DISCRETE MATHEMATICS

Reduced words in affine Coxeter groups
 Kimmo Eriksson*
 Department of Mathematics, Stockholms Universitet, S-I06 91 Stockholm, Sweden

Received 2 July 1994; revised 11 November 1994

Abstract

Let $r(w)$ denote the number of reduced words for an element w in a Coxeter group W. Stanley proved a formula for $r(w)$ when W is the symmetric group A_{n}, and he suggested looking at $r(w)$ for the affine group \tilde{A}_{n}. We prove that for any affine Coxeter group \tilde{X}_{n} there is a finite number of types of elements in \tilde{X}_{n}, such that to every element w can be associated (1) a type t, (2) an element v in the finite group X_{n}, and (3) an n-tuple ($m_{1}, m_{2}, \ldots, m_{n}$) of integers $m_{i} \geqslant 0$. Then $r(w)=r_{1}^{v}\left(m_{1}, \ldots, m_{n}\right)$, and for every r_{t}^{v} and for large enough m_{i}, a homogeneous linear n-dimensional recurrence holds. For \tilde{A}_{n}, this takes a nice combinatorial form. We also discuss a canonical reduced word for w associated to its n-tuple.

Resumé

Soit $r(w)$ le nombre de mots réduits pour un élément w d'un groupe de Coxeter. Stanley a démontré une formule pour $r(w)$ dans le cas du groupe symétrique A_{n}, et il a posé le problème d'étudier $r(w)$ pour le groupe affine \tilde{A}_{n}. Nous montrons qu'il y a, pour tout groupe de Coxeter affine \tilde{X}_{n}, un nombre fini de types d'eléments tels qu'on peut associer à chaque élément w (1) un type t, (2) un élément v du groupe fini X_{n}, et (3) une suite ($m_{1}, m_{2}, \ldots, m_{n}$) d'entiers $m_{i} \geqslant 0$. Alors, $r(w)=r_{t}^{v}\left(m_{1}, \ldots, m_{n}\right)$ et pour m_{i} assez grands, r_{t}^{v} satisfait à une récurrence homogène linéaire n-dimensionelle. Pour \tilde{A}_{n}, cela prend une forme combinatoire agréable. Nous présentons aussi une décomposition réduite canonique pour w, associé à la suite des m_{i}.

1. Introduction

For an element w of a Coxeter group (W, S), a reduced word for w is obtained by writing w as a minimal product of generators. Let $r(w)$ denote the number of reduced words for w.

Stanley [6] and Greene and Edelman [1] studied the number of reduced words for elements in A_{n}, showing an intimate relationship with standard tableaux of the corresponding shape. Haiman [3] generalized their work to include the finite Coxeter group

[^0]B_{n} as well. Thus, for most finite Coxeter groups, the combinatorics of $r(w)$ is very well understood. In his paper [6], Stanley also suggested that one should study the number of reduced words in the affine group \tilde{A}_{n}. This is our purpose here.

We will mainly work in the Coxeter complex, where reduced words correspond to minimal galleries. We shall show that for any affine Coxeter group \tilde{X}_{n} corresponding to a finite Coxeter group X_{n}, there is a finite number of types of elements in \tilde{X}_{n}, such that to every element w can be described by an index of the form ${ }_{t}^{x}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$, where t is a type, x is an element of the finite group X_{n}, and $m_{1}, m_{2}, \ldots, m_{n}$ are nonnegative integers. Thus, for any type t and element $x \in X_{n}$, we can define the easier-to-handle function $r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right) \stackrel{\text { def }}{=} r\left({ }_{t}^{x}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right.$). Every r_{t}^{x} is then shown to satisfy a homogeneous linear n-dimensional recurrence. For any fixed type t, the same recurrence will hold for every x but with different start values depending on the element x. An obvious application of the recurrences would be to find asymptotics for r_{t}^{x}. To the author's knowledge, no work in this area has been done as yet.

The description of the recurrence is geometrical in nature. However, for the affine groups \tilde{A}_{n}, a combinatorial form of the recurrence can be obtained by digging into the geometry. This is presented in Section 6.

We will also discuss a canonical reduced word for w related to v, t and $\left(m_{1}, \ldots, m_{n}\right)$.

2. The alcove complex and weak order of an affine Coxeter group

A Coxeter group (or, more precisely, a Coxeter system) (W, S) is a group W together with a distinguished set $\left\{\sigma_{1}, \sigma_{2}, \ldots\right\}$ of generators, and integers $m_{i j}$ where $m_{i i}=1$ and $m_{i j} \geqslant 2$ for $i \neq j$, such the group is defined by the relations $\left(\sigma_{i} \sigma_{j}\right)^{m_{i j}}=e$ (the identity of the group). $m_{i j}$ may be ∞, in which case $\sigma_{i} \sigma_{j}$ has infinite order in W. We refer to Humphreys's book [4] for details on Coxeter group theory.

2.1. The alcove complex

In this paper we will mainly take the hyperplane arrangement approach to Coxeter groups, since this provides the best intuition for the affine groups. To begin with, let X_{n} denote an arbitrary finite irreducible crystallographic reflection group in \mathbb{R}^{n}, generated by n reflections $\sigma_{1}, \ldots, \sigma_{n}$, and let \mathscr{H} be the arrangement of reflecting hyperplanes, all going through the origin, splitting \mathbb{R}^{n} into cones. Every cone is bounded by n walls, and they can be canonically labeled by σ_{1} through σ_{n}, such that when one cone is mapped to another via a sequence of reflections in the hyperplanes, the labeling of the walls is invariant. The cones correspond bijectively to the group elements of X_{n}. Let e denote the identity element of X_{n} and associate with it one of the cones, denoted V^{e}. Then for every group element $x \in X_{n}$, there is a unique cone V^{x} that you get to by walking from V^{e} through any sequence of walls labeled $\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{k}}$ such that the corresponding product of Coxeter generators is equal to x.

For a cone V^{x}, let e_{i}^{x} be a unit vector in the direction of the ray that is the intersection of all the bounding walls of V^{x}, except for the one labeled σ_{i}. Thus, V^{x} is the positive span of the vectors e_{i}^{x} :

$$
V^{x}=\left\{\lambda_{1} e_{1}^{x}+\cdots+\lambda_{n} e_{n}^{x}: \lambda_{1}, \ldots, \lambda_{n} \geqslant 0\right\}
$$

Example. We will present a running example with C_{2} as the Coxeter group ' X_{n} '. C_{2} is the group of 8 elements generated by refiections in two lines with an angle between them of 45° (see Fig. 1).

The affine group \tilde{X}_{n} corresponding to the finite group X_{n} is obtained by adding to the set of generators a reflection in an affine hyperplane parallel to one of the hyperplanes in \mathscr{H}. Let $\tilde{\mathscr{H}}$ denote the infinite affine hyperplane arrangement; thus $\mathscr{H} \subset \tilde{\mathscr{H}}$ (see Fig. 2).
\tilde{H} refines the cones of \mathscr{H} into finite alcoves, each bounded by $n+1$ walls, and every collection of n such walls has one common vertex. Choose the alcove C_{e} at the apex of the cone V_{e} to be the fundamental alcove. Let the n walls of C_{e} that coincides

Fig. 1. The hyperplane arrangement of Coxeter group C_{2}.

Fig. 2. The affine hyperplane arrangement of affine group \tilde{C}_{2}, with the fundamental alcove C_{e} painted and the origin encircled.
with the walls of the cone V_{e} inherit the labels of the coinciding walls, and let the final wall be labeled σ_{n+1}. In analogy to what we did with the cones, label the walls of every alcove by σ_{1} through σ_{n+1} such that the labels are invariant under reflections in hyperplanes in $\tilde{\mathscr{H}}$. Let \mathscr{C} be the alcove complex defined by $\tilde{\mathscr{H}}$. A gallery is a walk in the complex, and a minimal gallery is a shortest possible gallery between two alcoves. Like before, each group element $w \in \tilde{X}_{n}$ can be associated with an alcove $C_{w} \in \mathscr{C}$ such that C_{w} is the alcove reached from the fundamental alcove C_{e} by a gallery whose labelings correspond to a product of generators equal to w.

The alcove complex of \tilde{X}_{n} and the parabolic subgroup X_{n} induces a tesselation of \mathbb{R}^{n} in the following way. The set of all alcoves with one vertex in the origin corresponds to the group elements of the parabolic subgroup X_{n}, generated by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. The shape of the union of these alcoves is an X_{n}-block. Thus, the partitioning of \tilde{X}_{n} into cosets of X_{n} gives a tesselation of \mathbb{R}^{n} in X_{n}-blocks (see Fig. 3).

We say that two alcoves have the same orientation if one can be mapped to the other by pure translation. The alcoves are of course all congruent (since they are all reflection images of each other), but there may be several different orientations. For example, \tilde{C}_{2} has four different orientations of its alcoves, as can be seen in Fig. 3 How many orientations are there in general? Since hyperplanes of all orientations meet at the origin, all kinds of reflections can be carried out within the X_{n}-block, and hence all possible orientations of alcoves are represented among the $\left|X_{n}\right|$ alcoves that touch the origin. However, the X_{n}-block may contain more than one alcove of each orientation.

Lemma 1. Let $p\left(\tilde{X}_{n}\right)$ be the number of parabolic subgroups of \tilde{X}_{n} that are isomorphic to X_{n}. Let k be the number of possible orientations of alcoves in \tilde{X}_{n}. Then

$$
k=\frac{\left|X_{n}\right|}{p\left(\tilde{X}_{n}\right)}
$$

Proof. Number the vertices of the fundamental alcove such that vertex i is the vertex opposite to the wall labeled σ_{i}. Let S be the generator set $\sigma_{1}, \ldots, \sigma_{n+1}$. The maximal parabolic subgroup generated by $S-\left\{\sigma_{i}\right\}$ can be identified with vertex i of the fundamental alcove, since the n walls of the alcove that contain the vertex correspond to the n generators. This parabolic subgroup is isomorphic to X_{n} if and only if vertex i is equivalent to the origin, in the sense that the alcove complex (ignoring all labels)

Fig. 3. The C_{2}-blocks in the complex of \tilde{C}_{2}.
is invariant under translation of vertex i to the origin. Hence, there are $p\left(\tilde{X}_{n}\right)$ such origin-type vertices of the fundamental alcove.

Now, since the complex is invariant under the translation of an origin-type vertex to the origin, in particular the fundamental alcove is translated to another alcove of the same orientation. Conversely, when translating the fundamental alcove to any alcove with the same orientation and touching the origin, then the vertex translated to the origin must be of origin-type. Hence, among the alcoves touching the origin, there are $p\left(\tilde{X}_{n}\right)$ oriented as the fundamental alcove. By symmetry, there are $p\left(\tilde{X}_{n}\right)$ alcoves of each orientation among the $\left|X_{n}\right|$.

Remark 1. Parabolic subgroups of \tilde{X}_{n} isomorphic to X_{n} correspond to subgraphs of the Coxeter graph of \tilde{X}_{n} isomorphic to the Coxeter graph of X_{n}. By examining the Coxeter graphs of all affine groups (see tables in Humphreys [4]) one obtains the following table:

X_{n}	A_{n}	B_{n}	C_{n}	D_{n}	E_{6}	E_{7}	E_{8}	F_{4}	G_{2}
$p\left(\tilde{X}_{n}\right)$	$n+1$	2	2	4	3	2	1	1	1

2.2. The weak order

The weak order of a Coxeter group is a partial ordering defined by the following covering relations: if σ is a generator, then w is covered by $w \sigma$ in the weak order if $l(w \sigma)=l(w)+1$, where the length function $l(w)$ returns the length of a shortest reduced word for w.

In the alcove complex of the affine group \tilde{X}_{n}, reduced words are equivalent to minimal galleries. We might as well regard the weak order as a partial order on the alcoves. In this ordering, any alcove $C \in \mathscr{C}$ defines an interval [C_{e}, C], which is the subset of \mathscr{C} consisting of all alcoves that you can visit by walking minimal galleries from C_{e} to C, which is equivalent to walks that cross only hyperplanes that separate C_{e} from C (see Fig. 4).

At one point we will need the following well-known property of the weak order, see for example Section 5.11 in Humphreys's book [4].

Fig. 4. The interval $\left[C_{e}, C\right]$ with the three minimal galleries indicated.

Lemma 2. Let w be an element and σ, σ^{\prime} two generators, and let $>$ denote comparison in the weak order. If $w \sigma>w$ and $w \sigma^{\prime}>w$, then $w \sigma \sigma^{\prime}>w \sigma$. Dually, if $w \sigma<w$ and $w \sigma^{\prime}<w$, then $w \sigma \sigma^{\prime}<w \sigma$.

3. The truncated cone construction

What we are going to do is covering the complex \mathscr{C} by a finite set of truncated cones, $\mathscr{V}=\left\{\boldsymbol{V}^{x}: x \in X_{n}\right\}$, where each $\boldsymbol{V}^{x} \in \mathscr{V}$ is bounded by some hyperplanes in $\tilde{\mathscr{H}}$. We identify a cone with the set of alcoves contained in it. This covering will have the following three properties:
(i) $\bigcup_{x \in X_{n}} \boldsymbol{V}^{x}=\mathscr{C}$,
(ii) $\bigcap_{x \in X_{n}} \boldsymbol{V}^{x}=C_{e}$,
(iii) $C \in V \Rightarrow\left[C_{e}, C\right] \subset V$ for all $V \in \mathscr{V}$.

In words: (i) the truncated cones cover the complex; (ii) only the fundamental alcove C_{e} lies in every truncated cone; (iii) all minimal galleries between C_{e} and any given alcove C stay in the truncated cone in which C lies.

We will take V^{x} to be the smallest region bounded by hyperplanes in $\tilde{\mathscr{H}}$ and containing both C_{e} and V^{x}. This construction should be viewed in the following way (see Fig. 5). Build a thick wall from a pair of successive parallel hyperplanes in $\mathscr{\mathscr { H }}$ enclosing the fundamental alcove C_{e}. In other words, each of the hyperplanes in the finite arrangement \mathscr{H} is thickened to a thick wall containing C_{e}. Now, what we have got is a thickened version of the hyperplane arrangement for X_{n}, and since the thick walls overlap, they bound a set of $\left|X_{n}\right|$ truncated cones. (A truncated cone contains its thick walls.) Of course, every cone of the 'thin' arrangement \mathscr{H} is contained in

Fig. 5. The thickened arrangernent of C_{2}, with one truncated cone V^{x} painted.
exactly one of the truncated cones. Label the truncated cones accordingly, so V^{x} is the truncated cone containing V^{x}.

Lemma 3. The set $\mathscr{V}=\left\{V^{x}: x \in X_{n}\right\}$ of truncated cones has the properties (i),(ii) and (iii) above.

Proof. (i) Already the $\left\{V^{x}: x \in X_{n}\right\}$ covers the complex, so a fortiori the truncated cones do. (ii) follows immediately from the construction. To prove (iii), let C be an alcove in V^{x}. Since a gallery from C to C_{e} that leaves the cone V^{x} must also reenter the cone, it must cross some bounding hyperplane twice. Thus it cannot be minimal, so all minimal galleries from C to C_{e} stay in the cone.

Thanks to property (iii) we know that when counting minimal galleries we can restrict our attention to one truncated cone instead of the entire complex. Except for the truncation, V^{x} is bounded by n hyperplanes, with a natural labeling $H_{1}^{x}, H_{2}^{x}, \ldots, H_{n}^{x}$ induced by the labeling $\sigma_{1}, \ldots, \sigma_{n}$ of the corresponding walls of V^{x}. We shall now introduce yet another size of pieces, bigger than alcoves and smaller than cones. Make \mathbb{R}^{n} into a lattice of cells by subdividing it by all hyperplanes of $\tilde{\mathscr{H}}$ that are parallel to any of the bounding hyperplanes of V^{x}. Fig. 3 should make the situation clear (see Fig. 6).

Note that since the subdivision is caused by a subset of \mathscr{H}, the alcoves are finer objects than the cells. Every cell will be a union of alcoves of \mathscr{C}. The apex of a cell is the vertex closest to the origin.

Lemma 4. Every cell of a cone V^{x} is composed of alcoves in the same way, and every possible orientation of alcoves occurs exactly once in every cell. Thus, if there are k possible orientations of alcoves, then an arbitrary cell consists of k alcoves.

Proof. The apex of any cell is of origin-type (see Section 2.1), since the n walls (of the cell) containing the apex are parallel to the n walls bounding a cone in the X_{n}-arrangement, so by reflections they generate an isomorphic hyperplane arrangement through the apex. Together with one of the other walls they generate the entire affine arrangement. Hence, from the viewpoint of an apex the arrangement can only look in exactly one way, so in particular every cell must look the same. Also, from the

Fig. 6. The cell decomposition related to the truncated cone V^{x}.

Fig. 7. A \tilde{C}_{2}-cell and its decomposition into alcoves of four types.
viewpoint of any alcove of the same orientation as the alcove at the apex of the cell, the arrangement can only look in one way. Since there are no additional hyperplanes parallel to cell walls, there can be just one alcove of this orientation in every cell, and by symmetry the same must hold for every orientation.

We would like to treat all truncated cones in the same way. Therefore, we are not really interested in the physical orientation of an alcove, but rather the orientation relative to the truncated cone in question. Given a specified cone V^{x}, define the type of an alcove to be its orientation relative to the cone. If there are k different orientations of alcoves, then there are of course also k types of alcoves, and by Lemma 4 there is one alcove of each type in every cell (see Fig. 7).

We can index the cells of V^{x} by n integer indices such that ${ }^{x}(0,0, \ldots, 0)$ is the cell containing the fundamental alcove, and ${ }^{x}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ is the cell separated from ${ }^{x}(0,0, \ldots, 0)$ by m_{i} hyperplanes parallel to H_{i}^{x} for all $i=1,2, \ldots, n$. See Fig. 3. (Note that, since the cones are truncated, there may be some alcoves in these cells that are not entirely contained in V^{x}.)

Thus, every alcove of the truncated cone V^{x} can be described uniquely as ${ }_{i}^{x}\left(m_{1}, \ldots, m_{n}\right)$ for some indices $m_{1}, \ldots, m_{n} \geqslant 0$ and some type t.

4. Counting minimal galleries

We are interested in the number of reduced words for an element $w \in \tilde{X}_{n}$. Reduced words for w are equivalent to minimal galleries between the corresponding alcove C_{w} and the fundamental alcove $C_{e} . C_{w}$ belongs to some truncated cone $V^{x} \in \mathscr{V}$ (possibly to several) and we know that the minimal galleries never leave this cone.

Let $r(C)$ denote the number of minimal galleries from C_{e} to the alcove C. Trivially, we have $r\left(C_{e}\right)=1$. For $C \neq C_{e}$, a fundamental observation is that, using the covering relation of the weak order,

$$
\begin{equation*}
r(C)=\sum r\left(C^{\prime}\right) \quad \text { summed over all } C^{\prime} \text { covered by } C . \tag{1}
\end{equation*}
$$

By the analysis in the previous section, we know that any alcove C in a specified truncated cone V^{x} can be uniquely indexed ${ }_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)$, for some type t and indices m_{1}, \ldots, m_{n}. Thus, for every type t and every $x \in X_{n}$, we may define the function $r_{t}^{x}: \mathbb{Z}^{n} \longrightarrow \mathbb{N}$ by

$$
r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right):= \begin{cases}r\left(t_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)\right) & \text { if the alcove belongs to } V^{x} \\ 0 & \text { otherwise }\end{cases}
$$

Fig. 8. Illustration of the proof.
Instead of determining $r(w)$, we shall hence determine $r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)$. We know that all covering relations for alcoves in V^{x} occur within V^{x}, so we may rewrite Eq. (1) using r_{t}^{x} instead of r :

$$
\begin{equation*}
r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)=\sum r_{t^{\prime}}^{x}\left(\mu_{1}, \ldots, \mu_{n}\right), \quad i_{t^{\prime}}^{x}\left(\mu_{1}, \ldots, \mu_{n}\right) \text { covered by } t_{t}^{x}\left(m_{1}, \ldots, m_{n}\right) \tag{2}
\end{equation*}
$$

Now we shall prove that, for each type t, Eq. (2) can be given a uniform look by, for the alcoves at the boundary of V^{x}, adding some zero terms.

Lemma 5. Let C_{1} and C_{1}^{\prime} be two alcoves of the same type t in V^{x}. Let C_{2} be an alcove covered by C_{1}, and let C_{2}^{t} be the corresponding neighbor of C_{1}^{t}. Then either C_{2}^{\prime} is covered by C_{1}^{\prime} or else C_{2}^{\prime} does not belong to V^{x}.

Proof. Let H and H^{\prime} be the hyperplanes bounding the thick wall parallel with the wall between C_{1} and C_{2}, and hence also parallel with the wall between C_{1}^{\prime} and C_{2}^{\prime}. By construction, one of these hyperplanes, say H, intersects the interior of V^{x}, while H^{\prime} does not. Of course, in the half-space separated from C_{e} by H (including H), every wall parallel to H will have the same side facing C_{e}. Suppose C_{1}^{\prime} does not cover C_{2}^{\prime}. Then the wall in between does not have the same side facing C_{e} as does the wall between C_{1} and C_{2}, hence it is not in the half-plane separated from C_{e} by H. But then C_{2}^{\prime} must be on the outside of H^{\prime}, and thereby not inside V^{x}. See Fig. 8.

Thus, if there are k types, the relation (2) can be expressed as a system of k recurrences, one for each type t. The alcove decomposition, being a reflection arrangement, is of course invariant under the orientation x of the cone. However, the fundamental alcove is located differently in different truncated cones. This means that for $x \neq y \in X_{n}$, the recurrences for r_{t}^{x} and r_{t}^{y} will look the same, but the boundary values will differ (or, rather, the location of the boundary will differ). It is convenient to introduce the difference operators defined by

$$
\partial_{i} r\left(m_{1}, \ldots, m_{i}, \ldots, m_{n}\right)=r\left(m_{1}, \ldots, m_{i}-1, \ldots, m_{n}\right)
$$

Fig. 9. Sketch of a truncated cone V^{x}, with the arrows signifying the covering relations between alcoves in \tilde{C}_{2}.

Example. In \tilde{C}_{2} there are four types, which we may number 1 through 4 by decreasing distance from the apex of the cell. With V^{x} given by Fig. 9, the initial values are

$$
r_{1}^{x}(0,0)=1, r_{4}^{x}(0,1)=0, \quad r_{t}^{x}\left(-1, m_{2}\right)=r_{t}^{x}\left(m_{1},-1\right)=0 \quad \text { for all } t, m_{1}, m_{2} .
$$

The covering relations, as seen in Fig. 9, give the recurrences:

$$
\left\{\begin{array} { l }
{ r _ { 1 } ^ { x } (m _ { 1 } , m _ { 2 }) = r _ { 2 } ^ { x } (m _ { 1 } , m _ { 2 }) } \\
{ r _ { 2 } ^ { x } (m _ { 1 } , m _ { 2 }) = r _ { 3 } ^ { x } (m _ { 1 } , m _ { 2 }) } \\
{ r _ { 3 } ^ { x } (m _ { 1 } , m _ { 2 }) = r _ { 4 } ^ { x } (m _ { 1 } , m _ { 2 }) + r _ { 1 } ^ { x } (m _ { 1 } , m _ { 2 } - 1) } \\
{ r _ { 4 } ^ { x } (m _ { 1 } , m _ { 2 }) = r _ { 1 } ^ { x } (m _ { 1 } - 1 , m _ { 2 }) + r _ { 2 } ^ { x } (m _ { 1 } , m _ { 2 } - 1) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
r_{1}^{x}=r_{2}^{x} \\
r_{2}^{x}=r_{3}^{x} \\
r_{3}^{x}=r_{4}^{x}+\partial_{2} r_{1}^{x} \\
r_{4}^{x}=\partial_{1} r_{1}^{x}+\partial_{2} r_{2}^{x}
\end{array}\right.\right.
$$

Elimination gives a single recurrence, which for any type t has the form

$$
r_{t}^{x}\left(m_{1}, m_{2}\right)=r_{t}^{x}\left(m_{1}-1, m_{2}\right)+2 r_{t}^{x}\left(m_{1}, m_{2}-1\right) \Leftrightarrow r_{t}^{x}=\left(\partial_{1}+2 \partial_{2}\right) r_{t}^{x}
$$

Theorem 6. Let T be the set of the k types in the alcove complex of \tilde{X}_{n}. The r_{t}^{x} are determined by a system of k homogeneous, first-order linear recurrences:

$$
r_{t}^{x}=\sum_{t^{\prime} \in T} \Delta_{t, t^{\prime}} r_{t^{\prime}}^{x} \quad \text { for each } t \in T
$$

where $\Delta_{t, t^{\prime}}$ is a difference operator that includes only first-order terms and constants. The boundary values are given by $r\left(C_{e}\right)=1$ and $r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)=0$ for all alcoves ${ }_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)$ that do not belong to V^{x}, which can be described by at most $\left|X_{n}\right|$ conditions.

Proof. As we observed earlier, it follows from Lemma 5 that for each type t one can formulate one recurrence that holds for all alcoves of type t. The terms come from covering relations between neighbor alcoves, and two neighbors must of course either belong to the same cell or to two neighbor cells, yielding constant terms and firstorder terms respectively. Finally, the boundary of a truncated cone is described by the exterior hyperplanes of the bounding thick walls, which can be at most $\left|X_{n}\right|$, the total number of thick walls.

Give the types any linear ordering satisfying $t^{\prime}>t$ when t covers t^{\prime} in the cell. Thus, in this ordering the difference operator $\Delta_{t, t^{\prime}}$ has no constant term when $t^{\prime} \leqslant t$.

We can now express the system of recurrences as a matrix multiplication:

$$
\left(\begin{array}{cccc}
\left(1-\Delta_{1,1}\right) & -\Delta_{1,2} & \cdots & -\Delta_{1, k} \tag{3}\\
-\Delta_{2,1} & \left(1-\Delta_{2,2}\right) & \cdots & -\Delta_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
-\Delta_{k, 1} & -\Delta_{k, 2} & \cdots & \left(1-\Delta_{k, k}\right)
\end{array}\right)\left(\begin{array}{c}
r_{1}^{x} \\
r_{2}^{x} \\
\vdots \\
r_{k}^{x}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

All elements below the diagonal lack constant terms, while all diagonal elements have constant term 1. It is easy to verify that this property is preserved during Gaussian elimination without pivoting. Thus, by completing the Gaussian elimination, we arrive at a diagonal matrix diag $\left(1-\Delta_{t}^{\prime}\right.$) or, equivalently, a system of k independent linear recurrences:

$$
r_{t}^{x}=\Delta_{t}^{\prime} r_{t}^{x}, \quad t=1,2, \ldots, k
$$

for some constant-free difference operators Δ_{t}^{\prime}. Let us state this as a theorem.

Theorem 7. For every alcove type there is a constant-free difference operator Δ_{t}^{\prime} of degree $\leqslant 2^{k-1}$ such that the numbers of minimal galleries $r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)$ satisfy the homogeneous n-dimensional linear recurrence.

$$
r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)=\Delta_{t}^{\prime} r_{t}^{x}\left(m_{1}, \ldots, m_{n}\right)
$$

whenever all m_{i} are sufficiently large.
Proof. Everything is clear except for the upper bound on the degrees. During the Gaussian elimination, let $\Delta_{j, l}^{(i)}$ denote the operator at row j and column l after rows 1 through i have been eliminated. We get

$$
\Delta_{j, l}^{(i)}=\Delta_{j, l}^{(i-1)} \Delta_{i, i}^{(i-1)}-\Delta_{i, l}^{(i-1)} \Delta_{j, i}^{(i-1)} .
$$

Thus, the maximum degree is at most doubled for each elimination of a row. There are $k-1$ rows to be eliminated, so the final degree is bounded by 2^{k-1}.

5. A canonical reduced word

In this section we will revisit the geometry of the alcove complex in order to find a canonical minimal gallery for each alcove. This gallery will walk in turn in each of the n directions that span the cone containing the alcove. We will then determine the reduced words that correspond to walking in each direction.

5.1. A canonical minimal gallery

Recall that in Section 2.1 we defined the unit vectors e_{i}^{x}, such that the cone V^{x} is their positive span. The vector e_{i}^{x} can also be decribed as pointing in the direction of the ray given by the intersection $\bigcap_{j \neq i} H_{j}^{x}$, where the $\left\{H_{1}^{x}, \ldots, H_{n}^{x}\right\}$ are the bounding hyperplanes of the cone.

In Section 3, we defined an indexing of the cells of V^{x}, such that the i th index changes when a wall parallel to H_{i}^{x} is crossed. Walking in the direction of e_{i}^{x}, no hyperplane parallel to H_{j}^{x} is crossed, for any $j \neq i$. Thus, walking in this direction only affects the i th index.

Our aim now is to construct, to each alcove C_{w}, a canonical minimal gallery from the fundamental alcove C_{e}. First, we will need yet another subdivision of space into cones. Let p_{e} be a point in the interior of C_{e}. Introduce a new set of hyperplanes $\mathscr{H}_{p_{e}}$, by translating \mathscr{H} to be centered in p_{e} instead of in the origin. As always, $\mathscr{H}_{p_{\varepsilon}}$ splits space in $\left|X_{n}\right|$ cones; let $V_{p_{e}}^{x}$ denote the cone that is the translation of V^{x}. Thus,

$$
V_{p_{e}}^{x}=\left\{p_{e}+\lambda_{1} e_{1}^{x}+\cdots+\lambda_{n} e_{n}^{x}: \lambda_{1}, \ldots, \lambda_{n} \geqslant 0\right\} .
$$

Now, choose one generic point p_{w} in the interior of every alcove C_{w}. Hence, for some unique $x \in X_{n}$ we have

$$
p_{w}=p_{e}+\lambda_{1} e_{1}^{x}+\cdots+\lambda_{n} e_{n}^{x} \quad \text { with all } \lambda_{1}, \ldots, \lambda_{n} \geqslant 0 .
$$

We define the canonical p_{e}, p_{w}-gallery from C_{e} to C_{w} by the walk (in n straight lines) (see Fig. 10)

$$
p_{e} \longrightarrow p_{e}+\lambda_{1} e_{1}^{x} \longrightarrow p_{e}+\lambda_{1} e_{1}^{x}+\lambda_{2} e_{2}^{x} \longrightarrow \cdots \longrightarrow p_{e}+\lambda_{1} e_{1}^{x}+\cdots+\lambda_{n} e_{n}^{x}=p_{w}
$$

(The points p_{e}, p_{w} should be chosen generic such that the gallery contains no degenerate crossings of walls.)

Proposition 8. The canonical p_{e}, p_{w}-gallery is a minimal gallery from C_{e} to C_{w}.
Proof. Were the gallery not minimal, it would have to cross some hyperplane $H \in \tilde{H}$ twice. Obviously, this H cannot be parallel to any of the bounding hyperplanes of the

Fig. 10. A canonical p_{e}, p_{w}-gallery in \tilde{C}_{2}.
cone $V_{p_{\epsilon}}^{x}$. But all other hyperplanes in $\tilde{\mathscr{H}}$ have, by construction of the cones from \mathscr{H}, finite intersection with the cone, contradicting the fact that if H can be crossed twice by going in straight lines directed as e_{1}, \ldots, e_{n}, then H can be crossed infinitely many times by repeating the crossing pattern.

5.2. Canonical reduced words

We shall now find out what words correspond to walking in the n basic directions of the alcove complex discussed above. Once again, let S be the generator set $\left\{\sigma_{1}, \ldots, \sigma_{n+1}\right\}$. Recall that σ_{n+1} is the affine reflection, so $S-\left\{\sigma_{n+1}\right\}$ generates X_{n}. Let \hat{w}_{i} denote the maximal (that is, of maximal length) element of the parabolic subgroup generated by $S-\left\{\sigma_{i}\right\}$. Define analogously $\hat{w}_{i, j}$ to be the maximal element of the parabolic subgroup generated by $S-\left\{\sigma_{i}, \sigma_{j}\right\}$.

We use $\langle w\rangle$ to denote any reduced word for a group element w.
To begin with, we shall restrict our attention to the cone V^{e} that has the fundamental alcove C_{e} at its apex (but later we shall see that everything works similarly for every cone). V^{e} is bounded by the hyperplanes $H_{i}=H_{i}^{e}$ for $i=1, \ldots, n$, and H_{i} coincides with the wall of C_{e} labeled σ_{i}. The i th direction of the cone is defined by the line $L_{i}=\bigcap_{j \neq i} H_{j}$. We shall now walk along this line, in the direction of e_{i}.

Two alcoves are successive along the line L_{i} if they are on the same side of every hyperplane through L_{i}, and they have a common vertex on L_{i}. Recall that all alcoves with one vertex in a point v have the same label on the wall opposite to v.

Lemma 9. Let v_{k-1}, v_{k}, v_{k+1} be three successive vertices on the line L_{i}, with opposite walls labeled $\sigma_{i_{k-1}}, \sigma_{i_{k}}$ and $\sigma_{i_{k+1}}$ respectively. Let C_{k} and C_{k+1} be the successive alcoves along L_{i} with common vertex v_{k}. Then the following holds:
(1) $\left\langle\hat{w}_{i_{k-1}, i_{k}} \hat{w}_{i_{k}}\right\rangle$ is a minimal gallery from C_{k} to C_{k+1}.
(2) $\sigma_{i_{k+1}}=\hat{w}_{i_{k}} \sigma_{i_{k-1}} \hat{w}_{i_{k}}$.

Proof. The following sketch of a 2-dimensional cut through the line L_{i} and the alcoves C_{k} and C_{k+1} explains the proof:

(1) To get from C_{k} to C_{k+1} one must cross all hyperplanes through v_{k} except for those generated by $\left\{H_{j}: j \neq i\right\}$. It is easy to describe a nonminimal gallery: First cross all hyperplanes generated by $\left\{H_{j}: j \neq i\right\}$; this corresponds to the group element
$\hat{w}_{i_{k-1}, i_{k}}$. Then cross all hyperplanes going through v_{k}; this corresponds to the group element $\hat{w}_{i_{k}}$. Thus the reduced word $\left\langle\hat{w}_{i_{k-1}, h_{k}} \hat{w}_{i_{k}}\right\rangle$ gives a minimal gallery from C_{k} to C_{k+1}.
(2) Let H be the hyperplane coinciding with the wall of alcove C_{k+1} labeled σ_{k+1}. Crossing this wall can be done by first crossing all hyperplanes through v_{k} by $\hat{w}_{i_{k}}$, then crossing H, which here coincides with the wall $\sigma_{i k-1}$, and finally crossing all hyperplanes through v_{k} once again by $\hat{w}_{i_{k}}$. Thus, $\sigma_{i_{k+1}}=\hat{w}_{i_{k}} \sigma_{i_{k-1}} \hat{w}_{i_{k}}$.

Suppose we have a reduced word corresponding to a minimal gallery in a certain direction from a certain alcove. The following lemma tells what word might be used to travel in the same direction from other alcoves. Remember that a minimal gallery extends in the i th direction of the cone V^{x} if it is parallel with the line $L_{i}^{x}=\bigcap_{j \neq i} H_{i}^{x}$.

Lemma 10. Let C be an alcove. Let $\langle w\rangle$ be a reduced word for some minimal gallery from C extending in the ith direction of V^{x}, let σ_{j} be some generator, and let C^{\prime} be the alcove reached by crossing the wall σ_{j} from C. If the wall σ_{j} is parallel to some hyperplane containing L_{i}^{x}, then $\langle w\rangle$ is a minimal gallery from C^{\prime} in the ith direction; otherwise, $\left\langle\sigma_{j} w\right\rangle$ is a minimal gallery from C^{\prime} in the ith direction.

Proof. If the wall σ_{j} is parallel to some hyperplane containing L_{i}^{x}, then reflection in this wall gives a gallery that still is parallel with L_{i}^{x}. Since the labels are invariant under reflections, $\langle w\rangle$ is a minimal gallery from C^{\prime} in the i th direction (see Fig. 11). On the other hand, if the wall σ_{j} is not parallel to any hyperplane containing L_{i}^{x}, then crossing σ_{j} is a step (backwards or forwards) along the i th direction, and the minimal gallery $\left\langle\sigma_{j} w\right\rangle$ from C^{\prime} extends in the i th direction.

Proposition 11. Every reduced word corresponding to a minimal gallery in the ith direction of V^{x} is a factor (that is, a contiguous subword) of the infinite periodic word

$$
\alpha_{i}=\ldots\left\langle\hat{w}_{i_{0}, i_{1}} \hat{w}_{i_{1}}\right\rangle\left\langle\hat{w}_{i_{1}, i_{2}} \hat{w}_{i_{2}}\right\rangle \ldots\left\langle\hat{w}_{i_{k-1}, i_{k}} \hat{w}_{i_{k}}\right\rangle \ldots
$$

where $i_{0}=n+1, i_{1}=i$, and all other indices are determined by $\sigma_{i_{k+1}}=\hat{w}_{i_{k}} \sigma_{i_{k-1}} \hat{i}_{i_{k}}$ for all k.

Proof. First, observe that the infinite word must indeed be periodic, since there are only a finite set of possible pairs i_{k-1}, i_{k}. Now, study the cone V^{e}, with apex in the fundamental alcove C_{e}. Going in the i th direction from C_{e}, the statement follows from

Fig. 11. Reflection in a wall parallel with L_{i}^{x}.

Lemma 9. It is easy to see from the picture of the proof, with $C_{1}=C_{e}$, that $i_{0}=n+1$ and $i_{1}=i$. Thanks to Lemma 10 , we know that the infinite word describing the i th direction does not change when we leave C_{e} for any other alcove.

Finally, the i th direction for any other cone V^{x} is obtained from the i th direction of V^{e} by the reflection sequence that takes V^{e} to V^{x}, and labels are invariant under reflections, so the statement holds for all cones.

The canonical minimal galleries of Section 5.1 can now be expressed as reduced words:

Theorem 12. The canonical gallery of Proposition 8 corresponds to a reduced word of the form $\left\langle v_{1}\right\rangle\left\langle v_{2}\right\rangle \ldots\left\langle v_{n}\right\rangle$ where $\left\langle v_{i}\right\rangle$ is a factor of the periodic word α_{i} for all $i=1,2, \ldots, n$.

Proof. Immediate from Proposition 11 and the definition of canonical gallery.
Example. Let us look at \tilde{C}_{2} again. Here we have three generators $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. The maximal elements of parabolic subgroups are

$$
\begin{aligned}
& \hat{w}_{1}=\sigma_{2} \sigma_{3}, \quad \hat{w}_{2}=\sigma_{1} \sigma_{3} \sigma_{1} \sigma_{3}, \quad \hat{w}_{3}=\sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1}, \\
& \hat{w}_{1,2}=\sigma_{3}, \quad \hat{w}_{1,3}=\sigma_{2}, \quad \hat{w}_{2,3}=\sigma_{1} .
\end{aligned}
$$

Furthermore, in \tilde{C}_{2} we have $\hat{w}_{j} \sigma_{i} \hat{w}_{j}=\sigma_{i}$ for all $i \neq j$. Thus, walking in direction 1 will give, repeatedly, the word

$$
\left\langle\hat{w}_{1,3} \hat{w}_{1}\right\rangle\left\langle\hat{w}_{3,1} \hat{w}_{3}\right\rangle=\left\langle\sigma_{2} \sigma_{2} \sigma_{3}\right\rangle\left\langle\sigma_{2} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1}\right\rangle=\sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}
$$

Similarly, we can compute the repeated word for direction 2 to be

$$
\left\langle\hat{w}_{2,3} \hat{w}_{2}\right\rangle\left\langle\hat{w}_{3,2} \hat{w}_{3}\right\rangle=\sigma_{3} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2}
$$

This is verified in Fig. 12.

Fig. 12. The words in the two basic directions of \tilde{C}_{2}.

6. The recurrence for \boldsymbol{A}_{n}

For the affine group \tilde{A}_{n}, there is a more combinatorial way of stating the recurrences. $\tilde{A}_{n}, n \geqslant 2$, is the group whose Coxeter graph is a circuit of $n+1$ nodes. Thus, the $n+1$ maximal parabolic subgroups of \tilde{A}_{n} are all isomorphic to A_{n}, the group whose Coxeter graph is a path of n nodes. One consequence of this is that every vertex of the alcove complex is of origin-type. Another one is that Lemma 1 gives for \tilde{A}_{n} that the number of types is $k=(n+1)!/(n+1)=n!$, which is equal to the number of permutations in the symmetric group $S_{n} . S_{n}$ is isomorphic to A_{n-1}, where the generators $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ are interpreted as the adjacent transpositions $\{(1,2), \ldots,(n-1, n)\}$. The interplay between these concepts - types, permutations, and elements of A_{n-1} - will lead us to the following result.

Theorem 13. Let $D(\pi)$ be the descent set of π, let s_{i} denote the transposition $(i, i+1)$ for $i=1,2, \ldots, n-1$ and let τ be the rotation operator defined by $\tau\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)=$ $\pi_{n} \pi_{1} \ldots \pi_{n-1}$, so $\tau=s_{n-1} s_{n-1} \ldots s_{1}$. The elements in a given cone of \tilde{A}_{n} may be indexed by a permutation π and m_{1}, \ldots, m_{n} such that r_{π} satisfies the recurrence

$$
\begin{aligned}
r_{\pi}\left(m_{1}, \ldots, m_{n}\right)= & r_{\tau(\pi)}\left(m_{1}, \ldots, m_{n-\pi_{n}}+1, m_{n-\pi_{n}+1}-1, \ldots, m_{n}\right) \\
& +\sum_{i \in D(\pi)} r_{s_{l}(\pi)}\left(m_{1}, \ldots, m_{n}\right)
\end{aligned}
$$

(When $\pi_{n}=n$, the first term of the right part should be interpreted as $r_{t(\pi)}\left(m_{1}-1, m_{2}, \ldots, m_{n}\right)$)

The exact meaning of $r_{\pi}\left(m_{1}, \ldots, m_{n}\right)$ will become clear later; we will have to change the shape of the cells, so that they coincide with cosets isomorphic to the parabolic subgroup A_{n-1}.

To begin with, recall the cells of Section 3. Every cell is bounded by n pairs of hyperplanes, each pair parallel to one of the bounding hyperplanes $H_{1}^{x}, \ldots, H_{n}^{x}$ of the cone. From now on we omit the superindex x, since the combinatorics is invariant over different cones. We may number the hyperplanes bounding the cells, such that cell $\left(m_{1}, \ldots, m_{n}\right)$ is bounded by the pairs $\left(H_{1, m_{1}}, H_{1, m_{1}+1}\right), \ldots,\left(H_{n_{2}, m_{n}}, H_{n, m_{n}+1}\right)$. Each cell contains exactly one alcove of each type, in total $n!$ alcoves. A cell (m_{1}, \ldots, m_{n}) with all $m_{i} \geqslant 1$ is an inner cell; all inner cells are properly contained in the truncated cone. We shall distinguish a special alcove in every cell: the apex alcove with n walls coinciding with $H_{1, m_{i}}, \ldots, H_{n_{2} m_{n}}$. We will say that a wall of an alcove C leads down if it separates C from C_{e}; otherwise it leads $u p$.

Lemma 14. The apex alcove of every inner cell has n walls that leads down (viz. the walls coinciding with $H_{1, m_{1}}, \ldots, H_{n, m_{n}}$).

Proof. Obvious.

In the following, C will denote the apex alcove of the generic inner cell $\left(m_{1}, \ldots, m_{n}\right)$. Relabel the walls of C such that s_{i} is the label of the wall parallel with H_{i} for $i=1, \ldots, n$, and label the last wall by s_{0}. (Observe that this will be related to the original labeling such that for some fixed $k, s_{i}=\sigma_{i+k}$ for all i modulo $n+1$.) We can now state the word for a minimal gallery from C to the apex alcove of ($m_{1}, \ldots, m_{i}-1, \ldots, m_{n}$) for any i, that is, the word for walking one step in the negative i th direction.

Lemma 15. From an apex alcove C, a minimal gallery to the first apex alcove C^{\prime} reached by walking in the negative ith direction is

$$
\left\langle\hat{w}_{i, 0} \hat{w}_{0}\right\rangle=\left\langle\left(\hat{w}_{1,0} \hat{w}_{0}\right)^{i}\right\rangle=\left\langle\left(s_{1} s_{2} \ldots s_{n}\right)^{i}\right\rangle .
$$

Proof. Since all vertices are of origin-type, successive alcoves along a line will be of the same type. Hence, C^{\prime} and C are successive alcoves along the line L_{i}. By Lemma 9, the gallery between them, in the negative direction, is $\left\langle\hat{w}_{i, 0} \hat{w}_{0}\right\rangle$. This is an element of the parabolic subgroup generated by s_{1} through s_{n}, which is isomorphic to S_{n+1}. Write permutations on one-line form $\pi_{1} \ldots \pi_{n+1}$. Then \hat{w}_{0} is the reverse permutation $(n+1) n(n-1) \ldots 1$, while $\hat{w}_{i, 0}$ is the permutation $i(i-1) \ldots 1(n+1) n \ldots(i+1)$. Composing these, we get that $\hat{w}_{i, 0} \hat{w}_{0}$ is the permutation $(i+1) \ldots n(n+1) 1 \ldots(i-1) i$, which is equivalent to rotation i steps. Rotation one step can be expressed as $s_{1} s_{2} \ldots s_{n}$. The statement follows.

Lemma 16. The unique periodic word for walking in the 1 st negative direction from an apex alcove C is

```
s}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\ldots\mp@subsup{s}{n}{}\mp@subsup{s}{0}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\ldots\mp@subsup{s}{n}{}\mp@subsup{s}{0}{}
```

In particular, $s_{i} s_{i+1} \ldots s_{n} s_{0} s_{1} \ldots s_{i-2}$ is always a type-preserving gallery.
Proof. As noted in the lemma above, the first type-preserving step in the negative 1st direction is $\hat{w}_{1,0} \hat{w}_{0}=s_{1} s_{2} \ldots s_{n}$, and this is the unique reduced word. As a permutation $\hat{w}_{0} s_{1} \hat{w}_{0}$ works by first reversing order, then switching the first two letters, and finally reversing order again. This results in a transposition of the two last letters, that is, $\hat{w}_{0} s_{1} \hat{w}_{0}=s_{n}$. Thus, Lemma 9 gives that the next type-preserving step in the 1 st direction is $\hat{w}_{0, n} \hat{w}_{n}=s_{0} s_{1} \ldots s_{n-1}$, and by symmetry the next type-preserving step is $s_{n} s_{0} s_{1} \ldots s_{n-2}$, etc.

Define the $A_{n-1}-b l o c k$ of C to be the set of alcoves containing C and corresponding to the parabolic subgroup generated by $\left\{s_{1}, \ldots, s_{n-1}\right\}$. Our wish is to use A_{n-1}-blocks instead of cells when indexing alcoves. We must show the following:

Lemma 17. Every alcove lies in the A_{n-1}-block of exactly one apex alcove. Every A_{n-1}-block contains exactly one alcove of each type.

Proof. We know that there are as many alcoves, $n!$, in an A_{n-1}-block as there are types. We shall show that every neighbor alcove of a block has the same type as one alcove within the block. This suffices, because the complex looks the same from the viewpoint of any alcove of the same type, so the neighbor alcove must also lie in an A_{n-1}-block.

The wall between the block and the neighbor must be labeled s_{0} or s_{n}. Suppose the label is s_{0}. Then the gallery $s_{0} s_{1} \ldots s_{n-1}$ from the neighbor first leads into the block and then remains inside it (since all walls labeled s_{1} through s_{n-1} are in the interior of the block), and by the previous lemma, this gallery is type-preserving. For the case when the wall is labeled s_{n}, use the type-preserving gallery $s_{n} s_{n-1} \ldots s_{1}$.

Observe that in its A_{n-1}-block, the apex alcove C will be the alcove farthest from the fundamental alcove. We will regard the elements of an A_{n-1}-block as permutations in S_{n}, with the apex alcove being the reverse permutation $n(n-1) \ldots 1$. Thus we may index any alcove by ${ }_{\pi}\left(m_{1}, \ldots, m_{n}\right)$, signifying the alcove that corresponds to permutation π in the A_{n-1}-block of the apex alcove of cell (m_{1}, \ldots, m_{n}). The isomorphism between A_{n-1} and S_{n} gives that a wall $s_{i}, i=1,2, \ldots, n-1$, leads down from the alcove corresponding to permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ if and only if i is in the descent set of π, that is, $\pi_{i}>\pi_{i+1}$. But what about walls s_{0} and s_{n} ?

Lemma 18. Let C be the apex alcove of an inner cell. For all alcoves in its $A_{n-1^{-}}$ block, the wall s_{n} leads down and the wall s_{0} leads up.

Proof. From C we know that walls s_{1} through s_{n} lead down. It follows from Lemma 2 that from all alcoves that can be reached from C by walking down via galleries that do not contain s_{n}, the wall s_{n} will lead down. All alcoves in the block can be reached by such galleries (since, in the block, C is the alcove farthest from the fundamental alcove), hence s_{n} leads down in the entire block. By symmetry, s_{0} must lead up for every alcove in the block.

As noted in Lemma 16, for every $i=0,1, \ldots, n$ the n-letter word $s_{i} s_{i+1} \ldots s_{n} s_{0} \ldots s_{i-2}$ is type-preserving. Suppose C_{1} is an alcove, C_{2} its neighbor via wall s_{j}, and C_{1}^{\prime} is the alcove of the same type as C_{1} reached by $s_{i} s_{i+1} \ldots s_{n} s_{0} \ldots s_{i-2}$, with corresponding neighbor C_{2}^{\prime}. What is the type-preserving gallery between C_{2} and C_{2}^{\prime} ? By combining Lemmas 10 and 16, we get that $s_{i} s_{i+1} \ldots s_{n} s_{0} \ldots s_{i-2}$ is transformed to

$$
\begin{cases}s_{i+1} s_{i+2} \ldots s_{n} s_{0} \ldots s_{i-1} & \text { if } j=i, \\ s_{i-1} s_{i} \ldots s_{n} s_{0} \ldots s_{i-3} & \text { if } j=i-1, \\ s_{i} s_{i+1} \ldots s_{n} s_{0} \ldots s_{i-2} & \text { otherwise }\end{cases}
$$

By the notation ($m_{1}, \ldots, m_{i-1}+1, m_{i}-1, \ldots, m_{n}$) we mean an n-tuple where the j th entry is m_{j} for all $j \neq i-1, i$.

Lemma 19. $s_{i} s_{i+1} \ldots s_{n} s_{0} \ldots s_{i-2}$ is a minimal gallery from the apex alcove $\left(m_{1}, \ldots, m_{n}\right)$ to the apex alcove ($m_{1}, \ldots, m_{i-1}+1, m_{i}-1, \ldots, m_{n}$), for $i=1, \ldots, n$.

Proof. First observe that walking $s_{1} s_{2} \ldots s_{n}$ transforms

$$
s_{i} s_{i+1} \ldots s_{n} s_{0} \ldots s_{i-2} \text { to } s_{i-1} s_{i} \ldots s_{n} s_{0} \ldots s_{i-3}
$$

the part $s_{1} \ldots s_{i-2}$ has no effect, the s_{i-1} does the transformation, and $s_{i} \ldots s_{n}$ has no effect. Hence, walking $\left(s_{1} s_{2} \ldots s_{n}\right)^{i-1}$ lowers the indices $i-1$ times, so the word is transformed to $s_{1} s_{2} \ldots s_{n}$. We know from Lemma 15 that $\left(s_{1} s_{2} \ldots s_{n}\right)^{i}$ walks one block in the negative i th direction, and $\left(s_{1} s_{2} \ldots s_{n}\right)^{i-1}$ walks one block in the negative $(i-1)$ th direction. Since $\left(s_{1} s_{2} \ldots s_{n}\right)^{i-1}\left(s_{1} s_{2} \ldots s_{n}\right)=\left(s_{1} s_{2} \ldots s_{n}\right)^{i}$, we have shown that the transformed gallery increases the $(i-1)$ th index by one and decreases the i th index by one.

For convenience, let us restate Theorem 13: With $D(\pi)$ the descent set of $\pi \in S_{n}$, and τ the rotation operator defined by $\tau\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)=\pi_{n} \pi_{1} \ldots \pi_{n-1}$, that is, $\tau=s_{n-1} s_{n-1} \ldots s_{1}$, we have the recurrence

$$
r_{\pi}=\partial_{n-\pi_{n}}^{-1} \partial_{n+1-\pi_{n}} r_{\tau(\pi)}+\sum_{i \in D(\pi)} r_{s_{l}(\pi)}
$$

Proof. Let C_{1} be the alcove of type $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ in block (m_{1}, \ldots, m_{n}). The number of minimal galleries from C_{1} to C_{e} is the sum of such numbers for the neighbors of C_{1} through walls leading down. These are the walls labeled s_{i} for every descent $i \in D(\pi)$, leading to the alcove of type $s_{i}(\pi)$ in the same block; and furthermore we have the wall labeled s_{n} leading to, say, C_{2}^{\prime} outside the block. Let C_{2} be the alcove reached from C_{2}^{\prime} by the type-preserving gallery $s_{n} s_{n-1} \ldots s_{1}$. Thus, C_{2} is reached from C_{1} by $s_{n-1} \ldots s_{1}=\tau$, so C_{2}, and hence C_{2}^{\prime}, has type $\tau(\pi)=\pi_{n} \pi_{1} \ldots \pi_{n-1}$.

Finally, we must show that C_{2}^{\prime} is in the block ($m_{1}, \ldots, m_{n-\pi_{n}}-1, m_{n-\pi_{n}+1}+1, \ldots, m_{n}$). Let C be the apex alcove of block $\left(m_{1}, \ldots, m_{n}\right)$. Then C, being of type $n(n-1) \ldots 1$, can be reached from C_{2} by a gallery $\langle v\rangle s_{1} s_{2} \ldots s_{n-\pi_{n}}$, where $\langle v\rangle$ sorts $\pi_{1} \ldots \pi_{n-1}$ in decreasing order (never using s_{1}), and then $s_{1} s_{2} \ldots s_{n-\pi_{n}}$ puts π_{n} at its place, the ($n+$ $1-\pi_{n}$)th position.

How is the word $s_{1} \ldots s_{n}$ (that takes us from C_{2} to C_{2}^{\prime}) affected by the walk up to C ? Well, $\langle v\rangle$, not using s_{1} (nor, of course, s_{0}), does not affect the word $s_{1} \ldots s_{n}$, but $s_{1} s_{2} \ldots s_{n-\pi_{n}}$ transforms the word to $s_{n+1-\pi_{n}} \ldots s_{n} s_{0} \ldots s_{n-1-\pi_{n}}$. By Lemma 19, this is the word that takes C to the block ($m_{1}, \ldots, m_{n-\pi_{n}}-1, m_{n-\pi_{n}+1}+1, \ldots, m_{n}$), hence C_{2}^{\prime} is in this block.

6.1. Examples: \tilde{A}_{2}

In \tilde{A}_{2}, the set of types can be identified with $S_{2}=\{12,21\}$. Theorem 13 gives the system of recurrences

$$
\begin{align*}
& r_{12}\left(m_{1}, m_{2}\right)=r_{21}\left(m_{1}-1, m_{2}\right) \\
& r_{21}\left(m_{1}, m_{2}\right)=r_{12}\left(m_{1}+1, m_{2}-1\right)+r_{12}\left(m_{1}, m_{2}\right) \tag{4}
\end{align*}
$$

Elimination down to one single recurrence yields, for both types, $r\left(m_{1}, m_{2}\right)=$ $r\left(m_{1}, m_{2}-1\right)+r\left(m_{1}-1, m_{2}\right)$. Together with the boundary values, we obtain the binomial coefficients: $r\left(m_{1}, m_{2}\right)=\binom{m_{1}+m_{2}}{m_{1}}$.

6.2. Examples: \tilde{A}_{3}

In \tilde{A}_{3}, the set of types can be identified with $S_{s}=\{123,132,213,231,312,321\}$. Theorem 13 gives the system of recurrences

$$
\begin{align*}
& r_{123}=\partial_{1} r_{312} \\
& r_{132}=\partial_{1}^{-1} \partial_{2} r_{213}+r_{123} \\
& r_{213}=\partial_{1} r_{321}+r_{123} \\
& r_{231}=\partial_{2}^{-1} \partial_{3} r_{123}+r_{213} \tag{5}\\
& r_{312}=\partial_{1}^{-1} \partial_{2} r_{231}+r_{132} \\
& r_{321}=\partial_{2}^{-1} \partial_{3} r_{132}+r_{231}+r_{312}
\end{align*}
$$

Elimination down to one single recurrence yields, for all types,

$$
r=\left(2 \partial_{1}+4 \partial_{2}+2 \partial_{3}-\partial_{1}^{2}-\partial_{3}^{2}+\partial_{1} \partial_{3}\right) r
$$

Remark 2. The original motivation for the author to study this problem was the following. A combinatorial one-player game, called the numbers game, is known to model Coxeter groups in a certain sense, see for example Eriksson's thesis [2]. In particular, to every position in the game corresponds a Coxeter group element, and the question of how many different ways there are of playing the game from a given position is equivalent to the question of how many reduced words there are for the corresponding Coxeter group element.

References

[1] P. Edelman and C. Greene, Balanced tableaux, Adv. in Math. 63 (1987) 42-99.
[2] K. Eriksson, Strongly convergent games and Coxeter groups, Ph.D. Thesis, KTH, S-100 44 Stockholm, Sweden, 1993.
[3] M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992) 79-113.
[4] J. Humphreys, Reflection Groups and Coxeter groups (Cambridge Univ. Press, Cambridge, MA, 1990).
[5] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l'anneau de Grothendieck d'une varieté de drapeaux, Comptes Rendus Acad. Sci. Paris Sér. I Math. 295 (1982) 629-633.
[6] R. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984) 359-372.
[7] R. Stanley, Enumerative Combinatorics, Vol. 1 (Wadsworth \& Brooks/Cole, Belmont, CA, 1986).

[^0]: * E-mail: kimmo@nada.kth.se.

