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Abstract-The limit of the Hellinger transform of measures related to multidimensional stationary 
Gaussian autoregressive processes is obtained 

1. INTRODUCTION AND MAIN RESULT 

Let PI,..., PN be probability measures defined on a common measurable space (s2, F). Let P be 

a c-finite measure dominating each Pj. Then the Hellinger transform of PI,. . . , PN is defined by 

&(P,,...,P,) =/iyI ($)“‘dP, 
Q j=l 

wherecl!=(crl,..., ~~N),~~>O,...,CYN>O,C~=~=ICYJ=~. 

We remark that for N = 2 the quantity lHI,(Pl, Pz) is called the Hellinger integral of mea- 

sures PI and Pz. The Hellinger integral is widely used to study absolute continuity of measures 

(see e.g., [l-3]). 

Let, N,(b, R) denote the p-dimensional normal distribution with mean vector b and covariance 

matrix R. Let Pj denote the distribution N,(O, Rj), j = 1,. . . , N. Suppose that Rj is invertible 

forj = l,..., N and C,“=, aj RT’ is also invertible. Then the Hellinger transform of PI, . . . , PN 
is the following 

&-x(pl, * * ., fi (detRj)ai det 
j=l 

-l/2 

. (2) 

Let {&, t = 0, fl, f2,. . . } be a (multidimensional) Gaussian process with mean 0. Let Hj be 

the hypothesis that {&} has covariance matrix Cj. Let, Pj”’ denote the distribution of {co, . . . , &} 

ifHj istrue,j=l,..., N. Then 

IHI,(Pf), Pi’) = fi (det ( [Cj] i)) a’ 
j=l 

det (g&j ([Cj]E)-‘) i”‘f (3) 
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16 I. FAZEKAS 

where [cj]i denotes an appropriate ‘section’ of Cj (i.e., [Cj]: = ((CJ)~,~):,(=~). We suppose 

that the inverses involved exist. 
Our aim is to study limt_,cr) (l/(t + 1)) log H, (P,‘“‘, . . , , Pi’) when the process {&} is stationary 

(under each hypothesis Hj,j = 1,. . . ,N). If N = 2 then lim~,co(l/(t+l)) logH,,I_,(P, (t), p,‘“‘> 

is Rbnyi’s information (see [4]). Suppose that the (multidimensional) stationary process {&} has 
spectral density (matrix) function fj(X), X E [-7r, ~1, under hypothesis H3 

exp(i(k - Z)A)fj(X) dX, Q k,l. (4) 

It is known that a stationary process with spectral density fj(X)fh(X) has covariance matrix 
CjCh. Moreover, if fj(X) . IS invertible for all X then a stationary process with spectral density 

(f,(X))-’ has covariance matrix (Cj)-‘. 
We need the following result due to [5]. 

LEMMA 1. Suppose that fj(X) is positive definite for X E [-.zr,r]. Then 

iiz &(logdet( [cJ]f,) = 2’,- l’=logdet(.?j(A))dA. 
7r 

(5) 

However, the above mentioned facts cannot be used directly to calculate 

&I& & log w, (P:t), . . . , qy ) 

for arbitrary stationary processes because formula (3) involves ([Cj]i)-’ and not [Cj~‘]~. 

For multidimensional Gaussian AR(l) processes we have the fAllowi;g theorem. 

THEOREM 1. Let {yt} be an m-dimensional stationary Gaussian AR(l) process with zero mean 

yt_+l = Ayt +c~+I, t = 0, +I, 12,. . . , (6) 

where {Ed} is a sequence of independent standard Gaussian random vectors. Let Hj be the 
hypothesis that A = Aj, j = 1,. . . , N. Suppose that the eigenvalues of Aj are inside the unit 
circle for all j. Let 

f,(X) = ([I - Aj exp(iX)lTII - Aj exp(ix)])-l (7) 

be thespectral density of the process and let Pj” denote the distribution of (~0,. . . , yt} if Hj is 
true, j = 1,. . . , IV. Then 

log det f.j (X) dX + logdetccYj(f,(A))-‘dX 1 3 (8) 
j=l 

where (1~ = (~1,. . . , QN), ~1 > 0,. . . , @N > 0, c,“=, aj = 1. 

Here, and in what follows, T denotes the transposed of a matrix while 1 denotes the unit 
matrix (of appropriate size). If N = 2, Theorem 1 is known for any multidimensional stationary 
Gaussian process (see [S]). 

The proof of Theorem 1 is given in Section 3. In Section 2, a stronger version of Theorem 1 is 
proved for scalar prosesses (Theorem 2). 



Hellinger Transform 17 

2. SCALAR AR(l) PROCESSES 

Let {&, t = 0, fl, f2,. . . } be a real stationary Gaussian AR(l) process. Suppose that under 

hypothesis Hj 

b+i = aj 6 + Et+i, t = 0, fl, f2,. . . ) (9) 

where {Q} is a sequence of independent standard Gaussian random variables, laj( < 1. Sup- 

pose that the mean of the process is 0. The covariance matrix and its inverse are of the form 

(see [7, p. 1311) 

cj = -L 
1 - a; 

1 

*. *. f. 
. . . 

. . 
. 1 aj a; 

. . 
. aj 1 aj '.. 

a; Cij 1 “. 

*. 1. *. . . .I 

. . . . . . 

. . . l+aj2 -aj 0 

. . -aj 1 + aj2 -aj ‘*. 

0 -aj l+a,2 ‘.. 

. . . . f. 
* 1 

The covariance matrix of (6,. . . , &} and the inverse covariance matrix have the form 

1 0 . . . -aj 0 

-aj 1 +a3 '.. *.. i 

0 Cj I> i -l= LX’ 0 . . '_ '. 0 I . 

*. . . +a; 1 -aj 
0 . . . 0 -aj 1 

It is easy to see that det ( [Cj]i)-1 = 1 - a;, but according to (3)) we need 

d=det (gaj ([Cj]E)-‘). 

BY (12) 
d = det [Clf2 - 2a2 det [C]im3 - 4a4 det [Cl:-“, 

where C = C,“=i ajCjrl and a = Cy!r ojaj. 

The spectral density of the stationary process {&} defined by (9) is 

fj(X) = (1 - 2aj COSX +a:)-l. 

The stationary process with spectral density 

gj(x) = --!- = 
.fjCx) 

1-2ajCOSX+f_$ 

has covariance matrix Cj:‘. Furthermore, the stationary process with spectral density 

g(A)=~CXjgj(A)=~cuj 

j=l j=l .fjCx) 

. (10) 

(12) 

(13) 

(14) 

(15) 

(16) 

has covariance matrix C = C,“=, ajCjT1 . 
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We need the following lemma (see [8, p. 761). 

LEMMA 2. Let f(A) b e a spectral density function on [-n, SK] and let C be the covariance 
matrix corresponding to f. Suppose that f’ exists and satisfies the Lipschitz condition 

If’(h) - f’(h)1 < Kp+l - x21”, (17) 

whereK>O, O<p<l. Then 

JLs det( [Cl:) 
I 

{ exp (& [y log f(x) dA> }‘+’ = Lf (18) 

exists and 1 < Lf < 00. 

As spectral densities defined by (14) and (15) satisfy Lipschitz condition (17), we can apply 
Lemma 2. Using (18) and (13), we obtain 

where kg is a finite constant. For the first, term on the right hand side of (3), we have 

Thus, we have proved the following theorem. 

THEOREM 2. Let {&} b e a zero mean stationary Gaussian AR(l) process, &+I = a& + Et+l, 

t = 0, fl, f2,. . . , where {et} is a sequence of independent standard Gaussian random vari- 

ables. Let Hj be the hypothesis that a = aj, where laj 1 < 1, j = 1,. . . , N. Let fj(X) = 

(1 - 2aj cos X + aj) ’ -’ be the spectral density of the process and let Pjt) denote the distribution 

of{<o,... ,&} ifHj is true,j = l,..., IV. Then 

lim 
IHI, P,(“),...,P$) 

( 

t-+m {exp ((-1/4n) s_‘,” log (fly=, .fj*‘(X) c3N,1 Qjf;'(x)) dJf)}t+l = 

L, (21) 

whereLisafiniteconstantanda=(al,..., ON), CYI>O ,..., (YN>O, CjN_l(Yj=l. 

Relation (21) can be rewritten into the following form 

!ir & logH, (P;?. . . , P$) = 2 
+a 

J ( 

log fi f,“j(X) &&‘(x) ClX. (22) _ 
= j=l j-1 

3. MULTIDIMENSIONAL AR(l) PROCESSES 

Let {yt, t = 0, fl, 912,. . . } be an m-dimensional stationary Gaussian AR(l) process. Suppose 

that under hypothesis Hj 

yt+l = Ajyt + Et+l, t = 0, fl, ~t2,. . . , (23) 
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where {Q} is a sequence of independent standard Gaussian random vectors. We assume that 

the eigenvalues of Aj are inside the unit circle. Suppose that the mean of the process is 0. The 

covariance matrix and its inverse are the following block matrices 

-. . . . . 

. . . I+ATAj -A; 0 

. . - Aj I + ATAj -A; ‘.. 

0 - Aj I+AjTAj *.. 

. . *. . . 

where Sj = ~,“=,AYAJ”. 
The covariance matrix of {ys, . . . , yt} and the inverse covariance matrix have the form 

L9j 
SjA,T . . . S.AT@-‘) S.A-!-t 

AjSj Sj ‘.’ 3 3 S3A+4 Sj+ 

i i ‘.. i ! 7 

A3-1Sj A~-2Sj ... Sj Sj Al 
AfSj 3 3 ‘.. AtrlS. AjSj sj 

I+AjTAj *.. ‘.. : 

0 I> cj; -l= 

(24) 

(25) 

(26) 

1. (27) 

PROOF OF THEOREM 1. First we shall prove that eigenvalues of ( [Cj]:) -’ are bounded from 

zero. Let X denote an eigenvalue of [Cj]:. By Gersgorin’s theorem (see [9, Chapter XIV, Theorem 

61) 

(28) 

As the spectral radius of Aj is less than 1 the series c& A; is absolute convergent. Therefore, 

2llSjll C,c IIA:ll 5 K, where K is a finite constant not depending on t. As (Sj - XI) -I is 
symmetric its spectral norm is equal to its spectral radius. Therefore, (28) implies that there 
exists a constant K,, (not depending on t) such that 1x1 5 KO for an arbitrary eigenvalue of 

[Cj] i. So eigenvalues of ([Cj] i) -’ are bounded from zero. As ( [Cj] i) -’ are positive definite 

there exists an L > 0 such that 1x1 > L for each X being an eigenvalue of C,“=, oj ([Cj]i)-l 

(see [lo, Theorem 3.6.31). 
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Let us consider the following partition 

(29) 

where W is of size m x m while U is of size tm x tm. Adding C,“=, ojA:Aj to the bottom 

right hand block of C,“,l aj ([~j]i-‘) -’ we obtain U. Hence, 1x1 > L for each eigenvalue of U, 

whence 1x1 < l/L < cc for each eigenvalue of U-l, where the upper bound does not depend on t. 

Taking into account the special structure of matrices in (29) we can see that the eigenvalues of 

W - VTUvlV have an absolute bound. Therefore, 

)i% i logdet(W - VTU-‘V) = 0. 

Now, consider the following partition 

(30) 

(31) 

where Uo is of size m x m while Wo is of size (t - l)m x (t - 1)m. We know that 1x1 > L for each 

eigenvalue of U. As U is symmetric, we can apply [ll, Theorem 9.C.11. We obtain that 1x1 > L 

for each eigenvalue of Wo. Therefore, 

Ji% i logdet(Uo - V,W;‘VoT) = 0. (32) --i 

Now 

det (gaj (ic$,)-‘) = det U det(W - VTUdlV) 

By (30) and (32), 

= det W, det(Uo - VoW{‘Vz) det(W - VTUelV). 

(34) 

if the limit on the right hand side exists. But 

w, = &j ([c,-‘];-‘) ) (35) 
j=l 

that is W,J contains sections of the inverse covariances C.,:‘. Equations (3), (5), (34), and (35) 
imply Theorem 1. 

1. 
2. 

3. 
4. 

5. 
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