Unconditionally Convergent Series of Operators on Banach Spaces
Qingying Bu and Congxin Wu

Department of Mathematics, Harbin Institute of Technology, Harbin, People’s Republic of China

Submitted by C. Foias
Received September 18, 1991

We show that any series \(\sum_{n=1}^{\infty} K_n \) of operators in \(L(X,Y) \) that is unconditionally convergent in the weak operator topology and satisfies the condition that \(\sum_{n \in F} K_n \) is a compact operator for every index set \(F \subseteq \mathbb{N} \) is unconditionally convergent in the uniform operator topology if and only if \(X^* \), the dual space of the Banach space \(X \), contains no copy of \(c_0 \).

1. INTRODUCTION

The classical Riemann theorem states that if a series of real (or complex) numbers converges unconditionally, then it converges absolutely [10, Theorem 3.56]. By use of the equivalence of coordinatewise convergence with norm convergence in any finite-dimensional Banach space, it is easy to prove that unconditionally convergent series are absolutely convergent.

What about the Riemann theorem in infinite-dimensional Banach spaces? A conjecture that in any infinite-dimensional Banach space, there exists an unconditionally convergent series which is not absolutely convergent had been open for about twenty years until A. Dvoretzky and C. A. Rogers [3] in 1950 proved that absolute convergence is equivalent to unconditional convergence of series in a Banach space if and only if the space is finite-dimensional.

W. Orlicz [9] in 1930 proved that if \(\sum_{n=1}^{\infty} f_n \) is an unconditionally convergent series in \(L_p[0,1] \) (\(1 \leq p < \infty \)), then \(\sum_{n=1}^{\infty} \| f_n \|_p^2 < \infty \) for \(1 \leq p \leq 2 \) and \(\sum_{n=1}^{\infty} \| f_n \|_p^p < \infty \) for \(p > 2 \). M. Kadec [4] in 1956 proved that if \(\sum_{n} x_n \) is an unconditionally convergent series in a uniformly convex Banach space,
then $\sum_{n=1}^{\infty} \delta(\|x_n\|) < \infty$, where δ is the modulus of convexity. V. Kaftal and G. Weiss [5] in 1986 introduced a Riemann type theorem for unconditionally convergent series of operators on Hilbert spaces, i.e., if a series $\sum_n K_n$ of bounded operators on a Hilbert space H is such that $\sum_n K_n$ converges unconditionally in the strong operator topology and $\sum_{n \in F} K_n$ is a compact operator for every index set $F \subseteq \mathbb{N}$, then $\sum_n K_n$ converges in the uniform operator topology.

In this paper, we introduce a Riemann type theorem for unconditionally convergent series of operators in $L(X, Y)$, the bounded linear operator space from a Banach space X to a Banach space Y. To begin with, we introduce a Banach space valued sequence space $BMC(X)$, the space of bounded multiplier convergent series on X (see Proposition 1 below) and characterize the compact sets in $BMC(X)$ (see Theorems 5, 7 below). Then by use of them, we obtain a characterization that the Riemann type theorem for unconditionally convergent series of operators in $L(X, Y)$ holds (see Theorem 9 below).

2. THE SPACE OF BOUNDED MULTIPLIER CONVERGENT SERIES

In this section, let X be a Banach space, X^* its dual space, and B_X denote the closed unit ball of X.

Recall that a series $\sum_n x_n$ on X is called unconditionally convergent if $\sum_n x_{\pi(n)}$ converges for each permutation π of \mathbb{N}, the set of natural numbers; it is called subseries convergent if $\sum_n x_{k_n}$ converges for each increasing sequence (k_n) of \mathbb{N}; and it is called bounded multiplier convergent if $\sum_n t_n x_n$ converges for each $(t_n) \in l_\infty$. It is known that unconditional convergence, subseries convergence, and bounded multiplier convergence of series in a Banach space are equivalent [8, p. 15]. Now we introduce a vector-valued sequence space $BMC(X)$ consisting of all bounded multiplier convergent series on X, i.e.,

\[
BMC(X) = \left\{ \bar{x} = (x_i) \in X^\mathbb{N} : \text{series } \sum_i t_i x_i \text{ converges for each } (t_i) \in l_\infty \right\}.
\]

For each $\bar{x} = (x_i) \in BMC(X)$, let

\[
\|\bar{x}\|_{BMC} = \sup \left\{ \left\| \sum_{i=1}^{\infty} t_i x_i \right\| : (t_i) \in B_{l_\infty} \right\}.
\]
By [7, Corollary 3], the set \(\{ \sum_{i=1}^{\infty} t_i x_i : (t_i) \in B_{l_1} \} \) is a bounded set of \(X \). So \(\| x \|_{\text{bmc}} \) is a finite number and it is easy to prove that \(\| \cdot \|_{\text{bmc}} \) is a norm on \(\text{BMC}(X) \).

Proposition 1. \(\text{BMC}(X) \) with the norm \(\| \cdot \|_{\text{bmc}} \) is a Banach space.

Proof. Let \(\{ \tilde{x}^{(n)} \} \) be a Cauchy sequence in \(\text{BMC}(X) \). Then

\[
\lim \sup_{n,m} \left\{ \sum_{i=1}^{\infty} t_i \left(x_i^{(n)} - x_i^{(m)} \right) : (t_i) \in B_{l_1} \right\} = 0. \tag{*}
\]

It follows that \(\{ x_i^{(n)} \}_{n=1}^{\infty} \) are Cauchy sequences in \(X \) for each \(i \in \mathbb{N} \) and hence there are \(x_i \in X \) such that \(\lim_n x_i^{(n)} = x_i \) for each \(i \in \mathbb{N} \). By \((*) \), \(\lim_n \sum_{i=1}^{\infty} t_i x_i^{(n)} \) exists for each \((t_i) \in B_{l_1} \). So [11, Theorem 3] guarantees that \(\tilde{x} = (x_i) \in \text{BMC}(X) \) and \(\lim_n \tilde{x}^{(n)} = \tilde{x} \). Thus we have proved that the norm \(\| \cdot \|_{\text{bmc}} \) is a complete norm. Q.E.D.

Proposition 2. For each \(\tilde{x} = (x_i) \in \text{BMC}(X) \),

\[
\| \tilde{x} \|_{\text{bmc}} = \sup \left\{ \sum_{i=1}^{\infty} |f(x_i)| : f \in B_{X^*} \right\}.
\]

Proof.

\[
\| \tilde{x} \|_{\text{bmc}} = \sup \left\{ \left\| \sum_{i=1}^{\infty} t_i x_i \right\| : (t_i) \in B_{l_1} \right\}
= \sup \left\{ \left\| \sum_{i=1}^{\infty} t_i f(x_i) \right\| : (t_i) \in B_{l_1}, f \in B_{X^*} \right\}
= \sup \left\{ \sum_{i=1}^{\infty} |f(x_i)| : f \in B_{X^*} \right\}. \tag{Q.E.D.}
\]

For \(\tilde{x} = (x_i) \in X^\infty \), we introduce the notation

\[
\tilde{x}(i \geq n) = (0, \ldots, 0, x_n, x_{n+1}, \ldots).
\]

Proposition 3. For each \(\tilde{x} \in \text{BMC}(X) \), \(\lim_n \| \tilde{x}(i \geq n) \|_{\text{bmc}} = 0 \).

Proof. Since \(\tilde{x} \in \text{BMC}(X) \) implies that the series \(\sum_i t_i x_i \) converges for each \((t_i) \in l_1 \), the series \(\sum_i t_i x_i \) converges uniformly for all \((t_i) \in B_{l_1} \) by [7, Example (1)]. So \(\lim_n \| \tilde{x}(i \geq n) \|_{\text{bmc}} = \lim_n \sup \| \sum_{i=n}^{\infty} t_i x_i \| : (t_i) \in B_{l_1} \) = 0. Q.E.D.

Definition 4. Let \(A \subseteq \text{BMC}(X) \). \(A \) is called a uniformly convergent set if \(\lim_n \| \tilde{x}(i \geq n) \|_{\text{bmc}} = 0 \) uniformly for all \(\tilde{x} \in A \). \(A \) is called a weakly uniformly convergent set if for each \(f \in X^* \), \(\lim_n \sum_{i=n}^{\infty} |f(x_i)| = 0 \) uniformly for all \(\tilde{x} = (x_i) \in A \).
For an index set $F \subseteq \mathbb{N}$, we define the linear map $\varphi_F : \operatorname{BM C}(X) \to X$, $\varphi_F(\bar{x}) = \sum_{i \in F} x_i$, for each $\bar{x} = (x_i) \in \operatorname{BM C}(X)$. Obviously, for each $\bar{x} \in \operatorname{BM C}(X)$, $\|\varphi_F(\bar{x})\|_X \leq \|\bar{x}\|_{\text{bmc}}$. So φ_F is a continuous linear map. For $F = \{i\}$, denote $\varphi_i = \varphi_i$.

Theorem 5. Let $A \subseteq \operatorname{BM C}(X)$. Then A is a relatively compact set if and only if

1. A is a uniformly convergent set.
2. For each $i \in \mathbb{N}$, $\{\varphi_i(\bar{x}) : \bar{x} \in A\}$ is a relatively compact subset of X.

Proof. If A is a relatively compact set, then (2) obviously holds. Next we prove that (1) holds.

Since if A is relatively compact then it is totally bounded, for every $\varepsilon > 0$ there exists a finite subset M of $\operatorname{BM C}(X)$ such that for each $\bar{x} \in A$ there is a $\bar{y} \in M$ satisfying $\|\bar{x} - \bar{y}\|_{\text{bmc}} \leq \varepsilon/2$. By Proposition 3, there is an $n_0 \in \mathbb{N}$ such that

$$\|\bar{y}(i \geq n)\|_{\text{bmc}} < \varepsilon/2, \quad \text{for } \bar{y} \in M \text{ and } n > n_0.$$

So

$$\|\bar{x}(i \geq n) - \bar{y}(i \geq n)\|_{\text{bmc}} \leq \|\bar{x} - \bar{y}\|_{\text{bmc}} \leq \varepsilon/2, \quad \text{for } n > n_0.$$

It follows that

$$\|\bar{x}(i \geq n)\|_{\text{bmc}} \leq \|\bar{x}(i \geq n) - \bar{y}(i \geq n)\|_{\text{bmc}} + \|\bar{y}(i \geq n)\|_{\text{bmc}}$$

$$< \varepsilon, \quad \text{for } n > n_0.$$

Thus we have proved that (1) holds.

Conversely, suppose the conditions (1) and (2) hold. Let $\{\bar{x}^{(n)}\} \subseteq A$. By (2), using the diagonal method, we can find a subsequence $\{n_k\}$ and $x_i^{(0)} \in X$ such that

$$\lim_{k} x_i^{n_k} = x_i^{(0)}, \quad i = 1, 2, \ldots.$$

For convenience, we can suppose that $n_k = k$, i.e.,

$$\lim_{n} x_i^{(n)} = x_i^{(0)}, \quad i = 1, 2, \ldots. \quad (**)$$

By (1) for each $\varepsilon > 0$, there is a $k_0 \in \mathbb{N}$ such that

$$\|\bar{x}(i \geq k_0)\|_{\text{bmc}} < \varepsilon/4, \quad \text{for } \bar{x} \in A.$$

And furthermore, by (**) there is an $n_0 \in \mathbb{N}$ such that for $n, m > n_0$,

$$\|x_i^{(n)} - x_i^{(m)}\| < \varepsilon/2k_0, \quad i = 1, 2, \ldots, k_0.$$
Thus for $n, m > n_0$,

$$
\|\bar{x}^{(n)} - \bar{x}^{(m)}\|_{\text{bmc}} \\
\leq \sum_{i=1}^{k_0-1} \|x_i^{(n)} - x_i^{(m)}\| + \|\bar{x}^{(n)}(i \geq k_0)\|_{\text{bmc}} + \|\bar{x}^{(m)}(i \geq k_0)\|_{\text{bmc}} < \varepsilon.
$$

So $\{\bar{x}^{(n)}\}_{n \geq 1}$ is a Cauchy sequence and hence, by Proposition 1 there exists an $\bar{x} \in \text{BMC}(X)$ such that $\lim_n \bar{x}^{(n)} = \bar{x}$. We have proved that A is a relatively compact set.

Lemma 6. For every index set $F \subseteq \mathbb{N}$, φ_F is c.c.t. → w.t. continuous on each weakly uniformly convergent subset of $\text{BMC}(X)$, where c.c.t. denotes the coordinatewise convergence topology on $\text{BMC}(X)$ and w.t. denotes the weak topology on X.

Proof. Let A be a weakly uniformly convergent subset of $\text{BMC}(X)$ and (\bar{x}^a) a net of A such that $\lim_{a} x_i^a = 0$ for each $i \in \mathbb{N}$. Then for $\varepsilon > 0$ and $f \in X^*$, there is an $n_0 \in \mathbb{N}$ such that

$$
\sum_{i=n_0}^\infty |f(x_i)| < \varepsilon/2,
$$

for $\bar{x} = (x_i) \in A$.

And hence, there is an α_0 such that for $\alpha > \alpha_0$,

$$
|f(x_i^a)| < \varepsilon/2n_0, \quad i = 1, 2, \ldots, n_0.
$$

So for $\alpha > \alpha_0$,

$$
|f(\varphi_F(\bar{x}^a))| \leq \sum_{i=1}^{n_0-1} |f(x_i^a)| + \sum_{i=n_0}^\infty |f(x_i^a)| < \varepsilon.
$$

Thus we have proved that w.t. $\lim_{a} \varphi_F(\bar{x}^a) = 0$. Q.E.D.

Theorem 7. Suppose X contains no copy of c_0. Let $A \subseteq \text{BMC}(X)$. Then A is a relatively compact set if and only if

1. A is a weakly uniformly convergent set.
2. For every index set $F \subseteq \mathbb{N}$, $(\varphi_F(\bar{x}) : \bar{x} \in A)$ is a relatively compact subset of X.

Proof. If A is a relatively compact set, then by the continuity of φ_F and by Theorem 5, A satisfies the conditions (3) and (4).

Conversely, suppose A satisfies the conditions (3) and (4). Let $(\bar{x}^{(n)})_1 \subseteq A$. By the proof of Theorem 5, we can suppose that

$$
\lim_n x_i^{(n)} = x_i^{(0)} \in X, \quad i = 1, 2, \ldots. \hspace{1cm} (***)
$$

Next we prove that $\bar{x}^{(0)} = (x_i^{(0)}) \in \text{BMC}(X)$.
For \(f \in X^* \), by (3) there exists a \(k_0 \in \mathbb{N} \) such that \(\sum_{i=1}^{\infty} |f(x_i)| \leq 1 \) for each \(x \in A \). Since (4) implies (2), \(\bigcup_{i=1}^{k_0} \{ \varphi_i(x) : x \in A \} \) is a relatively compact subset of \(X \) and hence, bounded. So there is a constant \(c > 0 \) such that

\[
|f(\varphi_i(x))| = |f(x_i)| \leq c, \quad \text{for } x \in A, i = 1, 2, \ldots, k_0.
\]

Thus

\[
\sum_{i=1}^{\infty} |f(x_i)| \leq k_0c + 1, \quad \text{for } x \in A.
\]

Now for a fixed \(m \in \mathbb{N} \), by (***) there is an \(n_0 \in \mathbb{N} \) such that

\[
|f(x_i^{(n_0)} - x_i^{(0)})| < 1/m, \quad i = 1, 2, \ldots, m.
\]

So

\[
\sum_{i=1}^{m} |f(x_i^{(0)})| \leq \sum_{i=1}^{m} |f(x_i^{(n_0)} - x_i^{(0)})| + \sum_{i=1}^{m} |f(x_i^{(n_0)})| \leq 1 + k_0c + 1.
\]

Since \(m \) is arbitrary, we have \(\sum_{i=1}^{\infty} |f(x_i^{(0)})| \leq k_0c + 2 < \infty \). Therefore, the series \(\sum x_i^{(0)} \) is a weakly unconditionally Cauchy series. It follows from the Bessaga–Pelczynski \(c_0 \) theorem (see [1] or see [2, p. 45, Theorem 8]) that \(\sum x_i^{(0)} \) is unconditionally convergent and hence, bounded multiplier convergent. Thus we have proved that \(\tilde{x}^{(0)} \in \text{BMC}(X) \).

Let \(D = A \cup \{ x^{(0)} \} \). For every index set \(F \subseteq \mathbb{N} \), since Lemma 6 implies that \(\varphi_F \) is c.c.t. w.t. continuous on \(D \), by (***) we have w.t. \(\lim_n \varphi_F(x^{(n)}) = \varphi_F(x^{(0)}) \). By use of the condition (4), we have \(\lim_n \varphi_F(x^{(n)}) = \varphi_F(x^{(0)}) \), i.e.,

\[
\lim_n \sum_{i \in F} x_i^{(n)} = \sum_{i \in F} x_i^{(0)}.
\]

It follows from [12, Proposition 4] that

\[
\lim_n \sum_{i=1}^{\infty} t_i x_i^{(n)} = \sum_{i=1}^{\infty} t_i x_i^{(0)}
\]

uniformly for all \((t_i) \in B_{l_p} \), i.e., \(\lim_n \tilde{x}^{(n)} = \tilde{x}^{(0)} \). So we have proved that \(A \) is a relatively compact set. Q.E.D.

Remark. Condition (4) in Theorem 7 cannot be replaced by condition (2) in Theorem 5. For example, let \(X = l_p \) \((1 < p < \infty) \), \(e_i = (0, \ldots, 0, 1^{(i)}, 0, 0, \ldots) \) and let \(A = \{ (0, \ldots, 0, e_i, 0, 0, \ldots) : n = 1, 2, \ldots \} \). Then \(A \subseteq \text{BMC}(X) \) and it is easy to see that \(A \) satisfies conditions (2) and (3) but does not satisfy (1) or (4) and it is not relatively compact.
By a proof similar to that of Theorem 7 and by [2, p. 49, Corollary 11], we have:

Theorem 8. Suppose X^* contains no copy of c_0. Let $A \subseteq \text{BM}(X^*)$. Then A is a relatively compact set if and only if

1. A is a weak* uniformly convergent set.
2. For every index set $F \subseteq \mathbb{N}$, $(\sum_{i \in F} f_i : (f_i) \in A)$ is a relatively compact subset of X^*.

3. A Riemann Type Theorem in $L(X,Y)$

In this section, let X, Y be two Banach spaces and let $L(X,Y)$ denote the space of bounded linear operators from X to Y. Uniform operator topology, strong operator topology, and weak operator topology are simply denoted by U.O.T., S.O.T., and W.O.T., respectively.

Theorem 9. Every series $\Sigma_i K_i$ of operators in $L(X,Y)$ such that

1. $\Sigma_i K_i$ converges unconditionally in the W.O.T.
2. $\Sigma_i \in F K_i$ is a compact operator for every index set $F \subseteq \mathbb{N}$

is unconditionally convergent in the U.O.T. if and only if X^* contains no copy of c_0.

Proof. Suppose X^* contains no copy of c_0. Let $\Sigma_i K_i$ be a series of operators in $L(X,Y)$ which satisfies the conditions (7) and (8). For a fixed $x \in X$, by (7) the series $\Sigma_i K_i x$ of Y is weakly unconditionally convergent and hence, weak subsseries convergent. So it follows from the Orlicz–Pettis Theorem [2, p. 24] that the series $\Sigma_i K_i x$ of Y is subseries convergent and hence, bounded multiplier convergent. Thus $(K_i x) \in \text{BM}(Y)$. By Proposition 3, for each $\varepsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that for $n > n_0$,

$$\left\| \sum_{i=n}^{\infty} t_i K_i x \right\| < \varepsilon, \quad \text{for} \ (t_i) \in B_\varepsilon.$$

For $y' \in B_{Y^*}$, let $s_i = \text{sign}(\langle K_i x, y' \rangle)$. Then $(s_i) \in B_\varepsilon$. So for $n > n_0$,

$$\left\| \sum_{i=n}^{\infty} s_i K_i x, y' \right\| \leq \left\| \sum_{i=n}^{\infty} s_i K_i x \right\| < \varepsilon.$$

Let K_i^* denote the adjoint operator of K_i. Then

$$\left\| \sum_{i=n}^{\infty} s_i K_i^* y' \right\| = \sum_{i=n}^{\infty} |\langle K_i x, y' \rangle| < \varepsilon, \ y' \in B_{Y^*}.$$
Now by (8), for every index set $F \subseteq \mathbb{N}$, $\sum_{i \in F} K_i^* = (\sum_{i \in F} K_i)^*$ is a compact operator. So the set

$$(11) \quad \left\{ \sum_{i \in F} K_i^* y' : y' \in B_{Y^*} \right\}$$

is a relatively compact subset of X^*. Thus by (10), (11), and Theorem 8 we see that the set $A = \{(K_i^* y') : y' \in B_{Y^*}\}$ is a relatively compact subset of $BM C(X^*)$. So by Theorem 5, A is a uniformly convergent subset of $BM C(X^*)$ and hence, $\lim_n \|(K_i^* y')(i \geq n)\|_{l_{BM C}} = 0$ uniformly for all $y' \in B_{Y^*}$, i.e.,

$$\lim_n \sup \left\{ \left\| \sum_{i=n}^{\infty} t_i K_i^* y' \right\| : (t_i) \in B_{l_{BM C}}, y' \in B_{Y^*} \right\} = 0.$$

So for each $(t_i) \in B_{l_{BM C}}$,

$$\lim_n \left\| \sum_{i=n}^{\infty} t_i K_i^* \right\| = \lim_n \left\| \sum_{i=n}^{\infty} t_i K_i \right\| = \lim_n \sup \left\{ \left\| \sum_{i=n}^{\infty} t_i K_i^* y' \right\| : y' \in B_{Y^*} \right\} = 0.$$

Therefore, the series $\sum_{i=1}^{\infty} K_i$ is bounded multipliers convergent and hence, unconditionally convergent in the U.O.T.

Conversely, suppose X^* contains a copy of c_0. Let $T : c_0 \to X^*$ be an isomorphism and $T^* : X^{**} \to l_1$ be the adjoint operator of T. And let $R = T^* | X$. Then for each $x \in X$, $Rx \in l_1$. Let $(Rx)_i$ denote the ith coordinate of Rx. For a fixed $y \in Y$ with $\|y\| = 1$, define

$$K_i : X \to Y, \quad K_i x = (Rx)_i y, \text{ for each } x \in X.$$

Then $K_i \in L(X, Y)$ for $i \in \mathbb{N}$. And for each $x \in X$, $\sum_{i=1}^{\infty} \|K_i x\| = \sum_{i=1}^{\infty} \|(Rx)_i\| = \|Rx\|_{l_1} < \infty$. So the series $\sum_{i=1}^{\infty} K_i$ converges absolutely in the S.O.T. and hence, satisfies the condition (7).

For every index set $F \subseteq \mathbb{N}$ and each $x \in X$, since $\sum_{i \in F} K_i x = \sum_{i \in F} (Rx)_i y$, $\sum_{i \in F} K_i$ is a rank one operator and hence, is a compact operator. Thus $\sum_{i=1}^{\infty} K_i$ satisfies the condition (8).

Now assume that the series $\sum_{i=1}^{\infty} K_i$ is unconditionally convergent in the U.O.T. Then $\sum_{i=1}^{\infty} K_i$ is bounded multiplier convergent in the U.O.T. Hence for each $(t_i) \in l_{BM C}$,

$$\lim_n \sup \left\{ \left\| \sum_{i=n}^{\infty} t_i (Rx) \right\| : x \in B_X \right\} = \lim_n \sup \left\{ \left\| \sum_{i=n}^{\infty} t_i K_i x \right\| : x \in B_X \right\} = \lim_n \left\| \sum_{i=n}^{\infty} t_i K_i \right\| = 0.$$
It follows from [6, p. 108, Proposition 6.11] that the set \(\{ Rx : x \in B_x \} \) is a relatively weakly compact subset of \(l_1 \) and hence, it is relatively compact. Thus \(R \) is a compact operator, which contradicts the fact that \(T \) is an isomorphism. With this contradiction we have proved that \(\Sigma, K \) is not unconditionally convergent in the U.O.T. Q.E.D.

ACKNOWLEDGMENTS

The authors thank Professor C. Foias for his help and the referees of this paper for some good suggestions and for the example in the Remark following Theorem 7.

REFERENCES