Simple C onnectedness of the 3-L ocal Geometry of the M onster

A. A. Ivanov*
Department of Mathematics, Imperial College, London, SW7 2BZ, United Kingdom

JRE

U. M eierfrankenfeld ${ }^{\dagger}$
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Communicated by Gernot Stroth
R eceived A ugust 5, 1996

We consider the 3 -local geometry M of the M onster group M introduced as a locally dual polar space of the group $\Omega_{8}^{-}(3)$ and independently in the context of minimal p-local parabolic geometries for sporadic simple groups. M ore recently the geometry appeared implicitly within the Z_{3}-orbifold construction of the M oonshine module V^{\natural}. In this paper we prove the simple connectedness of M. This result makes unnecessary the refereeing to the classification of finite simple groups in the Z_{3}-orbifold construction of V^{\natural} and realizes an important step in the classification of the flag-transitive c-extensions of the classical dual polar spaces. We make use of the simple connectedness results for the 2-local geometry of M and for a subgeometry in M which is the 3-local geometry of the Fischer group $M(24)$. © 1997 A cademic Press

1. INTRODUCTION

The M onster group M acts flag-transitively on a diagram geometry M which is described by the diagram

The elements of M corresponding to the nodes from the left to the right on the diagram are called points, lines, planes, and quadrics, respectively. The residue of a quadric is the classical polar space associated with the group $\Omega_{8}^{-}(3)$. The quadrics and planes incident to a line form the geometry of vertices and edges of a complete group on 11 vertices. The existence of M was independently established in [BF, R S]. We follow [BF] to review briefly the construction of M and to formulate its basic properties. The starting point is the description of conjugacy classes of the subgroups of order 3 in the M onster [At].

Lemma 1.1. In the Monster group M every element of order 3 is conjugate to its inverse and there are exactly three conjugacy classes of subgroups of order 3 with representatives σ, μ, and τ, so that
(a) $N_{M}(\sigma) \sim 3^{1+12} \cdot 2 \cdot$ Suz $\cdot 2$, where Suz is the Suzuki sporadic simple group;
(b) $N_{M}(\mu) \sim 3 \cdot M(24)$, where $M(24)$ is the largest sporadic Fischer 3-transposition group;
(c) $\quad N_{M}(\tau) \sim \operatorname{Sym}(3) \times F_{3}$, where F_{3} is the sporadic simple group discovered by Thompson.

We define a subgroup of order 3 in M to be of Suzuki, Fischer, or Thompson type if it is conjugate to σ, μ, or τ from Lemma 1.1, respectively.
A crucial role in the construction of M is played by a subgroup $M_{8} \sim 3^{8} \cdot \Omega_{8}^{-}(3) \cdot 2$ in M. If $Q_{8}=O_{3}\left(M_{8}\right)$ then M_{8} / Q_{8} is an extension of the simple orthogonal group $\Omega_{8}^{-(3)}$ by an automorphism of order $2, Q_{8}$ is the natural orthogonal module for M_{8} / Q_{8}, and $N_{M}\left(Q_{8}\right)=M_{8}$.

Lemma 1.2. Let φ be the orthogonal form of minus type on Q_{8} preserved by M_{8} / Q_{8}. Then M_{8} / Q_{8} acting on the subgroups of order 3 in Q_{8} has two orbits I and N such that
(a) $|I|=1066$, the subgroups in I are isotropic with respect to φ and of Suzuki type in M; for $\sigma \in I$ we have $N_{M_{8} / Q_{8}}(\sigma) \sim 3^{6} \cdot 2 \cdot U_{4}(3) \cdot 2^{2}$;
(b) $|N|=2214$, the subgroups in N are non-isotropic with respect to φ and of Fischer type in M; for $\mu \in N$ we have $N_{M_{8} / Q_{8}}(\mu) \sim Q_{7}(3) \cdot 2$.

Proof. Under the action of $O^{2}\left(M_{8} / Q_{8}\right) \sim \Omega_{8}^{-}(3)$ the set of order 3 subgroups in Q_{8} splits into three orbits I, N_{1}, N_{2} with lengths 1066, 1107, 1107 and stabilizers isomorphic to $3^{6} \cdot 2 \cdot U_{4}(3) \cdot 2, \Omega_{7}(3) \cdot 2, \Omega_{7}(3) \cdot 2$, respectively (cf. [At]). As 3^{17} divides the order of each of the stabilizers there are no Thompson type subgroups in Q_{8} and as the elements of I are 3 -central they are of Suzuki type. By Lagrange $3^{7} \Omega_{7}(3)$ is not involved in Suz and since 3^{1+12} has no elementary abelian subgroup or order $3^{8}, N_{1}$
and N_{2} consist of Fischer type subgroups. Finally, in $M(24)$ all subgroups of order 3^{7} whose normalizers involve $\Omega_{7}(3)$ are conjugated. Hence N_{1} and N_{2} fuse into a single M_{8} / Q_{8}-orbit.

By Lemma 1.2 the polar space acted on flag-transitively by M_{8} / Q_{8} can be identified with the Suzuki-pure subgroups in Q_{8} with two subgroups being incident if one of them contains the other one. Let Q_{1}, Q_{2}, Q_{3} be Suzuki-pure subgroups in Q_{8} with $Q_{1}<Q_{2}<Q_{3}$, so that $\left|Q_{i}\right|=3^{i}$ for $1 \leq i \leq 3$. Then the points, lines, planes, and quadrics in M are defined to be the subgroups in M conjugate to Q_{1}, Q_{2}, Q_{3}, and Q_{8}, respectively, with $\mathrm{F}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{8}\right\}$ being a maximal flag. Let $M_{i}=N_{M}\left(Q_{i}\right)$ be the maximal parabolic subgroup corresponding to the flag-transitive action of M on M. Then M_{8} is as above while M_{1} is the normalizer of a Suzuki type subgroup Q_{1} (which we will also denote by σ) and $M_{1} \sim 3^{1+12} \cdot 2 \cdot$ Suz $\cdot 2$ by Lemma 1.1(a). The stabilizer of F in M contains a Sylow 3-subgroup of M. Hence for two elements of M to be incident it is necessary for their common stabilizer in M to contain a Sylow 3-subgroup. Let $P_{i}=$ $O_{3}\left(M_{i}\right), P_{i}^{*}$ be the kernel of the action of M_{i} on the residue of Q_{i} in M and $\bar{M}_{i}=M_{i} / P_{i}^{*}$ for $i=1,2,3$, and 8 . It is clear that $Q_{i} \leq P_{i}$ and that $Q_{8}=P_{8}=P_{8}^{*}$. For $i=1,2,3$, and 8 we denote by M_{i} the set of points, lines, planes, and quadrics in M, respectively. For an element α in M we denote by $M_{i}(\alpha)$ the set of elements in M_{i} incident to α.

Let Σ be the graph on the Suzuki type subgroups in Q_{8} in which two subgroups are adjacent if they are orthogonal with respect to φ. Then Σ is strongly regular with parameters

$$
v=1066, \quad k=336, \quad l=729, \quad \lambda=92, \quad \mu=112
$$

(that is, Σ has $v=1066$ vertices, every vertex has $k=336$ neighbors and $l=729$ vertices in distance two, two adjacent vertices have $\lambda=92$ common neighbors, and two vertices of distance two have $\mu=112$ common neighbors).
The quotient M_{8} / Q_{8} induces a rank 3 action on Σ, so that if $\sigma \in \Sigma$ then $N_{M_{8} / Q_{8}}(\sigma)$ acts transitively on the set $\Sigma_{1}(\sigma)$ of points adjacent to σ in Σ and on the set $\Sigma_{2}(\sigma)$ of points at distance 2 from σ.

The next statement follows from standard properties of classical groups.
Lemma 1.3. Let $L=N_{M_{8} / Q_{8}}(\sigma)$ and z be an involution from $O_{3,2}(L)$. Then
(a) $L \sim 3^{6} \cdot 2 \cdot U_{4}(3) \cdot 2^{2}$ and Q_{8}, as a module for L, has a unique composition series:

$$
1<\sigma<\left\langle\Sigma_{1}(\sigma)\right\rangle=\sigma^{\perp}<Q_{8}
$$

(b) both σ^{\perp} / σ and $O_{3}(L)$ are isomorphic to the natural orthogonal module for $O^{2}(L) / O_{3}(L) \sim 2 \cdot U_{4}(3) \sim 2 \cdot P \Omega_{6}^{-}(3)$;
(c) $O_{3}(L)$ acts regularly on $\Sigma_{2}(\sigma)$;
(d) z acts fixed point-freely on σ^{\perp} / σ and on $O_{3}(L)$; it centralizes a unique subgroup $\varepsilon \in \Sigma_{2}(\sigma)$ and $C_{Q_{8}}(z)=\langle\sigma, \varepsilon\rangle$ is 2-dimensional containing two subgroups of Suzuki and two subgroups of Fischer type.

Since $N_{M_{8}}(\sigma)$ contains a Sylow 3-subgroup of M, it contains $P_{1}=$ $O_{3}\left(N_{M}(\sigma)\right)$. By Lemmas 1.1(a) and 1.3, we have $P_{1} \cap Q_{8}=\sigma^{\perp}, P_{1} Q_{8}=$ $O_{3}\left(N_{M_{8}}(\sigma)\right)$ and z acts fixed-point freely on P_{1} / Q_{1}. This shows that all the points collinear to σ are contained in P_{1} and that $P_{1}^{*}=P_{1}\langle z\rangle$. Let ε be as in Lemma 1.3(d). Then $Q_{8}=\left\langle\varepsilon, C_{P_{1}}(\varepsilon)\right\rangle$ is uniquely determined by ε and σ. So if Q_{8}^{*} is another quadric containing σ then $Q_{8} \cap Q_{8}^{*}$ is a point, a line, or a plane. Furthermore, the image δ of Q_{8} in $\bar{M}_{1}=M_{1} / P_{1}^{*} \sim$ Suz $\cdot 2$ is a subgroup of order 3. Moreover, $N_{M_{8}}(\sigma) / P_{1}^{*}=N_{\bar{M}_{2}}(\delta) \sim 3$. $U_{4}(3) \cdot 2^{2}$ and by $[\mathrm{At}]$ is a maximal subgroup in \bar{M}_{1}. Thus the quadrics from $M_{8}(\sigma)$ correspond to 3 -central subgroups of order 3 in \bar{M}_{1}. The next lemma (cf. [BCN, Sect. 13.7]) describes the action of \bar{M}_{1} on its 3 -central subgroups of order 3.

Lemma 1.4. The group $S \sim$ Suz $\cdot 2$ acting on the set Δ of its subgroups of order 3 with normalizer $U \sim 3 \cdot U_{4}(3) \cdot 2^{2}$ has rank 5 with subdegrees 1,280 , 486,8505 , and 13,608 . If Δ denotes also the graph of valency 280 invariant under this action, then:
(a) two distinct vertices of Δ commute (as subgroups in S) if and only if they are adjacent;
(b) Δ is distance-transitive with distribution diagram given on Fig. 1 and S is the full automorphism group of Δ.
(c) if K is a maximal clique in Δ then $|K|=11$, the setwise stabilizer T of K is a maximal subgroup in S, and $T \sim 3^{5} \cdot\left(2 \times \operatorname{Mat}_{11}\right)$, so that $O_{3}(T)$ is generated by the subgroups from K and $T / O_{3,2}(T) \sim$ Mat $_{11}$ acts 5-transitively on the vertices of K while $O_{3}(T)$ fixes none of the vertices outside K;
(d) let δ be the vertex of Δ stabilized by U, then the geometry of cliques and edges containing δ with the incidence relation via inclusion is isomorphic

Fig. 1. Distribution diagram of Δ.
to the geometry of 1- and 2-dimensional totally isotropic subspaces in 6dimensional orthogonal $G F(3)$-space of minus type and it is acted on flagtransitively by $O^{2}(U) / O_{3}(U) \sim U_{4}(3) \sim P \Omega_{6}^{-}(3)$;
(e) if ϱ is a vertex at distance 2 from δ in Δ then the subgraph induced on the vertices adjacent to both δ and ϱ is the complete bipartite graph $K_{4,4}$;
(f) if ϱ is a vertex of distance 2, 3, or 4 from δ then $\langle\delta, \varrho\rangle$ is isomorphic to $S L_{2}(3), \mathrm{Alt}(5)$, and $\mathrm{Alt}(4)$, respectively.

Next we make use of the following information about the action of M_{1} on the set of subgroups of order 9 in P_{1} containing σ (cf. [W i]).

Lemma 1.5. $\quad \bar{M}_{1}$ has two orbits L and K on the set of subgroups of order 9 in P_{1} containing σ, moreover
(a) if $l \in L$ then $N_{\bar{M}_{1}}(l) \sim 3^{5} \cdot\left(2 \times \mathrm{M}\right.$ at $\left.{ }_{11}\right)$ is the stabilizer of a maximal clique in the graph Δ as in Lemma 1.4(c) and all subgroups of order 3 in l are of Suzuki type;
(b) if $k \in K$ then $N_{\bar{M}_{1}}(k) \sim U_{5}(2) \cdot 2$ and all subgroups of order 3 in k except σ are of Fischer type.

Since P_{1} is extraspecial, it follows from the above lemma that the subgroups of order 3 in P_{1} other than σ form exactly two conjugacy classes \tilde{L} and \tilde{K} of M_{1} with normalizers

$$
\left(3 \times 3^{1+10}\right) \cdot 2 \cdot 3^{5} \cdot\left(2 \times \mathrm{M} \text { at }{ }_{11}\right) \quad \text { and } \quad\left(3 \times 3^{1+10}\right):\left(2 \times U_{5}(2) \cdot 2\right)
$$

respectively.
It is clear that the subgroups from L in Lemma 1.5 are exactly the lines from $\mathrm{M}_{2}(\sigma)$. Comparing Lemmas 1.5(a) and 1.4(c) we can identify $\mathrm{M}_{2}(\sigma)$ with the set of cliques in the graph Δ on $M_{8}(\sigma)$. Since a flag of M is stabilized by a Sylow 3 -subgroup of M, it follows from Lemma 1.4(c) that a line $l \in \mathrm{M}_{2}(\sigma)$ and a quadric $\delta \in \mathrm{M}_{8}(\sigma)$ are incident if and only if l, as a clique of Δ, contains δ. By Lemma 1.4(d) two cliques l_{1} and l_{2} of Δ of maximal possible intersection have exactly two vertices, say δ_{1} and δ_{2} in common. Then the lines l_{1} and l_{2} are in two different quadrics and hence they generate an element of M which has to be the plane p which is the intersection of δ_{1} and δ_{2}. This enables us to identify p with the edge $\left\{\delta_{1}, \delta_{2}\right\}$ of Δ.

Thus the elements from $M_{i}(\sigma)$ for $i=2,3$, and 8 can be considered as cliques, edges, and vertices of the graph Δ with the natural incidence relation. In particular the planes and quadrics incident to a given line are edges and vertices of the corresponding clique of size 11 in Δ. Hence we
have that the diagram of M is as given above and also (compare [Wi]) that

$$
\begin{aligned}
& M_{2} \sim 3^{2+5+10}:\left(G L_{2}(3) \times M \text { at }_{11}\right), \quad \bar{M}_{2} \sim \operatorname{Sym}(4) \times \mathrm{Mat}_{11} ; \\
& M_{3} \sim 3^{3+6+8}:\left(L_{3}(3) \times D_{8}: 2\right), \quad \bar{M}_{3} \sim L_{3}(3) \times 2 .
\end{aligned}
$$

The main result of the paper is the following.
Theorem 1.6. The 3-local geometry M of the Monster is simply connected, equivalently, M is the universal completion of the amalgam of maximal parabolic subgroups M_{1}, M_{2}, M_{3}, and M_{8} corresponding to the action of M on M.

H ere and elsewhere a tuple $\left\{H_{i} \mid \in I\right\}$ of subgroups in a group will also be viewed as the amalgam obtained by considering the intersection of the H_{i} and the inclusion maps.

To prove the theorem we define G to be the universal completion of the amalgam ($M_{i} \mid i=1,2,3,8$). Identify M_{i} with its image in G. Then there is a unique homomorphism χ of G onto M with $\chi_{M_{i}}=\operatorname{id}_{M_{i}}$ for all i. We will show eventually that χ is an isomorphism.

The second author thanks the Imperial College, the Universität Bielefeld, and the M artin Luther-U niversität H alle-Wittenberg for their hospitality.

2. $M(24)-\mathrm{SUBGEOMETRY}$

In this section we discuss a subgeometry $M(\mu)$ in M stabilized by a subgroup $F:=N_{M}(\mu) \sim 3 \cdot M(24)$, where μ is a subgroup of order 3 of Fischer type in M. The elements of $M(\mu)$ are some (not all) elements of M centralized by μ and the incidence relation is induced by that in M .

As above, let $\mathrm{F}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{8}\right\}$ be a maximal flag in M with $Q_{1}=\sigma$ and let μ be a Fischer type subgroup of Q_{8} contained in $Q_{3}{ }^{\perp}$. Define $\mathrm{M}(\mu)$ to be the subgeometry in M induced by the images under $F=N_{M}(\mu)$ of the elements in F . We discuss the diagram of $M(\mu)$ and the structure of the parabolic subgroups $F_{i}:=N_{F}\left(Q_{i}\right)=N_{M_{i}}(\mu)$ corresponding to the action of F on $M(\mu)$.

Since μ is non-isotropic with respect to φ we have

$$
Q_{8}=\mu \oplus \mu^{\perp},
$$

where μ^{\perp} is the natural orthogonal module for $F_{8} / Q_{8} \sim \Omega_{7}(3) \cdot 2$. M oreover, Q_{1}, Q_{2}, and Q_{3} are contained in μ^{\perp} and form a maximal flag in the
polar space defined on μ^{\perp}. Thus $F_{8} / \mu \sim 3^{7} \cdot \Omega_{7}(3) \cdot 2$ and the residue of Q_{8} in $\mathrm{M}(\mu)$ is the non-degenerate orthogonal polar space in dimension 7 over $G F(3)$.

By Lemma 1.5 we have $F_{1} / \mu \sim 3^{1+10} \cdot\left(2 \times U_{5}(2) \cdot 2\right)$ and one can see that the image of Q_{8} in $\bar{F}_{1}=F_{1} /\left(F_{1} \cap P_{1}^{*}\right) \sim U_{5}(2) \cdot 2$ is a 3-central subgroup of order 3 with the normalizer isomorphic to $\left(3 \times U_{4}(2)\right) \cdot 2$. Let Θ be the graph on all these subgroups of order 3 in \bar{F}_{1} in which two subgroups are adjacent if they commute. Then Θ is strongly regular with parameters

$$
v=176, \quad k=40, \quad l=135, \quad \lambda=12, \quad \mu=8
$$

and clearly it is a subgraph in the graph Δ as in Lemma 1.4. In these terms the quadrics, planes, and lines in $M(\mu)$ incident to σ are the vertices, edges, and cliques (of size 5) in Θ with the natural incidence relation. This shows that the diagram of $M(\mu)$ is

It is easy to deduce the structure of two other parabolic subgroups (compare [RS]):
$F_{2} / \mu \sim 3^{2+4+8} \cdot\left(G L_{2}(3) \times \operatorname{Sym}(5)\right), \quad F_{3} / \mu \sim 3^{3+7+3} \cdot 2 \cdot\left(L_{3}(3) \times 2\right)$.
In [IS] the geometry M (μ) was proved to be simply connected.
Lemma 2.1. The geometry $M(\mu)$ is simply connected and hence $3 \cdot M(24)$ is the unique faithful completion of the amalgam consisting of the subgroup F_{1}, F_{2}, F_{3}, and F_{8}.

This immediately implies the following.
Lemma 2.2. Let X be a faithful completion of the amalgam consisting of the Monster subgroups $M_{i}, i=1,2,3,8$. Let μ be a non-isotropic subgroup of order 3 in Q_{8} contained in Q_{3}^{\perp}. Then X contains a subgroup $M_{\mu} \sim 3 \cdot M(24)$, which normalizes μ, such that $M_{\mu} \cap M_{i}=N_{M_{i}}(\mu)=N_{M_{\mu}}\left(Q_{i}\right)$ for $i=1,2,3$, and 8. If $X=M$ then $M_{\mu}=N_{M}(\mu)$.

A subgroup μ as in the above lemma will be said to be of Fischer type. We remark that the subgroup M_{μ} of X does not only depend on μ but a priori also on the flag ($M_{1}, M_{2}, M_{3}, M_{8}$). But as the reader might check M_{μ} is already determined by μ together with any one of the $M_{i}{ }^{\prime} \mathrm{s}, i=$ $1,2,3$, or 8 .

3. THE 2-LOCAL GEOMETRY OF THE MONSTER

There are exactly two classes of involutions in M, called the Conway type and Baby Monster type involutions with representatives z and t, such that

$$
C_{M}(z) \sim 2_{+}^{1+24} \cdot C o_{1} \quad \text { and } \quad C_{M}(t) \sim 2 \cdot F_{2},
$$

where Co_{1} is the first Conway sporadic simple group and F_{2} is the F ischer Baby Monster group [At].

Let $C=C_{M}(z)$. Then for $i=4$ and 8 up to conjugation in C there is a unique Conway-pure subgroup E_{i} of order i in $O_{2}(C)$ containing z, whose normalizer in M contains a Sylow 2-subgroup of M. M oreover these two subgroups can be chosen so that $E_{4}<E_{8}$ and we will assume that the inclusion holds. Let $N=N_{M}\left(E_{4}\right)$ and $L=N_{M}\left(E_{8}\right)$. Then

$$
\begin{gathered}
C \sim 2_{+}^{1+24} \cdot C o_{1}, \quad N \sim 2^{2+11+22} \cdot\left(\operatorname{Sym}(3) \times \mathrm{M} \mathrm{at}_{24}\right), \\
L \sim 2^{3+6+12+18} \cdot\left(L_{3}(2) \times 3 \cdot \operatorname{Sym}(6)\right) .
\end{gathered}
$$

Furthermore C, N, and L are the stabilizers of a point, a line, and a plane from a maximal flag in the 2-local minimal parabolic geometry of the M onster group [RS] having the diagram

This geometry was proved to be 2 -simply connected in [Iv1] and by standard principles this result is equivalent to the following.

Lemma 3.1. The Monster group M is the universal completion of the amalgam of its subgroups C, N, and L defined as above.

Our strategy to prove Theorem 1.6 is to show that the universal completion G of the amalgam of the 3-local parabolics M_{i} is also a completion of the amalgam consisting of the subgroups C, N, and L as in Lemma 3.1.

Lemma 3.2. Let μ be a subgroup of Fischer type in M. Then M_{μ} has exactly four classes of involutions and for an involution $t \in M_{\mu}$ exactly one of the following holds:
(a) t inverts μ, t is of Baby Monster type, and $C_{M_{\mu}}(t) \cong M(23) \times C_{2}$.
(b) t centralizes μ, t is of Baby Monster type, and $C_{M_{\mu}}(t) \sim$ $3 \cdot 2^{2} M(22) \cdot 2$.
(c) t inverts μ, t is of Conway type, and $C_{M_{\mu}}(t) \sim 2^{3} \cdot U_{6}(2) \cdot \operatorname{Sym}(3)$.
(d) t centralizes μ, t is of Conway type, and $C_{M_{\mu}}(t) \sim 3.2_{+}^{1+12} \cdot 3$. $U_{4}(3) \cdot 2^{2}$.

Proof. By [At], M_{μ} has four classes of involutions with centralizers as given. By Lagrange, $C o_{1}$ involves neither $M(23)$ nor $3 \cdot M(22) \cdot 2$ and so the first two classes are of Baby M onster type. Since Conway type involutions both invert and centralize groups of Fischer type the remaining two classes must be of Conway type.

Lemma 3.3. Let z be an involution from $P_{1}^{*}=O_{3,2}\left(M_{1}\right)$. Then every involution in M_{1} is conjugated to an involution $s \in C_{M_{1}}(z)$ and one of the following holds:
(a) $s=z, C_{M_{1}}(s) \sim 6 \cdot \mathrm{Suz} \cdot 2$, and s is of Conway type in M;
(b) s inverts $\sigma, C_{M_{1}}(s) P_{1}^{*} / P_{1}^{*} \sim 2 \cdot \mathrm{M} \mathrm{at}_{12}$; s and $s z$ are conjugated in M_{1} and the centralizer of s in P_{1} / σ has order 3^{6};
(c) s centralizes σ and $C_{M_{1}}(s) P_{1}^{*} / P_{1}^{*} \sim 2_{-}^{1+6} \cdot O_{6}^{-}(2)$ (two conjugacy classes).

Proof. The conjugacy classes of involutions in $M_{1} / P_{1} \sim 2 \cdot$ Suz $\cdot 2$ can be read from [At]. Since z centralizes σ and acts fixed point-freely on P_{1} / σ, the structure of $C_{M_{1}}(s)$ in (a) follows. Since the Baby Monster has no elements of order 3 with normalizer of the shape $3 \cdot \mathrm{Suz} \cdot 2, z$ is of Conway type. In (b) we have $C_{P_{1} / \sigma}(s)=\left[P_{1} / \sigma, s z\right]$ and since s and $s z$ are conjugated, both subspaces have dimension 6 .

4. THE 3-LOCAL GEOMETRY FOR $C o_{1}$

In [IV2], a relationship between the 3- and 2-local geometries of the M onster via a 2^{24}-cover of the 3 -local geometry of the Conway group [BF] was noticed.

Let X be an arbitrary faithful completion of the amalgam ($M_{1}, M_{2}, M_{3}, M_{8}$) of the 3 -local parabolics in M which has M has a quotient and let X be the geometry whose elements are the cosets in X of M_{i} for $i=1,2,3,8$ and where two cosets are incident if their intersection is non-empty. If $X=M$ or $X=G$ where as above G is the universal completion of the amalgam, then X is M or the universal cover G of M , respectively. For an element x of X let M_{x} denote the stabilizer of x in X which is a conjugate of M_{i} for $i=1,2,3$, or 8 depending on the type of x. If $x=M_{i} g$ put $Q_{x}=Q_{i}^{g}, P_{x}=P_{i}^{g}$, and $P_{x}^{*}=P_{i}^{* g}$. When working in the residue of an element we can and will identify x with Q_{x}. If μ is a subgroup of order 3 of Fischer type in Q_{8}^{g}, then M_{μ} denotes the subgroup as in Lemma 2.2, i.e., if $\mu \in Q_{3}^{g}{ }^{\perp}$ then $M_{\mu}=\left\langle N_{M_{i}^{g}}(\mu) \mid i=1,2,3,8\right\rangle$.

Let us pick an involution z from $P_{1}^{*}=O_{3,2}\left(M_{1}\right)$. Then by Lemma 3.3(a), $C_{M_{1}}(z) \sim 6 \cdot$ Suz $\cdot 2$. Let $\Xi=\Xi^{X}$ be the set of points of X such that $x \in \Xi$ if and only $z \in O_{2,3}\left(M_{x}\right)$. Let Ξ denote also the graph on Ξ in which two points are adjacent if they are incident to a common quadric. It is clear that $C_{X}(z)$ preserves Ξ as a whole as well as the adjacency relation on Ξ.

Lemma 4.1. Locally Ξ is the commuting graph Δ of 3-central subgroups of order 3 in $\bar{M}_{1} \sim$ Suz $\cdot 2$ as in Lemma 1.4. Let Ω be a maximal clique in \exists containing σ and H be the setwise stabilizer of Ω in $C_{X}(z)$. Then $|\Omega|=12$ and there is a unique point α collinear to σ such that $H=C_{M_{\alpha}}(z)$. Moreover, $H \sim 2.3^{6} \cdot\left(2 \cdot \mathrm{M} \mathrm{at}_{12}\right), O_{3}(H)=P_{\alpha} \cap H, H$ induces the natural action of M at ${ }_{12}$ on the vertices of Ω, and $O_{3}(H)$ is an irreducible $G F(3)$-module for $H / O_{3}(H)\langle z\rangle \sim 2 \cdot \mathrm{M} \mathrm{at}_{12}$.

Proof. A busing the notation we denote by σ the point stabilized by M_{1} so that $\sigma \in \Xi$. By Lemma 1.3(d) every quadric incident to σ contains besides σ exactly one point ε centralized by z and ε is not collinear to σ. This means that the set $\Xi(\sigma)$ of points adjacent to σ in Ξ is in a natural bijection with the set of quadrics incident to σ, i.e., with the vertices of the graph Δ as in Lemma 1.4. M oreover, if $\delta \in \Delta$ then there is a unique point centralized by z which maps onto δ under the homomorphism of M_{1} onto \bar{M}_{1}. We will identify δ with this unique point. By definition if x and y are adjacent points in Ξ then $\left[Q_{x}, Q_{y}\right]=1$. Hence if $\delta_{1}, \delta_{2} \in \Xi(\sigma)$ are adjacent in Ξ, then the corresponding vertices of Δ are adjacent. In particular a maximal clique in Ξ contains at most 12 vertices. We are going to show that this bound is attained.
Let l be a line incident to σ and let σ, α, β, and γ be all the points incident to l. Since z acts fixed-point freely on $P_{1} / \sigma \sim 3^{12}$, we can choose our notation so that z inverts α and permutes β and γ. So on every line incident to σ there is exactly one point which is inverted by z. Since $C_{M_{1}}(z) P_{1}=M_{1}, C_{M_{1}}(z)$ permutes transitively the lines incident to σ and hence also the points collinear to σ and inverted by z. This implies that $C_{M_{\alpha}}(z)$ permutes transitively the points collinear to α and centralized by z.

Let Q_{8} denote a quadric incident to l and let ε be the point in Q_{8} other than σ centralized by z. Then ε is collinear to exactly one point on l. We know that σ and ε are not collinear and since β and γ are permuted by z, ε is collinear to α. Thus in every quadric incident to l besides σ there is exactly one point collinear to α and centralized by z. By the diagram of X there are exactly 11 such quadrics which correspond to a clique K of Δ. Let $\Omega=\{\sigma\} \cup K$ and H be the setwise stabilizer of Ω in $C_{X}(z)$. Since locally Ξ is Δ, K is a maximal clique in $\Delta, C_{M_{1}}(z)$ acts transitively on the set of cliques in Δ and since $C_{X}(z)$ is vertex-transitive on Ξ, we see that H
acts transitively on Ω. Since α is the only point which is collinear to every point in Ω, it is clear that $H \leq C_{M_{\alpha}}(z)$. Since z acts fixed-point freely on $P_{1} / \sigma, C_{P_{1}^{*}}(z)=\sigma \times\langle z\rangle$. By Lemma 1.4(c) and the Frattini argument $\left(H \cap M_{1}\right) P_{1}^{*} / P_{1}^{*} \sim\left(M_{l} \cap M_{1}\right) / P_{1}^{*} \sim 3^{5} \cdot\left(2 \times \mathrm{M}^{2} \mathrm{t}_{11}\right)$. Since $H \cap M_{1}$ induces the natural action of Mat_{11} on the points in K, H induces on the points in Ω the natural action of M at ${ }_{12}$. Thus $O_{3}(H)$ is elementary abelian of order 3^{6} generated by the 12 points in Ω and $H / O_{3}(H)\langle z\rangle \sim 2 \cdot \mathrm{M}$ at ${ }_{12}$ induces a non-trivial action on $O_{3}(H)$. By [M oAt], M at ${ }_{12}$ does not have a faithful $G F(3)$-representation of dimension less than or equal to 6 and the smallest faithful $G F(3)$-representation of $2 \cdot \mathrm{M} \mathrm{at}_{12}$ has dimension exactly 6 . Thus we have shown that $H \sim 2.3^{6} \cdot\left(2 \cdot \mathrm{M}\right.$ at $\left.{ }_{12}\right)$ and by Lemma 3.3(b), $H=C_{M_{\alpha}}(z)$.

In whăt follows we will need the detailed information on the structure of 6 -dimensional $G F(3)$-modules of $2 \cdot \mathrm{Mat}_{12}$ contained in the following lemma.

Lemma 4.2. Let $\bar{H} \sim 2 \cdot \mathrm{Mat}_{12}$ and A be a faithful irreducible 6dimensional $G F(3) \bar{H}$-module. Then the following assertions hold:
(a) \bar{H} has a unique orbit A of length 12 on the 1 -spaces of A.
(b) Any five elements from A are linearly independent.
(c) \bar{H} has a unique orbit L of length less or equal to 12 on the hyperplanes of A. Moreover, $|\mathrm{L}|=12$ and if $L \in \mathrm{~L}$ then L contains no element from A.
(d) Let B be the set of 1 -spaces of A of the form $\left\langle a_{1}+a_{2}\right\rangle$, where $\left\langle a_{1}\right\rangle$ and $\left\langle a_{2}\right\rangle \in \mathrm{A}$ are different elements of A . Then $|\mathrm{B}|=132$ and H acts transitively on B.
(e) If $F \in \mathrm{~B}$ then there exist unique elements D_{1} and D_{2} in A with $F \leq D_{1}+D_{2}$. If $L \in \mathrm{~L}$ and \tilde{F} is the $\frac{1}{\tilde{F}}$-space in $D_{1}+D_{2}$ different from D_{1}, D_{2}, and F, then $F \leq L$ if and only if $F \preceq L$.
(f) Define $L \in \mathrm{~L}$ and $B \in \mathrm{~B}$ to be incident if $B \leq L$. Then (L, B) is a Steiner system of type $(5,6,12)$.
(g) Let $\mathrm{T} \subset \mathrm{L}$ with $|\mathrm{T}|=4$ and put $F=\cap \mathrm{T}$. Then F is a 2 -subspace of A, all 1 -spaces of F are in B , and $N_{H}(F) / C_{H}(F) \cong G L_{2}(3)$.

Proof. Let X and Y be two non-conjugate subgroups in \bar{H} isomorphic to M at ${ }_{11}$. Then every proper subgroup of index at most 12 in $\bar{H} / Z(\bar{H}) \cong$ M at ${ }_{12}$ is conjugate to the image of either X or Y. M oreover, $\bar{H}=\langle X, Y\rangle$ and $X \cap Y \cong L_{2}(11)$. Let Z be one of the subgroups X, Y and $X \cap Y$. By [M oA t] every faithful irreducible $G F(3) Z$-module is 5 -dimensional. This means that Z normalizes in A at most one 1 -subspace and at most one 5 -subspace. Suppose that A contains a 1-subspace normalized by X and a

1-subspace normalized by Y. Then both these 1 -spaces are normalized by $X \cap Y$ and hence this is the same 1 -space, normalized by the whole $\bar{H}=\langle X, Y\rangle$, a contradiction to the irreducibility of A. A pplying the same argument to the module dual to A, we obtain that the subspaces in A normalized by X and Y have different dimensions and we can choose our notation so that X normalizes a 1-space D and Y normalizes a 5 -space E. In this case $A=D \oplus E$ as a module for $X \cap Y$. Moreover, $\mathrm{A}:=D^{\bar{H}}$ is the only orbit of length 12 of \bar{H} on 1-spaces in A and $\mathrm{L}:=E^{\bar{H}}$ is the only orbit of length 12 of \bar{H} on hyperplanes in A and (c) holds.

The actions induced by \bar{H} on A and L are two non-equivalent 5transitive actions of $\mathrm{M} \mathrm{at}_{12}$. Since A is irreducible, A spans A and so there is a set of six linearly independent elements in A. Since \bar{H} induces on A a 5-transitive action, every set of five elements in A is linearly independent and thus (b) holds.

Let $D_{1} \neq D_{2} \in \mathrm{~A}$ and let $D_{1}, D_{2}, F, \tilde{F}$ be the set of all 1-spaces in $D_{1}+D_{2}$. Then $F, \tilde{F} \in \mathrm{~B}$. We are going to show that B satisfies the properties stated in (d)-(f). If there are $D_{i}, D_{j} \in \mathrm{~A}$ with $\{i, j\} \neq\{1,2\}$ such that F is contained in $D_{i}+D_{j}$ then the set $\left\{D_{k} \mid k=1,2, i, j\right\}$ of size at most four in A would be linearly dependent, a contradiction to (b). Hence the pair $\left\{D_{1}, D_{2}\right\}$ is uniquely determined by F. Let $L \in \mathrm{~L}$. Since L is a hyperplane in A, its intersection with $D_{1}+D_{2}$ is at least 1dimensional. By (c) neither D_{1} nor D_{2} are in L, hence (e) follows. M oreover, F or \tilde{F} is contained in at least 6 elements of L. Since the action of \bar{H} on L is 5 -transitive, we conclude that the intersection of any five elements of L is in B. Let D be the set of elements of L containing F. Suppose that $|\mathrm{D}| \geq 7$. Then by 5 -transitivity of \bar{H} on L there exists $h \in \bar{H}$ with $\left|\mathrm{D} \cap \mathrm{D}^{h}\right| \geq 5$ and $\mathrm{D} \neq \mathrm{D}^{h}$. But then the intersection of the elements on $\mathrm{D}, \mathrm{D} \cap \mathrm{D}^{h}$, and D^{h}, respectively, are all equal to F, a contradiction to $\mathrm{D} \neq \mathrm{D}^{h}$. Hence $|\mathrm{D}| \leq 6$ and both F and \tilde{F} are contained in exactly six elements of L . Thus (f) holds. As \bar{H} acts transitively on the blocks of any associate Steiner systems, (d) follows.

By (f), T is incident to exactly four elements say $B_{1}, B_{2}, B_{3}, B_{4}$ of B . By the dual of (b), F is a 2 -space and so $B_{1}, B_{2}, B_{3}, B_{4}$ are exactly the 1 -spaces of F. Since $N_{\bar{H}}(\mathrm{~T})$ induces $\operatorname{Sym}(4)$ on $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ we conclude $N_{\bar{H}}(F) / C_{\bar{H}}(F) \cong G L_{2}(3)$.

By Lemmas 4.1 and 1.4(d) two maximal cliques in Ξ are either disjoint or have intersection of size 1,2 , or 3 . M oreover, if $C=C^{X}$ is a geometry whose elements are maximal cliques, triangles, edges, and vertices of Ξ^{X} with respect to the incidence relation given by inclusion, then C corresponds to the diagram

The geometry C is connected precisely when Ξ is connected. Let $\sigma=\Omega_{1} \subset \Omega_{2} \subset \Omega_{3} \subset \Omega_{12}=\Omega$ be the maximal flag in C. Then Ω_{i} is a complete subgraph of size i in Ξ. Let C_{i} denote the stabilizer in $C_{X}(z)$ of Ω_{i}. Then

$$
\begin{aligned}
& C_{1} /\langle z\rangle \sim 3 \cdot \operatorname{Suz} \cdot 2, \quad C_{2} /\langle z\rangle \sim 3^{2} \cdot U_{4}(3) \cdot D_{8}, \\
& C_{3} /\langle z\rangle \sim 3^{3+4} \cdot\left[2^{3}\right] \cdot S_{4} \cdot S_{3}, \quad C_{12} /\langle z\rangle \sim 3^{6} \cdot 2 \cdot \mathrm{M} \text { at }{ }_{12} .
\end{aligned}
$$

Consider the situation when $X=M$. By Lemma 3.3(a), z is of Conway type and $C_{M}(z)=C \sim 2_{+}^{1+24} \cdot C O_{1}$. Put $R=O_{2}(C)$.

Lemma 4.3. The graph Ξ^{M} is connected.
Proof. Let A be the setwise stabilizer in $C_{M}(z)$ of the connected component of Ξ^{M} which contains σ. Then A contains $C_{1} \sim 6 \cdot \mathrm{Suz} \cdot 2$. Let ε be a vertex adjacent to σ in Ξ^{M}. Then $[\sigma, \varepsilon]=1$ and since σ acts fixed-point freely on $R /\langle z\rangle$, we have $\sigma R \neq \varepsilon R$. Since $C_{1} R$ is maximal in C, this means that $A R=C$. Finally, $C /\langle z\rangle$ does not split over $R /\langle z\rangle$ and hence $A=C$ and Ξ^{M} is connected.

The homomorphism $\chi: G \rightarrow M$ induces morphisms $G \rightarrow M$ and $C^{G} \rightarrow$ C^{M} of geometries which will be denoted by the same letter χ. Our goal is to show that the restriction of χ to the connected component of C^{G} containing σ is an isomorphism onto C^{M}. This will immediately imply that the setwise stabilizer in $C_{G}(z)$ of the connected component of C^{G} maps isomorphically onto $C \sim 2_{+}^{1+24} \cdot C_{1}$. An important role in the realization of this step will be played by a simply connected subgeometry in G.

Let μ be a subgroup of Fischer type as in Section 2. Then $k:=\sigma \mu$ is a subgroup of order 9 in P_{1} which is not a line (so that k is as in Lemma 1.5(b)). Since z acts fixed-point freely on P_{1} / Q_{1}, as in the proof of Lemma 4.1 we have a unique subgroup of order 3 in k which is normalized and inverted by z. Hence we can and do choose μ so that z inverts μ. By Lemma 2.2 there is a subgroup $M_{\mu} \sim 3 \cdot M(24)$ in X which normalizes μ such that $M_{\mu} \cap M_{i}=N_{M_{i}}(\mu)$ for $i=1,2,3$, and 8 . Let $W=C_{M_{\mu}}(z)$ and let Ψ be the orbit of W on Ξ which contains σ.

Lemma 4.4. (a) $|\Psi|=2688$ and $W /\langle z\rangle \sim 2^{2} \cdot U_{6}(2) \cdot \operatorname{Sym}(3)$ acts faithfully on Ψ;
(b) locally Ψ is the commuting graph Θ on the 3-central subgroups of order 3 in $U_{5}(2) \cdot 2$.

Proof. By Lemma 1.5(b) and since $M_{\mu} \cap M_{1}=N_{M_{1}}(\mu), C_{M_{\mu}}(z) \cap M_{1} \sim$ $2 \cdot\left(3 \times U_{5}(2)\right) \cdot 2$. By Lemma 3.2 and since z is of Conway type and inverts $\mu, W \sim 2^{3} \cdot U_{6}(2) \cdot$ Sym(3). Thus (a) holds.

For (b) we may by (a) assume that $X=M$. The subgroups of Fischer type in P_{1} normalized by z, are permuted transitively by $C_{M_{1}}(z)$ and hence
Ψ contains a vertex x of Ξ if and only if μ is contained in P_{x}, or equivalently if x is contained in $M(\mu)$ and hence (b) follows.

Since Ψ is locally Θ, its maximal cliques have size 6 and two such cliques are either disjoint or have intersection of size 1,2 , or 3 . Define U to be a geometry whose elements are maximal cliques, triangles, edges, and vertices of Ψ with the natural incidence relation. Since $\Psi=\Xi \cap$ $M(\mu)$, it is easy to see that the diagram of U is

A s follows from Lemma 4.4, the isomorphism type of U is independent on whether $X=M$ or $X=G$, since U is contained in $M(\mu)$ which is simply connected. It is worth mentioning that U itself is simply connected as proved in [Me] and that Ψ is distance-transitive with the distribution diagram given on Fig. 2.

5. A CHARACTERIZATION OF C ${ }^{M}$

It is not known whether the geometry C^{M} is simply connected. In this section we establish a sufficient condition for a covering of C^{M} to be an isomorphism in terms of the subgeometry U and its images under $C_{M}(z)$. Let $R=O_{2}\left(C_{M}(z)\right)$ which is extraspecial of order 2^{25}. We start by defining the folding \bar{C} of C^{M} with respect to the action of R.

The kernel of the action of $C=C_{M}(z)$ on C^{M} is $\langle z\rangle$ and since $O_{2}\left(C_{i} /\langle z\rangle\right)=1$ for $i=1,2,3$, and 12, the action of $R /\langle z\rangle$ is fixed-point free. Let \bar{C} be the folding of C^{M} with respect to the action of R. This means that \bar{C} is a geometry whose elements are the orbits of R on C^{M} with two such orbits O_{1} and O_{2} incident if and only if an element from O_{1} is incident in C^{M} to an element from O_{2}. Since $R /\langle z\rangle$ acts fixed-point freely on C^{M}, it is easy to see that if O_{1} and O_{2} are incident in $\overline{\mathrm{C}}$ then each element from O_{1} is incident in $\mathrm{C}^{M^{1}}$ to exactly one element from O_{2}. Let $\bar{\Xi}$ be the collinearity graph of \bar{C} which is also the folding with respect to the action of R of the collinearity graph Ξ^{M} of C^{M}.

Fig. 2. Distribution diagram of Ψ.

We put $\bar{C}=C / R$ and use the bar notation for the images of \bar{C} of subgroups of C. Then $\bar{\sigma}$ is a subgroup of order 3 in \bar{C} and $N_{\bar{C}}(\bar{\sigma}) \sim 3$. Suz• 2 which is a maximal subgroup in \bar{C}. This enables us to identify the vertices of $\bar{\Xi}$ with the Suzuki-type subgroups of order 3 in $\bar{C} \sim \mathrm{Co}_{1}$. We will use the following properties of the action of \bar{C} on $\bar{\Xi}$.

Lemma 5.1. Let $\overline{\bar{C}} \cong C o_{1}, \bar{\Xi}$ be the set of Suzuki-type subgroups of order 3 in $\bar{C}, \bar{\sigma} \in \bar{\Xi}$, and $\bar{C}(\bar{\sigma})=N_{\bar{C}}(\bar{\sigma}) \sim 3 \cdot \mathrm{Suz} \cdot 2$. Then \bar{C} acts primitively on $\bar{\Xi}$ while $\bar{C}(\bar{\sigma})$ has 5 orbits on $\bar{\Xi}:\{\bar{\sigma}\}, \bar{\Xi}_{1}(\bar{\sigma}), \bar{\Xi}_{2}(\bar{\sigma}), \bar{\Xi}_{3}(\bar{\sigma})$, and $\bar{\Xi}_{4}(\bar{\sigma})$ with lengths $1,22,880,405,405,1,111,968$, and 5346 , respectively. Let $\bar{\Xi}$ denote also the graph on $\bar{\Xi}$ invariant under the action of \bar{C}, in which $\bar{\sigma}$ is adjacent to the vertices from $\bar{\Xi}_{1}(\bar{\sigma})$. Let $\bar{\mu}_{i} \in \bar{\Xi}_{i}(\bar{\sigma})$ and $\bar{B}_{i}=\bar{C}(\bar{\sigma}) \cap \bar{C}\left(\bar{\mu}_{i}\right)$ for $i=1,2,3,4$. Then
(a) $\bar{\delta} \in \bar{\Xi} \backslash\{\bar{\sigma}\}$ is adjacent to $\bar{\sigma}$ in $\bar{\Xi}$ if and only if $[\bar{\sigma}, \bar{\delta}]=1$, so that $\bar{\Xi}$ is the folding of Ξ^{M} with respect to the action of R; the distribution diagram of \bar{E} is given on Fig. 3;
(b) $\bar{B}_{1} \sim 3^{2} \cdot U_{4}(3) \cdot 2^{2}$, locally $\bar{\Xi}$ is the commuting graph Δ of central subgroups of order 3 in $\bar{C}(\bar{\sigma}) / \bar{\sigma} \sim$ Suz $\cdot 2$;
(c) $\bar{B}_{2} \sim 2^{1+6} \cdot U_{4}(2) \cdot 2$ acts transitively on $\bar{\Xi}_{i}(\bar{\sigma}) \cap \bar{\Xi}_{1}\left(\bar{\mu}_{2}\right)$ for $i=1$, 2, and 3 , the subgraph induced on $\bar{\Xi}_{1}\left(\bar{\mu}_{2}\right) \cap \bar{\Xi}_{1}(\bar{\sigma})$ is the disjoint union of 40 copies of the complete 3 -partite graph $K_{4,4,4}$, these copies are permuted primitively by $\bar{B}_{2} / O_{2}\left(\bar{B}_{2}\right) \sim U_{4}(2) \cdot 2,\left\langle\bar{\sigma}, \bar{\mu}_{2}\right\rangle \cong S L_{2}(3)$;

FIG. 3. Distribution diagram of \bar{E}.
(d) $\bar{B}_{3} \sim J_{2}: 2 \times 2$ acts primitively on $\bar{\Xi}_{1}\left(\bar{\mu}_{3}\right) \cap \bar{\Xi}_{i}(\bar{\sigma})$ for $i=1,4$ and transitive for $i=2,\left\langle\bar{\sigma}, \bar{\mu}_{3}\right\rangle \cong \mathrm{Alt}(5)$;
(e) $\bar{B}_{4} \sim G_{2}(4) \cdot 2$ acts primitively on $\bar{\Xi}_{1}\left(\bar{\mu}_{4}\right) \cap \bar{\Xi}_{i}(\bar{\sigma})$ for $i=1$ and $3,\left\langle\bar{\sigma}, \bar{\mu}_{4}\right\rangle \cong \mathrm{Alt}(4)$;
(f) the subgraph induced on $\bar{\Xi}_{1}\left(\bar{\mu}_{i}\right) \cap \bar{\Xi}_{1}(\bar{\sigma})$ is empty for $i=3$ and 4 ;
(g) each vertex from $\bar{\Xi}_{1}\left(\bar{\mu}_{3}\right) \cap \bar{\Xi}_{3}(\bar{\sigma})$ is adjacent to a vertex from $\bar{\Xi}_{1}\left(\bar{\mu}_{3}\right) \cap \bar{\Xi}_{1}(\bar{\sigma})$ or to a vertex from $\bar{\Xi}_{1}\left(\bar{\mu}_{3}\right) \cap \bar{\Xi}_{2}(\bar{\sigma})$.

Proof. The subdegrees, 2-point stabilizers \bar{B}_{i} of the action of \bar{C} on \bar{B} and $\left\langle\bar{\sigma}, \bar{\mu}_{i}\right\rangle$ are well known (cf. Lemma 49.8 in [As] or Lemma 2.22.1(ii) in [ILLSS]). The distribution diagram on Fig. 3 is taken from [PS]. This diagram and the structure of \bar{B}_{1} show that the subgraph induced on $\bar{\Xi}_{1}(\bar{\sigma})$ is isomorphic to the graph Δ as in Lemma 1.4 and that $\bar{C}(\bar{\sigma})$ induces its full automorphism group. This means that \bar{B}_{1} acts transitively on $\bar{\Xi}_{1}\left(\bar{\mu}_{1}\right) \cap \bar{\Xi}_{i}(\bar{\sigma})$ for $i=1,2,3,4$ and hence for every vertex $\bar{\gamma}$ at distance 2 from $\bar{\sigma}$ in $\bar{\Xi}, \bar{C}(\bar{\sigma}) \cap \bar{C}(\bar{\gamma})$ acts transitively on $\bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{1}(\bar{\gamma})$. Let χ_{i} be the permutational character of $\bar{C}(\bar{\sigma})$ on the cosets of $\bar{B}_{i} \bar{\sigma}$ for $i=1,2$, and 4. By Lemma 2.13.1 in [ILLSS] the inner product of χ_{1} and χ_{i} is 5, 3, and 2 for $i=1,2$, and 4 , respectively. This implies the transitivity statements in (c), (d), and (e). By [At] every action of \bar{B}_{3} of degree 100 or 280 as well as every action of \bar{B}_{4} of degree 2080 or 20,800 is primitive.

Let $\bar{\delta}_{i} \in \bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{1}\left(\bar{\mu}_{i}\right)$ for $i=2,3,4$. Then since locally $\bar{\Xi}$ is Δ, the distance from $\bar{\sigma}$ to $\bar{\mu}_{i}$ in the subgraph induced on $\bar{\Xi}_{1}\left(\bar{\delta}_{i}\right)$ is i. Hence the subgraph induced by $\bar{\Xi}_{1}\left(\bar{\mu}_{i}\right) \cap \bar{\Xi}_{1}(\bar{\sigma})$ is empty for $i=3$ and 4, while for $i=2$ it is locally $K_{4,4}$ (compare Lemma 1.4(e)). It is well known and easy to check that $K_{4,4,4}$ is the only connected graph which is locally $K_{4,4}$ and the structure of the subgraph induced on $\bar{\Xi}_{1}\left(\bar{\mu}_{2}\right) \cap \bar{\Xi}_{1}(\bar{\sigma})$ follows. Finally, every transitive action of \bar{B}_{2} of degree 40 is primitive and has $O_{2}\left(\bar{B}_{2}\right)$ in its kernel. Thus all statements except (g) are proved.

We will prove (g) with the roles of $\bar{\sigma}$ and $\bar{\mu}_{3}$ interchanged. For this we first determine the orbits of \bar{B}_{3} on $\bar{\Xi}_{1}(\sigma)$. Let $A=\left\langle\bar{\sigma}, \bar{\mu}_{3}\right\rangle$. Then $A \cong \mathrm{Alt}(5)$. Note that there exist exactly two elements $\rho \in \bar{\Xi} \cap A$ such that $\langle\rho, \bar{\sigma}\rangle \cong \mathrm{Alt}(4)$ and $\left\langle\rho, \bar{\mu}_{3}\right\rangle \cong \mathrm{Alt}(5)$. Without loss $\bar{\mu}_{4}$ is one of these two. Put $J=N_{\bar{B}_{3}}\left(\bar{\mu}_{4}\right)=\bar{B}_{4} \cap \bar{B}_{3}$. Then J is of index two in \bar{B}_{3} and $J \sim J_{2} \cdot 2$. Put $K:=\bar{B}_{4}$. Then $K \sim G_{2}(4) \cdot 2$.

As the main step in determining the orbits of \bar{B}_{3} on $\bar{\Xi}_{1}(\bar{\sigma})$ we compute the orbits of J by decomposing the orbits of K. By (e), K acting on $\bar{\Xi}_{1}(\bar{\sigma})$ has two orbits, $\Gamma_{1}=\bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{3}\left(\bar{\mu}_{4}\right)$ and $\Gamma_{2}=\bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{1}\left(\bar{\mu}_{4}\right)$ with lengths 20,800 and 2080, respectively, moreover if K_{1} and K_{2} are the respective stabilizers, then $K_{1} \sim U_{3}(3): 2 \times 2$ and $K_{2} \sim 3 \cdot L_{3}(4) \cdot 2^{2}$. Consider the graph Σ with 416 vertices of valency 100 on which K acts as a
rank 3 automorphism group (see [BvL]). Then the parameters of Σ are

$$
v=416, \quad k=100, \quad l=315, \quad \lambda=36, \quad \mu=20 .
$$

It follows from the list of maximal subgroups in K, that Γ_{1} can be identified with the set of edges of Σ while J is the stabilizer in K of a vertex x of Σ. By well known properties of the action of K on Σ [BvL] the orbit of J on the edge-set of Σ containing an edge $\left\{y_{1}, y_{2}\right\}$ of Σ is uniquely determined by the pair $\left\{d_{1}, d_{2}\right\}$ where d_{i} is the distance from x to y_{i} in Σ. This and the parameters of Σ given above show that under the action of J the set of edges of Σ (identified with the set Γ_{1}) splits into four orbits $\Omega_{1}, \Omega_{2}, \Omega_{3}$, and Ω_{4} corresponding to the pairs of distances $\{0,1\}$, $\{1,1\},\{1,2\}$, and $\{2,2\}$ and having lengths $100,1800,6300$, and 12,600 , respectively. Let $\Omega_{5}=\bar{E}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{1}\left(\bar{\mu}_{3}\right)$ and $\gamma \in \Omega_{5}$. Note that J acts transitively on Ω_{5} and $\left|\Omega_{5}\right|=280$. By (a), γ commutes with $\bar{\mu}_{3}$. Thus $\gamma \leq J \leq K^{\prime}$ and so $\gamma \in \Gamma_{2}$ and Ω_{5} is an orbit for J on Γ_{2}. Let K_{2} be the stabilizer of γ in K. Then $\gamma=O_{3}\left(K_{2}\right)$. By (f) all 280 vertices adjacent to γ in the subgraph induced on $\bar{E}_{1}(\bar{\sigma})$ are in Γ_{1} and by (a) these 280 vertices are fixed by γ. Let $\Sigma(\gamma)$ be the set of vertices in Σ fixed by γ. Comparing the permutation characters of K on σ with the permutational character of K on Γ_{2}, we see that K_{2} has exactly two orbits on the vertex set of $\mathrm{\Sigma}$. On one hand this means that under the action of J the set Γ_{2} splits into two orbits namely Ω_{5} and an orbit Ω_{6} of length 1800 . On the other hand $K_{2} / \gamma \sim L_{3}(4) \cdot 2^{2}$ acts transitively on $\Sigma(\gamma)$ and so $|\Sigma(\gamma)|=$ $280 \cdot\left(|J| /\left|K_{2}\right|\right)=56$. A ny transitive action of the latter group of degree 56 is the rank 3 action on the vertex set of the G ewirtz graph which is strongly regular with parameters

$$
v=56, \quad k=10, \quad l=45, \quad \lambda=0, \quad \mu=2 .
$$

Hence we conclude that K_{2} acts transitively on the set of edges in Σ fixed by γ. A gain since γ is adjacent in \bar{B} to exactly 280 vertices from Γ_{1} there are 280 edges in the subgraph of Σ induced on $\Sigma(\gamma)$ and hence this subgraph is the G ewirtz graph rather than its complement.
Note that $\Omega_{i}, 1 \leq i \leq 6$ are the orbits for J on $\bar{E}_{1}(\bar{\sigma})$. If \bar{B}_{3} normalizes K^{\prime} then K^{\prime} centralizes $\left\langle\bar{\sigma}, \bar{\mu}_{4}^{\bar{B}_{3}}\right\rangle=A$ and so $K^{\prime} \leq \bar{B}_{3}$, a contradiction. Since K^{\prime} is generated by the elements of $\Gamma_{2}=\bar{B} \cap K$ we conclude that \bar{B}_{3} does not normalize Γ_{2}. Thus some of the orbits of J must be fuzed by \bar{B}_{3}. Since J is normal in \bar{B}_{3}, only orbits with the same lengths can fuse. Thus $\Omega_{2} \cup \Omega_{6}$ is a single orbit of \bar{B}_{3}. The distribution diagram of $\bar{\Xi}$ enables us to identify $\Omega_{5}, \Omega_{3}, \Omega_{2} \cup \Omega_{4} \cup \Omega_{6}$, and Ω_{1} with $\Xi_{1}(\bar{\sigma}) \cap$ $\bar{\Xi}_{i}\left(\bar{\mu}_{3}\right)$ for $i=1,2,3$, and 4 , respectively. A vertex from Γ_{1} is adjacent to γ in $\bar{\Xi}$ if and only if the corresponding edge of Σ is fixed by γ. The parameters of the Gewirtz graph imply that γ is adjacent to $10,90,180$
vertices from Ω_{i} for $i=1,3$, and 4 , respectively. Since every vertex from Γ_{1} is adjacent to $28=280 \cdot\left|\Gamma_{2}\right| /\left|\Gamma_{1}\right|$ vertices from Γ_{2} and every vertex from Ω_{3} is adjacent to $4=90 \cdot\left|\Omega_{5}\right| /\left|\Omega_{3}\right|$ vertices of Ω_{5}, we observe that a vertex $v \in \Omega_{3}$ is adjacent to $24=28-4$ vertices from Ω_{6}. Since Ω_{2} and Ω_{6} are fuzed under \bar{B}_{3} this means that v is also adjacent to 24 vertices from Ω_{2}. Hence every vertex from $\bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{3}\left(\bar{\mu}_{3}\right)=\Omega_{2} \cup \Omega_{4} \cup \Omega_{6}$ is adjacent to a vertex from $\bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{1}\left(\bar{\mu}_{3}\right)=\Omega_{5}$ or a vertex from $\bar{\Xi}_{1}(\bar{\sigma}) \cap \bar{\Xi}_{2}\left(\bar{\mu}_{3}\right)=\Omega_{3}$ (or both).

Let Ψ be the image in $\bar{\Xi}$ of the subgraph Ψ in Ξ as in Lemma 4.4. Since none of the 2-point stabilizers of the action of \bar{C} on $\bar{\Xi}$ involve $U_{5}(2)$, every vertex from the antipodal block containing σ maps onto $\bar{\sigma}$ and we have the following
Lemma 5.2. Let $\bar{\Psi}$ be the image of Ψ in $\bar{\Xi}$. Then $\bar{\Psi}$ is the antipodal folding of Ψ which is a strongly regular graph with parameters

$$
v=672, \quad k=176, \quad l=495, \quad \lambda=40, \quad \mu=48
$$

The image \bar{W} of $W=C_{M_{\mu}}(z)$ in \bar{C} is isomorphic to $U_{6}(2) \cdot \operatorname{Sym}(3)$.
Since locally $\bar{\Psi}$ (as well as Ψ) is the commuting graph Θ of 3-central subgroups of order 3 in $U_{5}(2) \cdot 2$ which is strongly regular, it is easy to see that in terms of Lemma 5.1, $\bar{\Psi} \subseteq\{\bar{\sigma}\} \cup \bar{\Xi}_{1}(\bar{\sigma}) \cup \bar{\Xi}_{2}(\bar{\sigma})$.

Let $\varrho: \tilde{C} \rightarrow C^{M}$ be a covering of C^{M} such that there is a flat-transitive automorphism group of \mathcal{C} which commutes with ϱ and whose induced action on C^{M} coincides with that of $C /\langle z\rangle$. In particular ϱ can be the restriction to a connected component of C^{G} of the morphism of C^{G} onto C^{M} induced by the homomorphism $\chi: G \rightarrow M$. In this case \tilde{C} is the setwise stabilizer in $C_{G}(z) /\langle z\rangle$ of that connected component. Let $\tilde{\sim}$ be the kernel of the natural homomorphism of \tilde{C} onto $\tilde{C} \sim C / R$. Let $\tilde{\Xi}$ be the collinearity graph of \tilde{C} so that there is a natural morphism of $\tilde{\Xi}$ onto $\bar{\Xi}$.
Let Ψ and W be as in Lemma 4.4. Let $\bar{\Psi}$ be the image of Ψ in $\bar{\Xi}$ and \bar{W} be the image of W in \bar{C}. Let $\bar{\Psi}$ be a connected component of the preimage of Ψ_{\sim} under ϱ and let \tilde{W} be the stabilizer of $\tilde{\Psi}$ in the preimage of $W /\langle z\rangle$ in \tilde{C}.

Lemma 5.3. In the above notation $\tilde{\tilde{\Psi}}$ is isomorphic to $\Psi, \tilde{W} \sim W /\langle z\rangle \sim$ $2^{2} \cdot U_{6}(2) \cdot \operatorname{Sym}(3)$ and hence $\tilde{W} \cap \tilde{R}$ is elementary abelian of order 2^{2}.

Proof. The result follows from Lemma 4.4 and the fact that Ψ is the collinearity graph of the geometry U which is simply connected by [Me].

Let $\overline{T^{\prime}}(\bar{\sigma})$ be the set of images of $\bar{\Psi}$ under \bar{C} which contain $\bar{\sigma}$. Equivalently we can define $\overline{\mathrm{T}}(\bar{\sigma})$ to be the set of images of $\bar{\Psi}$ under
$N_{\bar{C}}(\bar{\sigma})$. Let $\tilde{\sigma}$ be a preimage of $\bar{\sigma}$ in $\tilde{C}_{\tilde{\sim}}$ Let $\tilde{T^{\prime}}(\tilde{\sigma})$ be the set of connected subgraphs $\tilde{\Phi}$ such that $\tilde{\sigma} \in \tilde{\Phi}$ and $\tilde{\Phi}$ maps onto some $\bar{\Phi} \in \underset{\tilde{C}}{ }(\bar{\sigma})$. If $\tilde{\Phi} \in \tilde{T}^{(}(\tilde{\sigma})$ and $\tilde{U}:=\tilde{C}(\tilde{\Phi})$ is the setwise stabilizer of $\tilde{\Phi}$ in \tilde{C}, then by Lemma 5.3, $O_{2}(U)=U \cap R$ is of order 2^{2}. Let

$$
\tilde{R}_{\sigma}=\left\langle O_{2}(\tilde{C}(\tilde{\Phi})) \mid \tilde{\Phi} \in \tilde{T}^{\tilde{\sigma}}(\tilde{\sigma})\right\rangle
$$

Lemma 5.4. $\quad \tilde{R}_{\sigma}=\tilde{R}$.

Proof. Let $\hat{\Xi}$ be the folding of $\tilde{\Xi}$ with respect to the orbits of \tilde{R}_{σ}. This means that the vertices of $\hat{\Xi}$ are the orbits of \tilde{R}_{σ} on the vertex set of $\tilde{\tilde{E}}$ with the induced adjacency relation. Notice that in the way it is defined $\hat{\boldsymbol{E}}$ is not necessary vertex-transitive although every automorphism from \tilde{C} stabilizing $\tilde{\sigma}$ can be realized as an automorphism of $\hat{\Xi}$. Nevertheless eventually we will see that $\hat{\Xi}$ is equal to \bar{E} and in particular it is vertex-transitive. Since the vertices of $\bar{\Xi}$ can be considered as orbits of \tilde{R} on $\tilde{\Xi}$ and \tilde{R}_{σ} is contained in \tilde{R}, there is a covering $\omega: \hat{\Xi} \rightarrow \bar{\Xi}$ and $\tilde{R}_{\sigma}=\tilde{R}$ if and only if ω is an isomorphism. Let $\hat{\sigma}$ be the image of $\tilde{\sigma}$ in $\hat{\Xi}$. Since \tilde{R}_{σ} is normalized by the stabilizer $\tilde{C}(\tilde{\sigma})$ of $\tilde{\sigma}$ in \tilde{C}, there is a subgroup $\hat{C}(\hat{\sigma})$ in the automorphism group of $\hat{\Xi}$ which stabilizes $\hat{\sigma}$ and maps isomorphically onto $\bar{C}(\bar{\sigma}) \sim 3 \cdot$ Suz 2 . We will identify $\hat{C}(\hat{\sigma})$ and $\bar{C}(\bar{\sigma})$. For $\hat{\delta} \in \hat{\Xi}$ let $\hat{\Xi}_{1}(\hat{\delta})$ be the set of vertices adjacent to $\hat{\delta}$ in $\hat{\Xi}$. Since ω is a covering, the subgraph induced on $\hat{\Xi}_{1}(\hat{\delta})$ is isomorphic to Δ and if $\hat{\delta}=\hat{\sigma}$ then $\hat{C}(\hat{\sigma})$ induces the full automorphism group of this subgraph. H ence $\hat{C}(\hat{\sigma})$ has exactly three orbits, on the vertices at distance 2 from $\hat{\sigma}$. We denote these orbits by $\hat{\Xi}_{i}(\hat{\sigma})$, so that $\omega\left(\hat{\Xi}_{i}(\hat{\sigma})\right)=\bar{\Xi}_{i}(\bar{\sigma})$ for $2 \leq i \leq 4$. Let $\hat{\mu}_{i} \in \hat{\Xi}_{i}(\hat{\sigma})$ and $\hat{B}_{i_{A}}$ be the stabilizer of $\hat{\mu}_{i}$ in $\hat{C}(\vec{\sigma})$. We assume that there is a vertex $\hat{\mu}_{1} \in \hat{\Xi}_{1}(\hat{\sigma})$, adjacent to $\hat{\mu}_{i}$ for $2 \leq i \leq 4$ and that $\hat{\mu}_{3}$ is adjacent to $\hat{\mu}_{2}$ and $\hat{\mu}_{4}$. A ssuming also that $\omega\left(\hat{\mu}_{i}\right)=\bar{\mu}_{i}$, we can consider \hat{B}_{i} as a subgroup in $\bar{B}_{i}, 1 \leq i \leq 4$. Notice that \hat{B}_{i} acts transitively on the set $\hat{\vec{E}}_{1}(\hat{\sigma}) \cap \hat{\Xi}_{1}\left(\hat{\mu}_{i}\right)$. Since ω is a covering, the subgraph induced by $\hat{\Xi}_{1}(\hat{\sigma}) \cap$ $\hat{E}_{1}\left(\hat{\mu}_{2}\right)$ is union of m disjoint copies of $K_{4,4,4}$ where $1 \leq m \leq 40$. For $\tilde{\Phi} \in \tilde{T}^{(}(\tilde{\sigma})$ the image $\hat{\Phi}$ of $\tilde{\Phi}$ in \hat{E} is isomorphic to $\bar{\Psi}$ as in Lemma 5.2 and is contained in $\{\hat{\sigma}\} \cup \hat{\Xi}_{1}(\hat{\sigma}) \cup \hat{\Xi}_{2}(\hat{\sigma})$. The parameters of $\bar{\Psi}$ imply that $m \geq 3$. Since \bar{B}_{2} acts primitively on the 40 copies of $K_{4,4,4_{\hat{A}}}$ as in Lemma 5.1(c) we have $m=40$ and $\hat{B}_{2}=\bar{B}_{2}$. By Lemma 5.1(c), \hat{B}_{2} has three orbits on the vertices from $\hat{\Xi}_{1}\left(\hat{\mu}_{2}\right)$ with lengths 480, 5120, and 17,280, moreover, these orbits are contained in $\hat{\Xi}_{i}(\hat{\sigma})$ for $i=1,2$, and 3, respectively. In particular $\hat{B}_{2} \cap \hat{B}_{3}$ has order divisible by 2^{7}. By Lemma $5.1(\mathrm{~d})$ the stabilizer in B_{3} of a vertex from $\hat{\Xi}_{1}(\hat{\sigma}) \cap \hat{\Xi}_{1}\left(\hat{\mu}_{2}\right)$ has order not divisible by 2^{7} and so $\hat{B}_{3} \cap \hat{B}_{1}$ is a maximal subgroup of \bar{B}_{3} not containing $\hat{B}_{2} \cap \hat{B}_{3}$. Thus $\hat{B}_{3}=\bar{B}_{3}$. A rguing similarly $\hat{B}_{3} \cap \hat{B}_{4}$ and $\hat{B}_{1} \cap \hat{B}_{4}$ are two
different maximal subgroups of \bar{B}_{4} and so $\hat{B}_{4}=\bar{B}_{4}$. Let $\hat{\rho}$ be a vertex adjacent to $\hat{\mu}_{i}$ for $i=2$ or 4 . By Lemma 5.1(c), $\hat{\rho}$ is conjugate under $\hat{C}(\hat{\sigma})$ to $\hat{\mu}_{j}$ for some $1 \leq j \leq 4$, except maybe in the case where $\hat{\rho}$ is adjacent to $\hat{\mu}_{2}$ and $\hat{\rho}$ maps onto an element of $\bar{\Xi}_{2}(\bar{\sigma})$. In the latter case we see from the distribution diagram of Δ that such a $\hat{\rho}$ can already be found in the residue of μ_{1}. Hence in any case a vertex adjacent to $\hat{\mu}_{i}$ for $i=2$ or 4 is in $\hat{E}_{j}(\hat{\sigma})$ for $1 \leq j \leq 4$. Suppose that there is a vertex \hat{v} which is adjacent to $\hat{\mu}_{3}$ and whose distance from $\hat{\sigma}$ is 3 . By Lemma $5.1(\mathrm{~g})$ there must be a vertex in $\hat{\Xi}_{1}\left(\hat{\mu}_{3}\right) \cap \hat{\Xi}_{j}(\hat{\sigma})$ for $j=1$, or 2 which is adjacent to $\hat{\nu}$. As we have seen above, this is impossible. Hence there are no vertices at distance 3 from $\hat{\sigma}$ and ω is an isomorphism.

COROLLARY 5.5. \bar{C} is the universal completion of the amalgam $\left(\bar{C}_{1}, \bar{C}_{2}, \bar{C}_{12}, \bar{W}\right)$.

6. CONSTRUCTION OF THE 2-LOCALS

As above let G denote the universal completion of the amalgam ($M_{i} \mid i=1,2,3,8$) and χ be the homomorphism of G onto M which is identical on this amalgam. We will consider the M_{i} 's as subgroups both in M and G. The group G acts flag-transitively on the universal cover G of M. The points, lines, planes, and quadrics in G and M are the cosets of M_{1}, M_{2}, M_{3}, and M_{8} in G and M, respectively. We follow notation introduced in the beginning of Section 4, so that X stays for an arbitrary completion of the amalgam which has M as an quotient.

Let $\sigma=M_{1}$ viewed as a point stabilized by $M_{1}, d=M_{8}$ viewed as a quadric stabilized by M_{8}, z an involution from $P_{1}^{*}, C=C_{M}(z) \sim 2_{+}^{1+24}$. $C_{\sim} o_{1}$, and $R=O_{2}(C)$. O ur nearest goal is to construct in $C_{G}(z)$ a subgroup \tilde{C} which maps isomorphically onto C. As above let \exists be the graph on the set of points τ with $z \in P_{\tau}^{*}$ in which two points are adjacent if they are incident to a common quadric. We will obtain \tilde{C} as the stabilizer in $C_{G}(z)$ of the connected component of Ξ containing σ. Let Ω be a maximal clique in \exists containing σ, H be the setwise stabilizer of Ω in $C_{X}(z)$, and put $A=O_{3}(H)$. Then by Lemma 4.1, $H \sim\langle z\rangle \times 3^{6} \cdot 2 \cdot \mathrm{M}$ at ${ }_{12}$, moreover there is a unique point α collinear to σ, and inverted by z, such that $H=C_{M_{\alpha}}(z)$ and $O_{3}(H)=P_{\alpha} \cap H$. We use notation introduced in Lemma 4.2, so that A and B are orbits of $\bar{H}=H /\langle A, z\rangle$ on the set of subgroups of order 3 in A with lengths 12 and 132, respectively, while L is the unique orbit of length 12 of \bar{H} on the set of hyperplanes of A. Then it is straightforward to identify A with the vertices in Ω.

Let $\{\sigma, \delta\}$ be the edge of Ω incident to d. Then $\langle\sigma, \delta\rangle=C_{Q_{d}}(z)$. Besides σ and δ there are two subgroups, say ρ and ρ^{\prime} of order 3 in
$C_{Q_{d}}(z)$. These subgroups are of Fischer type, and lie in the orbit B. Since $\rho \leq P_{\alpha}$ we can define M_{ρ} as in Lemma 2.2. Since $C_{M_{d}}(z) \sim 2.3^{2} \cdot U_{4}(3) \cdot D_{8}$, we have $C_{M_{d}}(z) \cap M_{\rho} \sim 2.3^{2} \cdot U_{4}(3) \cdot 2^{2}$. M oreover by Lemma 3.2, z is a 2-central involution in M_{ρ} and

$$
C_{M_{p}}(z) \sim\left(3 \times 2_{+}^{1+12}\right) \cdot 3 \cdot U_{4}(3) \cdot 2^{2} .
$$

Put $C_{0}=C_{M_{\rho}}(z)$ and $R_{0}=O_{2}\left(C_{0}\right)$. Recall the choice of μ and the definition of W before Lemma 4.4. In particular $\sigma, \delta \leq W$ and both σ and δ act non-trivially on $O_{2}(W)$. Thus one of ρ and ρ^{\prime} centralizes $O_{2}(W)$. We choose notation so that ρ centralizes $O_{2}(W)$. Recall the definition of $C_{i}, i=1,2,3,12$ before Lemma 4.3, where we choose $\Omega_{2}=$ $\{\sigma, \delta\}$. So $C_{1}=C_{M_{\sigma}}(z), C_{2}=C_{M_{\{\sigma, \delta\}}}(z)$, and $C_{12}=H=C_{M_{\alpha}}(z)$.
Lemma 6.1. (a) $R=\Pi_{L \in L} C_{R}(L)$;
(b) $R_{0}=\prod_{\rho \leq L \in L} C_{R}(L)$.

Proof. The image in $C / R \cong C o_{1}$ of H is the full normalizer of the image of A which shows that $R_{0} \leq R$ and $R_{0}=C_{R}(\rho)$. Note that [$R /\langle z\rangle, A$] is a non-trivial $G F(2)$-module for H of dimension at most 24. The restriction of this module to A is a direct sum of irreducible 2-dimensional modules and the kernel of such a summand is a hyperplane. The hyperplanes appearing as kernels form a union of orbits under \bar{H}. By Lemma 4.2 there are no orbits of length less than 12 and L is the only orbit of length 12. This implies (a). Since ρ acts fixed-point freely on R / R_{0}, we have (b).
Proposition 6.2. C is the universal completion of the amalgam $\left(C_{0}, C_{1}, C_{2}, C_{12}, W\right)$ of subgroups of C.
Proof. Let \tilde{C} be the universal completion of the amalgam and as usual view the C_{i} and W has subgroups of C. By Lemma 4.4(b), $C_{2} \cap W \sim 3^{2}$. $U_{4}(2) \cdot 2$ and so $C_{2} \cap W$ normalizes no non-trivial 2 -subgroup of $O^{2}\left(C_{0} / R_{0}\right)$. Thus $O_{2}(W) \leq R_{0}$.

Since $H \cap W \sim 3^{4+1} \cdot 2 \cdot \operatorname{Sym}(6)$ we conclude from Lemma 4.2 applied to the dual of A that $(H \cap W) A=N_{H}(A \cap W)$ and that there exists unique elements L_{1} and L_{2} in L with $L_{1} \cap L_{2} \leq A \cap W$. Let $U=$ $\left\langle O_{2}(W)^{A}\right\rangle$. Then $U /\langle z\rangle$ is a subspace in $R_{0} /\langle z\rangle$ of dimension at least 4 centralized by $C_{A}\left(O_{2}(W)\right)$. Thus by Lemma 6.1(b), $C_{A}\left(O_{2}(W)\right)$ is the intersection of two members of L . Hence $C_{A}\left(O_{2}(W)\right)=L_{1} \cap L_{2}, U=$ $C_{R_{0}}\left(L_{1}\right) C_{R_{0}}\left(L_{2}\right), \rho \leq L_{1} \cap L_{2}$, and $|U|=2^{5}$.
Put $V=C_{R_{0}}\left(L_{1}\right)$. We conclude from Lemma 6.1(b) that $N_{H \cap C_{0}}(V) \sim$ $3^{6} \cdot 2 \cdot \operatorname{Sym}(5)$. On the other hand $(H \cap W)^{\infty}$ is normal in $(H \cap W) A$ and so $(H \cap W)^{\infty}$ centralizes all conjugates of $O_{2}(W)$ under A. Thus
$(H \cap W)^{\infty} \leq N_{H}(V)$. It follows that $N_{H}(V)=\left\langle N_{H \cap C_{0}}(V),(H \cap W)^{\infty}\right\rangle \sim$ $3^{6} \cdot 2 \cdot \mathrm{M}$ at ${ }_{11}$. In particular, H acts doubly transitive on the 12 elements of $V_{\tilde{R}}^{H}$ and since $V V^{h} \cong 2_{+}^{1+4}$ for $h \in H \cap C_{0} \backslash N_{H}(V)$ we conclude that $\tilde{R}:=\left\langle V^{H}\right\rangle \cong 2_{+}^{1+24}$.

We claim that $\dot{\tilde{R}}$ is normal in \tilde{C}. By definition H normalizes \tilde{R}. M oreover, $R_{0}=\left\langle V^{H \cap C} C_{0}\right\rangle$. Let $t \in H \cap C_{2} \backslash C_{0}$. As $C_{0} \cap C_{2}$ is of index two in C_{2}, t normalizes $C_{0} \cap C_{2}$. Also t permutes ρ and ρ^{\prime} and we conclude that $\tilde{R}=R_{0} R_{0}^{t}$ is normalized by $R_{0}, C_{0} \cap C_{2}$, and t. Thus both $C_{0}=R_{0}\left(C_{0} \cap C_{2}\right)$ and $C_{2}=\left(C_{0} \cap C_{2}\right)\langle t\rangle$ normalize R. Since $C_{1}=$ $\left\langle C_{1} \cap C_{2}, C_{1} \cap \underset{\sim}{H}\right\rangle, \tilde{R}$ is indeed normal in \tilde{C}.
Note that \tilde{C} / \tilde{R} is a completion of the amalgam

$$
\left(C_{1} \tilde{R} / \tilde{R}, C_{2} \tilde{R} / \tilde{R}, C_{12} \tilde{R} / \tilde{R}, W \tilde{R} / \tilde{R}\right) .
$$

As $O_{2}(W) \leq \tilde{R}$, we can apply Corollary 5.5 and conclude that $\tilde{C} / \tilde{R} \cong \bar{C} \cong$ ${ }_{\tilde{C}} \mathrm{Co}_{1}$. Thus $\tilde{C} \sim 2_{+}^{1+24} \cdot \mathrm{Co}_{1}$ and since C is a quotient of \tilde{C}, we obtain $\tilde{C} \cong C$.

In view of the preceding proposition our nearest goal is to find such an amalgam inside of G. The first part, namely finding the subgroups, is already accomplished. Indeed the groups $C_{0}, C_{1}, C_{2}, C_{12}=H$ and W had been defined for X, in particular for G and for M. It remains to show that the pairwise intersections are the same when regarded as subgroups of G and M, respectively. The fact that the pairwise intersections between C_{1}, C_{2}, H, and W are correct follows immediately from the definitions of these groups. A lso $H \leq M_{\alpha}$ and $C_{2} \leq M_{d}$. Since ρ is perpendicular to Q_{α} in Q_{d} we conclude from Lemma 2.2 that C_{0} intersects C_{2} and H correctly. M oreover, $N_{C_{1}}(\rho) \leq N_{M_{\sigma}}(\rho) \leq N_{M_{\sigma}}(\langle\sigma \delta\rangle) \leq M_{d}$ and so C_{0} and C_{1} intersect correctly. It remains to check the intersection $C_{0} \cap W$. As $C_{0} \leq M_{\rho}$ and $W \leq M_{\mu}$ this is accomplished by

$$
\text { Lemma 6.3. } \quad N_{M_{\rho}}(\mu)=M_{\rho} \cap M_{\mu} \text {. }
$$

Proof. Let $F=\rho \mu$. Then F is a non-degenerated 2-space of "plus"type with respect to the M_{d} invariant quadratic form on Q_{d}. Hence $N_{M_{d}}(\rho, \mu) \sim 3^{8} \cdot \Omega_{6}^{-}(3) \cdot 2$ and F / ρ is of type $3 C$ in $M_{\rho} / \rho \cong M(24)$ (compare [At]). This shows that $N_{M_{p}}(\mu)=N_{M_{d}}(\rho, \mu) \leq N_{M_{d}}(\mu) \leq M_{\mu}$.

Corollary 6.4. Let \tilde{C} be the subgroup of G generated by C_{0}, C_{1}, C_{2}, H, and W. Then $\tilde{C} \sim 2_{+}^{1+24} \cdot C o_{1}$ and \tilde{C} is the normalizer of the connected component of Ξ containing σ.

We now proceed finding the remaining terms E_{4} and E_{8} (cf. Section 3) of the 2-local geometry of M. Of the 3-local subgroups considered so far
only the normalizers of F ischer type subgroups contain a conjugate of E_{4}. (This follows from the fact E_{4} centralizes all subgroups of odd order in M which are normalized by E_{4}.) This is not enough to reconstruct N as a subgroup of G and we are forced to first locate a further 3-local subgroup of G containing E_{4}. By Lemma $4.2(\mathrm{~g})$ there exists a 2 -space F in A all of whose 1 -spaces are in B and so of Fischer type. M oreover $N_{H}(F) / C_{H}(F) \cong G L_{2}(3)$ and there exists L_{1}, L_{2} in L with $F \leq L_{1} \cap L_{2}$. Choose F so that $\rho \leq F$ and let δ be a further Fischer type subgroup of F.

We are trying to locate subgroups of $N_{G}(F)$ and for this we will produce a quadric d^{\prime} with $F \leq Q_{d^{\prime}}$. Let z^{\prime} be an involution in H so that $P_{\alpha}^{*} z=P_{\alpha}^{*} z^{\prime}$, but $P_{\alpha} z \neq P_{\alpha} z^{\prime}$. Then by Lemma 3.3(b), $z^{\prime}=z^{r}$ for some $r \in M_{\alpha}$. Let $A^{\prime}=A^{r}$ and $\Omega^{\prime}=\Omega^{r}$. Since $\sigma_{i}=C_{A^{\prime}}\left(L_{i}\right)$ has 12-conjugates under $H \cap H^{r} \sim 2^{2} \cdot \mathrm{M}$ at $_{12}, \sigma_{i} \in \Omega^{\prime}$. Thus $\left\{\sigma_{1}, \sigma_{2}\right\}$ is an edge in Ω^{\prime} and there exists a unique quadric d^{\prime} adjacent to α, σ_{1}, and σ_{2}. In $Q_{d^{\prime}}$, we see that $Q_{d^{\prime}} \cap P_{\alpha}=\sigma_{1} \sigma_{2}\left[Q_{d^{\prime}} \cap P_{\alpha}, z^{\prime}\right]$ and $\left[Q_{d^{\prime}} \cap P_{\alpha^{\prime}} z^{\prime}\right]$ has order 3^{5}. As $\left[Q_{\alpha}, z^{\prime}\right]=A Q_{\alpha}$ and $C_{A Q_{\alpha}}\left(\sigma_{1} \sigma_{2}\right)$ has order 3^{5} we conclude that $C_{A Q_{\alpha}}\left(\sigma_{1} \sigma_{2}\right)=\left[Q_{d^{\prime}} \cap P_{\alpha}, z^{\prime}\right]$. Hence $F \leq Q_{d^{\prime}}$.

Since all 1-spaces in F are of Fischer type, F is a non-degenerate 2-space of "minus"'type in $Q_{d^{\prime}}$ and $C_{M_{d}}(F) \sim 3^{8} \cdot \Omega_{6}^{+}(3)$. Since $C_{M_{d}}(F) \leq$ M_{ρ} we conclude [At] that F / ρ is of type $3 A$ in M_{ρ} / ρ, which means that $C_{M_{p}}(F) \sim 3^{2} \cdot P \Omega_{8}^{+}(3)$. Let g be a point incident to d^{\prime} such that Q_{g} is perpendicular to F in $Q_{d^{\prime}}$. Then Q_{g} is centralized by a Sylow 3-subgroup of $C_{M_{d}}(F)$. Hence $Q_{g} F / F$ is 3-central in $C_{M_{d}}(F) / F$ and so also 3-central in $C_{M_{\rho}}(F)$. Thus $C_{M_{\rho}}(F) \cap N_{M_{\rho}}\left(Q_{g}\right)$ is a maximal subgroup of $C_{M_{p}}(F)$ different from $C_{M_{d}}(F)$. Hence

$$
C_{M_{\rho}}(F)=\left\langle C_{M_{d^{\prime}}}(F), C_{M_{\rho}}(F) \cap N_{M_{\rho}}\left(Q_{g}\right)\right\rangle \leq\left\langle N_{M_{d^{\prime}}}(\delta), N_{M_{g}}(\delta)\right\rangle \leq M_{\delta} .
$$

Put $T=C_{M_{\rho}}(F)$. We conclude that $T=C_{M_{\delta}}(F)$ and so $N_{H}(F)$ normalizes T. Put $M_{F}=T N_{H}(F)$. Then $M_{F} \sim\left(3^{2} \times P \Omega_{8}^{+}(3)\right) \cdot G L_{2}(3)$ and in particular, M_{F} maps isomorphically onto the full normalizer of F in M.
Note that $C_{M_{F}}(z)=N_{H}(F) C_{T}(z) \subseteq H C_{M_{\rho}}(z) \subseteq \tilde{C}$. As z centralizes F, $z \in O^{3}(T)=T^{\prime} \cong P \Omega_{8}^{+}(3)$. As $N_{H}(F)$ induces the full group of outer automorphisms on T^{\prime} and by [At], T^{\prime} has a unique class of involutions invariant under all automorphisms, z is 2-central in T^{\prime}. In particular, there exists a pure Conway foursgroup E in T^{\prime} with $z \in E \leq O_{2}\left(C_{T},(z)\right) \leq$ $O_{2}\left(C_{M_{\rho}}(z)\right)=R_{0} \leq \tilde{R}$. Let t be an involution in E distinct from z. Then $t=z^{g^{\rho}}$ for some $g \in T^{\prime} \leq M_{\rho} \cap M_{F}$. Put $\tilde{C}_{t}=\tilde{C}^{g}$. Then by conjugation of the corresponding statements for z we get $C_{M_{\rho}}(t) \leq \tilde{C}_{t}$ and $C_{M_{F}}(t) \leq \tilde{C}_{t}$.

Lemma 6.5. $\quad C_{\tilde{C}}(E) \leq \tilde{C}_{t}$ 。
Proof. Put $C_{E}=C_{\tilde{C}}(E)$. Then $C_{E} \sim 2^{2+11+22} \cdot \mathrm{M}$ at ${ }_{24}$. M oreover $C_{E} \cap$ $M_{\rho}=N_{C_{E}}(\rho)$ and so modulo $O_{2}\left(C_{E}\right), C_{E} \cap M_{\rho}$ has shape 3• Sym(6). Similarly modulo $O_{2}\left(C_{E}\right)$ the intersection $C_{E} \cap M_{F}$ is of shape $3^{2} \cdot G L_{2}$ (3). By [At] no proper subgroup of Mat_{24} has two such subgroups and thus $C_{E}=\left\langle C_{E} \cap M_{\rho}, C_{E} \cap M_{F}\right\rangle O_{2}\left(C_{E}\right)$. Since ρ has fixed points on any composition factor for C_{E} on $O_{2}\left(C_{E}\right)$ this implies

$$
C_{E}=\left\langle C_{E} \cap M_{\rho}, C_{E} \cap M_{F}\right\rangle \leq \tilde{C}_{t} .
$$

Let E_{8} be a pure Conway type eight subgroup of T^{\prime} such that $E_{8} \leq$ $O_{2}\left(C_{T},(x)\right)$ for all $1 \neq x \in E_{8}$ and $E \leq E_{8}$. Put $E_{4}=E$ and for $i=4,8$ put $C_{E_{i}}=\bigcap_{1 \neq x \in E_{i}} C_{x}$. Then by Lemma 6.5, $C_{E_{i}}=C_{\bar{C}}\left(E_{i}\right)$. M oreover $N_{N}\left(E_{i}\right)$ normalizes $C_{E_{N}}$ and induces on E_{i} its full automorphism group. Put $\tilde{N}=C_{E_{4}} N_{T}\left(E_{4}\right)$ and $\tilde{L}=C_{E_{8}} N_{T}\left(E_{8}\right)$. Then χ maps the amalgam $(\tilde{C}, \tilde{N}, \tilde{L})$ isomorphically onto the amalgam (C, N, L) as in Section 3. Let M be the group generated by \tilde{C}, \tilde{N}, and \tilde{L}. Then by Lemma $3.1, \chi$ maps \tilde{M} isomorphically onto M. Thus to complete the proof of Lemma 1.6 it remains to show that $G=M$. For this note first that M_{ρ} is generated by its intersection with C and N. M oreover, M_{1} and M_{8} are both generated by their intersections with M_{ρ} and \tilde{C}. Finally M_{1} and M_{8} generate G and so $G=\bar{M}$ and Lemma 1.6 is proved.

REFERENCES

[A s] M. A schbacher, Sporadic groups in "Cambridge Tracts in M athematics," V ol. 104, Cambridge U niv. Press, Cambridge, UK, 1994.
[At] J.H.Conway, R.T.Curtis, S. P. Norton, R.A. Perkel, and R.A. Wilson, "A tlas of Finite Groups," Clarendon, Oxford, 1985.
[BCN] A. E. Brouwer, A. M. Cohen, and A. Neumaier, "Distance-R egular Graphs," Springer-V erlag, Berlin, 1989.
[BvL] A.E. Brouwer and J. H. van Lint, Strongly regular graphs and partial geometries, in "E numeration and Design," pp. 85-122, A cademic Press, Toronto, 1984.
[BF] F. Buekenhout and B. Fischer, A locally dual polar space for the Monster, unpublished manuscript, dated around 1983.
[DM] C. Dong and G. Mason, The construction of the Moonshine module as a $Z_{p}{ }^{-}$ orbifold, in " M athematical A spects of Conformal and Topological Field Theories and Quantum Groups" 37-52, Contemp. Math. 175 AM S, 1994.
[Iv1] A. A. Ivanov, A geometric characterization of the M onster, in "G roups, Combinatorics and Geometry" (M. Liebeck and J. Saxl, Eds.) pp. 46-62, London M ath. Soc. Lecture Notes, V ol. 165, Cambridge U niv. Press, Cambridge, 1992.
[Iv2] A. A. Ivanov, On the Buekenhout-Fischer geometry of the Monster, in "M oonshine, the M onster and Related Topics" (C. Dong and G. M ason, Eds.) pp. 149-158, Contemp. Math., V ol. 193, Amer. Math. Soc., Providence, 1996.
[ILLSS] A. A. Ivanov, S. A. Linton, K. Lux, J. Saxl, and L. H. Soicher, D istance-transitive representations of the sporadic groups, Comm. Algebra 23, No. 9 (1995), 3379-3427.
[IS] A. A. Ivanov and G. Stroth, A characterization of 3-local geometry of $M(24)$, Geom. Dedicata, 63 (1996) no. 3 227-246.
[MoAt] Ch. Jansen, K. Lux, R. A. Parker, and R. A. Wilson, "An Atlas of Brauer Characters," Clarendon, Oxford, 1995.
[M e] T. M eixner, Some polar towers, European J. Combin. 12, (1991), 397-415.
[PS] C. E. Praeger and L. H. Soicher, Low rank representations and graphs for sporadic groups, in "A ustral. M ath. Soc. Lect. Ser. 8," Cambridge U niv. Press, Cambridge, UK, (1997).
[RS] M.Ronan and G. Stroth, Minimal parabolic geometries for the sporadic groups, European J. Combin. 5 (1984), 59-91.
[W i] R.A. Wilson, The odd-local subgroups of the M onster, J. Austral. Math. Soc. Ser. A 44 (1988), 1-16.
[Y o] S. Y oshiara, On some extended dual polar spaces, I, European J. Combin. 15 (1994), 73-86.

