Hellinger Transform of Gaussian Autoregressive Processes

I. FAZEKAS
Institute of Mathematics and Informatics, Kossuth University
P.O. Box 12, H-4010 Debrecen, Hungary

(Received August 1993; accepted September 1993)

Abstract

The limit of the Hellinger transform of measures related to multidimensional stationary Gaussian autoregressive processes is obtained

1. INTRODUCTION AND MAIN RESULT

Let P_{1}, \ldots, P_{N} be probability measures defined on a common measurable space (Ω, \mathcal{F}). Let P be a. σ-finite measure dominating each P_{j}. Then the Hellinger transform of P_{1}, \ldots, P_{N} is defined by

$$
\begin{equation*}
\mathbb{H}_{\alpha}\left(P_{1}, \ldots, P_{N}\right)=\int_{\Omega} \prod_{j=1}^{N}\left(\frac{d P_{j}}{d P}\right)^{\alpha_{j}} d P \tag{1}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right), \alpha_{1}>0, \ldots, \alpha_{N}>0, \sum_{j=1}^{N} \alpha_{j}=1$.
We remark that for $N=2$ the quantity $\mathbb{H}_{\alpha}\left(P_{1}, P_{2}\right)$ is called the Hellinger integral of measures P_{1} and P_{2}. The Hellinger integral is widely used to study absolute continuity of measures (see e.g., $[1-3]$).

Let $\mathcal{N}_{p}(b, R)$ denote the p-dimensional normal distribution with mean vector b and covariance matrix R. Let P_{j} denote the distribution $\mathcal{N}_{p}\left(0, R_{j}\right), j=1, \ldots, N$. Suppose that R_{j} is invertible for $j=1, \ldots, N$ and $\sum_{j=1}^{N} \alpha_{j} R_{j}^{-1}$ is also invertible. Then the Hellinger transform of P_{1}, \ldots, P_{N} is the following

$$
\begin{equation*}
\mathbb{H}_{\alpha}\left(P_{1}, \ldots, P_{N}\right)=\left\{\prod_{j=1}^{N}\left(\operatorname{det} R_{j}\right)^{\alpha_{j}} \operatorname{det}\left(\sum_{j=1}^{N} \alpha_{j} R_{j}^{-1}\right)\right\}^{-1 / 2} . \tag{2}
\end{equation*}
$$

Let $\left\{\xi_{t}, t=0, \pm 1, \pm 2, \ldots\right\}$ be a (multidimensional) Gaussian process with mean 0 . Let H_{j} be the hypothesis that $\left\{\xi_{t}\right\}$ has covariance matrix C_{j}. Let $P_{j}^{(t)}$ denote the distribution of $\left\{\xi_{0}, \ldots, \xi_{t}\right\}$ if H_{j} is true, $j=1, \ldots, N$. Then

$$
\begin{equation*}
\mathbb{H}_{\alpha}\left(P_{1}^{(t)}, \ldots, P_{N}^{(t)}\right)=\left\{\prod_{j=1}^{N}\left(\operatorname{det}\left(\left[C_{j}\right]_{0}^{t}\right)\right)^{\alpha_{j}} \operatorname{det}\left(\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}\right)\right\}^{-1 / 2} \tag{3}
\end{equation*}
$$

I wish to thank F. Liese and Y. S. Sathe for helpful discussions.
This research was supported by the Hungarian Foundation for Scientific Researches under Grant No. OTKAT4047/1992 and Grant No. OTKA-1648/1991.
where $\left[C_{j}\right]_{0}^{t}$ denotes an appropriate 'section' of C_{j} (i.e., $\left.\left[C_{j}\right]_{0}^{t}=\left(\left(C_{j}\right)_{k, l}\right)_{k, l=0}^{t}\right)$. We suppose that the inverses involved exist.

Our aim is to study $\lim _{t \rightarrow \infty}(1 /(t+1)) \log \mathbb{H}_{\alpha}\left(P_{1}^{(t)}, \ldots, P_{N}^{(t)}\right)$ when the process $\left\{\xi_{t}\right\}$ is stationary (under each hypothesis $\left.H_{j}, j=1, \ldots, N\right)$. If $N=2$ then $\lim _{t \rightarrow \infty}(1 /(t+1)) \log \mathrm{H}_{\alpha, 1-\alpha}\left(P_{1}^{(t)}, P_{2}^{(t)}\right)$ is Rényi's information (see [4]). Suppose that the (multidimensional) stationary process $\left\{\xi_{t}\right\}$ has spectral density (matrix) function $f_{j}(\lambda), \lambda \in[-\pi, \pi]$, under hypothesis H_{j}

$$
\begin{equation*}
\left(C_{j}\right)_{k, l}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \exp (i(k-l) \lambda) f_{j}(\lambda) d \lambda, \quad \forall k, l \tag{4}
\end{equation*}
$$

It is known that a stationary process with spectral density $f_{j}(\lambda) f_{h}(\lambda)$ has covariance matrix $C_{j} C_{h}$. Moreover, if $f_{j}(\lambda)$ is invertible for all λ then a stationary process with spectral density $\left(f_{j}(\lambda)\right)^{-1}$ has covariance matrix $\left(C_{j}\right)^{-1}$.

We need the following result due to [5].
Lemma 1. Suppose that $f_{j}(\lambda)$ is positive definite for $\lambda \in[-\pi, \pi]$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t+1}\left(\log \operatorname{det}\left(\left[C_{j}\right]_{0}^{t}\right)\right)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \log \operatorname{det}\left(f_{j}(\lambda)\right) d \lambda \tag{5}
\end{equation*}
$$

However, the above mentioned facts cannot be used directly to calculate

$$
\lim _{t \rightarrow \infty} \frac{1}{t+1} \log \mathbb{H}_{\alpha}\left(P_{1}^{(t)}, \ldots, P_{N}^{(t)}\right)
$$

for arbitrary stationary processes because formula (3) involves $\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}$ and not $\left[C_{j}^{-1}\right]_{0}^{t}$.
For multidimensional Gaussian $\mathrm{AR}(1)$ processes we have the following theorem.
ThEOREM 1. Let $\left\{y_{t}\right\}$ be an m-dimensional stationary Gaussian AR(1) process with zero mean

$$
\begin{equation*}
y_{t+1}=A y_{t}+\varepsilon_{t+1}, \quad t=0, \pm 1, \pm 2, \ldots \tag{6}
\end{equation*}
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of independent standard Gaussian random vectors. Let H_{j} be the hypothesis that $A=A_{j}, j=1, \ldots, N$. Suppose that the eigenvalues of A_{j} are inside the unit circle for all j. Let

$$
\begin{equation*}
f_{j}(\lambda)=\left(\left[I-A_{j} \exp (i \lambda)\right]^{\top}\left[I-A_{j} \exp (i \lambda)\right]\right)^{-1} \tag{7}
\end{equation*}
$$

be thespectral density of the process and ler $P_{j}^{(t)}$ denote the distribution of $\left\{y_{0}, \ldots, y_{t}\right\}$ if H_{j} is true, $j=1, \ldots, N$. Then

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{1}{t+1} \log \mathrm{H}_{\alpha} & \left(P_{1}^{(t)}, \ldots, P_{N}^{(t)}\right) \\
& =\frac{-1}{4 \pi}\left[\sum_{j=1}^{N} \alpha_{j} \int_{-\pi}^{+\pi} \log \operatorname{det} f_{j}(\lambda) d \lambda+\int_{-\pi}^{+\pi} \log \operatorname{det} \sum_{j=1}^{N} \alpha_{j}\left(f_{j}(\lambda)\right)^{-1} d \lambda\right] \tag{8}
\end{align*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right), \alpha_{1}>0, \ldots, \alpha_{N}>0, \sum_{j=1}^{N} \alpha_{j}=1$.
Here, and in what follows, ${ }^{\top}$ denotes the transposed of a matrix while I denotes the unit matrix (of appropriate size). If $N=2$, Theorem 1 is known for any multidimensional stationary Gaussian process (see [6]).

The proof of Theorem 1 is given in Section 3. In Section 2, a stronger version of Theorem 1 is proved for scalar prosesses (Theorem 2).

2. SCALAR AR(1) PROCESSES

Let $\left\{\xi_{t}, t=0, \pm 1, \pm 2, \ldots\right\}$ be a real stationary Gaussian AR(1) process. Suppose that under hypothesis H_{j}

$$
\begin{equation*}
\xi_{t+1}=a_{j} \xi_{t}+\varepsilon_{t+1}, \quad t=0, \pm 1, \pm 2, \ldots \tag{9}
\end{equation*}
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of independent standard Gaussian random variables, $\left|a_{j}\right|<1$. Suppose that the mean of the process is 0 . The covariance matrix and its inverse are of the form (see [7, p. 131])

$$
C_{j}=\frac{1}{1-a_{j}^{2}}\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & \tag{10}\\
\ddots & 1 & a_{j} & a_{j}^{2} & \\
\ddots & a_{j} & 1 & a_{j} & \ddots \\
& a_{j}^{2} & a_{j} & 1 & \ddots \\
& & \ddots & \ddots & \ddots
\end{array}\right), C_{j}^{-1}=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & \\
\ddots & 1+a_{j}^{2} & -a_{j} & 0 & \\
\ddots & -a_{j} & 1+a_{j}^{2} & -a_{j} & \ddots \\
& 0 & -a_{j} & 1+a_{j}^{2} & \ddots \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

The covariance matrix of $\left\{\xi_{0}, \ldots, \xi_{t}\right\}$ and the inverse covariance matrix have the form

$$
\begin{gather*}
{\left[C_{j}\right]_{0}^{t}=\frac{1}{1-a_{j}^{2}}\left(\begin{array}{ccccc}
1 & a_{j} & \cdots & a_{j}^{t-1} & a_{j}^{t} \\
a_{j} & 1 & \cdots & a_{j}^{t-2} & a_{j}^{t-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{j}^{t-1} & a_{j}^{t-2} & \cdots & 1 & a_{j} \\
a_{j}^{t} & a_{j}^{t-1} & \cdots & a_{j} & 1
\end{array}\right),} \tag{11}\\
\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}=\left(\begin{array}{ccccc}
1 & -a_{j} & 0 & \cdots & 0 \\
-a_{j} & 1+a_{j}^{2} & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 1+a_{j}^{2} & -a_{j} \\
0 & \cdots & 0 & -a_{j} & 1
\end{array}\right) . \tag{12}
\end{gather*}
$$

It is easy to see that $\operatorname{det}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}=1-a_{j}^{2}$, but according to (3), we need

$$
d=\operatorname{det}\left(\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}\right)
$$

By (12)

$$
\begin{equation*}
d=\operatorname{det}[C]_{0}^{t-2}-2 a^{2} \operatorname{det}[C]_{0}^{t-3}-4 a^{4} \operatorname{det}[C]_{0}^{t-4} \tag{13}
\end{equation*}
$$

where $C=\sum_{j=1}^{N} \alpha_{j} C_{j}^{-1}$ and $a=\sum_{j=1}^{N} \alpha_{j} a_{j}$.
The spectral density of the stationary process $\left\{\xi_{t}\right\}$ defined by (9) is

$$
\begin{equation*}
f_{j}(\lambda)=\left(1-2 a_{j} \cos \lambda+a_{j}^{2}\right)^{-1} \tag{14}
\end{equation*}
$$

The stationary process with spectral density

$$
\begin{equation*}
g_{j}(\lambda)=\frac{1}{f_{j}(\lambda)}=1-2 a_{j} \cos \lambda+a_{j}^{2} \tag{15}
\end{equation*}
$$

has covariance matrix C_{j}^{-1}. Furthermore, the stationary process with spectral density

$$
\begin{equation*}
g(\lambda)=\sum_{j=1}^{N} \alpha_{j} g_{j}(\lambda)=\sum_{j=1}^{N} \frac{\alpha_{j}}{f_{j}(\lambda)} \tag{16}
\end{equation*}
$$

has covariance matrix $C=\sum_{j=1}^{N} \alpha_{j} C_{j}^{-1}$.

We need the following lemma (see [8, p. 76]).
Lemma 2. Let $f(\lambda)$ be a spectral density function on $[-\pi,+\pi]$ and let C be the covariance matrix corresponding to f. Suppose that f^{\prime} exists and satisfies the Lipschitz condition

$$
\begin{equation*}
\left|f^{\prime}\left(\lambda_{1}\right)-f^{\prime}\left(\lambda_{2}\right)\right|<K\left|\lambda_{1}-\lambda_{2}\right|^{\beta}, \tag{17}
\end{equation*}
$$

where $K>0,0<\beta<1$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{det}\left([C]_{0}^{t}\right) /\left\{\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \log f(\lambda) d \lambda\right)\right\}^{t+1}=L_{f} \tag{18}
\end{equation*}
$$

exists and $1<L_{f}<\infty$.
As spectral densities defined by (14) and (15) satisfy Lipschitz condition (17), we can apply Lemma 2. Using (18) and (13), we obtain

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{det}\left(\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}\right) /\left\{\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \log g(\lambda) d \lambda\right)\right\}^{t+1}=\hat{L}_{g} \tag{19}
\end{equation*}
$$

where \hat{L}_{g} is a finite constant. For the first term on the right hand side of (3), we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \prod_{j=1}^{N}\left(\operatorname{det}\left(\left[C_{j}\right]_{0}^{t}\right)^{\alpha_{j}} / \prod_{j=1}^{N}\left\{\left(\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \log f_{j}(\lambda) d \lambda\right)\right)^{t+1}\right\}^{\alpha_{j}}-\prod_{j=1}^{N} L_{f_{j}}^{\alpha_{j}} .\right. \tag{20}
\end{equation*}
$$

Thus, we have proved the following theorem.
Theorem 2. Let $\left\{\xi_{t}\right\}$ be a zero mean stationary Gaussian $\operatorname{AR}(1)$ process, $\xi_{l+1}=a \xi_{t}+\varepsilon_{t+1}$, $t=0, \pm 1, \pm 2, \ldots$, where $\left\{\varepsilon_{t}\right\}$ is a sequence of independent standard Gaussian random variables. Let H_{j} be the hypothesis that $a=a_{j}$, where $\left|a_{j}\right|<1, j=1, \ldots, N$. Let $f_{j}(\lambda)=$ $\left(1-2 a_{j} \cos \lambda+a_{j}^{2}\right)^{-1}$ be the spectral density of the process and let $P_{j}^{(t)}$ denote the distribution of $\left\{\xi_{0}, \ldots, \xi_{t}\right\}$ if H_{j} is true, $j=1, \ldots, N$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\mathbb{H}_{\alpha}\left(P_{1}^{(t)}, \ldots, P_{N}^{(t)}\right)}{\left\{\exp \left((-1 / 4 \pi) \int_{-\pi}^{+\pi} \log \left(\prod_{j=1}^{N} f_{j}^{\alpha_{j}}(\lambda) \sum_{j=1}^{N} \alpha_{j} f_{j}^{-1}(\lambda)\right) d \lambda\right)\right\}^{t+1}}=L \tag{21}
\end{equation*}
$$

where L is a finite constant and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right), \alpha_{1}>0, \ldots, \alpha_{N}>0, \sum_{j=1}^{N} \alpha_{j}=1$.
Relation (21) can be rewritten into the following form

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t+1} \log \mathrm{H}_{\alpha}\left(P_{1}^{(t)}, \ldots, P_{N}^{(t)}\right)=\frac{-1}{4 \pi} \int_{-\pi}^{+\pi} \log \left(\prod_{j-1}^{N} f_{j}^{\alpha_{j}}(\lambda) \sum_{j=1}^{N} \alpha_{j} f_{j}^{-1}(\lambda)\right) d \lambda . \tag{22}
\end{equation*}
$$

3. MULTIDIMENSIONAL AR(1) PROCESSES

Let $\left\{y_{t}, t=0, \pm 1, \pm 2, \ldots\right\}$ be an m-dimensional stationary Gaussian AR(1) process. Suppose that under hypothesis H_{j}

$$
\begin{equation*}
y_{t+1}=A_{j} y_{t}+\varepsilon_{t+1}, \quad t=0, \pm 1, \pm 2, \ldots, \tag{23}
\end{equation*}
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of independent standard Gaussian random vectors. We assume that the eigenvalues of A_{j} are inside the unit circle. Suppose that the mean of the process is 0 . The covariance matrix and its inverse are the following block matrices

$$
\begin{gather*}
C_{j}=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & \\
\ddots & S_{j} & S_{j} A_{j}^{\top} & S_{j} A_{j}^{\top}{ }^{2} & \\
\ddots & A_{j} S_{j} & S_{j} & S_{j} A_{j}^{\top} & \ddots \\
& A_{j}^{2} S_{j} & A_{j} S_{j} & S_{j} & \ddots \\
& & \ddots & \ddots & \ddots
\end{array}\right), \tag{24}\\
C_{j}^{-1}=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & \\
\ddots & I+A_{j}^{\top} A_{j} & -A_{j}^{\top} & 0 & \\
\ddots & -A_{j} & I+A_{j}^{\top} A_{j} & -A_{j}^{\top} & \ddots \\
& 0 & -A_{j} & I+A_{j}^{\top} A_{j} & \ddots \\
& & \ddots & \ddots & \ddots
\end{array}\right), \tag{25}
\end{gather*}
$$

where $S_{j}=\sum_{\nu=0}^{\infty} A_{j}^{\nu} A_{j}^{\top}$.
The covariance matrix of $\left\{y_{0}, \ldots, y_{l}\right\}$ and the inverse covariance matrix have the form

$$
\begin{gather*}
{\left[C_{j}\right]_{0}^{t}=\left(\begin{array}{ccccc}
S_{j} & S_{j} A_{j}^{\top} & \cdots & S_{j} A_{j}^{\top(t-1)} & S_{j} A_{j}^{\top t} \\
A_{j} S_{j} & S_{j} & \cdots & S_{j} A_{j}^{\top(t-2)} & S_{j} A_{j}^{\top(t-1)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A_{j}^{t-1} S_{j} & A_{j}^{t-2} S_{j} & \cdots & S_{j} & S_{j} A_{j}^{\top} \\
A_{j}^{t} S_{j} & A_{j}^{t-1} S_{j} & \cdots & A_{j} S_{j} & S_{j}
\end{array}\right),} \tag{26}\\
\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}=\left(\begin{array}{cccccc}
S_{j}^{-1}+A_{j}^{\top} A_{j} & -A_{j}^{\top} & 0 & \cdots & 0 \\
-A_{j} & I+A_{j}^{\top} A_{j} & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & I+A_{j}^{\top} A_{j} & -A_{j}^{\top} \\
0 & \cdots & 0 & -A_{j} & I
\end{array}\right) . \tag{27}
\end{gather*}
$$

Proof of Theorem 1. First we shall prove that eigenvalues of $\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}$ are bounded from zero. Let λ denote an eigenvalue of $\left[C_{j}\right]_{n}^{t}$. By Gersgorin's theorem (see 9 , Chapter XIV, Theorem 6])

$$
\begin{equation*}
\left\|\left(S_{j}-\lambda I\right)^{-1}\right\|^{-1} \leq \sum_{k}\left(\left\|S_{j} A_{j}^{\top k}\right\|+\left\|A_{j}^{k} S_{j}\right\|\right) \leq 2\left\|S_{j}\right\| \sum_{k}\left\|A_{j}^{k}\right\| . \tag{28}
\end{equation*}
$$

As the spectral radius of A_{j} is less than 1 the series $\sum_{k=0}^{\infty} A_{j}^{k}$ is absolute convergent. Therefore, $2\left\|S_{j}\right\| \sum_{k}\left\|A_{j}^{k}\right\| \leq K$, where K is a finite constant not depending on t. As $\left(S_{j}-\lambda I\right)^{-1}$ is symmetric its spectral norm is equal to its spectral radius. Therefore, (28) implies that there exists a constant K_{0} (not depending on t) such that $|\lambda| \leq K_{0}$ for an arbitrary eigenvalue of $\left[C_{j}\right]_{0}^{t}$. So eigenvalues of $\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}$ are bounded from zero. As $\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}$ are positive definite there exists an $L>0$ such that $|\lambda|>L$ for each λ being an eigenvalue of $\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}$ (see [10, Theorem 3.6.3]).

Let us consider the following partition

$$
\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}=\left(\begin{array}{cc}
U & V \tag{29}\\
V^{\top} & W
\end{array}\right)
$$

where W is of size $m \times m$ while U is of size $t m \times t m$. Adding $\sum_{j=1}^{N} \alpha_{j} A_{j}^{\top} A_{j}$ to the bottom right hand block of $\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t-1}\right)^{-1}$ we obtain U. Hence, $|\lambda|>L$ for each eigenvalue of U, whence $|\lambda|<1 / L<\infty$ for each eigenvalue of U^{-1}, where the upper bound does not depend on t. Taking into account the special structure of matrices in (29) we can see that the eigenvalues of $W-V^{\top} U^{-1} V$ have an absolute bound. Therefore,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \log \operatorname{det}\left(W-V^{\top} U^{-1} V\right)=0 \tag{30}
\end{equation*}
$$

Now, consider the following partition

$$
U=\left(\begin{array}{cc}
U_{0} & V_{0} \tag{31}\\
V_{0}^{\top} & W_{0}
\end{array}\right)
$$

where U_{0} is of size $m \times m$ while W_{0} is of size $(t-1) m \times(t-1) m$. We know that $|\lambda|>L$ for each eigenvalue of U. As U is symmetric, we can apply [11, Theorem 9.C.1]. We obtain that $|\lambda|>L$ for each eigenvalue of W_{0}. Therefore,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \log \operatorname{det}\left(U_{0}-V_{0} W_{0}^{-1} V_{0}^{\top}\right)=0 \tag{32}
\end{equation*}
$$

Now

$$
\begin{align*}
\operatorname{det}\left(\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}\right) & =\operatorname{det} U \operatorname{det}\left(W-V^{\top} U^{-1} V\right) \tag{33}\\
& =\operatorname{det} W_{0} \operatorname{det}\left(U_{0}-V_{0} W_{0}^{-1} V_{0}^{\top}\right) \operatorname{det}\left(W-V^{\top} U^{-1} V\right)
\end{align*}
$$

By (30) and (32),

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t+1} \log \operatorname{det}\left(\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}\right]_{0}^{t}\right)^{-1}\right)=\lim _{t \rightarrow \infty} \frac{1}{t+1} \log \operatorname{det} W_{0}, \tag{34}
\end{equation*}
$$

if the limit on the right hand side exists. But

$$
\begin{equation*}
W_{0}=\sum_{j=1}^{N} \alpha_{j}\left(\left[C_{j}^{-1}\right]_{0}^{t-2}\right), \tag{35}
\end{equation*}
$$

that is W_{0} contains sections of the inverse covariances C_{j}^{-1}. Equations (3), (5), (34), and (35) imply Theorem 1.

REFERENCES

1. A.N. Shiryayev, Probability (in Russian), Nauka, Moscow, (1989).
2. M. Arato, Some remarks on the absolute continuity of measures (in Russian), Mat. Kut. Közl. VI (2), 123-126 (1961).
3. F. Liese and I. Vaida, Convex Statistical Distances, Teubner-Texte, Leibzig, (1987).
4. S. Sugimoto and T. Wada, Spectral expressions of information measures, IEEE Transactions of Information Theory 34 (4), 625-631 (1988).
5. M. Rosenblatt, Asymptotic distribution of eigenvalues of block Toeplitz matrices, Bull. Amer. Math. Soc. 66, 320-321 (1960).
6. D. Kazakos and P. Papantoni-Kazakos, Spectral distance measures between Gaussian processes, IEEE Transactions on Automatic Control 25 (5), 950-958 (1980).
7. M. Arató, Linear stochastic systems with constant coefficients. A statistical approach (in Russian), Nauka, Moscow; English edition: Lecture Notes in Control and Information Sciences, Vol. 45, Springer-Verlag, Berlin, (1982).
8. U. Grenander and G. Szegö (1958), Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles, (1958).
9. F.R. Gantmacher, Theory of Matrices, Chelsea, Bronx, New York, (1959).
10. P. Lancaster, Theory of Matrices, Academic Press, New York, (1969).
11. A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, (1979).
