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Abstract: Maintenance of both normal epithelial tissues and their
malignant counterparts is supported by the host tissue stroma. The
tumor stroma mainly consists of the basement membrane, fibro-
blasts, extracellular matrix, immune cells, and vasculature. Although
most host cells in the stroma possess certain tumor-suppressing
abilities, the stroma will change during malignancy and eventually
promote growth, invasion, and metastasis. Stromal changes at the
invasion front include the appearance of carcinoma-associated fi-
broblasts (CAFs). CAFs constitute a major portion of the reactive
tumor stroma and play a crucial role in tumor progression. The main
precursors of CAFs are normal fibroblasts, and the transdifferentia-
tion of fibroblasts to CAFs is driven to a great extent by cancer-
derived cytokines such as transforming growth factor-�. During
recent years, the crosstalk between the cancer cells and the tumor
stroma, highly responsible for the progression of tumors and their
metastasis, has been increasingly unveiled. A better understanding
of the host stroma contribution to cancer progression will increase
our knowledge about the growth promoting signaling pathways and
hopefully lead to novel therapeutic interventions targeting the tumor
stroma. This review reports novel data on the essential crosstalk
between cancer cells and cells of the tumor stroma, with an emphasis
on the role played by CAFs. Furthermore, it presents recent litera-
ture on relevant tumor stroma- and CAF-related research in non-
small cell lung cancer.
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Lung cancer mortality is high, and annual lung cancer
deaths equal prostate, breast, colon, and rectum cancers

combined.1,2 Despite the advancement in knowledge on mo-
lecular mechanisms and the introduction of multiple new
therapeutic lung cancer agents, the dismal 5-year survival rate
(11–15%) remains relatively unaltered.1,3 This reflects the
limited available knowledge on factors promoting oncogenic
transformation to and proliferation of malignant cells.

Until recent years, the principal focus in cancer re-
search has mostly been the malignant cell itself. As a conse-
quence, today, there is a significant discrepancy between the
vast knowledge about cancer biology generated in experi-
mental settings and the translation of this knowledge into
information that can be used in clinical decision making.
Understanding the nature of the tumor environment today
may be equally important for future cancer therapies as
understanding cancer genetics per se. Cancers are not simply
autonomous neoplastic cells but also composed of fibroblasts,
immune cells, endothelial cells, and specialized mesenchymal
cells. These different cell types in the stromal environment
can be recruited by malignant cells to support tumor growth
and facilitate metastatic dissemination.

Although the “seed and soil” hypothesis was pre-
sented more than a century ago by Stephen Paget,4 we are
now starting to comprehend the complex crosstalk between
the tumor cells (the “seeds”) and the tumor-growing mi-
croenvironment (the “soil”). We now know that tumor
growth is not determined only by malignant cells, because
interactions between cancer cells and the stromal compart-
ment have major impacts on cancer growth and progres-
sion.5 Aggressive malignant cells are clever at exploiting
the tumor microenvironment: tumor cells can (1) reside in
the stroma and transform it, (2) alter the surrounding
connective tissue, and (3) modify the metabolism of resi-
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dent cells, thus yielding a stroma, which is permissive
rather than defensive.6

Beyond overcoming the microenvironmental control by
the host, key characteristics of cancer cells is their ability to
invade the tissue and metastasize distantly.7,8 For invasion and
metastasis, the concerted interactions between fibroblasts, im-
mune cells, and angiogenic cells and factors are essential.7,9–17

In the search for new successful targets for anticancer
therapies, a better understanding of differences between nor-
mal and tumor stroma will be imperative. This review will
focus the interplay between malignant cells, the stromal
environment, and carcinoma-associated fibroblasts (CAFs) in
particular and present non-small cell lung cancer (NSCLC)–
specific research within this field.

THE TUMOR STROMA
The tumor stroma basically consists of (1) the nonmalig-

nant cells of the tumor such as CAFs, specialized mesenchymal
cell types distinctive to each tissue environment, innate and
adaptive immune cells,13,18 and vasculature with endothelial
cells and pericytes19,20 and (2) the extracellular matrix (ECM)
consisting of structural proteins (collagen and elastin), special-
ized proteins (fibrilin, fibronectin, and elastin), and proteogly-
cans (Table 1).21 Angiogenesis is central for cancer cell growth
and survival and has hitherto been the most successful among
stromal targets in anticancer therapy. Initiation of angio-
genesis requires matrix metalloproteinase (MMP) induc-
tion leading to degradation of the basement membrane,
sprouting of endothelial cells, and regulation of pericyte
attachment. However, CAFs play an important role in
synchronizing these events through the expression of nu-
merous ECM molecules and growth factors, including trans-
forming growth factor (TGF)-�, vascular endothelial growth factor
(VEGF), and fibroblast growth factor (FGF) 2.19

From Normal Stroma to Tumor Stroma
The normal tissue stroma is essential for maintenance and

integrity of epithelial tissues and contains a multitude of cells
that collaborate to sustain normal tissue homeostasis. There is a

continuous and bilateral molecular crosstalk between normal
epithelial cells and cells of the stromal compartment, mediated
through direct cell-cell contacts or by secreted molecules, as
depicted in Figure 1.22 Thus, minor changes in one compartment
may cause dramatic alterations in the whole system.

In the mid 1980s, Dvorak23 observed the similarity
between stroma from wounds and tumors, because both
entities had active angiogenesis and numerous proliferating
fibroblasts secreting a complex ECM, all on a background of
fibrin deposition. Consequently, the tumor stroma has been
commonly referred to as activated or reactive stroma.

A genetic alteration during cancer development, lead-
ing to a malignant cell, will consequently change the stromal
host compartment to establish a permissive and supportive
environment for the cancer cell.24 During early stages of
tumor development and invasion, the basement membrane is
degraded, and the activated stroma, containing fibroblasts,
inflammatory infiltrates, and newly formed capillaries, comes
into direct contact with the tumor cells. The basement mem-
brane matrix also modifies cytokine interactions between
cancer cells and fibroblasts.25 These cancer-induced alter-
ations in the stroma will contribute to cancer invasion.26

Animal studies have shown that both wounding and activated
stroma provides oncogenic signals to facilitate tumorigene-
sis.27,28 Although normal stroma in most organs contains a
minimal number of fibroblasts in association with physiologic
ECM, the activated stroma is associated with more ECM-
producing fibroblasts, enhanced vascularity, and increased
ECM production (Figure 1).21 This formation of a specific
tumor stroma type at sites of active tumor cell invasion is
considered an integral part of the tumor invasion and has been
termed as tumor stromatogenesis by Giatromanolaki et al.29

The expansion of the tumor stroma with a proliferation of
fibroblasts and dense deposition of ECM is termed a desmoplas-
tic reaction.30 It is secondary to malignant growth and can be
separated from alveolar collapse, which do not show neither
activated fibroblasts nor the dense collagen/ECM. Morphologi-
cally this is termed desmoplasia and was initially conceived as a

FIGURE 1. Crosstalk (efferent and afferent signaling) be-
tween the normal epithelial cells and the stromal cells (blue
arrows) maintains tissue equilibrium and integrity (green ar-
row). During epithelial carcinogenesis, the efferent signaling
changes (orange arrow). This leads to alterations in the
stroma. The new established crosstalk (dashed blue arrow)
between tumor cells and cells of the tumor stroma leads to
invasion and subsequently to metastasis (red arrow).
Adapted from J Pathol. 2003;200:429–447.

TABLE 1. Summary of Stromal Components Related to
Carcinoma-Associated Fibroblast-Mediated Tumorigenesis

Stromal
Components Constituents/Function

ECM Collagen, elastin, fibrilin, fibronectin, laminin, and
proteoglycans. Major components are fibronectin and
collagen type I.

Modulates cell differentiation, morphology, and
proliferation.

MMPs ECM-degrading endopeptidases (proteases), main
substrates are collagens. More than 21 forms.

Fibronectin Glycoprotein. Binds ECM components and integrins.
Control the activity of growth factors, proteases,
protease inhibitors.

Tenascin-C ECM glycoprotein. Interacts with fibronectin. Involved
in regulating morphogenetic cell migration and
organogenesis.

ECM, extracellular matrix; MMP, matrix metalloproteinase.
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defense mechanism to prevent tumor growth,31–34 but data have
shown that in established tumors, this process, quite oppositely,
participates in several aspects of tumor progression, such as
angiogenesis, migration, invasion, and metastasis.21,35,36 The
latter studies show that fibroblasts and tumor cells can enhance
local tissue growth and cancer progression through secreting
ECM and degrading components of ECM within the tumor
stroma.21,35 This is in part related to the release of substances
sequestered in the ECM, such as VEGF (Table 2), and cleavage
of products from ECM proteins as a response to secretion of
carcinoma-associated MMPs.5,37,38

Cancer Cell-Derived Profibrotic Growth
Factors, Angiogenic Factors, and the Tumor
Stroma

Profibrotic growth factors, released by cancer cells,
such as TGF-�, platelet-derived growth factor (PDGF), and
FGF2 govern the volume and composition of the tumor

stroma as they are all key mediators of fibroblast activation
and tissue fibrosis (Table 2).9,23 PDGF and FGF2 play sig-
nificant roles in angiogenesis as well.

Angiogenic factors, such as the VEGF family, are
essential in the emergence of the activated stroma.39 Al-
though VEGF can be released by malignant cells, the fibro-
blasts and inflammatory cells are the principal source of
host-derived VEGF.40 VEGF induces neovascularization and
microvascular permeability, leading to extravasation of
plasma proteins such as fibrin, which subsequently attracts
fibroblasts, inflammatory cells, and endothelial cells.39,41,42

These cells produce ECM yielding desmoplasia, which again
enhance tumor angiogenesis.39,43,44

NORMAL FIBROBLASTS AND CAFS
Fibroblasts were originally described more than 100

years ago and are still for the most part defined by their
location and what they are not—nonsmooth muscle cells,
nonendothelial cells, and nonepithelial cells of the stroma.
The lack of specific markers has historically prevented more
thorough investigations of fibroblasts. Gene analyses have
recently revealed that fibroblasts are quite dissimilar cells and
dependent on the tissue from which they derive and the
specific roles they are called to play.45

From Normal Fibroblasts to CAFs
In tissue homeostasis, normal fibroblasts are in an

inactive quiescent state, embedded within the fibrillar ECM
primarily consisting of collagen type I, laminin, fibronectin,
and proteoglucans and interact with their surroundings
through cell receptors called integrins.36 Fibroblasts become
activated in wound healing and fibrosis, and these cells, also
called myofibroblasts,46 differ morphologically and function-
ally from quiescent fibroblasts. On activation, these cells are
capable of producing relevant signal mediators, such as
growth factors, cytokines, chemokines, and other immune
modulators.47 However, as soon as the wound healing is
completed, most of these activated fibroblasts are removed
from the granulation tissue by apoptosis.48 Cancer has been
considered “a wound that never heal,” because the activated
fibroblasts are not removed by apoptosis as in normal wound
healing.21 Instead, these cells are prominent contributors in
carcinogenesis.49

CAFs
In tumors, activated fibroblasts are termed as peritu-

moral fibroblasts or CAFs.11,50,51 CAFs, like activated fibro-
blasts, are highly heterogeneous and believed to derive from
the same sources as activated fibroblasts. The main progen-
itor seems to be the locally residing fibroblast, but they may
also derive from pericytes and smooth muscle cells from the
vasculature, from bone marrow-derived mesenchymal cells,
or by epithelial or endothelial mesenchymal transition.52–54

The term CAF is rather ambiguous because of the various
origins from which these cells are derived, as is the
difference between activated fibroblasts and CAFs. There
are increasing evidence for epigenetic and possibly genetic
distinctions between CAFs and normal fibroblasts.55,56

CAFs can be recognized by their expression of �-smooth

TABLE 2. Summary of Major Growth Factors and
Chemokines Related to Carcinoma-Associated Fibroblast-
Mediated Tumorigenesis

Factor Function

TGF-� Considered important in wound healing. Induces
epithelial development. Closely related to EGF.

TGF-� TGF-� is the most frequent. Normally controls
proliferation and cellular differentiation. Role in
immunity and cancer. In cancer, it may lead to
progression and metastasis.

PDGF Promotes proliferation of connective tissue. Regulate
cell growth and division. Role in angiogenesis.
Regulates interstitial fluid pressure.

FGF2 Present in BM and in the subendothelial ECM of
vessels. Promotes proliferation of different cells.
Role in angiogenesis.

EGF Binds to its receptor EGFR, leads to cellular
proliferation, differentiation, and survival.

VEGF Increase vascular permeability. Role in early stages of
desmoplasia. Important role in angiogenesis.

HGF Paracrine cellular growth, motility, and morphogenic
factor. Secreted by mesenchymal cells, acts on
epithelial or endothelial cells.

IGF-1 Growth factor. Has growth-promoting effect on almost
every cell in the body.

CTGF Can promote endothelial cell growth, migration,
adhesion, and survival. It is implicated in
endothelial cell function and angiogenesis.

CXCLs and CCLs Chemokines of the CXC and CL types. Attractants of
leukocytes. Important in angiogenesis,
carcinogenesis, tumor progression, and metastasis.

SFRP1 Act as soluble modulators of Wnt signaling.

SPARC Associated with cancer cell migration and invasion.

ILs Cytokines. Inflammatory response against infection.
Enables transmigration of lymphocytes. IL-1 and -6
may contribute to cancer progression.

TGF, transforming growth factor; PDGF, platelet-derived growth factor; FGF2,
fibroblast growth factor-2; EGF, epidermal growth factor; VEGF, vascular endothelial
growth factor; HGF, hepatocyte growth factor; IGF-1, insulin-like growth factor-1;
CTGF, connective tissue growth factor; CXCL and CLL, chemokines; SFRP1, secreted
frizzled-related protein 1; SPARC, secreted protein acidic and rich in cysteine; IL,
interleukin; BM, bone marrow; ECM, extracellular matrix; EGFR, epidermal growth
factor receptor.
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muscle actin, but due to heterogeneity �-smooth muscle
actin expression alone will not identify all CAFs.57,58

Hence, other used CAF markers are fibroblast-specific
protein 1, fibroblast activation protein (FAP), and PDGF
receptor (PDGFR) �/�.36,59

In response to tumor growth, fibroblasts are activated
mainly by TGF-�, chemokines such as monocyte chemotac-
tic protein 1, and ECM-degrading agents such as MMPs.
Although normal fibroblasts in several in vitro studies have
demonstrated an inhibitory effect on cancer progression,
today, there is solid evidence for a cancer-promoting role of
CAFs. In breast carcinomas, as much as 80% of stromal
fibroblasts are considered to have this activated phenotype
(CAFs).11,60

The Role of CAFs in Tumor Progression and
Metastasis

CAFs promote malignant growth, angiogenesis, inva-
sion, and metastasis.36,61–63 The roles of CAFS and their
potential as targets for cancer therapy have been studied in
xenografts models, and evidence from translational studies
has revealed a prognostic significance of CAFs in several
carcinoma types.54

In the setting of tumor growth, CAFs are activated and
highly synthetic, secreting, for example, collagen type I and
IV, extra domain A-fibronectin, heparin sulfate proteoglu-
cans, secreted protein acidic and rich in cysteine, tenascin-C,
connective tissue growth factors, MMPs, and plasminogen
activators.62,64 In addition to secreting growth factors and
cytokines, which affect cell motility, CAFs are an important
source for ECM-degrading proteases such as MMPs that play
several important roles in tumorigenesis.11,65 Through degra-
dation of ECM, MMPs can, depending on substrate, promote
tumor growth, invasion, angiogenesis, recruitment of inflam-
matory cells, and metastasis.65,66 Besides, a number of proin-
flammatory cytokines seem to be activated by MMPs.67,68 In
a recent review, Kessenbrock et al.66 report on the multiple
functions of MMPs in the tumor stroma and have categorized
the proteases according to roles in (1) tissue invasion and
intravasation, (2) angiogenesis, (3) regulation of inflamma-
tion, and (4) preparation of the metastatic niche.

After injection of B16M melanoma cells in mice, the
formation of liver metastases was associated with an early
activation of stellate cells (fibroblast-like) in the liver, as
these seemed important for creating a metastatic niche and
promoting angiogenesis.69 MMPs have also been linked to
tumor angiogenesis in various in vivo models.70 CAFs, when
coinjected into mice, facilitated the invasiveness of otherwise
noninvasive cancer cells.71 Furthermore, xenografts contain-
ing CAFs apparently grow faster than xenografts infused with
normal fibroblasts.72

SIGNALING BETWEEN CAFS AND OTHER CELL
TYPES IN THE TUMOR STROMA

At CAF recruitment and accumulation in the tumor
stroma, these cells will actively communicate with cancer
cells, epithelial cells, endothelial cells, pericytes, and inflam-
matory cells through secretion of several growth factors,

cytokines, and chemokines, as shown in Figure 2 and Tables
1 and 2.36 CAFs provide potent oncogenic molecules such as
TGF-� and hepatocyte growth factor (HGF).

TGF-� is a pleiotropic growth factor expressed by both
cancer and stromal cells. TGF-� is, in the normal and pre-
malignant cells, a suppressor of tumorigenesis,73,74 but as
cancer cells progress, the antiproliferative effect is lost, and
instead, TGF-� promotes tumorigenesis by inducing differ-
entiation into an invasive phenotype.75,76 TGF-� may also
instigate cancer progression through escape from immuno-
surveillance,77 and increased expression of TGF-� correlate
strongly with the accumulation of fibrotic desmoplastic
tissue and cancer progression.22 Recently, a small mole-
cule inhibitor of TGF-� receptor type I was reported to
inhibit the production of connective tissue growth factor
by hepatocellular carcinoma (HCC) cells, resulting in
reduced stromal component of the HCCs. Inhibition of the
TGF-� receptor aborted the crosstalk between HCCs and
CAFs and consequently avoided tumor proliferation, inva-
sion, and metastasis.78 HGF belongs to the plasminogen
family and is tethered to ECM in a precursor form. It binds
to the high-affinity receptor c-met, and overexpression or
constant oncogenic c-Met signaling lead to proliferation,
invasion, and metastasis.54,79,80

PDGFs are regulators of fibroblasts and pericytes and
play important roles in tumor progression.81,82 It is a chemo-
tactic and growth factor for mesenchymal and endothelial
cells. It has a limited autocrine role in tumor cell replication,
but is a potential player, in a paracrine fashion, and in tumor
stroma development.83,84 It induces the proliferation of acti-

FIGURE 2. Efferent signaling from carcinoma-associated
fibroblast in the tumor stroma. The fibroblasts communicate
with malignant cells, epithelial cells, endothelial cells, peri-
cytes, and inflammatory cells through the secretion of sev-
eral growth factors and chemokines. Adapted from Nat Rev
Cancer. 2006;6:392–401; Curr Opin Genet Dev. 2009;19:67–
73; and Semin Cell Dev Biol. 2010;21:33–39. CCL, chemo-
kine ligand; CXCL, chemokine ligand; CTGF, connective tis-
sue growth factor; EGF, epithelial growth factor; FGF2,
fibroblast growth factor 2; IGF-1, insulin-like growth fac-
tor-1; HGF, hepatocyte growth factor; IL, interleukin; MMPs,
matrix metalloproteinases; SFRP1, secreted frizzled-related
protein 1; TGF, transforming growth factor; VEGF, vascular
endothelial growth factor.
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vated fibroblasts and possibly recruits CAFs indirectly by
stimulation of TGF-� release from macrophages.85

FGF2 has a fundamental role in fibroblast growth and
tissue fibrosis/desmoplasia in tumors.86 FGF2 has been
shown to exert its effect on endothelial cells in both a
paracrine and autocrine fashion as a consequence of secretion
by tumor and stromal cells.87–89

THE ROLE OF TUMOR STROMA AND CAFS IN
NSCLC

Taking into account the high frequency of new lung
cancer cases and especially the poor prognosis in NSCLC,
there has been a search for biologic markers that correlate
with development and prognosis of this disease. Hitherto, no
such marker has been established as a valid clinical predictor
for diagnosis, therapy, or prognosis of NSCLC.90

By using short-term fibroblast cell cultures, Nakamura
et al.91 were able to demonstrate that proliferating fibroblasts
from pulmonary adenocarcinomas are phenotypically differ-
ent from fibroblasts of normal bronchus tissue. Besides, there
are metabolism-related differences between lung cancer cells
and tumor-associated stroma because cancer cells use more
anaerobe metabolism compared with CAFs.92

To be able to target stromal components in the treat-
ment of NSCLC, we need further knowledge on mechanisms
involved in the cancer-stromal crosstalk, which drives cancer
progression and metastasis. In the following, we will review
NSCLC-specific research data on the interplay between ma-
lignancy and stromal cells.

Tumor Stroma, CAFs, and NSCLC Cells
The impact of crosstalk between NSCLC cells and

normal fibroblasts was reported by Fromigue et al.93 In a
coculture model of NSCLC tumor cells and normal pulmo-
nary fibroblasts, exposure to NSCLC cells rendered the fi-
broblasts with a set of modulated genes, which potentially
would affect the regulation of matrix degradation, angiogen-
esis, invasion, cell growth, and survival.

Several translational studies on resected NSCLC tu-
mors have recently uncovered new prognostic attributes by
CAFs. In adenocarcinomas, carbonic anhydrase IX expres-
sion was a better prognostic predictor in CAFs than in cancer
cells.94 In a combined study, using cell cultures and resected
adenocarcinomas, HGF and its receptor c-MET constitute an
autocrine activation loop in CAFs, and this system possibly
play a role in invasion and progression of adenocarcinomas.95

In adenocarcinomas, podoplanin (lymphatic endothelial cell
marker) expression was examined in cancer cells and CAFs.96

Data showed that podoplanin was significantly associated
with shorter survival, but this was related to CAFs rather than
cancer cells.

MMPs are associated with multiple human cancers and
were early considered as drug targets to treat cancer.66 The
first drug development programs started more than 2 centu-
ries ago, and several small molecule antineoplastic broad-
spectrum MMP inhibitors were tested against lung, prostate,
and pancreas cancers in randomized phase III trials. The
effect of these inhibitors turned out disappointing as they

failed to show any survival benefit. Possible reasons for this
has been discussed extensively.97 Mounting evidence sup-
ports a dominant role for MMP-14 in migration and invasion
of metastatic tumor cells.98 The current strategy focus on
development of more selective MMP inhibitors to be used in
earlier stages of cancer.99 In earlier studies, MMP expressions
were in general only assessed in tumors. In resected NSCLC
tumors, Ishikawa et al.100 found that MMP-2 expression was
a significant unfavorable prognostic factor for those with
squamous cell carcinomas, but based on its expression in
CAFs rather than tumor cells. In the light of novel results
suggesting the importance of CAF-derived MMPs in tumor-
igenesis, their role will be taken into consideration along with
the tumor cell-derived MMP targets. Tissue factor pathway
inhibitor (TFPI)-2 is an inhibitor of plasmin and thus inhibits
MMP activation. Silencing TFPI-2 in lung cancer cells lead
to increased expression of MMP-1, -3, and -7 in pulmonary
fibroblasts when grown in conditioned medium from TFPI-
2-silenced cells.101

TGF
The clinical prognostic value of the TGF-� family has

not been clarified. In three small previous studies on resected
NSCLC tumors (range 53–91), the prognostic role of TGF-�
expression emerged contradictory.102–104 In a more recent
study, the prognostic relevance of TGF-� expression was
examined in both tumor and stromal compartments of 335
NSCLC samples.105 There was no statistically significant
association between tumor cell TGF-� expression and sur-
vival, although this marker was not expressed in stromal
cells. This study showed, however, nuclear factor-�Bp105
expression levels in both tumor epithelial and stromal cells to
be favorable independent prognostic factors.105 Nevertheless,
TGF-� has been reported to enhance cell migration and
up-regulate �1-integrin in cancer cells through PI3K/Akt,
which again activate nuclear factor-�B.106

There are limited data on the prognostic role of TGF-�
in NSCLC. In a coculture study of pulmonary fibroblasts
from a healthy donor and adenocarcinoma cells, fibroblasts
previously exposed to the cancer cells increased the prolifer-
ation of pulmonary adenocarcinoma cell lines.107 This growth
stimulation could, however, be blocked by antibodies against
TGF-� and amphiregulin. Consistently, an examination of
amphiregulin and TGF-� levels in pretreatment serum from
nonsquamous NSCLC patients showed unfavorable prognos-
tic impacts.108

PDGF
In NSCLC, the PDGFR-� is frequently expressed by

CAFs but not on tumor cells that express the PDGF li-
gand.109,110 In the early 1990s, abnormally high expression of
PDGF was reported in NSCLC tumors, and this was associ-
ated with a potential role in neoplastic transformation and
uncontrolled growth of lung cancer.111 From multiple lung
cancer microarray data, Tejada et al.112 observed a significant
expression of PDGF-A, PDGF-C, and PDGFR-� in lung
carcinomas. They further noted that tumor-driven paracrine
PDGFR-� signaling was a key determinant for stromal re-
cruitment. Other in vitro data from endothelial cells exposed
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to conditioned media from lung cancer cells support the
notion that lung cancer and endothelial cells interact through
various paracrine pathways for a reciprocal induction of
PDGF-B and VEGF.113

In 92 resected NSCLC tumors, Kawai et al.110 discov-
ered that tumor cell PDGF-B expression predicted a poor
survival. In a combined study of 128 NSCLC carcinomas, a
lung cancer cell line, and animal implantation, PDGF-A was
found to have a negative prognostic impact.114 In a recent
study of 335 NSCLC tumors, Dønnem et al.115,116 examined
the expression of PDGF-A, -B, -C, and -D and PDGFR-� and
-� in both tumor and stromal compartments. Although tumor-
associated PDGF-B, PDGF-C, and PDGFR-� were associ-
ated with a negative prognosis, stroma-associated PDGF-A,
PDGF-B, PDGF-D, and PDGFR-� were favorable prognostic
indicators. Further, stromal expression of PDGF-B, PDGF-D,
and PDGFR-� was associated with less nodal metastasis.

FGF2
Previous data on FGF2’s prognostic impact in NSCLC

has been conflicting.117,118 Some studies have reported high
tumor cell FGF2 expression to correlate with poor surviv-
al,119–121 whereas others find no such association.122,123

Guddo et al.118 examined the expression of FGF2 and FGF
receptor (FGFR)-1 in tumor cells and stroma of 84 NSCLC
tumors. The authors found that FGF2 and FGFR-1 expression
in tumor cells, stromal cells, and vessels was directly corre-
lated with host stromal response but not with angiogenic
response. Besides, FGF2 expression in stroma was inversely
correlated with lymph node metastasis. These findings cor-
roborate our FGF2 and FGFR-1 expression data.87 Here, the
stromal FGF2 expression was a favorable prognosticator,
whereas tumor cell FGF2 mediated an unfavorable prognosis.

STROMAL INFLUENCE ON NSCLC THERAPY
As CAFs in many aspects differ from the cancer cells,

one may speculate whether these activated fibroblasts may
alter the responsiveness of tumor cells to chemotherapy. In
primary CAF cultures from 37 breast and lung cancer
tissues, CAF responses to chemotherapy were, as for
cancer cells, highly variable.124 Moreover, conditioned
medium from lung fibroblasts (WI-38) impaired NSCLC
H358 cell death induced by paclitaxel but not by cispla-
tin.125 This may indicate a differential predictive treatment
impact, mediated by fibroblasts.

In a recent study, NSCLC cells with epithelial growth
factor receptor (EGFR)-activating mutations (PC-9,
HCC827) were cocultured with fibroblasts and injected into
severe combined immunodeficient mice to assess the effect of
crosstalk on the susceptibility to EGFR tyrosine kinase in-
hibitors.126 CAFs from lung cancer tissue produced HGF and,
thus, activated the c-Met pathway. When cocultured with
activated HGF-producing CAFs, the otherwise sensitive
NSCLC cells actively recruited CAFs and became resistant to
EGFR-tyrosine kinase inhibitors. Hence, crosstalk with stro-
mal CAFs may play a role in development of treatment
resistance.

TUMOR STROMA: A POSSIBLE TARGET FOR
CANCER THERAPY

As described earlier, a tumor can not develop without
the parallel expansion of a tumor stroma. Although we still do
not comprehend the exact mechanisms regulating fibroblast
activation and their accumulation in cancer, the available
evidence points to the possibility that the tumor stroma or
CAFs may be candidate targets for cancer treatment. This
alley has, however, not been without pitfalls.

CAFs and MMPs have been considered two of the key
regulators of epithelial-derived tumors representing potential
new targets for integrative therapies, affecting both the trans-
formed and nontransformed components of the tumor envi-
ronment. As commented earlier, the experience with MMP
inhibitors have so far been unsuccessful. Evidence that CAFs
are epigenetically and possibly also genetically distinct from
normal fibroblasts is beginning to define these cells as poten-
tial targets for anticancer therapy.55 FAP, expressed in more
than 90% of epithelial carcinomas, emerged early as a prom-
ising candidate for targeting CAFs,127 and the potential ther-
apeutic benefit of its inhibition was reviewed recently.128 In
preclinical studies, abrogation of FAP attenuates tumor
growth and significantly enhance tumor tissue uptake of
anticancer drugs.129–131 In a phase I study, where patients
with FAP-positive advanced carcinomas (colorectal cancer
and NSCLC) were treated with FAP-antibody, the antibody
bound specifically to tumor sites, but no objective responses
were observed.132

The consistent and repeated findings of cancer cells that
readily undergo invasion and metastasis in response to
TGF-� have pointed to the need of novel anticancer agents
targeting the oncogenic activities of TGF-�. A large number
of anti-TGF-� antibodies and TGF-�-receptor I kinases have
been tested preclinically during the past decade. Because of
the lack of success, targeting of the TGF-� signaling system
still remains elusive.133 It should be noted that both protu-
moral and antitumoral effects have been assigned to TGF-�,
and the multifunctional nature of TGF-� apparently repre-
sents the greatest barrier to effectively target this ligand, its
receptor, or downstream effectors.

CONCLUSION
Advances in understanding the stromal contribution in

cancer progression will enhance our awareness and knowl-
edge on the reciprocal signaling that support and promote
cancer growth, dedifferentiation, invasion, and survival. Un-
raveling of essential biologic and pathologic mechanisms
involved has actualized the need of stroma-specific therapeu-
tic strategies. Hopefully, it will be possible to selectively and
successfully target oncogenic stromal activities beyond an-
giogenesis.

CAFs represent an important cell type in carcinogenesis
and progression, and the recent findings presented herein
have further actualized its role in proliferation, invasion, and
metastasis. Besides, through interaction with other stromal
cell types, CAFs also modulate angiogenesis and immunity.
As a consequence, CAFs should be highly intriguing therapy
targets. To succeed in establishing novel targeted therapy
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against CAFs, high-quality, basic, and translational research
will be necessary to further unveil the complex crosstalk
between CAFs, cancer cell, and other cells of the tumor
microenvironment.
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