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We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources 
in a general (1 + D)-dimensional space-time, for D > 3 and including the D = 1 case. We find that the 
probability PBH that such objects are (quantum) black holes behaves similarly to the probability in the 
(3 + 1) framework for D > 3. In fact, for D ≥ 3, the probability increases towards unity as the mass 
grows above the relevant D-dimensional Planck scale mD . At fixed mass, however, PBH decreases with 
increasing D , so that a particle with mass m � mD has just about 10% probability to be a black hole in 
D = 5, and smaller for larger D . This result has a potentially strong impact on estimates of black hole 
production in colliders. In contrast, for D = 1, we find the probability is comparably larger for smaller 
masses, but PBH < 0.5, suggesting that such lower dimensional black holes are purely quantum and not 
classical objects. This result is consistent with recent observations that sub-Planckian black holes are 
governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty 
Principle relations for the black holes under consideration, and find a minimum length corresponding 
to a characteristic energy scale of the order of the fundamental gravitational mass mD in D > 3. For 
D = 1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual 
Heisenberg contribution, and therefore no fundamental scale exists.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Unusual causal structures like trapping surfaces and horizons 
can only occur in strongly gravitating systems, such as astrophysi-
cal objects that collapse and possibly form black holes. One might 
argue that for a large black hole, gravity should appear “locally 
weak” at the horizon, since tidal forces look small to a freely falling 
observer (their magnitude being roughly controlled by the surface 
gravity, which is inversely proportional to the horizon radius). Like 
any other classical signal, light is confined inside the horizon no 
matter how weak such forces may appear to a local observer. This 
can be taken as the definition of a “globally strong” interaction.

As the black hole’s mass approaches the Planck scale, tidal 
forces become strong both in the local and global sense, thus 
granting such an energy scale a remarkable role in the search for 
a quantum theory of gravity. It is indeed not surprising that mod-
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ifications to the standard commutators of quantum mechanics and 
Generalised Uncertainty Principles (GUPs) have been proposed, es-
sentially in order to account for the possible existence of small 
black holes around the Planck scale, and the ensuing minimum 
measurable length [1]. Unfortunately, that regime is presently well 
beyond our experimental capabilities, at least if one takes the 
Planck scale at face value,1 mp � 1016 TeV (corresponding to a 
length scale �p = h̄/mp = mp GN � 10−35 m). Nonetheless, there is 
the possibility that the low energy theory still retains some sig-
nature features that could be accessed in the near future (see, for 
example, Ref. [2]).

1.1. Gravitational radius and horizon wave-function

Before we start calculating phenomenological predictions, it is 
of the foremost importance that we clarify the possible conceptual 
issues arising from the use of arguments and observables that we 
know work at our every-day scales. One of such key concepts is 

1 We use units where c = 1 and h̄ = �p mp = �D mD .
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the gravitational radius of a self-gravitating source, which can be 
used to assess the existence of trapping surfaces, at least in spher-
ically symmetric systems. As it is very well known, the location of 
a trapping surface is determined by the equation

gij∇ir∇ jr = 0 , (1.1)

where ∇ir is perpendicular to surfaces of constant area A = 4πr2. 
If we set x1 = t and x2 = r, and denote the matter density as ρ =
ρ(r, t), the Einstein field equations tell us that

grr = 1 − 2�p(m/mp)

r
, (1.2)

where the Misner–Sharp mass is given by

m(r, t) = 4π

r∫
0

ρ(r̄, t)r̄2 dr̄ , (1.3)

as if the space inside the sphere were flat. A trapping surface then 
exists if there are values of r and t such that the gravitational ra-
dius RS = 2 �p m/mp, satisfies

RS(r, t) ≥ r . (1.4)

When the above relation holds in the vacuum outside the region 
where the source is located, RS becomes the usual Schwarzschild 
radius, and the above argument gives a mathematical foundation 
to Thorne’s hoop conjecture [3], which (roughly) states that a black 
hole forms when the impact parameter b of two colliding small 
objects is shorter than the Schwarzschild radius of the system, that 
is for b � 2 �p E/mp where E is the total energy in the centre-of 
mass frame.

If we consider a spin-less point-particle of mass m, the Heisen-
berg principle of quantum mechanics introduces an uncertainty in 
the particle’s spatial localisation of the order of the Compton scale 
λm � �p mp/m.2 Since quantum physics is a more refined descrip-
tion of reality, we could argue that RS only makes sense if3

RS � λm =⇒ m � mp , (1.5)

which brings us to face the conceptual challenge of describing 
quantum mechanical systems whose classical horizon would be 
smaller than the size of the uncertainty in their position. In 
Refs. [6], a proposal was put forward in order to describe the 
“fuzzy” Schwarzschild (or gravitational) radius of a localised but 
likewise fuzzy quantum source. One starts from the spectral de-
composition of the spherically symmetric wave-function

|ψS〉 =
∑

E

C(E) |ψE 〉 , (1.6)

with the usual constraint

Ĥ |ψE〉 = E |ψE〉 , (1.7)

and associates to each energy level |ψE〉 a probability amplitude 
ψH(RS) � C(E), where RS = 2 �p E/mp. From this Horizon Wave-
Function (HWF), a GUP and minimum measurable length were de-
rived [7], as well as corrections to the classical hoop conjecture [8], 
and a modified time evolution proposed [9]. The same approach 

2 Strictly speaking, this bound holds in the non-relativistic limit E � 2 m [4], but 
we shall employ it in this work since we always consider particles and black holes 
in their rest frame.

3 One could also derive this condition from the famous Buchdahl’s inequality [5], 
which is however a result of classical general relativity, whose validity in the quan-
tum domain we cannot take for granted.
was generalised to electrically charged sources [10], and used to 
show that Bose–Einstein condensate models of black holes [11–15]
actually possess a horizon with a proper semiclassical limit [16].

It is important to emphasise that the HWF approach differs 
from most previous attempts in which the gravitational degrees of 
freedom of the horizon, or of the black hole metric, are quantised 
independently of the nature and state of the source (for some bib-
liography, see, e.g., Ref. [17]). In our case, the gravitational radius 
is instead quantised along with the matter source that produces 
it, somewhat more in line with the highly non-linear general rela-
tivistic description of the gravitational interaction. However, having 
given a practical tool for describing the gravitational radius of a 
generic quantum system is just the starting point. In fact, when 
the probability that the source is localised within its gravitational 
radius is significant, the system should show (some of) the proper-
ties ascribed to a black hole in general relativity. These properties, 
the fact in particular that no signal can escape from the interior, 
only become relevant once we consider how the overall system 
evolves.

1.2. Higher and lower dimensional models

Extra-dimensions have been proposed as a possible explana-
tion for some of the incongruences affecting particle physics, such 
as the hierarchy problem between fundamental interactions. In 
(1 + D)-dimensional space-times, with D ≥ 4, gravity shows its 
true quantum nature at a scale mD (possibly much) lower than the 
Planck mass mp. Such scenarios have been extensively studied after 
the well known ADD [18] and Randall–Sundrum [19] models were 
proposed (see Ref. [20] for a comprehensive review). However our 
purpose is not to study any model in particular, but to see how the 
probability of a microscopic black hole formation could be affected 
by assuming the existence of extra dimensions. We shall therefore 
just consider black holes in the ADD scenario with a horizon ra-
dius significantly shorter than the size of the extra dimensions. It 
is then important to recall that in these models the Newton con-
stant is replaced by the gravitational constant

G D = �D−2
D

mD
, (1.8)

where �D = h̄/mD � �p is the new gravitational length scale.
On the other hand, gravitational theories become much sim-

pler in space-times with fewer than 3 spatial dimensions, where 
corresponding quantum theories are exactly solvable [21]. Such 
theories have been revisited in recent years, motivated by model-
independent evidence that the number of space-time dimensions 
decreases as the Planck length is approached. Such formalisms – 
known generically as “spontaneous dimension reduction” mecha-
nisms – have been studied in various contexts, mostly focusing on 
the energy-dependence of the space-time spectral dimension, in-
cluding causal dynamical triangulations [22] and non-commutative 
geometry inspired mechanisms [23–26]. An alternative approach 
suggests the effective dimensionality of space-time increases as the 
ambient energy scale drops [27–30].

Given these arguments, we will generealize the results of 
Ref. [9] in an arbitrary number of spatial dimensions. In Section 2
we will introduce the concept horizon wave-function and we will 
apply it to a system described by a gaussian wave-packet. Subse-
quently, we will compute the probability that the system is a black 
hole in Section 3 and obtain a Generalised Uncertainty Principle in 
Section 4. Finally we will give some conclusions and possible out-
look about the obtained results in Section 5.
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2. Static horizon-wave function in higher dimensions

We recall that, given any spherically symmetric function f =
f (r) in D spatial dimensions, the corresponding function in mo-
mentum space is given by

f̃ (p) = p
2−D

2

�D mD

∞∫
0

dr rD/2 J D−2
2

(
r p

�D mD

)
f (r) , (2.1)

where the normalised radial modes are given by the Bessel func-
tions

J D−2
2

(
r p

�D mD

)

= �D−2

(2π)D/2

(
r p

�D mD

) D−2
2

π∫
0

dθ e−i p r cos θ/�D mD (sin θ)D−2 ,

(2.2)

and, accordingly, the inverse transform is given by

f (r) = r
2−D

2

�D mD

∞∫
0

dp pD/2 J D−2
2

(
r p

�D mD

)
f̃ (p) . (2.3)

We can apply the above definitions to a localised massive par-
ticle described by the Gaussian wave-function

ψS(r) = e
− r2

2 �2

(�
√

π)D/2
, (2.4)

and the corresponding function in momentum space is thus given 
by

ψ̃S(p) = e
− p2

2 	2

(	
√

π)D/2
, (2.5)

where 	 = mD �D/� is the spread of the wave-packet in momenta 
space.

If we assume

� ≥ λm ≡ h̄

m
= mD �D

m
, (2.6)

where λm is the Compton wavelength, the smallest resolvable scale 
associated to the particle according to quantum mechanics [4]. It 
immediately follows that 	 ≤ m. Note that we have

�

λm
= m

	
, (2.7)

which will allow us to express 	 in terms of �.

2.1. (1 + D)-dimensional Schwarzschild metric

The Schwarzschild metric, as a solution of the vacuum Einstein 
equations, generalises in (1 + D)-dimensional space-time as

ds2 = −
(

1 − R D

rD−2

)
dt2 +

(
1 − R D

rD−2

)−1

dr2 + rD−1 d�D−1 ,

(2.8)

where the classical horizon radius is given by

R D =
(

2 G D M

|D − 2|
) 1

D−2 =
⎧⎨
⎩

1
2 G1 M if D = 1(

2 G D M
D−2

) 1
D−2

if D > 2
. (2.9)
Of course, if D = 3 we have the standard result R3 = RS. We 
note that the D = 1 limit of the horizon radius given above 
matches that obtained from an exact solution to Einstein’s equa-
tions in (1 +1)-dimensions [31]. We are also purposefully avoiding 
(1 + 2)-dimensional models, such as the BTZ black holes, because 
they have meaning only in anti-de Sitter space-time and we are 
not dealing with a cosmological constant.

As in D = 3, we assume the relativistic mass-shell relation in 
flat space [6],

p2 = E2 − m2 , (2.10)

and define the HWF expressing the energy E of the particle 
in terms of the related horizon radius (2.9), rH = R D(E). From 
Eq. (2.5), we then get

ψH(rH) = NH 
(rH − R D)

× exp

{
−1

2

(
D − 2

2 G D 	

)2 [
r2 (D−2)

H − R2 (D−2)
D

]}
.

(2.11)

The normalisation NH is fixed according to

N−2
H e−m2/	2 = �D−1

N 2
H

e−m2/	2

∞∫
0

|ψH(rH)|2 rD−1
H drH

= π D/2

D − 2

(
2G D	

D − 2

) D
D−2 �

(
D

2D−4 , m2

	2

)
�
( D

2

) , (2.12)

where

�(s, x) =
∞∫

x

ts−1 e−t dt (2.13)

is the upper incomplete Euler Gamma function, and, using Eq. (2.9), 
we obtain

ψH(rH) =
⎧⎨
⎩ D − 2

� D
D π D/2

[
(D − 2)mD

2	

] D
D−2 �

( D
2

)
�
(

D
2D−4 , m2

	2

)
⎫⎬
⎭

1/2

× 
(rH − R D) exp

{
− (D − 2)2

8

m2
D

	2

(
rH

�D

)2(D−2)
}

,

(2.14)

for D > 2.
Finally, we remark that these results also hold in D = 1, al-

though with a significant change in the step function. In fact, ac-
cording to (2.9), the condition E � M now yields rH � R1, and the 
HWF reads

ψH(rH) =
√√√√ 2/�

�
(
− 1

2 , m2

	2

) 
(R1 − |rH|) exp

{
− �2

8r2
H

}
, (2.15)

where we also used G1 	 = 1/�.

3. Black hole probability

According to standard definitions, the probability density that 
the Gaussian particle lies inside its own gravitational radius is the 
following product

P<(r < rH) = PS(r < rH)PH(rH) , (3.1)
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Fig. 1. Probability PBH(�, m) of a particle, described by a Gaussian with � ≥ λm , to be a black hole for m = mD (solid line), m = 3 mD/4 (dashed line) and m = mD/2 (dotted 
line). From left to right, the spatial dimensions are D = 4 and 5 on the first line and D = 8 and 9 on the second line (note the different scales on the vertical axes).
where the probability that the particle is inside a D-ball of radius 
rH is

PS(r < rH) = �D−1

rH∫
0

|ψS(r)|2 rD−1 dr , (3.2)

and the probability density that the radius of the horizon equals 
rH is

PH(rH) = �D−1 rD−1 |ψH(rH)|2. (3.3)

Integrating (3.1) over all the possible values of the horizon ra-
dius rH,

PBH =
∞∫

0

P<(r < rH)drH (3.4)

gives the probability that the particle is a black hole.

3.1. Higher-dimensional space-times

Now we can employ the results of Section 2.4. First, we have

PS(r < rH) =
γ

(
D
2 ,

r2
H

�2

)
�
( D

2

) , (3.5)

where γ is the lower incomplete Gamma function

γ (s, x) = �(s) − �(s, x) . (3.6)

Properties of the γ ensure that PS = 1 if rH → ∞, while PS = 0 if 
rH = 0. Then,
PH(rH) = 2

� D
D

(
(D − 2)mD

2	

) D
D−2 D − 2

�
(

D
2 D−4 , m2

	2

)
(rH − R D)

× exp

{
−
[

(D − 2)mD

2	

]2 ( rH

�D

)2(D−2)
}

rD−1
H , (3.7)

and Eq. (3.4) finally becomes

PBH = 2

� D
D

(
(D − 2)mD

2	

) D
D−2 D − 2

�
(

D
2D−4 , m2

	2

)
�
( D

2

)

×
∞∫

R D

γ

(
D

2
,

r2
H

�2

)

× exp

{
−
[

(D − 2)mD

2	

]2 ( rH

�D

)2(D−2)
}

rD−1
H drH , (3.8)

which yields the probability for a particle to be a black hole 
depending on the Gaussian width �, mass m and spatial dimen-
sion D . Since the above integral cannot be performed analytically, 
we show the numerical dependence on � � λm

4 of the above prob-
ability for different masses and spatial dimensions in Fig. 1.

One immediately notices that the probability PBH at given 
m decreases significantly for increasing D , and for large val-
ues of D even a particle of mass m � mD is most likely not a 
black hole. This result should have a strong impact on predic-
tions of black hole production in particle collisions. For example, 

4 We recall that one expect � is bounded from below by the Compton length of 
the source.
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Fig. 2. Probability PBH(�) of a particle, described by a Gaussian with � = λm , to be a black hole (dots) compared to its analytical approximation.
Fig. 3. Probability PBH(�, m) for a particle to be a black hole in D = 1, for m = m1

(solid line), m = 3 m1/4 (dashed line) and m = m1/2 (dotted line).

one could approximate the effective production cross-section as 
σ(E) ∼ PBH(E) σBH(E), where σBH ∼ 4 π E2 is the usual black disk 
expression for a collision with centre-of-mass energy E . Since PBH
can be very small, σ(E) � σBH(E) for D > 4 and one in general 
expects much less black holes can be produced than standard es-
timates [32].

For the particular case � = λm , which according to the Eq. (2.7)
implies m = 	, the probability depends only on � and D . Further, 
the expression (3.8) can be approximated analytically by taking the 
limit R D → 0. Fig. 2 compares this approximation with the nu-
merical results, showing that it describes fairly well the correct 
behaviour.5

3.2. (1 + 1)−dimensional space-time

In D = 1, from Eqs. (2.4) and (2.15), we have

PS(r < rH) = erf
( rH

�

)
, (3.9)

and

PH(rH) = 2/�

�
(
− 1

2 , m2

	2

) 
(R1 − |rH|) exp

{
− �2

4 r2
H

}
. (3.10)

Consequently, the black hole probability is

PBH = 4/�

�
(
− 1

2 , m2

	2

)
R1∫

0

erf
( rH

�

)
exp

{
− �2

4 r2
H

}
drH . (3.11)

We note that this formula can just be obtained from Eq. (3.8) by 
setting D = 1 and taking the complementary integration domain. 
Fig. 3 shows this probability as a function of � ≥ λm for various 
masses.

5 Note that we include values of m � mD (corresponding to � � �D ) in order to 
obtain large probabilities.
An immediate feature that differentiates the (1 +1)-dimensional 
case from the (1 + D)-dimensional cases is the rate of increase of 
the probability for source mass less than the Planck scale m1. In 
higher dimensions, the probability of forming a black hole with 
m ≥ mD is quite high for � � �D , and drops significantly, at the 
same length scale, for m < mD . For D = 1, the drop is much slower 
and sources with m < m1 have a comparably larger probability to 
be black holes. However, the main difference is that the maximum 
PBH � 0.45, precisely obtained for � = λm , and does not depend 
on m. This is in agreement with the fact that, in D = 1, the gravi-
tational constant G1 = 1/h̄ and

〈 r̂H 〉 � R1(m) � λm , (3.12)

for any values of m.
This means the larger the mass m, the smaller the Compton 

length and the horizon radius (which would instead be larger in 
D ≥ 3). Correspondingly, for a given width �, the probability the 
object is a black hole increases for decreasing mass (according to 
the fact that 〈 ̂rH 〉 becomes larger), and the source can never be a 
truly classical black hole (with 〈 ̂rH 〉 � λm) in D = 1.

This result is consistent with the notion that black holes in (1 +
1)-dimensional space-time are strictly quantum objects, as dis-
cussed in Ref. [26]. Furthermore, it can be understood to support 
several recent results suggesting the gravitational physics (and cor-
responding black holes) in the sub-Planckian regime is two dimen-
sional [24,25]. Said another way, black holes in the (sub-)Planckian 
regime will naturally form as effective (1 + 1)-dimensional objects, 
and in this sense the duality in mass-dependence between the 
(1 + 3)- and (1 + 1)-dimensional Schwarzschild metric is due to 
dimensional reduction.

4. GUP from HWF

We now derive the uncertainties in expectation values of quan-
tities of relevance in this framework, and as a result derive the 
form of the GUP. Given the HWF (2.14), the expectation value of 
an operator Ô H is obtained from

〈 Ô H 〉 = �D−1

∞∫
0

ψ∗
H(rH) Ô H ψH(rH) rD−1

H drH . (4.1)

A straightforward example is given by

〈 r̂H 〉 =
�
(

D+1
2D−4 , m2

	2

)
�
(

D
2D−4 , m2

	2

) (	

m

) 1
D−2

R D . (4.2)

By writing �(s, x) = xs E1−s(x), where En is the generalised expo-
nential integral

En(x) =
∞∫

e−xt

tn
dt , (4.3)
1
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Fig. 4. Plots of 〈 ̂rH 〉 (upper panel) and 	rH (lower panels) as functions of �/�D , for D = 4 (left) and D = 5 (right), with m = mD (solid line), m = 3
4 mD (dashed line) and 

m = 1
2 mD (dotted line).

Fig. 5. Plot of 〈 r̂H 〉 and 	rH as functions of � for D = 1.
the above result reads

〈 r̂H 〉 =
E D−5

2D−4
(m2

	2 )

E D−4
2D−4

(m2

	2 )
R D . (4.4)

We likewise obtain

〈 r̂2
H 〉 =

E D−6
2D−4

(m2

	2 )

E D−4
2D−4

(m2

	2 )
R2

D , (4.5)

and estimate the relative uncertainty in the horizon as

	rH =
√

〈 r̂2
H 〉 − 〈 r̂H 〉2

=

√√√√√E D−6
2D−4

(m2

	2 )

E D−4 (m2

2 )
−
⎛
⎝E D−5

2D−4
(m2

	2 )

E D−4 (m2

2 )

⎞
⎠

2

R D . (4.6)
2D−4 	 2D−4 	
Fig. 4 shows the plots of (4.4) and (4.6) for D > 3 as functions of 
�/�D , since

m

	
= �m

�D mD
∝ �

�D
. (4.7)

It is also trivial to see that, for � � �D , we recover the expected 
classical results

〈 r̂H 〉 � R D , 	rH � 0 . (4.8)

The above expressions (4.4) and (4.6) also hold in D = 1, and are 
displayed in Fig. 5.

The GUP follows by linearly combining the usual Heisenberg 
uncertainty with the uncertainty in the horizon size,

	r = 	rQM + α 	rH , (4.9)
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Fig. 6. Plots of 	r/�D as function of 	p/mD for D = 1, 4 and 5 and α = 1.
where α is a dimensionless coefficient that one could try to set 
experimentally. We can compute the Heisenberg part starting from 
the state (2.4), that is

〈 r̂n 〉 = �D−1

∞∫
0

ψ̃∗(r) r̂n ψ̃(r) rD−1 dr = �
( D+n

2

)
�
( D

2

) �n . (4.10)

Using �(z + 1) = z �(z), this yields

〈 r̂ 〉 = 21−D√
π (D − 1)!

�
( D

2

)2
� , (4.11)

and

〈 r̂2 〉 = D

2
�2 , (4.12)

so that

	rQM =
√√√√ D

2
−
(

21−D
√

π

�
( D

2

)2
(D − 1)!

)2

� = AD � . (4.13)

Using instead the state (2.5) in momentum space, the same proce-
dure yields

	p = AD 	 = AD
mD �D

�
. (4.14)

Expressing � and 	 from the above equation as functions of 	p, 
we have

	r

�D
= A2

D
mD

	p
+ α

√√√√√√√√
E D−6

2D−4

(
A2

Dm2

(	p)2

)

E D−4
2D−4

(
A2

Dm2

(	p)2

) −

⎡
⎢⎢⎣

E D−5
2D−4

(
A2

Dm2

(	p)2

)

E D−4
2D−4

(
A2

Dm2

(	p)2

)
⎤
⎥⎥⎦

2

×
(

2

|D − 2|
m

mD

) 1
D−2

, (4.15)

which is rather cumbersome. A straightforward simplification oc-
curs by setting width of the wave-packet equal to the Compton 
length, � = λm , so that, from Eqs. (2.7) and (4.14),

m = 	 = 	p

AD
(4.16)

and the GUP then reads

	r

�D
= A2

D
mD

	p
+ α

√√√√E D−6
2D−4

(1)

E D−4 (1)
−
(

E D−5
2D−4

(1)

E D−4 (1)

)2
2D−4 2D−4
×
(

2

|D − 2|
	p

ADmD

) 1
D−2

= CQM

	p
+ CH 	p

1
D−2 , (4.17)

where CQM and CH are constants (independent of 	p). Fig. 6
shows 	r for different spatial dimensions, setting α = 1 for sim-
plicity. In all the higher-dimensional cases, we obtain the same 
qualitative behaviour, with a minimum length uncertainty LD

LD = �D

(
D − 1

D − 2

)
(2AD)

1
D−1

×
⎛
⎝α

√√√√E D−6
2D−4

(1)

E D−4
2D−4

(1)
−
(

E D−5
2D−4

(1)

E D−4
2D−4

(1)

)2
⎞
⎠

D−2
D−1

(4.18)

corresponding to an energy scale MD , satisfying

MD = mD
(D − 2)

2
1

D−1

×
⎡
⎣α

√√√√E D−6
2D−4

(1)

E D−4
2D−4

(1)
−
(

E D−5
2D−4

(1)

E D−4
2D−4

(1)

)2
⎤
⎦

2−D
D−1

A
2D−3
D−1

D . (4.19)

The impact of α on this minimum length is then shown in Fig. 7, 
where we plot the scale MD corresponding to the minimum LD

as a function of this parameter, and in Fig. 8, where we plot di-
rectly LD . For all values of D considered here, assuming MD � mD

favours large values of α, whereas requiring LD � �D would favour 
small values of α.

If we now apply the above result (4.17) in D = 1, we see that 
the complete expression is of the usual Heisenberg form,

	r

�1
= A2

1
m1

	p
+ α

2

√√√√E 5
2
(1)

E 3
2
(1)

−
(

E2(1)

E 3
2
(1)

)2
A1m1

	p

= CQM + CH

	p
, (4.20)

and there is no minimum length for any mass-scale. This conclu-
sion can also be inferred by the fact that Eqs. (4.18) and (4.19) are 
not well defined in D = 1.

5. Conclusions

In this paper we extended the results of Refs. [6,9] by embed-
ding a massive source in a (1 + D)-dimensional space-time. Shap-
ing the wave packet with a Gaussian distribution, we computed its 
related horizon wave function and derived the probability PBH that 
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Fig. 7. Minimum scale MD as function of the parameter α for D = 4 and 5.

Fig. 8. Minimum scale LD as function of the parameter α for D = 4 and 5.
this massive source be inside its own horizon, which characterises 
a (quantum) black hole.

The higher-dimensional cases D > 3 look qualitatively very sim-
ilar to the standard (3 + 1)-scenario, with a probability PBH of 
similar shape, and a related GUP leading to the existence of a 
minimum length scale. However, one of the main results is that 
the probability PBH for fixed mass decreases for increasing D > 3. 
In fact, for m � mD , one has PBH � 0.14 for D = 5, which fur-
ther decreases to PBH � 3 × 10−3 for D = 9. This implies that, 
although the fundamental scale mD could be smaller for larger D , 
one must still reach an energy scale significantly larger than mD
in order to produce a black hole. It is clear that this should have a 
strong impact on the estimates of the number of black holes pro-
duced in colliders which are based on models with extra spatial 
dimensions, and, conversely, on the bounds on extra-dimensional 
parameters obtained from the lack of observation of these ob-
jects.

We also note that the parameters of the source have not been 
restricted to satisfy Buchdahl’s inequality [5], which is essentially 
the condition for a source not to be a black hole in classical general 
relativity. Since the HWF is explicitly devised to include quantum 
effects, such inequality cannot be assumed. We can however see 
that one indeed finds a large probability that the object is a black 
hole when Buchdahl’s inequality in D = 3 is violated (that is, for 
m � mp). For D > 3, our conclusion can therefore be viewed as in-
dicating a correction to Buchdahl’s inequality, since the ratio m/mD
must be larger for larger D in order to have a (significant proba-
bility to form a) black hole.

The effective (1 + 1)-dimensional scenario differs from the 
higher-dimensional models. In the latter case, the black hole prob-
ability increases as the energy of the system (i.e. the mass of the 
particle) grows above the relevant “gravitational energy scale” mD . 
On the contrary, in D = 1, black holes with masses far below 
m1 are more likely, but the maximum probability never exceeds 
PBH � 0.5 regardless of the mass. These features support the claim 
that two-dimensional black holes are purely quantum objects, and 
are particularly important for the sub-Planckian regime of lower 
dimensional theories, where an effective dimensional reduction 
is expected [26]. Moreover, the related GUP further supports the 
above arguments, since in D = 1 there is no minimum length or 
mass.

We would like to conclude by remarking the fact that the 
present analysis does not consider the time evolution of the sys-
tem, as the particle is taken at a fixed instant of time, which is 
therefore left for future extensions.
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