition for the afline groups. To begin with, let X, 
denote an arbitrary finite irreducible crystallographic reflection group in R”, generated 
by n reflections cl,..., a,, and let Y? be the arrangement of reflecting hyperplanes, all 
going through the origin, splitting IR” into cones. Every cone is bounded by n walls, 
and they can be canonically labeled by cl through o,, such that when one cone is 
mapped to another via a sequence of reflections in the hyperplanes, the labeling of the 
walls is invariant. The cones correspond bijectively to the group elements of X,,. Let 
e denote the identity element of X, and associate with it one of the cones, denoted 
Ve. Then for every group element x EX,, there is a unique cone Y* that you get to 
by walking from Ve through any sequence of walls labeled ai, ai2 . . . aik such that the 
corresponding product of Coxeter generators is equal to x. 
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For a cone Vx, let 6 be a unit vector in the direction of the ray that is the intersection 
of all the bounding walls of P, except for the one labeled Oi. Thus, P is the positive 

span of the vectors e;l: 

Example. We will present a running example with C2 as the Coxeter group ‘X,‘. CZ 
is the group of 8 elements generated by reflections in two lines with an angle between 
them of 45’ (see Fig. 1). 

The afine group 2,, corresponding to the finite group X, is obtained by adding to the 
set of generators a reflection in an afline hyperplane parallel to one of the hyperplanes 
in ~8’. Let .$’ denote the infinite afline hyperplane arrangement; thus 9’ c .%b (see 

Fig. 2). 
9 refines the cones of &’ into finite &coves, each bounded by n + 1 walls, and 

every collection of n such walls has one common vertex. Choose the alcove C, at the 
apex of the cone V, to be the ~~~e~~u~ alcove. Let the n walls of C, that coincides 

Fig. 1. The hyperplane arrangement of Coxeter group C2. 

Fig. 2. The atline hypezpiane arrangement of atfine group 62, with the fundamental alcove C, painted and 
the origin encircled. 
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with the walls of the cone V, inherit the labels of the coinciding walls, and let the 
final wall be labeled ~1. In analogy to what we did with the cones, label the wails of 
every alcove by ur through a,+1 such that the labels are invariant under reflections in 
hyperplanes in 2. Let %? be the alcove complex defined by 2. A gallery is a walk in 
the complex, and a minimal gallery is a shortest possible gallery between two alcoves. 
Like before, each group element w ~2~ can be associated with an alcove C,., E V such 
that C, is the alcove reached from the f%miamental alcove C, by a gallery whose 
labelings correspond to a product of generators equal to w. 

The alcove complex of 2, and the parabolic subgroup X, induces a tesselation of R 
in the following way. The set of all alcoves with one vertex in the origin corresponds 
to the group elements of the parabolic subgroup X,, generated by (~1,. . . , o,J. The 
shape of the union of these alcoves is an X,-block. Thus, the partitioning of 2, into 
cosets of X, gives a tesselation of R” in X,-blocks (see Fig. 3). 

We say that two alcoves have the same orientation if one can be mapped to the 
other by pure translation. The alcoves are of course all congruent (since they are all 
reflection images of each other), but there may be several different oblations. For 
example, (?z has four different orientations of its alcoves, as can be seen in Fig. 3 How 
many ~en~tions are there in general? Since hyperplanes of all orientations meet at 
the origin, all kinds of reflections can be carried out within the X,-block, and hence all 
possible orientations of alcoves are represented among the j&l alcoves that touch the 
origin. However, the &-block may contain more than one alcove of each orientation. 

Lemma 1. Let ~(2”) be the number of parabolic subgroups of J?,, that are isomor- 
phic to X,. Let k be the number of possible orientations of alcoves in 2,. Then 

,a@-, 
P(X” ) 

Proof. Number the vertices of the ~~~~1 alcove such that vertex i is the vertex 
opposite to the wall labeled Oi. Let S be the generator set 01,. . ., ~~~1. The maximal 
parabolic subgroup generated by S - {ai} can be identified with vertex i of the fim- 
damental alcove, since the n walls of the alcove that contain the vertex correspond to 
the n generators. This parabolic subgroup is isomorphic to X, if and only if vertex i 
is equivalent to the origin, in the sense that the alcove complex (ignoring all labels) 

Fig. 3. The Cz-blocks in the complex of &. 
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is invariant under translation of vertex i to the origin. Hence, there are Il(X,,) such 
origin-type vertices of the fundamental alcove. 

Now, since the complex is invariant under the translation of an origin-type vertex to 
the origin, in particular the phenol alcove is translated to another alcove of the 
same orientation. Conversely, when translating the fundamental alcove to any alcove 
with the same orientation and touching the origin, then the vertex translated to the 
origin must be of origin-type. Hence, among the alcoves touching the origin, there are 
~$2”) oriented as the fundamental alcove. By symmetry, there are ~(2~) alcoves of 
each orientation among the IX, 1. Cl 

Remark 1. Parabolic subgroups of X,, isomorphic to X, correspond to subgraphs of the 
Coxeter graph of X* isomorphic to the Coxeter graph of X,. By examining the Coxeter 
graphs of all afFine groups (see tables in Humphreys [4]) one obtains the following table: 

Xn An & G 4 3% ET Eg F4 & 

P&d n+l 2 2432111 

2.2. The weak order 

The weak order of a Coxeter group is a partial ordering defined by the following 
covering relations: if c is a generator, then w is covered by WCT in the weak order 
if Z(M) = I(w) + 1, where the length function Z(w) returns the length of a shortest 
reduced word for w. 

In the alcove complex of the afhne group Xn, reduced words are equivalent to 
minimal galleries. We might as well regard the weak order as a partial order on the 
alcoves. In this ordering, any alcove C E %’ defines an interval [C,, C], which is the 
subset of %’ consisting of all alcoves that you can visit by walking minimal galleries 
from C, to C, which is equivalent to walks that cross only hyperplanes that separate 
C, from C (see Fig. 4). 

At one point we will need the fallowing well-known property of the weak order, 
see for example Section 5.11 in Humphreys’s book [4]. 

Fig. 4. The interval [C,, C] with the three minimal gallezics indicated. 
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Lemma 2. Let w be an element and (~,a’ two generators, and let > denote compar- 

ison in the weak order. If wa > w and wa’ > w, then was’ > WCT. Dually, if wa < w 
and wa’ < w, then woa’ < we. 

3. The truncated cone co~~ction 

What we are going to do is covering the complex % by a finite set of truncated 
cones, Y” = { Y” :x E X,), where each V E Y is bounded by some hollies in .%‘. 
We identify a cone with the set of alcoves contained in it. This covering will have the 
following three properties: 

(iii) C E V * [C,, C] C V for all V E V. 

In words: (i) the truncated cones cover the complex; (ii) only the fundamental alcove 
C, lies in every truncated cone; (iii) all minimal galleries between C, and any given 
alcove C stay in the truncated cone in which C lies. 

We will take Vx to be the smallest region bounded by hyperplanes in 2 and 
containing both C, and V*. This cons~ction should be viewed in the following way 
(see Fig. 5). Build a thick wall from a pair of successive parallel hyperplanes in .$ 
enclosing the fumiarnental alcove C,. In other words, each of the hypcrplanes in the 
finite arrangement S’ is thickened to a thick wall con~i~ng C,. Now, what we have 
got is a thickened version of the hyperplane arrangement for X,, and since the thick 
walls overlap, they bound a set of IX,] truncated cones. (A truncated cone contains 
its thick walls.) Of course+ every cone of the ‘thin’ ~~gement H is contained in 

Fig. 5. The thicked arrangement of C2, with one +mncated cone P painted. 
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exactly one of the truncated cones. Label the truncated cones accordingly, so VX is the 
truncated cone containing VX. 

Lemma 3. The set Y = ( V” : x E Xn) of ~~ca?ed cones has the properties (i), (ii) 
and (iii) above. 

Proof, (i) Already the ( Vx : x f Xn} covers the complex, so a fortiori the truncated 
cones do, (ii) follows immediately from the construction. To prove (iii), let C be an 
alcove in VX. Since a gallery from C to C, that leaves the cone V’ must also reenter 
the cone, it must cross some bounding hyperplane twice. Thus it cannot be minimal, 
so all minimal galleries from C to C, stay in the cone. q 

Thanks to property (iii) we know that when counting minimal galleries we can 
restrict our a~ntion to one truncated cone instead of the entire complex. Except for 
the truncation, Vx is bounded by n hyperplanes, with a natural labeling Hf, Hi,. . . , Hi 

induced by the labeling 01,. . . , a, of the corresponding walls of Vr. We shall now 
introduce yet another size of pieces, bigger than alcoves and smaller than cones. Make 
R” into a lattice of cells by subdividing it by all hyperplanes of 2 that are parallel 
to any of the bounding hyperplanes of VX. Fig. 3 should make the situation clear (see 
Fig. 6). 

Note that since the subdivision is caused by a subset of &, the alcoves are finer 
objects than the cells. Every cell will be a union of alcoves of %. The apex of a cell 
is the vertex closest to the origin. 

Lemma 4. Every cell of a cone Vx is composed of alcoves in the same way, and 

every possible orientation of alcoves occurs exactly once in every cell. Thus, if there 
are k possible orientation of alcoves, then an arbitrary cell consists of k alcoves. 

Proof. The apex of any cell is of origin-type (see Section 2.1), since the n walls 
(of the cell) containing the apex are parallel to the n walls bounding a cone in the 
X&rrrangement, so by reflections they generate an isomorphic hyperplane arrangement 
through the apex. Together with one of the other walls they generate the entire affine 
a~~gern~t. Hence, from the viewpoint of an apex the ~gement can only look 
in exactly one way, so in particular every cell must look the same. Also, from the 

Fig. 6. The cell decomposition related to the truncated cone YI. 
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Fig. 7. A &-cell and its decomposition into alcoves of four types. 

viewpoint of any alcove of the same orientation as the alcove at the apex of the cell, 
the arrangement can only look in one way. Since there are no additional hyperplanes 
parallel to cell walls, there can be just one alcove of this orientation in every cell, and 
by symmetry the same must hold for every orientation. IJ 

We would like to treat all truncated cones in the same way. Therefore, we are 
not really cased in the physical oblation of an alcove, but rather the orientation 
relative to the truncated cone in question. Given a speci$ed cone Vx, define the type of 
an alcove to be its orientation relative to the cone. If there are k different orientations 
of alcoves, then there are of course also k types of alcoves, and by Lemma 4 there is 
one alcove of each type in every cell (see Fig. 7). 

We can index the cells of Vx by n integer indices such that x(O, 0,. . . ,0) is the 
cell containing the fundamental alcove, and x(mi, mz, . . I , m,J is the cell separated from 
x(o,o,..., 0) by rni hyperplanes parallel to rt,+ for all i = 1,2,. . . ,n. See Fig. 3. (Note 
that, since the cones are truncated, there may be some alcoves in these cells that are 
not entirely contained in P.) 

Thus, every alcove of the truncated cone Yx can be described uniquely as f(ml, . . . , m,) 
for some indices ml ,...,m, 2 0 and some type t. 

4. Counting minimal galleries 

We are interested in the number of reduced words for an element w ~2~. Reduced 
words for w are equivalent to minimal galleries between the corresponding alcove C, 
and the fundamental alcove C,. C, belongs to some truncated cone Yx E -L” (possibly 
to several) and we know that the minimal galleries never leave this cone. 

Let r(C) denote the number of minimal galleries from C, to the alcove C. Trivially, 
we have r( C,) = 1. For C # C,, a fundamental observation is that, using the covering 
relation of the weak order, 

r(C) = x r(C) summed over all C’ covered by C. (1) 

By the analysis in the previous section, we know that any alcove C in a specified 
truncated cone Yx can be uniquely indexed :(ml,...,m,), for some type r and in- 
dices ml , . . . , m,. Thus, for every type t and every x EX”, we may detine the function 
r::iZ* --+ N by 

r:(mj,...,m,): = r(:h..., m,)) if the alcove belongs to Vx, 
0 otherwise. 
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II” H 

Fig. 8. Illustration of the proof. 

Instead of determining r(w), we shall hence determine r+i,. . . , m,). We know that 
all covering relations for alcoves in Vx occur within V*, so we may rewrite Eq. (1) 
using $ instead of r: 

rflml,. . . , md=~lj:(h...,M, :O~,...,pd covered by :h,...,m,). (2) 

Now we shall prove that, for each type t, Eq. (2) can be given a uniform look by, for 
the alcoves at the boundary of Y”, adding some zero terms. 

Lemma 5. Let Cl and Ci be two aicoves of the same type t in Vx. Let C2 be an 
alcove covered by Cl, and let Ci be the correspo~di~ neighbor of C,l. Then either 
C$ is covered by Ci or else Cg does not belong to Vx, 

Proof, Let H and H’ be the hyperplanes bounding the thick wall parallel with the 
wall between Cl and Cj, and hence also parallel with the wall between Cf and 
C& By construction, one of these hyperplanes, say H, intersects the interior of Vx, 
while H’ does not. Of course, in the half-space separated from C, by H (including 
H), every wall parallel to H will have the same side facing C,. Suppose Cl does 
not cover C& Then the wall in between does not have the same side facing C, as 
does the wall between Ci and C2, hence it is not in the half-plane separated from 
C, by H. But then Ci must be on the outside of H’, and thereby not inside Vx. 
See Fig. 8. •i 

Thus, if there are k types, the relation (2) can be expressed as a system of k recur- 
rences, one for each type t. The alcove de~om~sitio~ being a reflection ~gemen~ 
is of course invariant under the orientation x of the cone. However, the fundamental 
alcove is located differently in d&rent truncated cones. This means that for x # y E X,, 
the recurrences for rf and rf will look the same, but tbe boundary values will differ 
(or, rather, the location of the boundary will differ). It is convenient to introduce the 
difference operators defined by 

ai@ ,..., mi ,..., m,)=r(ml,...,mi- l,..., m,). 
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Fig. 9. Sketch of a truncated cone V*, with the arrows signifying the covering relations between alcoves 
in &. 

Example. In & there are four types, which we may number 1 through 4 by decreasing 
distance from the apex of the cell. With VX given by Fig. 9, the initial values are 

MOYO)=L C@,l)=O, $(-l,m*)=rf(mt,-1)=0 for all t,ml,mz. 

The covering relations, as seen in Fig. 9, give the recurrences: 

Elimination gives a single recurrence, which for any type t has the form 

rF(ml,mz) = rF(ml - l,m2) f 2rf(mf,mz - 1) e rf = (aI + 2a2)+. 

Theorem 6. Let T be the set of the k types in the alcove complex of 2,. The rf are 

determined by’ a system of k homogeneous, first-order linear recurrences: 

rX = 
c 

X 
t A, flrtJ for each t E T, 

PET 

where A,# is .a difference operator that includes only first-order terms and constants, 

The boundary values are given by r(C,) = 1 and r:(ml, . . . , m,,) = 0 for all alcoves 

f(ml,..-, m,) that do not belong to VX, which cun be described by at most I&l 
conditions. 

Proof, As we observed earlier, it follows from Lemma 5 that for each type d one can 
formulate one recurrence that holds for all alcoves of type t. The terms come from 
covering relations between neighbor alcoves, and two neighbors must of course either 
belong to the same cell or to two neighbor cells, yielding constant terms and first- 
order terms respectively. Finally, the boundary of a truncated cone is described by the 
exterior hyperplanes of the bounding thick wails, which can be at most f&j, the total 
number of thick walls. Cl 
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Give the types any linear ordering satisfying t’ > t when t covers t’ in the cell. 
Thus, in this ordering the difference operator Ar,,l has no constant term when t’ < t. 

We can now express the system of recurrences as a matrix multiplication: 

All elements below the diagonal lack constant terms, while all diagonal elements have 
constant term 1. It is easy to verify that this property is preserved during Gaussian 
elimination without pivoting. Thus, by completing the Gaussian elimination, we arrive 
at a diagonal matrix diag( 1 - di) or, eq~valently, a system of k independent linear 
recurrences: 

rn = AtrX t t t 3 f= l,%...,K, 

for some constant-free difference operators A$. Let us state this as a theorem. 

Theorem 7. For every alcove type t there is a constant-free d#erence operator Ai of 
degree < 2k-’ such that the numbers of minimal galleries rf(ml,. . . ,m,) satisfy the 

homogeneo~ n-d~e~io~a~ linear recurrence 

rtx(ml,..., mn)= A~r~(ml,...,m,,) 

whenever all mi are su$ficiently large. 

Proof. Evening is clear except for the upper bound on the degrees. During the 
Gaussian elimination, let d:f,) denote the operator at row j and column 1 after rows 1 
through i have been eliminated. We get 

Thus, the rnax~~ degree is at most doubled for each elimination of a row. There 
are k - 1 rows to be eliminated, so the final degree is bounded by 2k-‘. q 

5. A canonical reduced word 

In this section we will revisit the geometry of the alcove complex in order to find 
a canonical minimal gallery for each alcove. This gallery will walk in turn in each of 
the n directions that span the cone containing the alcove. We will then determine the 
reduced words that correspond to walking in each direction, 
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5.1. A canonical minimal gallery 

Recall that in Section 2.1 we defined the unit vectors e,‘, such that the cone Vx is 
their positive span. The vector L$ can also be decribed as pointing in the direction of 
the ray given by the intersection n,+, H;, where the {II;, , . . , Hi} are the bounding 
hyperplanes of the cone. 

In Section 3, we defined an indexing of the cells of V”, such that the ith index 
changes when a wall parallel to Ht is crossed, Walking in the direction of 4, no 
hyperplane parallel to H,? is crossed, for any j # i. Thus, walking in this direction only 
affects the ith index. 

Our aim now is to construct, to each alcove C,, a canonical mmimal gallery fkom 
the fundamental alcove C,. First, we will need yet another subdivision of space into 
cones. Let pe be a point in the interior of Ce. Introduce a new set of hyperplanes sPe, 
by translating &’ to be centered in pe instead of in the origin. As always, .8!YPe splits 
space in jXnl cones; let V;= denote the cone that is the translation of Vx. Thus, 

Now, choose one generic point pw in the interior of every alcove C,,,. Hence, for some 
unique x E X, we have 

pw=pe+Rl~+*~*+;l,~ with all A,,...,&>O* 

We define the canonical pe, p,-gallery from C, to C, by the walk (in n straight lines) 
(see Fig. 10) 

Pe - Pe + 214 -Pe+b$+J24 --+ * * * - pe + A,< + * * * + A& = pw. 

(The points pe, pw should be chosen generic such that the gallery contains no degen- 
erate crossings of walls.) 

Proposition 8. The canonical pe, pw-gallery is a minimal gallery from C, to C,. 

Proof. Were the gallery not minimal, it would have to cross some hyperplane H E 2 
twice. Obviously, this H cannot be parallel to any of the bounding hyperplanes of the 

Fig. 10. A canonical pe,pw-gallery in &. 
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cone V;<. But all other hyperplanes in $ have, by con&u&n of the cones from &‘, 
Imite intersection with the cone, contradicting the fact that if H can be crossed twice 
by going in straight lines directed as el , . . . , e,,, then 2% can be crossed infinitely many 
times by repeating the crossing pattern. Cl 

5.2. Canonical reduced WOP& 

We shall now find out what words correspond to walking in the n basic direc- 
tions of the alcove complex discussed above. Once again, let S be the generator set 

1% . . . , a,+~}. Recall that o,,t is the a&e reflection, so S - (~~+t) generates X,. 
Let Gj denote the maximal (that is, of maximal length) element of the parabolic sub- 
group generated by S - {ai). Define analogously +J to be the maximal element of 
the parabolic subgroup generated by S - {oi, Oj). 

We use (w) to denote any reduced word for a group element w. 
To begin with, we shall restrict our attention to the cone Ve that has the fun- 

damental alcove C, at its apex (but later we shall see that everything works simi- 
larly for every cone). Ve is bounded by the hyperplanes Hi = H/ for i = 1,. . . ,n, 

and Hi coincides with the wall of C, labeled q. The ith direction of the cone is 
defined by the line Li = nj_+Hj. We shall now walk along this line, in the 
direction of ei. 

Two alcoves are successive along the line Li if they are on the same side of every 
hyperplane through Li, and they have a common vertex on Li. Recall tbat all alcoves 
with one vertex in a point v have the same label on the wall opposite to v. 

timma 9. Let V&f, vk, vk+l be three SucceSSiVe Vf??tiCeS on the line Li, with opposite 
walls labeled ai,_,, aik and Q,,, respectively. Let Ck and Ck+l be the successive 
alcoves along Li with common vertex vk. Then the following holds: 

(1) ~~i~_~~~~~~) & a ~~~a1 gallery from ck to &.,~. 
(2) %+t =tij~Cj*_,$&. 

Proof. The following sketch of a 2~~i~al cut through the line Li and the alcoves 
Ck and &+I explains the proof: 

(1) To get from Ck to Ck+l one must cross all hyperplanes through vk except for 
those generated by {H’ : j # i}. It is easy to describe a nonminimal gallery: First 
cross all hyperplanes generated by {Hj : j # i}; this corresponds to the group element 
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n 
w~_,+~. Then cross all hyperplanes going through uk; this corresponds to the group 
element Gia n Thus the reduced word (riii,_,~~6&) gives a minimal gallery from Ck 

to Ck,l. 
(2) Let H be the hyperplane coinciding with the wall of alcove C&J labeled o&i. 

Crossing this wall can be done by first crossing all hyperplanes through uk by Gik, 
then crossing H, which here coincides with the wall crik_, , and finally crossing all 
hyperplanes through uk once again by tii,. Thus, (Ii&+, = $ai,_,$i,. Cl 

Suppose we have a reduced word corresponding to a minimal gallery in a certain 
direction from a certain alcove. The following lemma tells what word might be used 
to travel in the same direction from other alcoves. Remember that a minimal gallery 
extends in the ith direction of the cone Vx if it is parallel with tbe line Lf = njfi Hf. 

Lemma 10. Let C be a~ alcove. Let (w) be a reduced word for some minimal gallery 

from C extending in the ith direction of Vx, let oj be some generator, and let C’ be 

the alcove reached by crossing the wall oj from C. If the wall oj is ~rallel to SOBE 

hyperplane containing Lf, then (w) is a minimal gallery from C’ in the ith direction; 

otherwise, (ojw) is a minimal gallery from C’ in the ith direction. 

Proof. If the wall ej is parallel to some hyperplane containing Lf, then reflection in 
this wall gives a gallery that still is parallel with Lf. Since the labels are invariant 
under reflections, (w) is a minimal gallery from C’ in the ith direction (see Fig. 11). 
On the other hand, if the wall Oj is not parallel to any hyperplane containing Lt, then 
crossing aj is a step (backwards or forwards) along the ith direction, and the minimal 
gallery (ajw) from C’ extends in the ith direction. 0 

ProposItion 11. Every reduced word corresponding to a minimal gallery in the ith 

direction of Vx is a factor (that is, a contiguous subword) of the infinite periodic word 

OZi = ~~~(~~~,~,~~,>(~i,j2~~~)...(~~k_I,~kI;(~~)~.~, 

where io = n + 1, it = i, and all other indices are determ~ed by Gi,,$ = Gi~oi~_,G~~ for 

all k. 

Proof. First, observe that the infinite word must indeed be periodic, since there are 
only a finite set of possible pairs i&l, i&. Now, study the cone Ve, with apex in the 
fundamental alcove C,. Going in the ith direction from C,, the statement follows from 

Fig. 11. Reflection in a wall parallel with Lf. 



Lemma 9. It is easy to see from the picture of the proof, with Cr = C,, that io = n + 1 
and il = i. Thanks to Lemma 10, we know that the inhnite word describing the ith 
direction does not change when we leave C, for any other alcove. 

Finally, the ith direction for any other cone P is obtained from the ith direction 
of Ve by the reflection sequence that takes Ve to I”, and labels are invariant under 
reflections, so the statement holds for all cones. 0 

The canonical minimal galleries of Section 5.1 can now be expressed as reduced 
words: 

Theorem 12. The canonical gallery of Proposition 8 corresp.on& to a reduced word 
of the form {uI)(v~) . . . (u,) where (vi) is a factor of the periodic word Ui for .aN 
i= 1,2 ,..., n. 

Proof. Immediate from Proposition 11 and the .definition of canonical gallery. 

Example. Let us look at C2 again Here we have three generators {crt , 02, ~3). The 
maximal elements of parabolic subgroups are 

$1 = 0203, I.92 = (71 CT361 03, $3 = (r2qtr2al) 

$I,2 = 03, +%,3 = crzl &3 = Cl. 

Furthermore, in Ct we have tGjoi+Gi = offor all i # j. Thus, walking in direction 1 will 
give, repeatedly, the word 

(%,3%)(~3,1+3) = (@fl2~3)&?~2~1~2~l) = ~3~1~2ol. 

Similarly, we can compute the repeated word for direction 2 to be 

This is verified in Fig. 12. 

Fig. 12. The words in the hvo basic directions of cz. 



6. The recurrence for d, 

For the ffie group A”“, there is a more combinatorial way of stating the recmrences. 
A”,,n B 2, is the group whose Coxeter graph is a circuit of n + 1 nodes. Thus, the n + 1 
maximal parabolic subgroups of A”, are all isomorphic to A,,, the group whose Coxeter 
graph is a path of n nodes. One consequence of this is that every vertex of the alcove 
complex is of origin-type. Another one is that Lemma 1 gives for A”, that the number 
of types is k=(n+ l)!f(n+ l)=)r!, which is equal to the number of permutations in the 
symmetric group S,. S, is isomorphic to An-l, where the generators (61,. . . , a,_~} are 

interpreted as the adjacent transpositions {( 1,2), . . . , (n - 1, n)}. The interplay between 
these concepts - types, permutations, and elements of A,,_1 - will lead us to the 
following result. 

Theorem 13. Let D(n) be the descent set of z, let si denote the transposition (i,i+l) 
for i = 1,2,...,n - 1 and let z be the rotation operator a!$ned by z(ltl nz: . . . zn) = 

%lm **.lc,_], so 2=s~_fsn_$ . . . sl. The elements in a given cone of 2, may be indexed 
by a permutation 7c and ml,. . . , m, such that r, satisfies the recurrence 

r&o ,..., m,)= r,(,)h ,..., m,-, f Lm--nn+i - I,... ,md 

+ C rs,(z)(ml,...,mn). 
SD(Z) 

(When 7rn = n, the first term of the right part should be interpreted as 

r+)(mt - Lm2,...,md.) 

The exact meaning of r&l,. . . , m,) will become clear later; we will have to change 
the shape of the cells, so that they coincide with cosets isomorphic to the parabolic 

subgroup A,_ 1. 

To begin with, recall the cells of Section 3. Every cell is bounded by n pairs of 
hyperplanes, each pair parallel to one of the bounding hyperplanes II:,. . . ,Hl of the 
cone. From now on we omit the superindex x, since the combinatorics is invariant 
over different cones. We may number the hyperplanes bounding the cells, such that 

cell (ml,. . . , ml is ~umkd by the pairs (Hl,n,,Hl,nt,+l),...,(H,,,,,~~,,,+l). Each 
cell contains exactly one alcove of each type, in total n! alcoves. A cell (ml,. . . ,m,) 
with all rni 2 1 is an inner celE; all inner cells are properly contained in the truncated 
cone. We shall distinguish a special alcove in every cell: the apex alcove with n walls 
coinci~g with Ht,n,, . . . ,Hn,m,. We will say that a wall of an alcove C leads down if 
it separates C from C,; otherwise it leads up. 

Lemmoa 14. The apex alcove of every inner cell has n walls that leads down (viz. the 
walls ~oinc~i~ with Hi,mt,. . . , ZY&,~,). 

Proof. Obvious. 0 
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In the following, C will denote the apex alcove of the geueric inner cell (a~,. . . , m,). 

Relabel the walls of C such that si is the label of the wall parallel with Hi for i= 1,. . . , n, 

and label the last wall by $0. (Observe that this will be related to the original labeling 
SU& that for some fixed k, ri = oi+k for all i module a + 1.) We can now state the 
word for a miuimal gallery from C to the apex alcove of (mr,...,mj - l,...,nr,) for 
any i, that is, the word for walking one step in the negative ith direction. 

Lemma 15. From an apex alcove C, a minimal gallery to the first apex alcove C’ 
reached by walking in the negative ith direction is 

Proof. Since all vertices are of origin-type, successive alcoves along a line will be of 
the same type. Hence, C’ and C are successive alcoves along the hue Z+ By Lemma 9, 
the gallery between them, in the negative direction, is (&,6&J. This is an element 
of the parabolic subgroup generated by st through s,, which is isomorphic to &,+I. 
Write permutations on one-line form 7~1 . . . n,+l. Then $0 is the reverse permutation 
(n f 1)$x - l)... 1, while $j,o is the Yukon i(i - l)... l(n + l)n...(i + 1). 
Composing these, we get that $j,&~ is the permutation (i + 1) . . . n(n + 1)l . . . (i - 1 )i, 

which is equivalent to rotation i steps. Rotation one step can be expressed as ~1~2.. . sn. 
The statement follows. q 

Lemma 16. The unique periodic word for waiking in the 1st negative direction from 
an apex alcove C is 

SlSZ . ..s.sos~s2...s,sf)... 

In particular, S$i+l . . . s,sosl . . .Si_2 is always a type-preserving galfery. 

Proof. As noted in the lemma above, the first type-preserving step in the negative 1st 
direction is G~,oI+o = ~132 . . .s,, and this is the unique reduced word. As a permutation 
&sl+, works by first reversing order, then switching the first two letters, and finally 
reversing order again. This results in a transposition of the two last letters, that is, 
)itosr~e=sn. Thus Lemma 9 gives that the next type-preserving step in the 1st direction 
is I&& =sosl . . . sn- I, and by symmetry the next type-preserving step is s,sost . . . ~~-2, 

etc. 0 

Define the A,_1 -block of C to be the set of alcoves containing C and corresponding 
to the parabolic subgroup generated by (~1,. . . , s,_ t }. Our wish is to use A,_1 -blocks 
instead of cells when indexing alcoves. We must show the following: 

Lemma 17. Every alcove lies in the A,_l-block of exactly one apex alcove. Every 
A,_l-block contains exactly one aicove of each type. 
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Proof. We know that there are as many alcoves, n!, in an &-r-block as there are 
types. We shall show that every neighbor alcove of a block has the same type as one 
alcove within the block. This s&ices, because the complex looks the same from the 
viewpoint of any alcove of the same type, so the neighbor alcove must also lie in an 
A,_r -block. 

The wall between the block and the neighbor must be labeled SO or s,. Suppose the 
label is SO. Then the gallery sesi , . . s,.._l from the neighbor fhst leads into the block 
and then remains inside it (since all walls labeled st through s,_i are in the interior 
of the block), and by the previous lemma, this gallery is type-preserving. For the case 
when the wall is labeled s,, use the type-preserving gallery snsn_~ . . .SI. 0 

Observe that in its An- 1 -block, the apex alcove C will be the alcove farthest from the 
amend alcove. We will regard the elements of an &-t-block as permutations in 
S,, with the apex alcove being the reverse permutation n(n- 1). . . 1. Thus we may index 

any alcove by &xi,. . . , m,), signifying the alcove that corresponds to permutation n in 
the &i-block of the apex alcove of cell (m; , , . . , m,). The isomorphism between A,- 1 

and 8, gives that a wailsi,i=l,2,..., n - 1, leads down from the alcove corresponding 
to permutation 7r = 711x2.. . n,, if and only if i is in the descent set of n, that is, 
xi > q+i. But what about walls $0 and s,? 

Lemma 18. Let C be the apex alcove of QR her cell. For all alcoves in its A,_l- 
block, the wall s, leads down and the wall SO leads up. 

Proof. From C we know that walls si through s,, lead down. It follows from Lemma 2 
that from all alcoves that can be reached from C by walking down via galleries that 
do not contain s,, the wall s, will lead down. All alcoves in the block can be reached 
by such galleries (since, in the block, C is the alcove farthest from the fundamental 
alcove), hence s, leads down in the entire block. By symmetry, SO must lead up for 
every alcove in the block. Cl 

As noted in Lemma 16, for every i = 0, 1, . . . , n the n-letter word sisi+l , . . S,SO . . . Si-2 

is type-preserving. Suppose Cl is an alcove, C2 its neighbor via wall sj, and Cl is 
the alcove of the same type as Ci reached by sisi+t . . . s,So . . .si-2, with co~es~n~g 
neighbor Ci. What is the type-preserving gallery between C2 and Cl? By combining 
Lemmas 10 and 16, we get that Sisi+l . . .S,SO . . .si-2 is transformed to 

{ 

Siff S&2 I * e S&30 . . . Si- f if j=i, 
Sj-_1Sj . ..S.So e..Sj-_3 ifj =i- 1, 

risi+ 1 . ..S& . ..Si-2 otherwise. 

By the notation (ml,. . . ,mi_l + 1, mi - 1,. . . , m,) we mean an n-tuple where the jth 
entry is Mj for all j#i- 1,i. 
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Lemma 19. SiSj+l + a -&SO , . . Si_2 i.7 a minimal salrery from the apex alcoue (ml,. . . , m,) 

to the apex alcove (ml,...,mi-1 + 1;ttZi - 1, -..,mn), $3 i= l,...,n. 

Proof. First observe that walking stsz . . .s,, transforms 

Q%+ 1 . ..S.SO... Si-2 t0 Si-_1Sj v s *SpTO e B *Sj-3; 

the part SI . , . q-2 has no effect, the ri-1 does the transformation, and Si . . . s,, has 
no effect. Hence, walking (srs2 . . . s,)i-l lowers the indices i - 1 times, so the word 
is transformed to srs2 . . . s,,. We know from Lemma 15 that (~72 . . . sn>i walks one 
block in the negative ith direction, and (~1s~ . . . s,)‘-’ walks one block in the negative 
(i - 1)th direction. Since (stsz..-_s,>‘-‘(s~s~...s,)=(s~s:!...~,)i, we have shown that 
the transformed gallery increases the (i - 1 )th index by one and decreases the ith index 
by one. Cl 

For convenience, let us restate Theorem 13: With D(R) the descent set of at E S,, and 
r the rotation operator defined by r(7rtrrr . . . n,)=n,z1. . . ~~-1, that is, T=s~_Is,,__I . . .SI, 
we have the recurrence 

Proof. Let Cr be the alcove of type rt = ~rlrc~. . . n, in block (ml,. . . , m,). The number 
of minimal galleries from Cl to C, is the sum of such numbers for the neighbors of Cl 
through walls leading down. These are the walls labeled si for every descent i E D(K), 
leading to the alcove of type si(n) in the same block; and furthermore we have the 
wall labeled s, leading to, say, C{ outside the block. Let C2 be the alcove reached 
from Ci by the type-preserving gallery s,s,_r . + .q. Thus, C2 is reached from Cl by 

&l-l . ..q =T, so CZ, and hence C{, has type r(rt)=1t~nt..,rr~__1. 
Finally, we must show that Ci is in the block (ml,. . . , m,_, - 1, m,_n,+l + 1,. . . , m,). 

Let C be the apex alcove of block (ml,...,mn). Then C, being of type n(n - l)...l, 
can be reached from CZ by a gallery (o)srs~ . . .s,_,,, where (L)) sorts nt . . .R,,_I in 
decreasing order (never using sl), and then SISZ . . .sn+ puts n,, at its place, the (n + 
1 - n, )th position. 

How is the word sr . . , s,, (that takes us from C2 to Ci) affected by the walk up to 
C? Well, (v), not using sr (nor, of course, SO), does not affect the word st , . .s,, but 
srsr . . .sn_n” transforms the word to ++I_, . . . S,SO . . .s,_ z_~,. By Lemma 19, this is 
the word that takes C to the block (ml,. ..,m,_nn - l,m,_,,+r + 1,. . .,m,), hence Ci 
is in this block. Cl 

6.1. Examples: 22 

hr j2, the set of types can be identified with S2 = { 12,21}. Theorem 13 gives the 
system of recurrences 

r12htm2) = r2dml - Lm2h 

r2l(ml,m2) = 02h f km2 - 1) -I- r12hm2). 
(4) 
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Elimination down to one single recurrence yields, for both types, r(mr,m2) = 
r(mt, m2 - l)+r(mt - 1, mz). Together with the boundary values, we obtain the binomial 
coefficients: r(mr,M~) = (m’z). 

6.2. Exumples: x& 

In I’&, the set of types can be identified with S, = (123, 132,213,231,312,321). 
Theorem 13 gives the system of recurrences 

r123 = b312, 

r213 = alr321 + r123, 

r231 = @73rl23 + 1213, 

r312 = @2r231 + r132, 

r32321 = a;‘d3r132 + r231 + 1312. 

El~na~on down to one single recurrence yields, for all types, 

r = (28, + 482 + 283 - a: - a: + 483)r. 

(5) 

Remark 2. The original motivati~ for the author to study this problem was the fol- 
lowing. A combinatorial one-player game, called the nwnbers game, is known to model 
Coxeter groups in a certain sense, see for example Eriksson’s thesis [2]. In particular, 
to every position in the game corresponds a Coxeter group element, and the question 
of how many different ways there are of playing the game from a given position is 
equivalent to the question of how many reduced words there are for the corresponding 
Coxeter group element. 
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