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Global existence and regularity of solutions for the Yang-Mills equations on the 
universal cosmos 6l, which has the form R ’ X S3 for each of an 8-parameter 
cant inuum of factorizations of R as time x space, are treated by general methods. 
The Cauchy problem in the temporal gauge is globally soluble in its abstract 
evolnionary form with arbitrary data for the field @ potential in L&S’) @ 
L 2.r+,(S3), where r is an integer >1 and L,,, denotes the class of sections whose 
first r derivatives are square-integrable; if r= 1, the problem is soluble locally in 
time. When r is 3 or more the solution is identifiable with a classical one; if infinite, 
the ;olution is in Cm@). These results extend earlier work and approaches [l-5]. 
Sob tions of the equations on Minkowski space-time M, extend canonically 
(moJu10 gauge transformations) to solutions on $l provided their Cauchy data are 
mot erately smooth and small near spatial infinity. Precise asymptotic structures for 
solu:ions on M, follow, and in turn imply various decay estimates. Thus the energy 
in r :gions uniformly bounded in direction away from the light cone is 0(1x,1-‘), 
whe.e x,, is the Minkowski time coordinate; analysis solely in M, [8, 91 earlier 
yiekled the estimate O(IX,~-~) applicable to the region within the light cone. 
Sim larly it follows that the action integral for a solution of the Yang-Mills 
equuions in M, is finite, in fact absolutely convergent. 

1. INTRODUCTION 

The Yang-Mills equations are conformally invariant, like the Maxwell 
equations from which they originated, and so extend invariantly and 
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maximally to the universal cover fi of the conformal compactification M of 
Minkowski space M,. In addition to M,, fi contains the de Sitter spaces in 
a canonical way, and otherwise provides a type of maximal model for space- 
time known as the universal cosmos [7]. It thus appears natural to consider 
the Yang-Mills equations on l$ and extension to this larger space-time is 
useful even from the standpoint of Minkowski space itself since the temporal 
asymptotics in M, are derivable from this extension. 

This paper shows that the earlier results by Segal [l] and by Eardley and 
Moncrief [4] on the existence of a solution to the Cauchy problem for the 
Yang-Mills equations in M, in the temporal gauge extend to a. The proof 
uses suitable adaptations of the earlier methods for M,, which are simplified 
and generalized in certain respects, together with aspects of the geometry of 
the imbedding of M, into A. This geometry was involved in a physically 
related way in [6] and was used in the present connection by Christodoulou 
[3] and by Choquet-Bruhat and Christodoulou [2] to show global existence 
of solutions of conformally invariant or regular partial differential equations 
with small Cauchy data. Here the precise asymptotics of solutions in M, are 
derived from the treatment of this geometry in [7] in connection with 
analysis of general space-time bundles. The asymptotics derivable in this 
fashion are in a certain sense best possible; in particular, they yield temporal 
decay rates significantly more rapid than those earlier obtained from the 
study of conserved quantities in M,. In this connection see Glassey and 
Strauss [8,9]. For a result for fields with small data by a different approach, 
see 121. 

A summary treatment of the global existence question on M based on the 
theory of Leray [lo] for hyperbolic partial differential equations on general 
manifolds was earlier given in [5]. The present treatment takes advantage of 
invariance features of the Einstein Universe that facilitate subsumption under 
more purely functional analytic considerations. In less than four space-time 
dimensions, Ginibre and Velo [ 11, 121 have shown global existence of 
solutions for closely related equations. An early perturbative result is due to 
Kerner [ 13). A survey of related matters as of 1979 was given by 
Choquet-Bruhat in [ 141. Glassey and Strauss have studied global existence 
in M, for a special class of solutions [ 151. A recent survey in the general 
context of hyperbolic equations of gauge theories was given by 
Choquet-Bruhat in [ 161. 

2. NONLINEAR ONE-PARAMETER GROUPS 

The present treatment appears more intelligible in the general setting of 
nonlinear semigroups as introduced in [ 171. However no attempt at maximal 
generality will be made here, and only full groups will be considered. 

sao/s3/2-2 
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Throughout the present section, B denotes a given Banach space; W(t) for 
t in RI denotes a given l-parameter continuous group of bounded linear 
transformations on B; K,(u) for t in R1 and u in B denotes a given 
continuous map from R i x B to B; 4 a function from [0, co) to itself that is 
assume 1 only to be bounded on bounded sets, and is otherwise generic. Thus 
K,(u) ir said to be “boundedly lipschitzian locally in t” in case 

for son e 4. By “solution” of the equation 

u(t) = W(t) u. + j’ W(t - s) K,(u(s)) ds, (1) 
0 

where t o is given in B, will be meant a continuous map l --t u(t) from an open 
interval J in R, containing 0 that satisfies Eq. (1) in J. If J is all of R ‘, the 
solutioi~ is called global, and is otherwise called a local (in time) solution. 

THE( JREM 1. Let V( .) be a continuous l-parameter group of bounded 
linear clperators on B such that for all s and t in R ’ and u in B 

VW K,(u) = KS(W) u>, V(f) W(s) = W(s) V(f). 

Suppose also that K,(u) is of class C” as a map from R’ x B to B (n > 1). 
Let P denote the infinitesimal generator of V( . ). 

If u( is in the domain D(P”), then u(t) is in this domain for all t in the 
maximill interval T of existence for the datum uo. Moreover the map 
(u,, t) -+ u(t) is continuous from D(P”) x T to D(P”) relative to the norm on 
D(P”) : 

Ilull, = Ilull + IPII + *.* + lIP”~ll* (2) 

Procf. Consider first the case n = 1. Since K,(u) is of class C’ as a 
function of t and u, it is boundedly lipschitzian locally in t, so that local 
solutions exist for arbitrary u. in B. Now suppose that u. is in D(P), and let 
T denc’te the maximal interval of existence for this datum (open, containing 
0). The: linear equation 

~(0 = WI Puo + j; W - s) Vs(~I,=,w Y(S) ds (3) 

has a solution throughout T. Let z,(t) = e-‘(V(e) - 1) u(t) -y(t) for t in T. 
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Then z, satisfies the equation 

z,(t) = W(t)[e-‘(V(e) - 1) -P] 24, +I,’ W(t-- s)[e-‘(V(e) - I)K,(u(s)) 

- ~“a41u=u(s~ Y(S)1 ds* 

Now (V(e) - 1) KS(+)) = K,( V(e) U(S)) - K,@(s)), which by the mean 
value theorem in a Banach space is in the convex closure as h ranges over 
the interval (0, e) of ~uKs(~)],=Y~h~uo~ (V(e) - 1) U(S). By continuity this 
differs from cY~K~(u)~,=,~,~ (V(e) - 1) U(S) by o( l)]]( V(e) - 1) u(s)]] uniformly 
on any compact subinterval 7’, of T, as e+ 0. Noting that 

lel-’ IIVW - 1) WI G IkWII + II ~(~IL 

the integrand is 

w - a%w4l.=,,,, e z (8) + o(l MI z&)ll + II u(sIl)l. 

It follows that uniformly on T,, 

II z,(Oll < o(l) + j’ C II ze(s)ll ds, 

which by Gronwall’s inequality implies that Z@(S) is uniformly o(1) on To. 
Thus U(S) is in D(P) for all s in T, and Pu(s) = y(s). The continuity of the 
map (Us, t) --) u(t) in the I]. ](i norm also follows. 

The general case now follows by an induction argument, similar to that 
for the case n = 2, which proceeds as follows. The linear inhomogeneous 
equation 

has a solution throughout T. Now let 

we(f) = e-‘(V(e) - I)&) -x(t) 

for t in T. Then W, satisfies 

we(f) = W(t)[eC’(V(e) - 1) -P] y(0) 

x j: W - s)[e-‘V(e) - 1) 4J,@L,~,,Y(s) 

- VWL,~,~ 4s) - ~:,,mLu~s~ (Y(s)~Y(s))~ ds. 
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Now for any C* map L from B to B with the property that V(s) L(U) = 
L(V(s)t) for all s in R’ and u in B, 

e-‘(W) - l>(a,L(u)).~ 

= ;z (eh)-’ (V(e) - l)(L(u + hy) -L(u)) 

= ~~ (eh)-’ [L(V(e)(u t hy))-L(V(e) u)- L(u t hy) +L(u)] 

= Fy (eh)-’ [L(u + p t q) - L(u t p) - L(u t q) + L(u) + 

t L(u t hV(e) y) - L(u + hy)], 

where p = (V(e) - 1) U, q = h V(e) y. Further, 

lim, (eh 1-i [L(u +p t q) - L(u t p) - L(u t q) + L(u)] is in the convex 
closure of (a:L>I,, (p,q), h w ere U, varies on the line segment joining u and 
u +p. I follows as earlier that W, satisfies an inequality of the form 

on com,act subintervals of T, whence w,(t)-+ 0 as e-t 0. This in turn shows 
that ~(t I is in D(P) and that Py(t) = x(t). As before, continuity of the map 
(uo, t) -, u(t) in the 11. II2 norm follows. Continuing this process one derivative 
at a tine, the theorem follows. 

COROLLARY 1.1. If V is a continous unitary representation of the Lie 
group C’ on B such that for all g in G, t in R’, and u in the Hilbert space B, 

V( g> W) = W) V(g), V(g) m)) = K,(V(g) u)>, (4) 

and tfh-t(u) is of class C” as a function of (2, u), then the n-fold differentiable 
vectors in B with respect to V are invariant under the temporal propagation 
defined by Eq. (l), within the interval of existence. 

Prooj 1 Apply Theorem 1 to each generator and its powers, and refer to 
the thecry of differentiable vectors in group representations (Goodman [ 181). 

EXAM IPLE. Let G be a Lie group, F a finite-dimensional vector space, B 
an L&obolev space of functions f from G to F, and V(g) of the form: 
V(g)J)(x) =f (g-l x , ) x in G. If K,(u) has the form (K,(u))(x) =p(u(x)), 
where J is a polynomial on F, then Eqs. (4) hold. 
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Thus the equation 

(8/~t’ -A + c) 4 + q(4) = 0; WA x> = h(x), M4 x> = h(x), 

with #,, in H, and #i in H, and where A denotes the Laplace-Beltrami 
operator on S3, c is positive, and q is a polynomial of degree at most 3, has 
local-in-time solutions to the corresponding evolutionary equation in 
H, 0 H, (cf. [17]) that remain in H,+i @ H, if in this space initially, n 
being an arbitrary non-negative integer. The same is true for polynomials q 
of arbitrary degree n is taken to be sufficiently large. 

COROLLARY 1.2. Suppose that K,(u) is t-independent and boundedly 
lipschitzian. Suppose D is a dense subset of B with the property that if u, is 
in D then the solution u(. ) of Eq. (1) has u(t) in D for all t in the interval 
T(u,) of existence. Suppose there exists a positive constant e and a 
continuous function 4 from B to [0, CXJ) such that tf u( . ) and v( . ) are local 
solutions with data u,, and v,, in D, then 

II m40) - K(W)ll G $(II 4 II + II vcl II + I t III u(t) - Wll ; 
IIwwll Q @(II %lI + I tl)ll @)ll 

for all t that are both in (-e, e) and in the common interval of existence. 
Then Eq. (1) has a global solution for arbitrary data in B. 

Proof Suppose that u,, is in D. Estimating from Eq. (I), 

II u Wll G W + 1; W #(II uo + I 4)ll u(sIl ds 

for t in (-e, e) and T(u,). It follows from Gronwall’s inequality that Ilu(t 
remains bounded throughout the common part of the interval of existence 
and (-e, e), which implies that (-e, e) is contained in T(u,). Since the map 
uO -+ u(s) from D to D is invertible by the map uO --f u(-s), the former map is 
from D onto D, for sufficiently small s, so that the mappings L(s): u, --+ u(s), 
u,, in D, form a local l-parameter group in D, say for Is I < g. Defming L(s) 
for arbitrary real s by 

L(S)=L(S,)L(S*)"*L(S,) ifS=S, +S*+ '.. +S,, ISjl <g, 

it follows purely algebraically that L(s) is uniquely defined, and that L(a) is 
a global l-parameter group of transformations on D. 

Now if uO is arbitrary in B, let {u,} denote a sequence of elements of D 
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such that u, + u,,, and let u,(a) denote the solution of Eq. (1) with Cauchy 
datum u I. Subtracting Eq. (1) for u,(.) from that for u,(e), it follows that 

I u,(t) - u,Wll G CO) 41) + C(t) j' II Wds)) - W,(sll & 

where Cc.) is bounded on bounded intervals. Applying the hypothesis as to 
the nornied term in the integrand, and Gronwall’s inequality, it follows that 
1) u,(t) - u,(t)]] is o( 1) for all t in (-e, e), uniformly on compact subintervals. 
Hence tk e sequence {u,(t)} converges uniformly on any compact subinterval 
of (-e, e) to a solution of Eq. (1) with Cauchy datum u,,. 

This lbrovides a local l-parameter evolutionary group in B defining the 
propagalion u0 -+ u(t) corresponding to Eq. (l), and it follows as in the case 
of solutions with values in D that this extends uniquely to a global one- 
parameter group. 

3. THE YANG-MILLS EQUATIONS 

Let r be a given compact Lie group, r its Lie algebra, and (a,.) a r- 
invarian positive definite inner product on r. The Yang-Mills equations 
concern r- valued differential forms, i.e., multilinear antisymmetric forms 
with values in r, on the space of C”O vector fields on the manifold in 
question (cf. Lichnerowicz [ 191 and Choquet-Bruhat and Dewitt-Morette 
[ 201). T le present investigation treats the case of the universal cosmos a, 
which bc:comes the Einstein Universe when a metric is imposed on R that is 
invariant under the maximal compact subgroup of the 1%parameter 
automor lhism group of R. Regarding A, compare [7], whose notation is 
used her:. 

An ac missible metric on A will be defined as one that is subordinate to 
the give11 causal (or conformal) structure on a. All metrics, vector fields, 
etc., wil be assumed Cm unless otherwise indicated. Given an admissible 
pseudo-I:iemannian metric g, it will be extended by linearity from vector 
fields to homogeneous maps from the space of vector fields to given algebras. 
Thus if Y, (j = 0, 1,2,3) is any orthogonal basis for the vector fields near a 
point p I)f fi, e.g., (Y,, Y,) = foi,, and if P and Q are linear maps from the 
space of such vector fields (as a module over the algebra of C” functions) to 
an algebra A, then 

df’, Q> = C P(Y,) Q(Yj) g(Yi, Yj)* 
iv/ 

When t s in the present application A is a Lie algebra, the notation 
g(P, Q> := [P; Ql, or on occasion [P(s) ; Q(e)], will be used. 
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The Yang-Mills equations are equations for a l-form A and a 2-form F, 
both having values in r. They may be expressed as follows, X and Y being 
arbitrary vector fields on the manifold in question, which is assumed 
endowed with a given conformal structure: 

F(Z Y) = d(X r> - [A(X), A(Y)], 

where d denotes the usual exterior derivative 

(5) 

@4)(X, Y)=XA(Y)- YA(X)-A[X, Y]; 

and with 6 = *A, 

(W(3 = [Ft., 9;4)1. (6) 

We recall the convention regarding *: if si,..., s, is an ordered basis of 
l-forms, the positive orientation being s1s2 .e. s,, then *(s, .a. sp) = 
g(s,+, *** S”, Sp+l *** Sn)Sp+l *** s,. Pro forma, Eq. (6) depends on the 
metric, but the equations are known to be conformally invariant and are 
unique as regards the differential equations aspects considered here but may 
be given a variety of equivalent formulations (lot. cit.). 

The central question considered here is that of the Cauchy problem for 
these equations on l8 relative to a fixed but arbitrary factorization of A in 
the form R’ x SU(2) into time and space factors. This problem may 
conveniently be treated in terms of scalar-valued functions defined globally 
on l@, representing the coefficients of A and F relative to the following fixed 
basis. Let pj (j = 0, 1, 2, 3) denote the l-form on A such that /?,(X,) = 
6,,(k = 0, 1, 2,3). The pi are invariant under left translations relative to the 
presentation of l@ as the group o(2) N R’ x SU(2) N R’ x S3, where here 
R ’ denotes the additive group of the reals. 

In terms of the coordinates t, u,, z+, u3, these l-forms are given as 
follows: PO = dt; 

u.J3, = (u: + u:) du, + (u, u, - u3 UJ du, + (u, u3 + u2 u,) du,, 

~4& = (u: + u:) du2 + (~2 ~3 - ~1~4) du3 t (~2 ~1 t ~3 ~4) du, 9 

u~P~=(u: + u:)~u, + (~3~1 -u~u,)~u, t (~3~2 + uIu4)duz. 

The positive orientation on fi will be defined by the 4-form /3,/3, /.12p3. The 
metric used henceforth is the invariant one on o(2): g(X,, Xi) = eiSij, where 
(e,, e,, e,, e3) = (1, -1, -1, -1). Using standard notational conventions and 
letting i, j, k denote the indices 1, 2, 3 in cyclic order, one finds 

4, = 0, dPi = 2pjPk ; d@,Pi) = - Wp,PjP,; dviPj> = 0; 

* CoOPi) = PjPk 3 *GoOPiPj) = +,4-T *(PiPjPk) = 40. 
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For arbitrary l- and 2-forms A and F, not necessarily satisfying (5) or (6), 
we set *di=A(Xi), Fij=F(Xi, Xi); thus A =CiAiPi and F=CicjFijPi/lj. 
Straight ‘orward computations now show that 

d4 = 2 (X,Aj-XjAi)Pipj + 2C’AiPjPk3 

i<j 

where :1 involves summation over all indices 0, 1, 2, 3 and C’ denotes 
summation only over the three cyclic permutations of 1,2,3. Also, 

-JF= V,F,, +GFo,+~,F,,)P,+ GGF,, +&F,, +XJls +2F,,)P, 

+ GWo-,, + X,f’u + XT,, + 2F,,)S, 

+ KJ,, + X,F,, + XT,, + 2F,JP,- 

It follows that in terms of scalar components, Eq. (5) takes the form 

F,,j =XoAj-XjA,- [A,,Aj] (j= 1,2,3), 

F, =XiAj--XjAi+2A,- [A,,A,] (i,j,k= 1,2,3incyclicorder). 
(7) 

Noting hat 

[j’(*,xj>,A(*)] =-[Fj,vA,] + [F(Xj,X,)>A,] + [F(Xj,X,)vA,] 

+ [F(Xj, X3>, A,], 

Eq. (6) akes the form (for j = 0): 

-V,F,, +&F,,+~P,,)= [F,,,A,I + PmA,l f iFm,A31; (8) 
and, intl,oducing the notations 

Ej= Fjo, E = (E,,Ez,Ej) = (F~o,F,,,F,,), 

Hi =Fk,, H=(H,,HZ,H3)=(F~*,F,~,F2,), 

Eq. (8) lnay also be written as follows,’ with V = (X, ,X,, X,): 

V.E=[A;E]; (9) 

and in addition the following equations are obtained: 

-H=VxA+2A-AxA, 

&I?=-VXH-2H-[E,A,]+[AyH]. 
(10) 

’ The filllowing notations are used: (1) [A $B], = [Aj, B,] - [Ak, Bj], where i. j, k are 1, 2, 
3 in cycli: order; (2) [A;B]=[A,,B,]+[A,,B,]+[A,,B,]; (3) (VXZ~)~=X~A~-X,A,, 
where i, j. k are in cyclic order; (4) (Vf), = Xi f, f being a function. 
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The temporal gauge is defined by the condition A, = 0. Assuming hence- 
forth that this is the case, and noting that then &A = -E, it follows on 
applying X0 to the first of Eqs. (10) and simplifying the second that 

X,E=-VXH-2H+ [A TH], 

&H=VxE+2E- [A YE]. 
(11) 

4. SOLUTION OF THE CAUCHY PROBLEM 

In order to subsume the Yang-Mills equations under general theory, it is 
convenient to use the “fixed-time constraint” (9) to improve the regularity of 
one of the evolutionary equations. More specifically, the first of Eqs. (11) 
takes the form, as an equation for A, 

k’=VxH+2H-[AYH]; H=-VXA-U+AxA. 

Eliminating H by substitution yields the equation 

k’+Vx(VxA)=-4&4VxA+6AxA+Vx(AxA) 

+[AyvxA]-[AYAXA]. (12) 

Because of the partial degeneracy of the operator A -+ V x (V X A), the 
treatment given in [ 171 for scalar wave equations does not extend directly to 
this equation, The equation can however be modified so that a similar 
treatment becomes applicable. To this end, note first the identity 

vx(VXA)=-LA+V(V.A)-2VXA, (13) 

where L denotes the Laplacian, applicable to arbitrary smooth A 
(irrespective of the Yang-Mills equations). Substitution in Eq. (12) now 
leads to 

k’+(I-L)A=-3A-2VxA-V(V.A)+6AxA+Vx(AxA) 

+[AyvxA]-[[A&4XA]. (14) 

Second, the only term on the right-hand side of Eq. (14) involving two 
differentiations can be adequately desingularized by using Eq. (9). Indeed, 
differentiation of Eq. (14) with respect to time gives the following equation, 
now adopting the notation: L’ = I - L. 

;i’+L’~=-3~-2VxA’-V(Vk)+6[Ax~]+Vx[A~k] 

+ [V XA >;(A] +v XA &4] - [[A &4] TA] - [A XA yk]. 

(15) 



122 CHOQUET-BRUHAT ET AL. 

Now uting the expression for V + k as [A ; A] given by Eq. (9), Eq. (15) 
takes th: more regular form 

;~‘+.;‘A=-~A-~VXA-V[A;A]+~[A~~]+VX[A~~] 

+ [V XA TA] + [V XA &d] - [[A &A] TA] - [A XA &4], 

(16) 

Thus if U denotes A @A @k’, then U(t, .) satisfies the equation 

U’(t) = W(t) + w-w), (17) 

where (! is the linear operator whose matrix decomposition relative to the 3- 
fold dir:ct sum in terms of which U is defined is 

and K takes the form K(u @ D @ w) = 0 @ 0 @ k, where k is deduced from 
the rig It-hand side of Eq. (16) by the formal substitution A + U, k + Y, 
k’+ w. Thus 

k(u, u, v) = -3~ - 2V x v - V[u ; II] + 6[u X U] + V X [U ? u] 

+ [V x u y u] + [V x 24 y u] - [[u y u] 5 u] - [u x u v U]’ (19) 

We -efer to Eq. (12) as the evolution equation, Eq. (16) as the auxiliary 
evolutil )n equation, and Eq. (17) as the abstract such equation. Equation (17) 
will be considered in the spaces [H,], defined as the Hilbert space direct 
sum 

P&l =L *,a+2(S3, r”> 0 L*,,+ 1 ts3, T3) 0 L,,,(S3, T3), 

where L,,,(M, F), M being a compact manifold and F being a finite- 
dimensional vector space, indicates the usual Sobolev space of functions that 
are sqltare-integrable together with their first r derivatives, and a is a non- 
negatij e integer. Evidently the [H,] are all contained in H, ; as subsets of H, 
in the topology of H, they will be denote simply as H,. Note that L’ is a 
non-negative self-adjoint operator in L,(S’, I;), assuming F is a euclidean 
space md the inner product of two vectorsfand g in L,(S3, F) is defined as 
Is3 t.f-:~),&)) lfJc* It s non-negative square root will be denoted as B (the 
context indicating the relevant finite-dimensional vector space F). The norm 
in [H,] may be formulated as: ]]u@u@ w]]~= (]]Ba’+2u]]2 +]]B’+‘v]]~ + 
((B%( 2)1’2. B y spectral theory, the operator B,, defined as B with the 
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modified domain consisting of vectors in H, that are in the domain of B and 
have transforms in H, (under B), is likewise self-adjoint in [H,], so that 
continuous functions of B, are well-defined. The context will suffice to 
indicate the value of Q, and B, will be denoted simply as B. 

Because of the nonlinear constraints on the Cauchy data, it is convenient 
to solve the Cauchy problem for the Yang-Mills equations in several stages. 
First the local-in-time strong existence is established for Eq. (17) in the space 
H,. This implies corresponding existence in the spaces [H,], which are 
conserved under temporal evolution. Next, the question of the preservation of 
the constraint, when the Cauchy data for Eq. (17) satisfy the constraint 
initially, is considered, resulting in local-in-time strong solution of the 
Yang-Mills equations in the space H,. An a priori estimate for solutions of 
the Yang-Mills equation on the Einstein Universe is then obtained from the 
Cronstrijm gauge [2 1 ] estimate of Eardley and Moncrief [4] in Minkowski 
space-time, using the local causal equivalence of these two space-times. 
Global-in-time existence for the Yang-Mills equations then follows in H, . 

THEOREM 2. Equation (17) has a unique local-in-time strong solution in 
H, for arbitrary Cauchy data in this space. 

LEMMA 2.1. Q is the generator of the following continuous one- 
parameter linear group on H, : 

\ 0 -B sin tB cos tB / 

Moreover, this group leaves invariant H,, and the group obtained by 
restricting to H, acts continuously on [H,]. 

Proof: It is straightforward to verify that W(t) is a bounded linear 
operator on H, and that W(t + t’) = W(t) W(t’) for arbitrary real t and t’. It 
is easily seen that W(t) maps H, into H,, and that for arbitrary U in H, , the 
map t + W(t) U is continuous from R * into [H,]. That the group W(a) is 
generated by Q follow on differentiating the given expression for W(t), in 
accordance with the Hille-Yosida theorem. 

LEMMA 2.2. K is boundedly lipschitzian and C” (n = 0, 1, 2...) from 
[H,] into [H,] (a=O, 1, 2...). 
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Proof: This means that if u EL2,2+a, v E L2,,+a, and w E Lz,o, then 
k(u, v, y) E L,,,; and that in addition the inequalities and limits 
corresponding to the asserted lipschitzian and differentiability properties of 
K hole . The latter properties follow as usual in the present context of 
polyno nials in the elements of Sobolev spaces, once the former is shown, by 
the use of the Sobolev inequalities. To establish the former property, suppose 
first that a = 0. The most singular terms in k are then [V x u y v] and 
[V X v Y u]; it will suffice to treat these terms, the others being simpler. Both 
V x u ,md v are in Lz,l, which by a Sobolev inequality implies that they are 
both ir L,. It follows that [V x u y v] is in L,; but since S3 is compact, L, 
is contained in L,. If now a is positive, V X u is in L,,, with b >, 2, and the 
product or commutator of V x u with an element of L,,, for any c < b 
remains in L,,,. In the case of [V x v y U] the argument is similar. With this 
observation the proof proceeds as earlier. 

Proc f of theorem. This is immediate from the lemmas and [ 171. 

THEJREM 3. If the Cauchy data for Eq. (17) are in H,, and satisfy the 
constraint equation V . v = [u; v] and the evolutionary equation (14) then 
both o,’ these equations are satisfied throughout the interval of existence of 
the str mg solution. 

Proclf Setting g = V . v - [U ; v], and G = & + V x H + 2H - [A y H] 
as a function of u, v, and w, via the replacement of A, A, and k’ by U, v, and 
w, resl)ectively (& and H being regarded as dependent on A, k, and k’ in 
accordance with the earlier given equations), computations similar to those 
in the derivation of Eq. (16) show that 

g=-v-G+[A;G], e = -vg. (20) 

No\;7 in the space L,(S3,13)@ L2(S3,1), the operator whose matrix 
relativ: to this direct sum decomposition is i (p”. z) is hermitian on the 
submanifold of infinitely differentiable elements, and is moreover invariant 
under rotations on S3, acting on r3 in accordance with the action on forms 
of the rotation group O(4) of S3. It follows that this operator, on the 
indicated domain, has a unique self-adjoint extension, say P (cf. [22]). Now 
letting Z(t) = ewuP(G(t) @g(t)), then Z’(t) = eeifP(-iP)(G(t) @ g(t)) + 
eeiP(--Vg @ - V . G + [A ; G]), inasmuch as it follows by standard approx- 
imations that the domain of P includes all G @ g with G in L,,,(S3, r3) and 
g in ,Lz,i(S3,r) and that on this domain P acts as the earlier indicated 
differential operator. 

From Eqs. (16) and (17), Z’(t) - eeiP(O@ [A(t); G(t)] = 0. Now 
G(0) =: 0 because the Cauchy data satisfy Eq. (14), and g(0) = 0 because the 
constraint equation is asumed to hold initially. It follows that 
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Z(t) = [’ eciSP(O @ [A(s); G(s)]) ds, 
Jo 

and bounding ]]A@)]], by (const.)]]A(s)](2.2, it results that 

This implies, together with Gronwall’s inequality, that Z(t) = 0 throughout 
the interval of existence of the solution to Eq. (17). 1 

In connection with the next theorem it is convenient to define the abstract 
evolution equation as Eq. (12) considered as a differential equ,ation for A(t, .) 
in a Banach space of functions on space. Similarly, the abstract constraint 
equation is Eq. (9) as a similar differential equation for A, with E formulated 
as -A. 

THEOREM 4. The abstract Yang-Mills equations (evolution and 
constraint) have a global solution in H, that is strong for the evolution 
equation and strict for the constraint equation, for arbitrary Cauchy data in 
H, satisfying the constraint initially. 

LEMMA 4.1. There exists a positive number e such that ifF is the 2-form 
associated with a C” local-in-time solution to the ,Yang-Mills equations, and 
if t is both in (-e, e) and in the interval of existence of the solution, then 

Proof By the invariance of the equations under rotations of S’, it 
suffices to establish the inequality at any one point V of SU(2), where SU(2) 
is identified with S3 as usual (cf. [7]). Moreover, the global LZ,a bounds on 
the right side of the inequality may then be replaced by corresponding 
bounds over neighborhoods of the domain of dependence at time 0 of the 
point (t, V). 

Now MO is causally equivalent to an open submanifold of R ’ x SU(2) via 
the imbedding given in [7]. This carries the space-like surface x0 = 0 in MO 
into the space-like surface t = 0 in M. Noting the conformal invariance of the 
equations and the equivalence in relatively compact subsets of euclidean 
space of the Sobolev norms of forms relative to the bases pi on the one hand 
and dxj on the other, it follows that it suffices to establish the bound claimed 
in the lemma in MO for ] t ] < e for some positive number e and V = I. This 
bound is readily deduced from inspection of the argument of Eardley and 
Moncrief [4], applied to C” data, together with use of the trace theorem, 
L2.s -+ &s--I (3B) (with B a ball of R3). 
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Proq f of theorem. In Corollary 1.1, let V(e) be the representation of the 
isomett y group G of S3 that gives its action on the vectors A @ A Ok’. The 
satisfaction of Eqs. (4) is a slightly stronger version of the invariance of the 
equaticns under G, and virtually immediate. As shown in Lemma 2.2, K(.) is 
of class C” for arbitrary non-negative integral n. It follows that the n-fold 
differer tiable vector subspace of H, is invariant under the temporal 
propagation defined by Eq. (1). But this subspace is just H, [ 181. It follows 
that tb: common part H, of the H, is invariant, and evidently H, is dense 
in H,. 

Consider now Corollary 1.2, with B taken as H, and D taken as H,. As 
just shown, if the initial datum U, is in D, it remains there throughout the 
interval of existence of the associated solution. The remaining hypothesis 
followr from Lemma 4.1, and the theorem follows. 

COROLLARY 4.1. If the Cauchy data in Theorem 4 are in H, (a = 1,2,..., 
or CO): they remain in this space for all times. 

Proclf: Included in the preceding argument. 

COROLLARY 4.2. If the Cauchy data in Theorem 4 are in H,, then the 
solution is equivalent to a function on R that satisfies the equation in the 
elementary pointwise sense. 

Proc$ A, k, and k’ are all in LzS2, or more regular spaces, if the data are 
in H,, and so may be uniquely defined pointwise at each fixed time so as to 
be continuous on S3. It then follows by standard methods that the 
derivatives involved in the equation exist in the elementary pointwise sense, 
and yield the same functions that are defined by the in part abstract 
operat ons on function spaces involved in the earlier treatment, modulo null 
functions. 

5. RELATIONS BETWEEN SOLUTIONS ON fi AND ON M, 

Eve:y solution of the Yang-Mills equations on &I restricts to a solution on 
M,. Csn the other hand, the spatial components of a and M, at time 0 are 
the si.me except for the absence of the point at infinity in the latter, 
corresponding to the point -Z of SU(2). It is natural in view of this and the 
confotmal invariance of the equations to expect that solutions on M, may 
extent under reasonable conditions to solutions on A. Indeed, it is shown in 
this sl:ction that every solution of the equations on M, that is moderately 
smooth and small at space-like infinity extends to a solution on l@. The 
asymItotics of solutions on M, are then deducible from the regularity of 
solutions of the equations on ti that follows from the global solubility of the 
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Cauchy problem in this universal space-time. In particular the temporal 
asymptotics will be treated in a later section. 

The temporal gauges on 6l and M, are distinct except at time 0. The 
transformation from the one gauge to the other is however not at issue in the 
next two sections. To define on l@ the natural extension of the temporal 
gauge on M,, let Tj denote the unique causal vector field on M that agrees 
on M, with a/&,. A l-form A on fi will be said to be in the flat (resp. 
curved) temporal gauge in case A(T,) (resp. A(&)) vanishes on 6%. 
Regarding the form components, the following notation is used (cf. [23]). 
The primed standard components are with respect to the bases for forms 
derived from the hj, while the unprimed standard components are with 
respect to those derived from the /Ii (i.e., the flat and curved standard 
components, respectively). Thus A = CjzO AjPj ; F = cj< k Fj,pjS, ; A 1 M, = 
J$O A,! dx,, etc. The term electric field part of the 2-form F is defined as 
follows: (i) curved part, z FjO~J&,, denoted ‘E; (ii) flat part, J$ F$,dxjdx,, 
denoted fE. V’ denotes the gradient operation on R 3. 

Throughout the succeeding sections, fi is taken in a fixed factorization as 
R ’ x SU(2), and functions # (forms, etc.) on ti correspondingly taken in the 
form #(t, v), where t E R ’ and VE W(2), unless otherwise specified. As 
earlier, M, is taken as canonically imbedded in fi, the origin in M, 
corresponding to the point 0 x I in 6% Functions $ on M, will be taken in 
the form ((x0, x). If A is a l-form on A, it has restrictions in several senses 
including: (i) to Einstein time 0, denoted A(0, a); (ii) the restriction in turn of 
A(0, .) to the tangent spaces of S3, i.e., a l-form on S3. For brevity the latter 
l-form will be called the restriction of A to S3 at (Einstein) time t = 0; this 
restriction will be denoted as &. The restriction in turn of ,,,+t to the 
spatial component R 3 of M, at time x,, = 0 will be denoted as (,,+t. 

If F is a 2-form on l@ the situation is similar. As earlier, however, it is 
convenient to decompose F into electric and magnetic components, and to 
take each of these as vectors, in a temporal gauge. This complicates the 
transformation properties of the trace of the electric component on S3 ; it 
transforms as a pseudo I-firm (cf. [23]). Specifically, the trace on S3 (resp. 
R3) of the electric component of F on ti (resp. M,) at time 0 is defined as 
the pseudo-form z Fj,(O, .) /Ij (resp. 2 F;,(O, .) dyj). The components then 
transform under conformal transformations on S3 (resp. R3) as a vector of 
weight 2 (rather than as the vector of weight 1 corresponding to a strict l- 
form) if it is required that the restriction to S3 (resp. R3) is to commute with 
conformal transformation on fi (resp. M,). The restriction of a 2-form 
L( ., .) to S3 at time t = 0 (resp. R3 at time x0 = 0), contracted with the 
vector field X,, (resp. a/ax,,) in the second position: L(. , X0) (resp. 
L(. , a/a,)) will be denoted as co+ (resp. co0,L). 

THEOREM 5. If A and F are l- and 2-forms on A, their restrictions to 
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M, halje standard components related as in Eqs. (21), following. In 
particulzr, A(X,) = 0 at time t = 0 in 6l if and only ifA(a/ax,) = 0 at time 
x0 = 0 In M,. Moreover, the restrictions ,,,A and &E of A and ‘E to S3 at 
time t == 0, where (,,f E is defined as E,(O, .)& + E,(O, .)P2 + E,(O, .)P3, 
satisfy i he curved constraint equation (9) if and only if the restrictions ,00# 
of A mu' (or,) fE of fE to R 3 at time x,, = 0, where &?3=E’1dx, +E;dx,+ 
E;dx, satisfy the “jlat” constraint equation: V’ . COOfE = [c00,A ; ,,,{E]. 

The c:onstraint part of the theorem could be deduced from the conformal 
transformation properties indicated above without a component-wise 
analysi! , but the relations of the components given below will be useful later. 

A;= f(1 +u_,u,)A~-~u~u~A,--~~,u*A~-~u~u~A~, 

A;= -fu,u,A,+(~u:+u,p)A,+(fu,u,+u,p)A, 

+ (+43~1-4~L43, 

A;= -fu,u,A,+(~u,u,-u3p)A,+(+u:+u4p)A2 

+ <fw, + ~1 ~)A39 

A;= -~u~u~A~+($~~u,+u~~)A~+(~~~u~-u~~)A~ 

+ (fu: + u,p)A,. 

F;, = P(P- $&: + u:))FoI + ti@3 + u-I(U,UZ + ~3uJ)Foo2 

+ Lb(-u2 t u-1@34 - u,u,))Fw + ~K,P(w, - 4~3)F,z 

ttU,p(U:+U:)F,,-~U,P(U,U,+U,U,)F,,, 

F;, =: $p(-u3 t u- l(ul u2 - 1.43 u,)) F,, 

tP(P-~u-,(U:+U:))F~2+~(~,+"-~(u2u3+~,~~))F~3 

=:-fU,p(U2U3tU,U,) Fl2 tfU,p(U3U,-U,U2) F23 

t tu,p(u: t u:)F,,, 

&3 =+(uz t ~-1(u3uI t 242244)) F,, t L+p(-u, t u-,(u2u3 - u,u4))Fo2 

-Oh’-k,(u: + u:>>f’o,, t &,P@: t u:)F,, 

-~u,~(u,u,+u,u,)F,,+fu,p(u,u,-u,u,)F,,, 

F~,==fu,~(u,u,tu,u,)F,, tfu,~(u,u,--u,WT,, 

-f~o~(~:tu:)F,,+p(p--fu-,(u:tu:))F,, 

+h2 +u-I(%% +“2%))F23 +t(-ul + U-I(%U~ -u,U,))F,,, 
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LEMMA 5.1. The restrictions of the pj to M, are expressible as follows in 
terms of the dxj: 

Po=)(1+~-,~4)dxo-f~o(~,dxl+~Zdxzf~3dxj), 

/3, = +,u,dxo + (fu: + udp) dx, + (fu, u2 - uj p) dx, 

+ (fu,u, + u,P)dx,, 

p, = +,,u, dx, t (fu; t u, p) dx, t (tu, uz t u3 p) dx, 

t (fu2 u3 - u1 p) dx,, 

P3 = -fu,u,dx, t (+u,u, - u, p) dx, + ($42~3 + u, P) dx, 

+(&A: tu4p)dx3. 

Proof. Since 

T,,=&,+L,,)=~(l tu-,uJX,,-u,,u,X,-uOu2X2-uou3X3r 

and, for example (cf. [7]), 

T, = fG-,., +Ld 

=-&)U,X, t gu-,u, t u; + u:>x, t f(u-$4, t u,u2 t u,u,)X, 

+ g-u- 1242 t u, u3 - u,u,) x3 , 

we have 

/MT,,) = f<l + u-, uJ, Pj(To) = -fuouj, 

P,(T’) = -fur Uj, /3i(Tj) = ~~~ t U4 P (i= 1,X 3), 

MT,) = fu, ~2 f ~3 P. PO,) = hu3 - uz P, 

P3t7.2) = $42~3 f u, P, P,(TJ = hv, - ~3 P, 

P,V’,) = 4~3 u, f ~2 P, P2(T3> = $U2U3 - ul P. 

Now recalling that p = )(u-, + u,), the lemma follows. 

580/53/2 3 
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LEMMA 5.2. The restrictions to M, of the products of two of the /Ii are 
expressii le as follows in terms of the products of two of the dxj : 

PoP, =P(P - tu-,(u: + u:)) dx,dx, 

+fp(-u, + u-,(u,u2--3u,))dx~dx2 

+ $P(u, + u-,(u, 243 t ~2244)) dx,dx, 

+ ju, p(u, u3 t u2 24,) dx, dx, 

- ;u,, p(u; t u:) dx,dx, 

+ fu, p(ulu2 - u3 u,) dx, dx, , 

PoPz=f~(u,+u-,(u,u,+u,u,))dx,dx, 

+p(p - fu-,(u: + u:)) dx,&, 

+fp(-~1 + ~-,(~2~3--u~uq))dXodX3 

+ ~",p(u2u3 - %u,) h,dx, 

t fu, p(u, u2 t 243 u,) dx,dx, 

- +, p(u: + u:) dx3dx,, 

&P3 = fp(--u2 + u-&,u3 - ~,d)dwfx, 

t fp(U, + ~-1(~2~3 t U,u,))dx,dx2 

+P(P-~u-,(u:+u:))du,du, 

- &, p(u; t u:) dx, dx, 

t fu,p(u3ui - u,u,)dx,dx, 

t f&,p(&u, t u,u,)dxjdx,, 

P1P2 = ho ~(~24 - ~1~3) dx,dx, 

- fu, p(&u, + u, uq) d-w% 

t fu, p(u: t u:) dx,dx, 

+P(P+-,(u: + u:))dx,dx2 

+ fp(-u, + u~~(u,u~ - u,u,))dx,dx, 

+tp(u,+u-,(u,u,+u,u,))dx,~,, 
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+ $24, p(u1 u, - u, UJ dx,dx, 
+tp(-uI+u-,(u,u,--u,u,))dx,dx, 
t ip(u, t u-,(u,u, +u3u4))dx2dx3 

tp(p-tu-,(u: t u:))dx,dx,. 

Proof: These expressons are obtained by multiplication of the 
expressions given earlier for the pj in terms of the dx,, followed by algebraic 
simplification. 

LEMMA 5.3. Let A and F be given l- and 2-forms on 6l whosefixed-time 
sections are in L,,, @ L,,, on S3, and such that the mapping from the 
Einstein time t to the section is continuous. Then when t = 0, 

~ (TjF~j - [Al) Fbj]) =p3 ?I: (X,F, - [Aj, F,j]); p = t( 1 t 24). 
j=l j=i 

Proof. The expression on the left will be reduced to p3 times the sum on 
the right. By approximation, it is no essential restriction to assume that A 
and F are C”. Using the formulas for Aj and Fbj in terms of the Aj and F,j, 
it results (for example) that the coeffkient of [A,, F03] on the right-hand side 
is +p times 

@3 + ‘1’2 + u3”4)(-u2 + u3”I - u2”I) 
+ (u, + u: + u:>cu, + u2u3 + UIUJ 
t (-24, + U2U3 - U, U,)(U, + 24: + U:); 

but this equals 0 by direct computation, as do its cyclic permutations. 
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The coefficient of [A i , F,,] however is bp times 

(u, + u: + u:>(u, + u: + u:> 

+ (-24, + u, u* - u3u4)(-u3 + u1 u2 - u3uJ 

t (u, + U3UI t u*uJ(u* + U3UI t u*uJ, 

which ecluals (1 + uJ2, hence the overall factor p3 as stated. 
By th: formulas for Tj when x,, = 0, Cj=, TjFbl is a times the sum 

[(u, t u: t l&Y, t (Uj t u1u2 t u3u‘Jx2 

+(--u2+~,~3--2%)~31 

x {P(h + u: + u:>Fo, +&43 + u1u2 + u3"4) F,2 

+p(-u, + u3~1- ~2dF031 

t two other cyclically related terms. 

It fol.ows readily that the resulting terms involving differentiation of the 
Foj leac to p3 times the differentiation terms on the right, using the same 
equatioi~s as before. It remains to check the terms involving differentiation of 
the coefficients. The coefficient of F,, is for example 

This is shown to cancel out using the equations, at time t = 0: u, = 
~(1 -$,*2),~=(1 +a?-‘, and uj=pxj (j= 1,2,3). 

Prooj’ of Theorem. The theorem is now a direct consequence of the 
lemmas 

COROLLARY 5.1. Given Cauchy data for the Yang-Mills equations in 
the (flat) temporal gauge on M, at time x0 = 0, consisting of the l-forms 
A(x) atrd E(x) (x E R3), there exists a solution A 0 E of the Yang-Mills 
equatio,zs on R in the curved temporal gauge attaining these values on 
restrictions to time t = 0 and from S3 to R3, in the sense that A(0, x) = A(x) 
and .?(O, x) = E(x) dx,, in the space (at each fixed time) 
L 2,r+ ,( 9J 0 L2,JS3), where r > 1, if and only if 

(i I A(x) and E(x) are in LEC,, 1 (R “) and LkC,(R ‘), respectively; 
(ii I the same is true of the transforms of A(x) and E(x) under 

confornlal inversion on R3. 
Moreover there exists an integer s depending only on r such that if 

A(.)@ E(a) and the function jx\“(A(x) @ E(x)) are both in L2,,+I(R3) @ 
L2,JR3), then (i) and (ii) are satisfied. 
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Proof: Conditions (i) and (ii) mean that on S3, A(.) @E(e) is locally in 
L Z,r+ i 0 L,,, over arbitrary subregions of W(2) that exclude neighborhoods 
of -Z and Z, respectively. It is therefore in this space globally on S3. The 
fixed-time constraint remaining valid on S3 by the theorem, the existence of 
a solution to the equations on A in the curved temporal gauge, having the 
indicated Cauchy data at time t = 0, follows. 

Noting that under conformal inversion the multipliers for the coefficients 
of either strict or pseudo l-forms are dominated by powers of ]x ] (cf. e.g., 
[7] regarding multipliers), and noting the relation between the curved and 
flat components of forms on S3 given in Eqs. (21), it follows that the norms 
in LtC,, ,@ L$ on R3 of the transforms of A(x) and E(x) under conformal 
inversion are dominated by the global norms over R3 in these spaces of a 
sufficiently high power of ] x ] times the given functions A(x) and E(x). 

6. ASYMPTOTICS OF FIELDS ON 6l ON RESTRICTION TO M, 

Given a field on M, that extends in a continuous manner to the closure of 
M, in A, its asymptotics in M, along paths tending to infinity in various 
directions take a precise form, by virtue of the compactness of the closure of 
M,. The asymptotics considered here will be along paths that are respec- 
tively null-, time-, or space-like, or more specifically, of the forms: 

(N) [~=(x~,x)=sn+c:s-+co] for some n=(l,n) where n* 
(= 1 -In]*)=0 and c=(c,,c)EM,; 

(T) [x: x,, > 0, x2 > exi], for some e E (0, 1); 
(S) [x : x0 > 0, x2 < -exi], for some e > 0. 

In cases (T) and (S) the regions in question are cones that are bounded away 
from the null cone whose vertex is (0,O) in M,, and the asymptotics as 
x0 + co will be uniform over space. In the case of (N) the asymptotics below 
will be uniform over all null directions (1, n) and over a bounded range of 
values of the vector c; usage of “uniformly” below is in precisely this sense. 

The asymptotic expressions given below for a given field f are all of the 
form bg, where b is a nonvanishing purely geometrical factor dependent only 
on the point of space-time in question, and g is a constant dependent on the 
field. The notation f N bg then means that f/b -+ g. Thus in case g # 0, f N bg 
is equivalent to the relation f/bg + 1 as usual; if g = 0, f w bg is in general 
materially distinct from the relation f - 0. 

The form of the function $0 treated in Theorem 6 is motivated by the 
relation between a solution 4 of the curved wave equation and a solution #,, 
of the flat wave equation: 4, =p$ (cf. [ 71). 
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THEC REM 6. Let Q be a continuous function on $I, and let 0, = p#. Then 
along tl!e null lines (N), 

uniform ‘y as x0 + 00, where n . c denotes the Lorentz-invariant inner 
product. L(c . n) is a positive constant, and B(n, c) is a point on the 
boundary of M, in a. 

Zf on the other hand (x0, x) tends to infinity within the sectors (T) or (S), 
the asyrrptotics are as follows (uniformt’y; lx,, ) -+ co): 

(‘I’): $&,, x) - (4/x*) ((7~ x 0; 

(S): f&o, x) - -(4/x2) !w x -0 

Remark. The functions involved in the asymptotics along null directions 
are 1 Liven specifically as follows: L(n . c) = [ 1 + f(n . c)*]-‘I*; 
B(n,c)-=(u-,,u,,u i,..., u,) (where these are the coordinates in S’ X S3 for 
the releTrant point of R’ x S3; cf. [7]), with u-, = -t(n . c) L(n . c) = -u,, 
ug=L(r~.c),u,=nlL(n.c)(j=l,2,3),wheren=(n,,n2,n,). 

Note that within the sectors (T) and (S), lx*] is bounded on either side by 
(const.) xi. 

Prooj. Since uj = x, p (j = 0, 1,2,3), it suffices to determine the 
asymptctics of u-r, uq, and p, as in 

LEM~ A 6.1. Along the null lines (N), 

p(xO, x) w L(n . c)x&’ uniformly as x0 -+ co. 

Within ‘he sectors (T) or (S), 

P(x,,x)-4lx*I-’ uniformly as x0 --f 00. 

Alotq. the null lines (N), untBrmly as earlier, 

u-l-xfJ -I L(n . c) (1 - fx,(n . c) - fc*); 

24, N xi ’ L(n + c)( 1 + tx,(n . c) + 4~‘). 

With, n the sector (T), u- 1 + - 1, and u, -+ 1; and within the sector (S), 
u-, + 1, u., + -1, in both cases uniformly as x0 -+ co. 

Remcrrk. The asymptotics for U- , and uq along the null lines cover 
several relativistically distinct cases. If n . c # 0, then u _ , and u, approach 
nonzerc constants. If n * c = 0, they approach 0 as x; ‘, unless additionally 
c2=*L. Ifc2=4, u- i = 0, while if c* = -4, u, = 0 on the ray in question. 
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Proof of lemma. Recall that u- , =p(l -ax’), u, =p(l t {x2), and p = 
f(u-, + u,) = ((1 - ix’)’ + xi)-‘/* = (1 + 4(x: +x2) + (~~)~/16)-‘/*. In 
the sectors (T) and (S) the ix’ and (x*)*/16 terms dominate all the others, 
leading to the stated asymptotics. On the null line where x = sn t c (s 
tending to too), x2 = 2s(n . c) + c2 and f(xi + x2) + (x2)2/16 is asymptotic 
to xi t ix& m c)‘. Referring to the definition of L(n . c), the asymptotics for 
p follows. 

The theorem now follows directly. 
The asymptotics in M, of l-form and 2-form fields that extend 

continuously to fi are given next. Only the generic order of decay (power of 
Ix0 I- ‘) is given for each case; the more precise asymptotics of the scalar 
coefficient functions in Theorem 5 are given in Lemma 7.1. 

For estimates of the energy outside the region treated in Corollary 7.1, see 
Theorem 8. The order of decay valid for arbitrary 2-forms, not necessarily 
solutions of the Yang-Mills equations, is substantially greater than that 
obtained for solutions of these equations by analysis entirely within M, 
[8,9]. Moreover, this order is best possible even for solutions of the 
equations because of the convergence of, for example, the sectors under (T) 
to the point a x 1, at which some regular solution of the equations takes on 
generic nonvanishing values. 

THEOREM 7. Let A be a continuous l-form on 6l (or defined merely on 
the closure of M, in a). Then along null rays of the form (N), the flat 
components Al (j = 0, 1,2,3) deJined in M, are O(1) as x0 --t co and are 
uniformly O(xc2) as x, + 00 in the sectors (T) and (S). 

Assume further that A is in the Minkowski temporal gauge (A6 = 0). Then 
the asymptotics of A;, A;, and A; in (T) and (S) remain 0(x;‘), but along 
the null rays (N) become 0(x; I). 

Zf F is a continuous 2form on fi (or again merely on the closure of M,), 
then along the null rays (N) the flat components FL are uniformly 0(x; ‘), 
and in the sectors (T) and (S) the F;j are unzformly O(X;~). 

Proof It suffices to determine the asymptotics of the coefficient 
functions appearing in Theorem 5, listed as follows. Let i, j, and k be any 
permutation of 1, 2, and 3. 

(4 1 t u-,u4, 07 +p, 

@I uO"j3 (g) Puo(u: + uj’), 

(c) uiuj, (h) Puo(uiuj f ukud), 

(4 ~4~3 (i) p(l t Kra4)ak f u-,"iuj) 

Cd u.4 tj) p(p - fu-,(uf t u;>>. 
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The case (N) of null rays must be divided into the subcases 

(Nl) nVc=Oandc2=4, 

(N2) n.c=Oandc*=-4, 

(N3) n.c=OandIc2/#4, 

(N4) n.c#O. 

The functions in case (f) appear when the l-form equations of Theorem 5 
are specialized to the case Ah = 0; then 

and thus for example 

A; =p(u,A, + z+A, - U2A,) +3, PA,. 

Asymptc tics for the functions (a) to (j) are given in 

LEMMI 7.1. The following asymptotics in M, are valid uniformly as 
xo+ta: 

(a) 1 + u-,u,-L(n - c)’ for (N l-N4), 

8(x: t x2) 
1 tu-lu,- x4 

(b) uouj- 
L(n - c)’ xi 

X0 

uO"j 

16xoxj 
-4 

X 

uiuj - 
qn * c)” xixj 

2 
X0 

uiuj 
16xixj 

-4 X 

for (T), (S) 

for (N ,-N4), 

for (V, (S) 

for (N l-N4), 

for CT), 6% 

(4 u,p=o 

U4P 
1 + ac2 

-7 
X0 

for (N2) 

for (Nl) and (N3), 
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1 (n * c)L(n * c)’ 
U,P-z 

x0 

4 
U4Pyi 

(e> UjPN 
L(n * c)* xj 

2 
x0 

uj P -‘sxj 
X4 

( f-1 :u-, P=o 

~ (1 - SC*) Xj 
3 

*0 

1 N-- (n * c) L(n f c)’ xj 
2 4 

4x. -+ 
x0x 

k> PUOM + 4 

L(n * c)” (xf + xi’) 
3 

X0 

256x,(x; + xi’) 

(x2)” 

(h) PUo(Uiuj f ULU~) 

X.X. “+ 
x0 

N $ (XiXj f Xk( 1 + aC*)) 

for (N4), 

for (T) and (S), 

for (N I-N4), 

for (T), (S), 

for (Nl), 

for (N2) and (N3), 

for (N4), 

for (T), (S), 

for (N I-N4), 

for (T), (V, 

for (N2), 

for (Nl), (N3), 

L(n * c)4 
3 

X0 

(XiXj f f(n ’ C) XOXL) 

for (N4), 

256x, 
- (x’)” txixj * tX2Xk) for (Th (S), 
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xk 
-7 

x0 

Xk 
“Tf 

(1 - ic2) xixj 

X0 
4 

x0 

for (Nl), 

for (N2), (N3), 

L(n ’ C)4 X& * 

2 
X0 

for (N2), 

128x,(x; + x’) 

(x2>” 
f (-1)s 

for (T), (8, 

0) P(P - fu-44 + 4) 
1 

-7 
X0 

for (N l), 

1 1 (1 - tC’> XiXj 

-i-- 
X0 2 4 

x0 
for (N2), (N3), 

- L(n * c)2 
2 

+ L (n * c) L(n * c)(xi + xj’) 

x0 4 3 
x0 

for (N4), 

16 
“T+ 

32(x; +x;) 
X (x2)’ 

for CT), (S). 

COF OLLARY 7.1. Given a two-form F as in the theorem with (jlat) 
comporents E and H, and given R > 0 and e E (0, l), then 

s ([El’ + II-II’) d,x = 0(x,‘) as xo++a3. 
1x1 <R+ex, 

Pro($ It follows that [El2 + (H I2 = 0(x;‘) in such sectors, whose 
volum:s at a fixed time are proportional to xi. 
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7. ASYMPTOTICS OF SOLUTIONS TO THE YANG-MILLS EQUATIONS IN M, 

The asymptotics of Yang-Mills fields are relatively simply deducible from 
their regularity on ti by virtue of gauge invariance of the norms of the fields 
on restriction to M,. It suffices that the requisite gauge transformation, from 
the curved to the flat temporal gauge, exists in every bounded open set in 
M,, as it does with the loss of one order of differentiability. The asymptotics 
of the potentials requires a study of the regularity of the gauge transfor- 
mation involved at the limiting points fn x 1, which represent the limits 
under temporal displacement in M, of points in M,. This section first treats 
the simpler question of asymptotics of fields, and then studies the 
asymptotics of the curved-to-flat temporal gauge transformation, and applies 
this to the asymptotics of the potentials. 

THEOREM 8. Let A and F denote the I- and 2-forms of a solution to the 
Yang-Mills equations on M, in the jlat temporal gauge. Let r be a given 
integer greater than 1. Then there exists an integer s (depending only on r) 
such that if at time x, = 0, 

(1 + IxlsMP, x) 0 W4 x)) E &,r+ ,(R3) o L*,,(R~). 
then F decays temporally in accordance with the following estimates: 

(1) ForanyR>OandeE(O,l), 

SUP. IF;(x,,x)J = O(X,~) 

and 

I , x 
,<R+exo z Iq’ d3x = %3. 

(2) s”P,,Rl IF;kn X)1 = oh?b 

(3) ForanyR>OandeE(O,l), 

If’;(x,, x)1 = O((X~ + X2)-‘) whenever 0 <x0 < R +elxl 

and 

I ,x ,<R+e,r, 
0 

The generic constants on the right-hand sides are bounded by Sobolev 
norms of the Cauchy data. 

Proof: The solution (2, F) of the equations in the Einstein temporal 
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gauge vith the same Cauchy data at t = 0 is continuous on a, and restricted 
to M, clearly differs from (A, F) at any given point in M, by a local gauge 
transformation. The quantities estimated in the theorem being gauge- 
invariarlt, the results of the previous section for 2-forms extending 
continuwsly to the closure of M, in 6l apply here. 

(1 This is Theorem 7 and Corollary 7.1. 
(2 I By Theorem 5, each F; is equal to p times a continuous function 

on l$ ;tnd 

p= ((1 -$x’)‘+x;)-“2= 0()x,1-1) (as 1x01+ 4 

in M, throughout space. 
(3 I The fixed coefficients (g)-(j) examined in Lemma 7.1 are easily 

estimat :d to be O((xi t x2)-‘) in the stated region by use of the asymptotics 
provided since x4 > (const.)(xi t x2)’ there. Thus the energy at time x,, in 
this region is bounded by a constant times 

I ,x,~,x 0 , (4 + x2)r4 4x. 

By the change of variables d,x = r2 dr da and r = x,,s, the integral is easily 
estimatad to be 0(x; ‘). ’ 

The detailed consideration of the gauge transformation from the curved 
(Einstein) temporal gauge to the flat (Minkowski) temporal gauge leads to 
extreml:ly precise results regarding the asymptotics of the Minkowski 
temporal gauge fields, as x0 tends to k co. These estimates are uniform in x 
as x ranges over a compact set and may be evaluated to any desired order in 
x0. In order to deal with the gauge transformation issue it is convenient to 
work ii part in the spaces C” in addition to Sobolev spaces, as in 

THEIREM 9. Let A(x) and E(x) be Cauchy data for the Yang-Mills 
equatic ns in the Jlat temporal gauge on M, at x0 = 0. Given any integer 
r > 4, ‘here exists an integer s such that if 

(1 + lxlS)(A@)OE(x)) E Lz,r+1(@) 0 h,,(R3> 

and V, e E = [A ; E], then the Cauchy data extend to Lz,,+ I(S3) @ L2,,(S3), 
the sol &ion A- @ F of the Yang-Mills equations in the curved temporal gauge 
given by Corollary 5.1 is in C*-’ @ C’-’ on a, and the standard 
c<mpo>lents xj and fiij, together with their derivatives by the Xj 
(j = 0, 1,2,3) up to orders r - 1 and r - 2 resp., vanish at the point 0 x -Z 
in ti. 

Moteover there exists a C*-’ gauge transformation defined on the open 
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region (--71, a) x S3 in R and transforming A’ @ F” into a solution in the j7at 
temporal gauge, whose restriction to M, is identical to the solution to the 
Yang-Mills equations on M, with Cauchy data A(x) and E(x). 

ProoJ Extendability of the Cauchy data follows from Corollary 5.1, and 
Al@ FE C’-’ @ C*-* by the Sobolev inequalities. The vanishing of the 
spatial derivatives of A’ and P at 0 x -Z follows from the observation that iff 
is a continuous function on S3 such that I,, 1 xlb ( f 1 d,x < co for some 
b > -3, then f(-Z) = 0 ( use d,x = r2 dr dQ where r = 1 x I); the vanishing of 
the time derivatives then follows from use of the Yang-Mills equations. 

Let (A, F) be the solution of the Yang-Mills equations in M, in the 
Minkowski temporal gauge. It remains to define a C’- ’ extension to 
(-rc., x) X S3 of the solution of the equation defining the requisite gauge 
transformation U(xO, x) in M, from the curved to the flat temporal gauge: 

u-‘(a/ax,) u= u-‘K; u, U(0, x) = I; (22) 

and then show that for this extension U, (17 ‘KU - U- ‘au, U- ‘i%l) solves 
the Yang-Mills equations in the Minkowski temporal gauge and equals 
(A, F) in M,. Since ,& = 0 (Einstein temporal gauge), 2; = -fu,(u,z, + 
u,A”, + u3x3) by Theorem 5, and thus 2; is in C-‘(R). Thus clearly U has 
continuous derivatives in M, up to order r - 1. We extend U by solving the 
canonical extension of (22) to A using 

a 
-=~(1+u-,u,)X,-tu,(u,X,+u,X,+u,X,) 
3x0 

(which, for 1 t 1 < rc, vanishes only at 0 X - Z, as u- , = -uq = 1 there), and 
show that there is a unique solution U with the stated regularity. 

The question is a purely local one at 0 x -Z, so it is convenient to treat 
the problem in conformally inverted coordinates xj (j = 0, 1, 2, 3), so that 
0 x -Z corresponds to all xj = 0. The vector field to integrate is then 
(cf. [241) 

-To = -ax* -&+++(x:+X2)$ 
0 

++xO 
( 

X,$+X2$+X3$ , 
1 2 3 1 

whose integral curves are given locally by xj/(xi - x2) = const. forj = 1, 2, 3 
(conformally inverted coordinates). It may be seen that each such curve near 
0 x -Z intersects the x,-plane at one point, and that each such curve may be 
parametrized locally by x0. One computes easily that along any specific such 
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curve --f,, is thus represented by i(xi + x2)(8/8x,). Recalling now the 
previou; expression for AA, and noting that u,,u~/(x~ + x2) is bounded in a 
neighborhood of 0 x -1, it follows that the solution tJ is uniformly 
continuous in a neighborhood of 0 x -I and so extends to a continuous 
functior . (Here we need only that A,, A,, A, are bounded near 0 x --I.) In 
the following set (xl2 = xi + x2. 

To oJtain the higher derivatives of U, it suffices to consider a locally 
equivalr nt scalar problem: 

#=O for x0 = 0, (23) 

where (9 is a local coordinate function on the gauge group r, and the 
functions jj (like the A,) are C’-’ and have derivatives that vanish at the 
origin t 1 order r - 1, whence 8-‘)fj = 0( 1) and 

a-*lr, = 0(1x/),..., fi = O(lxl’-1). (24) 

That is for q Q r - 2, for all x in some neighborhood of 0, and for some 
constant C < C, [IA IICr-,, 18’4’fj(X)l < C IXlr-l-q. 

Let the integral curve ending at (x0, x) be parametrized by (s, vi), with s 
betweer 0 and x,,, so that 

s* - y* xi-x* -=- 
Yj Xi 

(j = 1, 2, 3). 

Solving for the yj, get 

Yj=Yj(xl)9X9s)=xj 
((xi - x2)2 + 4s*xy - (xi - x’) 

2x2 3 

and thf n clearly Pyj = 0(1x( iPq), uniformly for 1 s 1 < Ix,\, for all q 2 0 (8 
indicating formation of the complex of derivatives with respect to the xk ; 
k = 0, ,2,3). Also, set Fj = F,(xo, X) = 4X,Xj/lXl*; clearly a(')Fj = O(JX\ -") 
for q > 0. Then the solution 4 of (23) is given by 

$(xo 3 x> = j;” ,tl Fj(s, Y (xo 9 x7 s))fi(s, Y (xo 7 x7 s)) ds. 

It follcws from the bounds (24) and above estimates for the derivatives of 
the yj r nd Fj that the integrands obtained by differentiating under the integral 
sign UI to order r - 1 with respect to the xj (j = 0, 1,2,3) remain bounded 
as [xl-+ 0, so that Q is in C’-‘. 
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Thus (V-‘&I - U-‘XJ, U-‘&J), = (A”,F”) say, is defined in 
(-II, n) x S3, is of class C’-* x C’-* and thus at least C2 x C’, and is a 
classical strict solution of the Yang-Mills equations by gauge invariance. 
When x0 = 0, u-‘fqu- u-‘a,u=Aj and u- ‘F& u = F!. for 
i, j = 0, 1,2,3, so (A “, F”) has the same Cauchy data as (A, F), and (2 “, F”) 
also satisfies the Minkowski temporal gauge condition precisely by Eq. (22). 
Thus (A, F) = (A”, F”) by uniqueness for the Cauchy problem for the 
Minkowski temporal gauge, completing the proof. 

The system (22) seems not so easily set up on (-n, n) x S3 in a Sobolev- 
space context. Nevertheless, solving (22) by ordinary differential equation 
methods, it results that the C’-’ norm of U over any compact subregion of 
(-n, II) x S3 is bounded by a constant depending on the region times the 
C’- ’ norm of A in that region. Unfortunately, control over one derivative of 
the potential is lost in the extension: A is C’-’ in M, by the Sobolev 
inequality, but its extension U-‘&J - U’XJ (outside M,) is only clearly 
Crm2. For this reason we take r > 4. 

The line of argument earlier indicated for the determination of the 
asymptotics of the potentials will now be completed, with the aid of the 
gauge transformation established in the preceding theorem in a more 
restrictive context. 

THEOREM 10. With the hypotheses and notation of Corollary 5.1 and 
assuming further that r is at least 3, there exists a C2 r-valued function V(x) 
on R3 (where P is the given compact Lie gauge group) and unique elements 
ck and A7 = -f; of the Lie algebra P (k = 1,2,3 and i, j = 0, 1,2,3) such 
that 

X$qXo,X)+ v(X)-' aI v(X)+fX;3v(X)-'fol v(X) 

+ fx,'VW' 62fi2 --x3&* + c,> WI+0 

as x0 -+ +oo, uniformly for x restricted to a compact set, and likewise for 

1,2, 3 cyclically permuted; moreover 

as x,, -+ + a~ for any pair i, j = 0, 1,2, 3, again uniformly for (x I < R. 

Remark. The formal context may be clarified by the observation that the 
above series for Ai and F; must be and in fact are consistent with the 
Minkowski temporal gauge equations (a/ax,) A; = F& and e.g., 
F;, = a,A; - a2A; - [A;, A;] to the order x;~. 

Proof Let (A’,,) be the solution of the Yang-Mills equations in the 
Einstein temporal gauge on fi having the same Cauchy data at t = 0. The 
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cornportents Jj and ~ij are then resp. C* and C’ on a. The solution U(x,, x) 
of 

u-’ -& u= u-‘x;(x,,x) u, 
0 

U(0, x) = I 

in MO is then, like A and 2 also at least C*. By Theorem 5, 

6; = -fuo(uJ, + u2LT2 + u3J3). (25) 

By Lemma 7.1, each uouj is uniformly O(xi3) for ( x 1 < R, and it may also 
be the :ked that a,lh for k = 1,2,3 is O(x13) there. (The more precise 
asymptotic expansions of & and a,x/, for k > 0 are derived in Lemma 10.1 
below.1 Thus there is no difficulty in defining 

so that 

4 vd = x !?a ak u(x,, 4 (k = 1,2,3). 
0 

Note also that for k = 1,2,3, 

u(xo7 X)-l ak u(xo, X) = Ix” u(S, X)-l (a,&) u(S, X) dS, 
0 

and that the above two limits take place at the rate 0(x;*) uniformly as 
before. 

It fellows that 

A; = u-l&u- u-‘(a/ax,, u (26) 

for k=: 1,2,3, and 

for all i, j by uniqueness of the solution of the Minkowski temporal gauge 
Cauchy problem. The approach will next be to expand l.J-‘JLU and 
V- lak V - U- lak U in asymptotic series out to xi4 and add them together 
(two terms of order xi2 then cancelling) to obtain the stated asymptotic 
series ‘or A; + V-‘ak V. The estimate for the FL is more immediate, however, 
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and identities the AY in the statement of the theorem: by Theorem 5 and 
Lemma 7.1, 

~~(Xo, X) = 16x,4~i~(~ X I) + 0(x,‘) 

for (x ( < R since the Fij are C’ in lk Thus Aj = 1 6Fij(z X Z). 
The Taylor series of the xj (j = 1,2, 3) out to second order will be 

needed, using u = (uO, u,, u2, uj) as coordinates near 7c X Z and then 
substituting U, = x0 p N 4~;’ and uj = xjp N 4x,x;*. The expansion for 2, 
up to the term xi2 is then 

K,(u) = A”,(R x I) + 24, 

By use of Table I and U: = 1 - U: - u: - u:, a/au, may be replaced by Xj 
for j > 0, and since X0 = u-,(8/&,), the desired series for d, is 

d*(U)=al -X,‘46,, + ~ X024Xjbj, 
j=l 

+x,*84 -t- xo2R(x,, xl, 

where aj = Jj(7r x I), b, = (Xi/i-j)(7c i Z), dj = (X~A;.)(lr X I), and 
R(xO, x) + 0 as x, -+ +co (uniformly in x at least for a given region (x ( < R) 
since the zj are C*. 

The first three terms of the asymptotic series for the flat components 26, 
a,lk, and xi may consequently be written as follows. 

TABLE I 

580/53/2-4 
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LEMMA, 10.1. Uniformly over x subject to 1 x 1 < R for some R, we have 

A”; = x;*4a, - xt3 16bol + 8~;~ 
i 
(x,x, + 2x,) a, + (x3x, - 2x,) a, 

+4d,+(x:-2t$r2)al+2 i xjbj, t--a, 

j=l 1 

&z-q38 i x,a,-tx;*32 i xjboj+xi564(1 -{r*) i xja 
]=I j=l j=l 

-xi564 i x/ii-x,‘32 c Xixjb,j + ‘1. ) 
j=I i,j= I, 2. 3 

and 

i2=-xi38a, txr432bol +x;‘64 (1 -$r*) a, 

-x;‘32x, i x,aj-x;564d, 
j=I 

-532~xj(b,jtbjl)t~~~, - x0 
j=l 

where the omitted terms t ..s times resp. xt , xi, and xi, go to 0 as 
x0+ + (0, and similarly for the other expansions obtained by cyclic 
permutation of I, 2,3. 

Proof The third expansion follows from the second essentially by 
differentiation. The second uses equation (25), the above expansion for the 
2, (j = 1,2,3), and the expansion derived below for the u, Uj. One checks 
that uniFormly as before 

so 

so 

-$uoul = -~xoxl p* = -xi38x, + x;‘64x,(l -{r*) + ..I . 

To erpand A:, use Theorem 5 and Lemma 7.1 to obtain 

2; = u,pz, t 8xi4(x:a, t (x1x2 t 2x,) a, 

t (x,x, - 2x2) a3) t .*. 
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and 

u,pA”, = (xt44 -x,~ 16(1 - +r*)) a, -x,‘4b,, +x,*8d, 
( 

+x,*4 i xjbj, + 0.. 
j=l i 

=x0 -*4a, -xi3 16b,, + 16~;~ 

x 2d, + i xjbj, + ($-’ - l)a, 
j=l 

concluding the proof of the lemma. 

Completion of proof of the Theorem. The first nontrivial term in the 
expansion of U(x,,, x) in terms of V(x) will affect the xi4 term for the A;. 
Using Lemma 10.1 for & (more precisely only the first term thereof) and the 
equation that U(x,,, x) satisfies, it follows easily that 

V(x) u(xo,x)-~=I-x,* 4(x,‘a, + a*x* + x3u3) + O(xi3). 

Thus 

v(x)-’ a, V(x) - U(xo, x)-’ a, U(xo, x) 

I 
00 

= U(s, x)-l @,A;) U(s, x) ds 
x0 

= WI-' 0 1 0 3 01 

I 

-4x-2a +x-3 %b 

+ 8~;~ 2(1 - tr*) a, -x, i u,xj - 2d, 
/=I 

+x2[~2,a,I +x~[us,u,I- i xj(b,,+b,,) W) + R (x0 9 xl, j=I 

such that xiR(x, , x) -+ 0 uniformly as x0 -+ +a~. 
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By EC. (26), the other term needed is U-‘A”; U, up to the term xi4 it is 

V(x)-’ x,‘4a, - xi3 16b,, + 8xi4 (x,x, + 2x,) a2 + 4d, 

+ (x3x1 - 2x,) a3 + (xi - 2 + fr”) a, + 2 &+ Xjbj, V(x) 
j=l 

Therefore (cancelling several terms), 

A;(x,. x) + v(x)-’ a, V(x) 
:=U-‘KIU+(V-‘a,v-u-‘a,v) 
:= v(x)-’ {- +q3bOl + 8x,4(2x,.* - 2x,a, + 2d, -x,[a,, a,] 

+ x2cd2, - 4,) +X,(&l - b,,) -x&39 %I>1 V(x) 

ZZ V(x)-‘{-x,’ +$,,l + 8~,~(x,(b,, -b,, + 2~2, - [u3, a,]) 

-x2@,* - b2, + 2% - [a,, a211 + 2411 w>. 

However, 

8P,, - b,, + 24 - [a,, a211 

= 8(X,& -X,1, + 22, - [a,, x,])(n x I), 

Likewis :, 

166,, = 16(&&)(n X Z) 

= 16&i@ x Z) 

=.fo, 3 

whence the stated asymptotics for A;(x,, x) is valid provided in addition 

ck = 32d, = 32(X;&) (n x I). 

In theoretical physical applications of the Yang-Mills equations, the action 
integral is of considerable importance (cf. [25]). As a final application and 
illustration of the utility of the view of M, as imbedded in R it is deduced 
that th: action integral for these equations is absolutely convergent when 
evaluat :d for mildly regular solutions of the equations on M,. 
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THEOREM 11. With hypotheses and notation as in Corollary 5.1, the 
integral 

I&j12 - 2 IFhI’ d,x 
i>j>O 

is finite, and is a continuous function of the Cauchy data (A, E) in 
L2,,(S3) @I L2,,(S3) at t = 0. 

Remark. It follows that the action integral is also a continuous function 
of the Minkowski Cauchy data (AI, FLj) at x0 = 0, topologized by the norm 

IW + Ix IW ’ 0 E’Il(L**3@L2,2w~ 
for sufficiently large s, as in the second paragraph of Corollary 5.1. 

Proof: Let x @ P (resp. A @ F) be the solutions in the curved (resp. flat) 
temporal gauge having the given Cauchy data. By use of the gauge transfor- 
mation of the previous theorem, it follows that 1 F&l* = I& 1 for all i, j. But 
by Theorem 5, 

i IFhjl” - JJ IF;jl' ‘p4 (i lFoj12 - x IFijI’), j=l i>j>O j=l i>j>O 

and the Fij are continuous and bounded on finite t-intervals in fi by the 
Sobolev inequality. It remains to observe that 

(cf. [71). 

i 
p4d4x = 4 

I 
d4u=27c3 

MO S’X.73 

Remark. It has been difficult to treat hyperbolic equations on MO by 
variational methods because of the indefiniteness of the Lagrangian, whereby 
it lacks the coercive power it has in elliptic contexts. However, the foregoing 
treatment opens up the possibility of establishing generalized solutions of the 
Yang-Mills equations as extremals of the action on finite covers of fi, within 
the space of sections the (finite) time integrals of whose energy is bounded 
by a given limit. 

Correction to [ 11. The author of [l] (I.E.S.) thanks several individuals 
(J. Ginibre and G. Velo, and independently D. Eardley and V. Moncrief) for 
noting that the argument for Theorem 3 in [l] requires the assumption of 
one additional derivative for the Cauchy data. (Thus on p. 185, line 19, 
b + 1 should read b, and on p. 190, line 16, “two” should be inserted 
following “first” and “second” changed to “third” (lot. cit.), as far as the 
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proof gil*en in [ 1 ] is concerned.) The theorem is actually correct as stated, 
by the di:singularization method used in the present article, or by a different 
argumen: given by Eardley and Moncrief [4, Part I], which however is 
lengthy and clearly applicable only to R3. In any event, the number of 
derivatives required of the Cauchy data for the local existence result, apart 
from its finiteness, has not been an issue in theoretical physical applications. 
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