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We consider the 3-local geometry MM of the Monster group M introduced as a
yŽ .locally dual polar space of the group V 3 and independently in the context of8

minimal p-local parabolic geometries for sporadic simple groups. More recently
the geometry appeared implicitly within the Z -orbifold construction of the Moon-3

shine module V h. In this paper we prove the simple connectedness of MM. This
result makes unnecessary the refereeing to the classification of finite simple groups
in the Z -orbifold construction of V h and realizes an important step in the3
classification of the flag-transitive c-extensions of the classical dual polar spaces.
We make use of the simple connectedness results for the 2-local geometry of M
and for a subgeometry in MM which is the 3-local geometry of the Fischer group
Ž .M 24 . Q 1997 Academic Press

1. INTRODUCTION

The Monster group M acts flag-transitively on a diagram geometry MM

which is described by the diagram
c*

o o o o .
3 13 9
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The elements of MM corresponding to the nodes from the left to the right
on the diagram are called points, lines, planes, and quadrics, respectively.
The residue of a quadric is the classical polar space associated with the

yŽ .group V 3 . The quadrics and planes incident to a line form the geome-8
try of vertices and edges of a complete group on 11 vertices. The existence

w x w xof MM was independently established in BF, RS . We follow BF to review
briefly the construction of MM and to formulate its basic properties. The
starting point is the description of conjugacy classes of the subgroups of

w xorder 3 in the Monster At .

LEMMA 1.1. In the Monster group M e¨ery element of order 3 is conjugate
to its in¨erse and there are exactly three conjugacy classes of subgroups of order
3 with representatï es s , m, and t , so that

Ž . Ž . 1q12a N s ; 3 ? 2 ? Suz ? 2, where Suz is the Suzuki sporadicM
simple group;

Ž . Ž . Ž . Ž .b N m ; 3 ? M 24 , where M 24 is the largest sporadic FischerM
3-transposition group;

Ž . Ž . Ž .c N t ; Sym 3 = F , where F is the sporadic simple group dis-M 3 3
co¨ered by Thompson.

We define a subgroup of order 3 in M to be of Suzuki, Fischer,
or Thompson type if it is conjugate to s , m, or t from Lemma 1.1,
respectively.

A crucial role in the construction of MM is played by a subgroup
8 yŽ . Ž .M ; 3 ? V 3 ? 2 in MM. If Q s O M then M rQ is an extension of8 8 8 3 8 8 8

yŽ .the simple orthogonal group V 3 by an automorphism of order 2, Q is8 8
Ž .the natural orthogonal module for M rQ , and N Q s M .8 8 M 8 8

LEMMA 1.2. Let w be the orthogonal form of minus type on Q preser̈ ed8
by M rQ . Then M rQ acting on the subgroups of order 3 in Q has two8 8 8 8 8
orbits I and N such that

Ž . < <a I s 1066, the subgroups in I are isotropic with respect to w and of
Ž . 6 Ž . 2Suzuki type in M; for s g I we ha¨e N s ; 3 ? 2 ? U 3 ? 2 ;M r Q 48 8

Ž . < <b N s 2214, the subgroups in N are non-isotropic with respect to w
Ž . Ž .and of Fischer type in M; for m g N we ha¨e N m ; Q 3 ? 2.M r Q 78 8

2Ž . yŽ .Proof. Under the action of O M rQ ; V 3 the set of order 38 8 8
subgroups in Q splits into three orbits I, N , N with lengths 1066, 1107,8 1 2

6 Ž . Ž . Ž .1107 and stabilizers isomorphic to 3 ? 2 ? U 3 ? 2, V 3 ? 2, V 3 ? 2,4 7 7
Ž w x. 17respectively cf. At . As 3 divides the order of each of the stabilizers

there are no Thompson type subgroups in Q and as the elements of I are8
7 Ž .3-central they are of Suzuki type. By Lagrange 3 V 3 is not involved in7

Suz and since 31q12 has no elementary abelian subgroup or order 38, N1
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Ž .and N consist of Fischer type subgroups. Finally, in M 24 all subgroups2
7 Ž .of order 3 whose normalizers involve V 3 are conjugated. Hence N7 1

and N fuse into a single M rQ -orbit.2 8 8

By Lemma 1.2 the polar space acted on flag-transitively by M rQ can8 8
be identified with the Suzuki-pure subgroups in Q with two subgroups8
being incident if one of them contains the other one. Let Q , Q , Q be1 2 3

< < iSuzuki-pure subgroups in Q with Q - Q - Q , so that Q s 3 for8 1 2 3 i
1 F i F 3. Then the points, lines, planes, and quadrics in MM are defined to
be the subgroups in M conjugate to Q , Q , Q , and Q , respectively, with1 2 3 8

� 4 Ž .FF s Q , Q , Q , Q being a maximal flag. Let M s N Q be the maxi-1 2 3 8 i M i
mal parabolic subgroup corresponding to the flag-transitive action of M on
MM. Then M is as above while M is the normalizer of a Suzuki type8 1

Ž . 1q12subgroup Q which we will also denote by s and M ; 3 ? 2 ? Suz ? 21 1
Ž .by Lemma 1.1 a . The stabilizer of FF in M contains a Sylow 3-subgroup of

M. Hence for two elements of MM to be incident it is necessary for their
common stabilizer in M to contain a Sylow 3-subgroup. Let P si

Ž . UO M , P be the kernel of the action of M on the residue of Q in MM3 i i i i
Uand M s M rP for i s 1, 2, 3, and 8. It is clear that Q F P and thati i i i i

Q s P s PU. For i s 1, 2, 3, and 8 we denote by MM the set of points,8 8 8 i
lines, planes, and quadrics in MM, respectively. For an element a in MM we

Ž .denote by MM a the set of elements in MM incident to a .i i
Let S be the graph on the Suzuki type subgroups in Q in which two8

subgroups are adjacent if they are orthogonal with respect to w. Then S is
strongly regular with parameters

¨ s 1066, k s 336, l s 729, l s 92, m s 112

Žthat is, S has ¨ s 1066 vertices, every vertex has k s 336 neighbors and
l s 729 vertices in distance two, two adjacent vertices have l s 92 com-
mon neighbors, and two vertices of distance two have m s 112 common

.neighbors .
The quotient M rQ induces a rank 3 action on S, so that if s g S8 8

Ž . Ž .then N s acts transitively on the set S s of points adjacent to sM r Q 18 8
Ž .in S and on the set S s of points at distance 2 from s .2

The next statement follows from standard properties of classical groups.

Ž . Ž .LEMMA 1.3. Let L s N s and z be an in¨olution from O L .M r Q 3, 28 8

Then

Ž . 6 Ž . 2a L ; 3 ? 2 ? U 3 ? 2 and Q , as a module for L, has a unique4 8
composition series:

² : H1 - s - S s s s - Q ;Ž .1 8
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Ž . H Ž .b both s rs and O L are isomorphic to the natural orthogonal3
2Ž . Ž . Ž . yŽ .module for O L rO L ; 2 ? U 3 ; 2 ? PV 3 ;3 4 6

Ž . Ž . Ž .c O L acts regularly on S s ;3 2

Ž . H Ž .d z acts fixed point-freely on s rs and on O L ; it centralizes a3
Ž . Ž . ² :unique subgroup « g S s and C z s s , « is 2-dimensional contain-2 Q8

ing two subgroups of Suzuki and two subgroups of Fischer type.

Ž .Since N s contains a Sylow 3-subgroup of M, it contains P sM 18
Ž Ž .. Ž . HO N s . By Lemmas 1.1 a and 1.3, we have P l Q s s , P Q s3 M 1 8 1 8
Ž Ž ..O N s and z acts fixed-point freely on P rQ . This shows that all the3 M 1 18 U ² :points collinear to s are contained in P and that P s P z . Let « be1 1 1

Ž . ² Ž .:as in Lemma 1.3 d . Then Q s « , C « is uniquely determined by «8 P1

and s . So if QU is another quadric containing s then Q l QU is a point,8 8 8
Ua line, or a plane. Furthermore, the image d of Q in M s M rP ;8 1 1 1

UŽ . Ž .Suz ? 2 is a subgroup of order 3. Moreover, N s rP s N d ; 3 ?M 1 M8 12Ž . w xU 3 ? 2 and by At is a maximal subgroup in M . Thus the quadrics from4 1
Ž .MM s correspond to 3-central subgroups of order 3 in M . The next8 1

Ž w x.lemma cf. BCN, Sect. 13.7 describes the action of M on its 3-central1
subgroups of order 3.

LEMMA 1.4. The group S ; Suz ? 2 acting on the set D of its subgroups of
Ž . 2order 3 with normalizer U ; 3 ? U 3 ? 2 has rank 5 with subdegrees 1, 280,4

486, 8505, and 13,608. If D denotes also the graph of ¨alency 280 in¨ariant
under this action, then:

Ž . Ž .a two distinct ¨ertices of D commute as subgroups in S if and only if
they are adjacent;

Ž .b D is distance-transitï e with distribution diagram gï en on Fig. 1
and S is the full automorphism group of D.

Ž . < <c if K is a maximal clique in D then K s 11, the setwise stabilizer T
5 Ž . Ž .of K is a maximal subgroup in S, and T ; 3 ? 2 = Mat , so that O T is11 3
Ž .generated by the subgroups from K and TrO T ; Mat acts 5-transitï ely3, 2 11

Ž .on the ¨ertices of K while O T fixes none of the ¨ertices outside K ;3

Ž .d let d be the ¨ertex of D stabilized by U, then the geometry of cliques
and edges containing d with the incidence relation ¨ia inclusion is isomorphic

FIG. 1. Distribution diagram of D.
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to the geometry of 1- and 2-dimensional totally isotropic subspaces in 6-
Ž .dimensional orthogonal GF 3 -space of minus type and it is acted on flag-

2Ž . Ž . Ž . yŽ .transitï ely by O U rO U ; U 3 ; PV 3 ;3 4 6

Ž .e if D is a ¨ertex at distance 2 from d in D then the subgraph induced
on the ¨ertices adjacent to both d and D is the complete bipartite graph K ;4, 4

Ž . ² :f if D is a ¨ertex of distance 2, 3, or 4 from d then d , D is
Ž . Ž . Ž .isomorphic to SL 3 , Alt 5 , and Alt 4 , respectï ely.2

Next we make use of the following information about the action of M1
Ž w x.on the set of subgroups of order 9 in P containing s cf. Wi .1

LEMMA 1.5. M has two orbits L and K on the set of subgroups of order 91
in P containing s , moreo¨er1

5Ž . Ž . Ž .a if l g L then N l ; 3 ? 2 = Mat is the stabilizer of a maxi-M 111
Ž .mal clique in the graph D as in Lemma 1.4 c and all subgroups of order 3 in

l are of Suzuki type;
Ž . Ž . Ž .b if k g K then N k ; U 2 ? 2 and all subgroups of order 3 in kM 51

except s are of Fischer type.

Since P is extraspecial, it follows from the above lemma that the1
subgroups of order 3 in P other than s form exactly two conjugacy1

˜ ˜classes L and K of M with normalizers1

3=31q10 ?2?35? 2=Mat and 3=31q10 : 2=U 2 ? 2 ,Ž . Ž . Ž . Ž .Ž .11 5

respectively.
It is clear that the subgroups from L in Lemma 1.5 are exactly the lines

Ž . Ž . Ž . Ž .from MM s . Comparing Lemmas 1.5 a and 1.4 c we can identify MM s2 2
Ž .with the set of cliques in the graph D on MM s . Since a flag of MM is8

Ž .stabilized by a Sylow 3-subgroup of M, it follows from Lemma 1.4 c that a
Ž . Ž .line l g MM s and a quadric d g MM s are incident if and only if l, as a2 8

Ž .clique of D, contains d . By Lemma 1.4 d two cliques l and l of D of1 2
maximal possible intersection have exactly two vertices, say d and d in1 2
common. Then the lines l and l are in two different quadrics and hence1 2
they generate an element of MM which has to be the plane p which is the
intersection of d and d . This enables us to identify p with the edge1 2
� 4d , d of D.1 2

Ž .Thus the elements from MM s for i s 2, 3, and 8 can be considered asi
cliques, edges, and vertices of the graph D with the natural incidence
relation. In particular the planes and quadrics incident to a given line are
edges and vertices of the corresponding clique of size 11 in D. Hence we
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Ž w x.have that the diagram of MM is as given above and also compare Wi that

2q5q10M ; 3 : GL 3 = Mat , M ; Sym 4 = Mat ;Ž . Ž .Ž .2 2 11 2 11

3q6q8M ; 3 : L 3 = D : 2 , M ; L 3 = 2.Ž . Ž .Ž .3 3 8 3 3

The main result of the paper is the following.

THEOREM 1.6. The 3-local geometry MM of the Monster is simply con-
nected, equï alently, M is the unï ersal completion of the amalgam of
maximal parabolic subgroups M , M , M , and M corresponding to the1 2 3 8
action of M on MM.

� 4Here and elsewhere a tuple H Ng I of subgroups in a group will alsoi
be viewed as the amalgam obtained by considering the intersection of the
H and the inclusion maps.i

To prove the theorem we define G to be the universal completion of the
Ž .amalgam M N i s 1, 2, 3, 8 . Identify M with its image in G. Then there isi i

a unique homomorphism x of G onto M with x s id for all i. WeM Mi i

will show eventually that x is an isomorphism.
The second author thanks the Imperial College, the Universitat¨

Bielefeld, and the Martin Luther-Universitat Halle-Wittenberg for their¨
hospitality.

Ž .2. M 24 -SUBGEOMETRY

Ž .In this section we discuss a subgeometry MM m in MM stabilized by a
Ž . Ž .subgroup F [ N m ; 3 ? M 24 , where m is a subgroup of order 3 ofM

Ž . Ž .Fischer type in M. The elements of MM m are some not all elements of
MM centralized by m and the incidence relation is induced by that in MM.

� 4As above, let FF s Q , Q , Q , Q be a maximal flag in MM with Q s s1 2 3 8 1
and let m be a Fischer type subgroup of Q contained in QH . Define8 3
Ž . Ž .MM m to be the subgeometry in MM induced by the images under F s N mM

Ž .of the elements in FF. We discuss the diagram of MM m and the structure
Ž . Ž .of the parabolic subgroups F [ N Q s N m corresponding to thei F i Mi

Ž .action of F on MM m .
Since m is non-isotropic with respect to w we have

Q s m [ mH ,8

H Ž .where m is the natural orthogonal module for F rQ ; V 3 ? 2. More-8 8 7
over, Q , Q , and Q are contained in mH and form a maximal flag in the1 2 3
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H 7 Ž .polar space defined on m . Thus F rm ; 3 ? V 3 ? 2 and the residue of8 7
Ž .Q in MM m is the non-degenerate orthogonal polar space in dimension 78
Ž .over GF 3 .

1q10 Ž Ž . .By Lemma 1.5 we have F rm ; 3 ? 2 = U 2 ? 2 and one can see1 5
UŽ . Ž .that the image of Q in F s F r F l P ; U 2 ? 2 is a 3-central8 1 1 1 1 5

Ž Ž ..subgroup of order 3 with the normalizer isomorphic to 3 = U 2 ? 2. Let4
Q be the graph on all these subgroups of order 3 in F in which two1
subgroups are adjacent if they commute. Then Q is strongly regular with
parameters

¨ s 176, k s 40, l s 135, l s 12, m s 8

and clearly it is a subgraph in the graph D as in Lemma 1.4. In these terms
Ž .the quadrics, planes, and lines in MM m incident to s are the vertices,

Ž .edges, and cliques of size 5 in Q with the natural incidence relation. This
Ž .shows that the diagram of MM m is

c*
o o o o .
3 13 3

It is easy to deduce the structure of two other parabolic subgroups
Ž w x.compare RS :

F rm ; 32q4q8 ? GL 3 = Sym 5 , F rm ; 33q7q3 ? 2 ? L 3 = 2 .Ž . Ž . Ž .Ž . Ž .2 2 3 3

w x Ž .In IS the geometry MM m was proved to be simply connected.

Ž . Ž .LEMMA 2.1. The geometry MM m is simply connected and hence 3 ? M 24
is the unique faithful completion of the amalgam consisting of the subgroup F ,1
F , F , and F .2 3 8

This immediately implies the following.

LEMMA 2.2. Let X be a faithful completion of the amalgam consisting of
the Monster subgroups M , i s 1, 2, 3, 8. Let m be a non-isotropic subgroup ofi

H Ž .order 3 in Q contained in Q . Then X contains a subgroup M ; 3 ? M 24 ,8 3 m

Ž . Ž .which normalizes m, such that M l M s N m s N Q for i s 1, 2, 3,m i M M ii m

Ž .and 8. If X s M then M s N m .m M

A subgroup m as in the above lemma will be said to be of Fischer type.
We remark that the subgroup M of X does not only depend on m but am

Ž .priori also on the flag M , M , M , M . But as the reader might check1 2 3 8
M is already determined by m together with any one of the M ’s, i sm i
1, 2, 3, or 8.
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3. THE 2-LOCAL GEOMETRY OF THE MONSTER

There are exactly two classes of involutions in M, called the Conway type
and Baby Monster type involutions with representatives z and t, such that

C z ; 21q24 ? Co and C t ; 2 ? F ,Ž . Ž .M q 1 M 2

where Co is the first Conway sporadic simple group and F is the Fischer1 2
w xBaby Monster group At .

Ž .Let C s C z . Then for i s 4 and 8 up to conjugation in C there is aM
Ž .unique Conway-pure subgroup E of order i in O C containing z, whosei 2

normalizer in M contains a Sylow 2-subgroup of M. Moreover these two
subgroups can be chosen so that E - E and we will assume that the4 8

Ž . Ž .inclusion holds. Let N s N E and L s N E . ThenM 4 M 8

C ; 21q24 ? Co , N ; 22q11q22 ? Sym 3 = Mat ,Ž .Ž .q 1 24

L ; 23q6q12q18 ? L 2 = 3 ? Sym 6 .Ž . Ž .Ž .3

Furthermore C, N, and L are the stabilizers of a point, a line, and a
plane from a maximal flag in the 2-local minimal parabolic geometry of the

w xMonster group RS having the diagram

;
o o o o o .
2 2 2 2 2

w xThis geometry was proved to be 2-simply connected in Iv1 and by
standard principles this result is equivalent to the following.

LEMMA 3.1. The Monster group M is the unï ersal completion of the
amalgam of its subgroups C, N, and L defined as abo¨e.

Our strategy to prove Theorem 1.6 is to show that the universal
completion G of the amalgam of the 3-local parabolics M is also ai
completion of the amalgam consisting of the subgroups C, N, and L as in
Lemma 3.1.

LEMMA 3.2. Let m be a subgroup of Fischer type in M. Then M hasm

exactly four classes of in¨olutions and for an in¨olution t g M exactly one ofm

the following holds:

Ž . Ž . Ž .a t in¨erts m, t is of Baby Monster type, and C t ( M 23 = C .M 2m

Ž . Ž .b t centralizes m, t is of Baby Monster type, and C t ;Mm2 Ž .3 ? 2 M 22 ? 2.
Ž . Ž . 3 Ž . Ž .c t in¨erts m, t is of Conway type, and C t ; 2 ? U 2 ? Sym 3 .M 6m
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Ž . Ž . 1q12d t centralizes m, t is of Conway type, and C t ; 3.2 ? 3 ?M qm

Ž . 2U 3 ? 2 .4

w xProof. By At , M has four classes of involutions with centralizers asm

Ž . Ž .given. By Lagrange, Co involves neither M 23 nor 3 ? M 22 ? 2 and so1
the first two classes are of Baby Monster type. Since Conway type involu-
tions both invert and centralize groups of Fischer type the remaining two
classes must be of Conway type.

U Ž .LEMMA 3.3. Let z be an in¨olution from P s O M . Then e¨ery1 3, 2 1
Ž .in¨olution in M is conjugated to an in¨olution s g C z and one of the1 M1

following holds:

Ž . Ž .a s s z, C s ; 6 ? Suz ? 2, and s is of Conway type in M;M1

Ž . Ž . U Ub s in¨erts s , C s P rP ; 2 ? Mat ; s and sz are conjugated inM 1 1 121

M and the centralizer of s in P rs has order 36;1 1

Ž . Ž . U U 1q6 yŽ . Žc s centralizes s and C s P rP ; 2 ? O 2 two conjugacyM 1 1 y 61
.classes .

Proof. The conjugacy classes of involutions in M rP ; 2 ? Suz ? 2 can1 1
w xbe read from At . Since z centralizes s and acts fixed point-freely on

Ž . Ž .P rs , the structure of C s in a follows. Since the Baby Monster has1 M1

no elements of order 3 with normalizer of the shape 3 ? Suz ? 2, z is of
Ž . Ž . w xConway type. In b we have C s s P rs , sz and since s and sz areP rs 11

conjugated, both subspaces have dimension 6.

4. THE 3-LOCAL GEOMETRY FOR Co1

w xIn Iv2 , a relationship between the 3- and 2-local geometries of the
24 w xMonster via a 2 -cover of the 3-local geometry of the Conway group BF

was noticed.
Let X be an arbitrary faithful completion of the amalgam

Ž .M , M , M , M of the 3-local parabolics in M which has M has a1 2 3 8
quotient and let XX be the geometry whose elements are the cosets in X of
M for i s 1, 2, 3, 8 and where two cosets are incident if their intersectioni
is non-empty. If X s M or X s G where as above G is the universal
completion of the amalgam, then XX is MM or the universal cover GG of MM,
respectively. For an element x of XX let M denote the stabilizer of x in Xx
which is a conjugate of M for i s 1, 2, 3, or 8 depending on the type of x.i
If x s M g put Q s Q g, P s P g, and PU s PU g. When working in thei x i x i x i
residue of an element we can and will identify x with Q . If m is ax
subgroup of order 3 of Fischer type in Q g, then M denotes the subgroup8 m

g H ² Ž . :gas in Lemma 2.2, i.e., if m g Q then M s N m N i s 1, 2, 3, 8 .3 m Mi
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U Ž .Let us pick an involution z from P s O M . Then by Lemma1 3, 2 1
Ž . Ž . X3.3 a , C z ; 6 ? Suz ? 2. Let J s J be the set of points of XX suchM1

Ž .that x g J if and only z g O M . Let J denote also the graph on J in2, 3 x
which two points are adjacent if they are incident to a common quadric. It

Ž .is clear that C z preserves J as a whole as well as the adjacency relationX
on J.

LEMMA 4.1. Locally J is the commuting graph D of 3-central subgroups
of order 3 in M ; Suz ? 2 as in Lemma 1.4. Let V be a maximal clique in J1

Ž . < <containing s and H be the setwise stabilizer of V in C z . Then V s 12X
Ž .and there is a unique point a collinear to s such that H s C z . Moreo¨er,Ma6 Ž . Ž .H ; 2.3 ? 2 ? Mat , O H s P l H, H induces the natural action of12 3 a

Ž . Ž .Mat on the ¨ertices of V, and O H is an irreducible GF 3 -module for12 3
Ž .² :HrO H z ; 2 ? Mat .3 12

Proof. Abusing the notation we denote by s the point stabilized by M1
Ž .so that s g J. By Lemma 1.3 d every quadric incident to s contains

besides s exactly one point « centralized by z and « is not collinear to s .
Ž .This means that the set J s of points adjacent to s in J is in a natural

bijection with the set of quadrics incident to s , i.e., with the vertices of the
graph D as in Lemma 1.4. Moreover, if d g D then there is a unique point
centralized by z which maps onto d under the homomorphism of M onto1
M . We will identify d with this unique point. By definition if x and y are1

w x Ž .adjacent points in J then Q , Q s 1. Hence if d , d g J s arex y 1 2
adjacent in J, then the corresponding vertices of D are adjacent. In
particular a maximal clique in J contains at most 12 vertices. We are
going to show that this bound is attained.

Let l be a line incident to s and let s , a , b , and g be all the points
incident to l. Since z acts fixed-point freely on P rs ; 312, we can choose1
our notation so that z inverts a and permutes b and g . So on every line
incident to s there is exactly one point which is inverted by z. Since

Ž . Ž .C z P s M , C z permutes transitively the lines incident to s andM 1 1 M1 1

hence also the points collinear to s and inverted by z. This implies that
Ž .C z permutes transitively the points collinear to a and centralized by z.Ma

Let Q denote a quadric incident to l and let « be the point in Q other8 8
than s centralized by z. Then « is collinear to exactly one point on l. We
know that s and « are not collinear and since b and g are permuted by
z, « is collinear to a . Thus in every quadric incident to l besides s there
is exactly one point collinear to a and centralized by z. By the diagram of
XX there are exactly 11 such quadrics which correspond to a clique K of D.

� 4 Ž .Let V s s j K and H be the setwise stabilizer of V in C z . SinceX
Ž .locally J is D, K is a maximal clique in D, C z acts transitively on theM1

Ž .set of cliques in D and since C z is vertex-transitive on J, we see that HX
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acts transitively on V. Since a is the only point which is collinear to every
Ž .point in V, it is clear that H F C z . Since z acts fixed-point freely onMa

Ž . ² : Ž .UP rs , C z s s = z . By Lemma 1.4 c and the Frattini argument1 P1

Ž . U U Ž . U 5 Ž .H l M P rP ; M l M rP ; 3 ? 2 = Mat . Since H l M in-1 1 1 l 1 1 11 1
duces the natural action of Mat on the points in K, H induces on the11

Ž .points in V the natural action of Mat . Thus O H is elementary abelian12 3
6 Ž .² :of order 3 generated by the 12 points in V and HrO H z ; 2 ? Mat3 12

Ž . w xinduces a non-trivial action on O H . By MoAt , Mat does not have a3 12
Ž .faithful GF 3 -representation of dimension less than or equal to 6 and the

Ž .smallest faithful GF 3 -representation of 2 ? Mat has dimension exactly12
6 Ž . Ž .6. Thus we have shown that H ; 2.3 ? 2 ? Mat and by Lemma 3.3 b ,12

Ž .H s C z .Ma

In what follows we will need the detailed information on the structure of
Ž .6-dimensional GF 3 -modules of 2 ? Mat contained in the following12

lemma.

LEMMA 4.2. Let H ; 2 ? Mat and A be a faithful irreducible 6-12
Ž .dimensional GF 3 H-module. Then the following assertions hold:

Ž .a H has a unique orbit AA of length 12 on the 1-spaces of A.
Ž .b Any fï e elements from AA are linearly independent.
Ž .c H has a unique orbit LL of length less or equal to 12 on the

< <hyperplanes of A. Moreo¨er, LL s 12 and if L g LL then L contains no
element from AA.

Ž . ² :d Let BB be the set of 1-spaces of A of the form a q a , where1 2
² : ² : < <a and a g AA are different elements of AA. Then BB s 132 and H acts1 2
transitï ely on BB.

Ž .e If F g BB then there exist unique elements D and D in AA with1 2
˜F F D q D . If L g LL and F is the 1-space in D q D different from D ,1 2 1 2 1

˜D , and F, then F F L if and only if F z L.2

Ž . Ž .f Define L g LL and B g BB to be incident if B F L. Then LL , BB is
Ž .a Steiner system of type 5, 6, 12 .

Ž . < <g Let TT ; LL with TT s 4 and put F s F TT. Then F is a 2-subspace
Ž . Ž . Ž .of A, all 1-spaces of F are in BB, and N F rC F ( GL 3 .H H 2

Proof. Let X and Y be two non-conjugate subgroups in H isomorphic
Ž .to Mat . Then every proper subgroup of index at most 12 in HrZ H (11
² :Mat is conjugate to the image of either X or Y. Moreover, H s X, Y12

Ž .and X l Y ( L 11 . Let Z be one of the subgroups X, Y and X l Y. By2
w x Ž .MoAt every faithful irreducible GF 3 Z-module is 5-dimensional. This
means that Z normalizes in A at most one 1-subspace and at most one
5-subspace. Suppose that A contains a 1-subspace normalized by X and a
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1-subspace normalized by Y. Then both these 1-spaces are normalized by
X l Y and hence this is the same 1-space, normalized by the whole

² :H s X, Y , a contradiction to the irreducibility of A. Applying the same
argument to the module dual to A, we obtain that the subspaces in A
normalized by X and Y have different dimensions and we can choose our
notation so that X normalizes a 1-space D and Y normalizes a 5-space E.

HIn this case A s D [ E as a module for X l Y. Moreover, AA [ D is
Hthe only orbit of length 12 of H on 1-spaces in A and LL [ E is the only

Ž .orbit of length 12 of H on hyperplanes in A and c holds.
The actions induced by H on AA and LL are two non-equivalent 5-

transitive actions of Mat . Since A is irreducible, AA spans A and so there12
is a set of six linearly independent elements in AA. Since H induces on AA a
5-transitive action, every set of five elements in AA is linearly independent

Ž .and thus b holds.
˜Let D / D g AA and let D , D , F, F be the set of all 1-spaces in1 2 1 2

˜D q D . Then F, F g BB. We are going to show that BB satisfies the1 2
Ž . Ž . � 4 � 4properties stated in d ] f . If there are D , D g AA with i, j / 1, 2 suchi j

� 4that F is contained in D q D then the set D N k s 1, 2, i, j of size ati j k
Ž .most four in AA would be linearly dependent, a contradiction to b . Hence

� 4the pair D , D is uniquely determined by F. Let L g LL . Since1 2
L is a hyperplane in A, its intersection with D q D is at least 1-1 2

Ž . Ž .dimensional. By c neither D nor D are in L, hence e follows.1 2
˜Moreover, F or F is contained in at least 6 elements of LL . Since the

action of H on LL is 5-transitive, we conclude that the intersection of any
five elements of LL is in BB. Let DD be the set of elements of LL containing

< <F. Suppose that DD G 7. Then by 5-transitivity of H on LL there exists
h h< <h g H with DD l DD G 5 and DD / DD . But then the intersection of the

elements on DD, DD l DDh, and DD h, respectively, are all equal to F, a
h ˜< <contradiction to DD / DD . Hence DD F 6 and both F and F are contained

Ž .in exactly six elements of LL . Thus f holds. As H acts transitively on the
Ž .blocks of any associate Steiner systems, d follows.

Ž .By f , TT is incident to exactly four elements say B , B , B , B of BB. By1 2 3 4
Ž .the dual of b , F is a 2-space and so B , B , B , B are exactly the1 2 3 4

Ž . Ž . � 41-spaces of F. Since N TT induces Sym 4 on B , B , B , B we con-H 1 2 3 4
Ž . Ž . Ž .clude N F rC F ( GL 3 .H H 2

Ž .By Lemmas 4.1 and 1.4 d two maximal cliques in J are either disjoint
or have intersection of size 1, 2, or 3. Moreover, if CC s CC X is a geometry
whose elements are maximal cliques, triangles, edges, and vertices of J X

with respect to the incidence relation given by inclusion, then CC corre-
sponds to the diagram

c* c*
o o o o .
3 19 1
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The geometry CC is connected precisely when J is connected. Let
s s V ; V ; V ; V s V be the maximal flag in CC. Then V is a1 2 3 12 i

Ž .complete subgraph of size i in J. Let C denote the stabilizer in C z ofi X
V . Theni

² : ² : 2C r z ; 3 ? Suz ? 2, C r z ; 3 ? U 3 ? D ,Ž .1 2 4 8

² : 3q4 3 ² : 6w xC r z ; 3 ? 2 ? S ? S , C r z ; 3 ? 2 ? Mat .3 4 3 12 12

Ž .Consider the situation when X s M. By Lemma 3.3 a , z is of Conway
Ž . 1q24 Ž .type and C z s C ; 2 ? CO . Put R s O C .M q 1 2

LEMMA 4.3. The graph JM is connected.

Ž .Proof. Let A be the setwise stabilizer in C z of the connectedM
component of JM which contains s . Then A contains C ; 6 ? Suz ? 2.1

M w xLet « be a vertex adjacent to s in J . Then s , « s 1 and since s acts
² :fixed-point freely on Rr z , we have s R / « R. Since C R is maximal in1

² : ² :C, this means that AR s C. Finally, Cr z does not split over Rr z and
Mhence A s C and J is connected.

The homomorphism x : G ª M induces morphisms GG ª MM and CC G ª
CC M of geometries which will be denoted by the same letter x . Our goal is
to show that the restriction of x to the connected component of CC G

containing s is an isomorphism onto CC M. This will immediately imply that
Ž . Gthe setwise stabilizer in C z of the connected component of C mapsG

isomorphically onto C ; 21q24 ? Co . An important role in the realizationq 1
of this step will be played by a simply connected subgeometry in GG.

Let m be a subgroup of Fischer type as in Section 2. Then k [ sm is a
Žsubgroup of order 9 in P which is not a line so that k is as in Lemma1

Ž ..1.5 b . Since z acts fixed-point freely on P rQ , as in the proof of Lemma1 1
4.1 we have a unique subgroup of order 3 in k which is normalized and
inverted by z. Hence we can and do choose m so that z inverts m. By

Ž .Lemma 2.2 there is a subgroup M ; 3 ? M 24 in X which normalizes mm

Ž . Ž .such that M l M s N m for i s 1, 2, 3, and 8. Let W s C z and letm i M Mi m

C be the orbit of W on J which contains s .

Ž . < < ² : 2 Ž . Ž .LEMMA 4.4. a C s 2688 and Wr z ; 2 ? U 2 ? Sym 3 acts faith-6
fully on C;
Ž .b locally C is the commuting graph Q on the 3-central subgroups of

Ž .order 3 in U 2 ? 2.5

Ž . Ž . Ž .Proof. By Lemma 1.5 b and since M l M s N m , C z l M ;m 1 M M 11 m

Ž Ž ..2 ? 3 = U 2 ? 2. By Lemma 3.2 and since z is of Conway type and inverts5
3 Ž . Ž . Ž .m, W ; 2 ? U 2 ? Sym 3 . Thus a holds.6

Ž . Ž .For b we may by a assume that X s M. The subgroups of Fischer
Ž .type in P normalized by z, are permuted transitively by C z and hence1 M1
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C contains a vertex x of J if and only if m is contained in P , orx
Ž . Ž .equivalently if x is contained in MM m and hence b follows.

Since C is locally Q, its maximal cliques have size 6 and two such
cliques are either disjoint or have intersection of size 1, 2, or 3. Define UU

to be a geometry whose elements are maximal cliques, triangles, edges,
and vertices of C with the natural incidence relation. Since C s J l
Ž .MM m , it is easy to see that the diagram of UU is

c* c*
o o o o .
3 13 1

As follows from Lemma 4.4, the isomorphism type of UU is independent
Ž .on whether X s M or X s G, since UU is contained in MM m which is

simply connected. It is worth mentioning that UU itself is simply connected
w xas proved in Me and that C is distance-transitive with the distribution

diagram given on Fig. 2.

5. A CHARACTERIZATION OF CC M

It is not known whether the geometry CC M is simply connected. In this
section we establish a sufficient condition for a covering of CC M to be an

Ž .isomorphism in terms of the subgeometry UU and its images under C z .M
Ž Ž .. 25Let R s O C z which is extraspecial of order 2 . We start by defining2 M

Mthe folding CC of CC with respect to the action of R.
Ž . M ² :The kernel of the action of C s C z on CC is z and sinceM

Ž ² :. ² :O C r z s 1 for i s 1, 2, 3, and 12, the action of Rr z is fixed-point2 i
Mfree. Let CC be the folding of CC with respect to the action of R. This

Mmeans that CC is a geometry whose elements are the orbits of R on CC

with two such orbits O and O incident if and only if an element from O1 2 1
M ² :is incident in CC to an element from O . Since Rr z acts fixed-point2

Mfreely on CC , it is easy to see that if O and O are incident in CC then1 2
each element from O is incident in CC M to exactly one element from O .1 2
Let J be the collinearity graph of CC which is also the folding with respect
to the action of R of the collinearity graph JM of CC M.

FIG. 2. Distribution diagram of C.



3-LOCAL GEOMETRY OF THE MONSTER 397

We put CC s CrR and use the bar notation for the images of C of
Ž .subgroups of C. Then s is a subgroup of order 3 in C and N s ; 3 ?C

Suz ? 2 which is a maximal subgroup in C. This enables us to identify the
vertices of J with the Suzuki-type subgroups of order 3 in C ; Co . We1
will use the following properties of the action of C on J.

LEMMA 5.1. Let C ( Co , J be the set of Suzuki-type subgroups of order1
Ž . Ž .3 in C, s g J, and C s s N s ; 3 ? Suz ? 2. Then C acts primitï ely onC

Ž . � 4 Ž . Ž . Ž . Ž .J while C s has 5 orbits on J: s , J s , J s , J s , and J s1 2 3 4
with lengths 1, 22,880, 405,405, 1,111,968, and 5346, respectï ely. Let J

denote also the graph on J in¨ariant under the action of C, in which s is
Ž . Ž . Ž . Ž .adjacent to the ¨ertices from J s . Let m g J s and B s C s l C m1 i i i i

for i s 1, 2, 3, 4. Then

Ž . � 4 w xa d g J _ s is adjacent to s in J if and only if s , d s 1, so
Mthat J is the folding of J with respect to the action of R; the distribution

diagram of J is gï en on Fig. 3;
2 2Ž . Ž .b B ; 3 ? U 3 ? 2 , locally J is the commuting graph D of central1 4

Ž .subgroups of order 3 in C s rs ; Suz ? 2;
1q6Ž . Ž . Ž . Ž .c B ; 2 ? U 2 ? 2 acts transitï ely on J s l J m for i s 1,2 4 i 1 2

Ž . Ž .2, and 3, the subgraph induced on J m l J s is the disjoint union of1 2 1
40 copies of the complete 3-partite graph K , these copies are permuted4, 4, 4

Ž . Ž . ² : Ž .primitï ely by B rO B ; U 2 ? 2, s , m ( SL 3 ;2 2 2 4 2 2

FIG. 3. Distribution diagram of J.
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Ž . Ž . Ž .d B ; J : 2 = 2 acts primitï ely on J m l J s for i s 1, 43 2 1 3 i
² : Ž .and transitï e for i s 2, s , m ( Alt 5 ;3

Ž . Ž . Ž . Ž .e B ; G 4 ? 2 acts primitï ely on J m l J s for i s 1 and4 2 1 4 i
² : Ž .3, s , m ( Alt 4 ;4

Ž . Ž . Ž .f the subgraph induced on J m l J s is empty for i s 3 and 4;1 i 1

Ž . Ž . Ž .g each ¨ertex from J m l J s is adjacent to a ¨ertex from1 3 3
Ž . Ž . Ž . Ž .J m l J s or to a ¨ertex from J m l J s .1 3 1 1 3 2

Proof. The subdegrees, 2-point stabilizers B of the action of C on Ji
² : Ž w x Ž .and s , m are well known cf. Lemma 49.8 in As or Lemma 2.22.1 iii

w x. w xin ILLSS . The distribution diagram on Fig. 3 is taken from PS . This
Ž .diagram and the structure of B show that the subgraph induced on J s1 1

Ž .is isomorphic to the graph D as in Lemma 1.4 and that C s induces
its full automorphism group. This means that B acts transitively on1

Ž . Ž .J m l J s for i s 1, 2, 3, 4 and hence for every vertex g at distance1 1 i
Ž . Ž . Ž . Ž .2 from s in J, C s l C g acts transitively on J s l J g . Let x1 1 i

Ž .be the permutational character of C s on the cosets of B s for i s 1, 2,i
w xand 4. By Lemma 2.13.1 in ILLSS the inner product of x and x is 5, 3,1 i

and 2 for i s 1, 2, and 4, respectively. This implies the transitivity state-
Ž . Ž . Ž . w xments in c , d , and e . By At every action of B of degree 100 or 280 as3

well as every action of B of degree 2080 or 20,800 is primitive.4
Ž . Ž .Let d g J s l J m for i s 2, 3, 4. Then since locally J is D, thei 1 1 i

Ž .distance from s to m in the subgraph induced on J d is i. Hence thei 1 i

Ž . Ž .subgraph induced by J m l J s is empty for i s 3 and 4, while for1 i 1
Ž Ž ..i s 2 it is locally K compare Lemma 1.4 e . It is well known and easy4, 4

to check that K is the only connected graph which is locally K and4, 4, 4 4, 4
Ž . Ž .the structure of the subgraph induced on J m l J s follows. Finally,1 2 1

Ž .every transitive action of B of degree 40 is primitive and has O B in its2 2 2
Ž .kernel. Thus all statements except g are proved.

Ž .We will prove g with the roles of s and m interchanged. For this we3
Ž . ² :first determine the orbits of B on J s . Let A s s , m . Then3 1 3

Ž .A ( Alt 5 . Note that there exist exactly two elements r g J l A such
² : Ž . ² : Ž .that r, s ( Alt 4 and r, m ( Alt 5 . Without loss m is one of3 4

Ž .these two. Put J s N m s B l B . Then J is of index two in B andB 4 4 3 33

Ž .J ; J ? 2. Put K [ B . Then K ; G 4 ? 2.2 4 2
Ž .As the main step in determining the orbits of B on J s we compute3 1

Ž . Ž .the orbits of J by decomposing the orbits of K. By e , K acting on J s1
Ž . Ž . Ž . Ž .has two orbits, G s J s l J m and G s J s l J m with1 1 3 4 2 1 1 4

lengths 20,800 and 2080, respectively, moreover if K and K are the1 2
Ž . Ž . 2respective stabilizers, then K ; U 3 : 2 = 2 and K ; 3 ? L 4 ? 2 . Con-1 3 2 3

sider the graph S with 416 vertices of valency 100 on which K acts as a
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Ž w x.rank 3 automorphism group see BvL . Then the parameters of S are

¨ s 416, k s 100, l s 315, l s 36, m s 20.

It follows from the list of maximal subgroups in K, that G can be1
identified with the set of edges of S while J is the stabilizer in K of a

w xvertex x of S. By well known properties of the action of K on S BvL the
� 4orbit of J on the edge-set of S containing an edge y , y of S is1 2

� 4uniquely determined by the pair d , d where d is the distance from x to1 2 i
y in S. This and the parameters of S given above show that under thei

Ž .action of J the set of edges of S identified with the set G splits into four1
� 4orbits V , V , V , and V corresponding to the pairs of distances 0, 1 ,1 2 3 4

� 4 � 4 � 41, 1 , 1, 2 , and 2, 2 and having lengths 100, 1800, 6300, and 12,600,
Ž . Ž .respectively. Let V s J s l J m and g g V . Note that J acts5 1 1 3 5

< < Ž .transitively on V and V s 280. By a , g commutes with m . Thus5 5 3
g F J F K 9 and so g g G and V is an orbit for J on G . Let K be the2 5 2 2

Ž . Ž .stabilizer of g in K. Then g s O K . By f all 280 vertices adjacent to g3 2
Ž . Ž .in the subgraph induced on J s are in G and by a these 280 vertices1 1

Ž .are fixed by g . Let S g be the set of vertices in S fixed by g . Comparing
the permutation characters of K on s with the permutational character
of K on G , we see that K has exactly two orbits on the vertex set2 2
of S. On one hand this means that under the action of J the set G2
splits into two orbits namely V and an orbit V of length 1800. On the5 6

Ž . 2 Ž . < Ž . <other hand K rg ; L 4 ? 2 acts transitively on S g and so S g s2 3
Ž < < < <.280 ? J r K s 56. Any transitive action of the latter group of degree 562

is the rank 3 action on the vertex set of the Gewirtz graph which is strongly
regular with parameters

¨ s 56, k s 10, l s 45, l s 0, m s 2.

Hence we conclude that K acts transitively on the set of edges in S fixed2
by g . Again since g is adjacent in J to exactly 280 vertices from G there1

Ž .are 280 edges in the subgraph of S induced on S g and hence this
subgraph is the Gewirtz graph rather than its complement.

Ž .Note that V , 1 F i F 6 are the orbits for J on J s . If B normalizesi 1 3
B3² :K 9 then K 9 centralizes s , m s A and so K 9 F B , a contradiction.4 3

Since K 9 is generated by the elements of G s J l K we conclude that2
B does not normalize G . Thus some of the orbits of J must be fuzed by3 2
B . Since J is normal in B , only orbits with the same lengths can fuse.3 3
Thus V j V is a single orbit of B . The distribution diagram of J2 6 3

Ž .enables us to identify V , V , V j V j V , and V with J s l5 3 2 4 6 1 1
Ž .J m for i s 1, 2, 3, and 4, respectively. A vertex from G is adjacent to gi 3 1

in J if and only if the corresponding edge of S is fixed by g . The
parameters of the Gewirtz graph imply that g is adjacent to 10, 90, 180
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vertices from V for i s 1, 3, and 4, respectively. Since every vertex fromi
< < < <G is adjacent to 28 s 280 ? G r G vertices from G and every vertex from1 2 1 2
< < < <V is adjacent to 4 s 90 ? V r V vertices of V , we observe that a3 5 3 5

vertex ¨ g V is adjacent to 24 s 28 y 4 vertices from V . Since V and3 6 2
V are fuzed under B this means that ¨ is also adjacent to 24 vertices6 3

Ž . Ž .from V . Hence every vertex from J s l J m s V j V j V is2 1 3 3 2 4 6
Ž . Ž .adjacent to a vertex from J s l J m s V or a vertex from1 1 3 5

Ž . Ž . Ž .J s l J m s V or both .1 2 3 3

Let C be the image in J of the subgraph C in J as in Lemma 4.4.
Ž .Since none of the 2-point stabilizers of the action of C on J involve U 2 ,5

every vertex from the antipodal block containing s maps onto s and we
have the following

LEMMA 5.2. Let C be the image of C in J. Then C is the antipodal
folding of C which is a strongly regular graph with parameters

¨ s 672, k s 176, l s 495, l s 40, m s 48.

Ž . Ž . Ž .The image W of W s C z in C is isomorphic to U 2 ? Sym 3 .M 6m

Ž .Since locally C as well as C is the commuting graph Q of 3-central
Ž .subgroups of order 3 in U 2 ? 2 which is strongly regular, it is easy to see5

� 4 Ž . Ž .that in terms of Lemma 5.1, C : s j J s j J s .1 2
˜ M MLet D : CC ª CC be a covering of CC such that there is a flat-transitive

˜automorphism group of CC which commutes with D and whose induced
M ² :action on CC coincides with that of Cr z . In particular D can be the

restriction to a connected component of CC G of the morphism of CC G onto
M ˜CC induced by the homomorphism x : G ª M. In this case C is the

˜Ž . ² :setwise stabilizer in C z r z of that connected component. Let R beG
˜ ˜ ˜the kernel of the natural homomorphism of C onto C ; CrR. Let J be

˜ ˜the collinearity graph of CC so that there is a natural morphism of J
onto J.

Let C and W be as in Lemma 4.4. Let C be the image of C in J and
W be the image of W in C. Let C be a connected component of the

˜ ˜preimage of C under D and let W be the stabilizer of C in the preimage
˜² :of Wr z in C.

˜ ˜ ² :LEMMA 5.3. In the abo¨e notation C is isomorphic to C, W ; Wr z ;
2 ˜ ˜ 2Ž . Ž .2 ? U 2 ? Sym 3 and hence W l R is elementary abelian of order 2 .6

Proof. The result follows from Lemma 4.4 and the fact that C is
the collinearity graph of the geometry UU which is simply connected by
w xMe .

Ž .Let TT s be the set of images of C under C which contain s .
Ž .Equivalently we can define TT s to be the set of images of C under
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˜ ˜Ž . Ž .N s . Let s be a preimage of s in CC. Let TT s be the set of connected˜ ˜C
˜ ˜ ˜ Ž .subgraphs F such that s g F and F maps onto some F g TT s . If˜

˜ ˜ ˜ ˜ ˜ ˜ ˜Ž . Ž .F g TT s and U [ C F is the setwise stabilizer of F in C, then by˜
˜ ˜ ˜ 2Ž .Lemma 5.3, O U s U l R is of order 2 . Let2

˜ ˜ ˜ ˜ ˜R s O C F N F g TT s .Ž .Ž . ˜¦ ;Ž .s 2

˜ ˜LEMMA 5.4. R s R.s

ˆ ˜ ˜Proof. Let J be the folding of J with respect to the orbits of R . Thiss
ˆ ˜ ˜means that the vertices of J are the orbits of R on the vertex set of Js

ˆwith the induced adjacency relation. Notice that in the way it is defined J
˜is not necessary vertex-transitive although every automorphism from C

ˆstabilizing s can be realized as an automorphism of J. Nevertheless˜
ˆeventually we will see that J is equal to J and in particular it is

˜vertex-transitive. Since the vertices of J can be considered as orbits of R
˜ ˜ ˜ ˆon J and R is contained in R, there is a covering v : J ª J ands

˜ ˜ ˆR s R if and only if v is an isomorphism. Let s be the image of s in J.ˆ ˜s

˜ ˜ ˜Ž .Since R is normalized by the stabilizer C s of s in C, there is a˜ ˜s
ˆ ˆŽ .subgroup C s in the automorphism group of J which stabilizes s andˆ ˆ

ˆŽ . Ž .maps isomorphically onto C s ; 3 ? Suz ? 2. We will identify C s andˆ
ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .C s . For d g J let J d be the set of vertices adjacent to d in J. Since1

ˆ ˆŽ .v is a covering, the subgraph induced on J d is isomorphic to D and if1
ˆ Ž̂ .d s s then C s induces the full automorphism group of this subgraph.ˆ ˆ

Ž̂ .Hence C s has exactly three orbits, on the vertices at distance 2 from s .ˆ ˆ
ˆ ˆŽ . Ž Ž .. Ž .We denote these orbits by J s , so that v J s s J s for 2 F i F 4.ˆ ˆi i i

ˆ ˆ ˆŽ . Ž .Let m g J s and B be the stabilizer of m in C s . We assume thatˆ ˆ ˆ ˆi i i i
ˆ Ž .there is a vertex m g J s , adjacent to m for 2 F i F 4 and that m isˆ ˆ ˆ ˆ1 1 i 3

ˆŽ .adjacent to m and m . Assuming also that v m s m , we can consider Bˆ ˆ ˆ2 4 i i i
ˆas a subgroup in B , 1 F i F 4. Notice that B acts transitively on the seti i

ˆ ˆ ˆŽ . Ž . Ž .J s l J m . Since v is a covering, the subgraph induced by J s lˆ ˆ ˆ1 1 i 1
ˆ Ž .J m is union of m disjoint copies of K where 1 F m F 40. Forˆ1 2 4, 4, 4
˜ ˜ ˆ ˜ ˆŽ .F g TT s the image F of F in J is isomorphic to C as in Lemma 5.2˜

ˆ ˆ� 4 Ž . Ž .and is contained in s j J s j J s . The parameters of C implyˆ ˆ ˆ1 2
that m G 3. Since B acts primitively on the 40 copies of K as in2 4, 4, 4

ˆ ˆŽ . Ž .Lemma 5.1 c we have m s 40 and B s B . By Lemma 5.1 c , B has2 2 2
ˆ Ž .three orbits on the vertices from J m with lengths 480, 5120, andˆ1 2

ˆ Ž .17,280, moreover, these orbits are contained in J s for i s 1, 2, and 3,ˆi
ˆ ˆ 7respectively. In particular B l B has order divisible by 2 . By Lemma2 3

ˆ ˆŽ . Ž . Ž .5.1 d the stabilizer in B of a vertex from J s l J m has order notˆ ˆ3 1 1 2
7 ˆ ˆdivisible by 2 and so B l B is a maximal subgroup of B not containing3 1 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆB l B . Thus B s B . Arguing similarly B l B and B l B are two2 3 3 3 3 4 1 4
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ˆdifferent maximal subgroups of B and so B s B . Let r be a vertexˆ4 4 4
ˆŽ . Ž .adjacent to m for i s 2 or 4. By Lemma 5.1 c , r is conjugate under C sˆ ˆ ˆi

to m for some 1 F j F 4, except maybe in the case where r is adjacent toˆ ˆj
Ž .m and r maps onto an element of J s . In the latter case we see fromˆ ˆ2 2

the distribution diagram of D that such a r can already be found in theˆ
residue of m . Hence in any case a vertex adjacent to m for i s 2 or 4 is inˆ1 i
ˆ Ž .J s for 1 F j F 4. Suppose that there is a vertex n which is adjacent toˆ ˆj

Ž .m and whose distance from s is 3. By Lemma 5.1 g there must be aˆ ˆ3
ˆ ˆŽ . Ž .vertex in J m l J s for j s 1, or 2 which is adjacent to n . As weˆ ˆ ˆ1 3 j

have seen above, this is impossible. Hence there are no vertices at distance
3 from s and v is an isomorphism.ˆ

COROLLARY 5.5. C is the unï ersal completion of the amalgam
Ž .C , C , C , W .1 2 12

6. CONSTRUCTION OF THE 2-LOCALS

As above let G denote the universal completion of the amalgam
Ž .M N i s 1, 2, 3, 8 and x be the homomorphism of G onto M which isi
identical on this amalgam. We will consider the M ’s as subgroups both ini
M and G. The group G acts flag-transitively on the universal cover GG of
MM. The points, lines, planes, and quadrics in GG and MM are the cosets of
M , M , M , and M in G and M, respectively. We follow notation1 2 3 8
introduced in the beginning of Section 4, so that X stays for an arbitrary
completion of the amalgam which has M as an quotient.

Let s s M viewed as a point stabilized by M , d s M viewed as a1 1 8
U Ž . 1q24quadric stabilized by M , z an involution from P , C s C z ; 2 ?8 1 M q

Ž . Ž .Co , and R s O C . Our nearest goal is to construct in C z a subgroup1 2 G

C̃ which maps isomorphically onto C. As above let J be the graph on the
set of points t with z g PU in which two points are adjacent if they aret

˜ Ž .incident to a common quadric. We will obtain C as the stabilizer in C zG
of the connected component of J containing s . Let V be a maximal

Ž .clique in J containing s , H be the setwise stabilizer of V in C z , andX
Ž . ² : 6put A s O H . Then by Lemma 4.1, H ; z = 3 ? 2 ? Mat , moreover3 12

there is a unique point a collinear to s , and inverted by z, such that
Ž . Ž .H s C z and O H s P l H. We use notation introduced in LemmaM 3 aa

² :4.2, so that AA and BB are orbits of H s Hr A, z on the set of subgroups
of order 3 in A with lengths 12 and 132, respectively, while LL is the
unique orbit of length 12 of H on the set of hyperplanes of A. Then it is
straightforward to identify AA with the vertices in V.

� 4 ² : Ž .Let s , d be the edge of V incident to d. Then s , d s C z .Qd

Besides s and d there are two subgroups, say r and r9 of order 3 in
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Ž .C z . These subgroups are of Fischer type, and lie in the orbit BB. SinceQd
Ž . 2 Ž .r F P we can define M as in Lemma 2.2. Since C z ; 2.3 ? U 3 ? D ,a r M 4 8d

Ž . 2 Ž . 2we have C z l M ; 2.3 ? U 3 ? 2 . Moreover by Lemma 3.2, z is aM r 4d

2-central involution in M andr

C z ; 3 = 21q12 ? 3 ? U 3 ? 22 .Ž . Ž .Ž .M q 4r

Ž . Ž .Put C s C z and R s O C . Recall the choice of m and the0 M 0 2 0r

definition of W before Lemma 4.4. In particular s , d F W and both s
Ž .and d act non-trivially on O W . Thus one of r and r9 centralizes2

Ž . Ž .O W . We choose notation so that r centralizes O W . Recall the2 2
definition of C , i s 1, 2, 3, 12 before Lemma 4.3, where we choose V si 2
� 4 Ž . Ž . Ž .s , d . So C s C z , C s C z , and C s H s C z .1 M 2 M 12 Ms �s , d 4 a

Ž . Ž .LEMMA 6.1. a R s Ł C L ;Lg LL R
Ž . Ž .b R s Ł C L .0 r F Lg LL R

Proof. The image in CrR ( Co of H is the full normalizer of the1
Ž .image of A which shows that R F R and R s C r . Note that0 0 R

w ² : x Ž .Rr z , A is a non-trivial GF 2 -module for H of dimension at most 24.
The restriction of this module to A is a direct sum of irreducible
2-dimensional modules and the kernel of such a summand is a hyperplane.
The hyperplanes appearing as kernels form a union of orbits under H. By
Lemma 4.2 there are no orbits of length less than 12 and LL is the only

Ž .orbit of length 12. This implies a . Since r acts fixed-point freely on
Ž .RrR , we have b .0

PROPOSITION 6.2. C is the unï ersal completion of the amalgam
Ž .C , C , C , C , W of subgroups of C.0 1 2 12

˜Proof. Let C be the universal completion of the amalgam and as usual
˜ 2Ž .view the C and W has subgroups of C. By Lemma 4.4 b , C l W ; 3 ?i 2

Ž .U 2 ? 2 and so C l W normalizes no non-trivial 2-subgroup of4 2
2Ž . Ž .O C rR . Thus O W F R .0 0 2 0

4q1 Ž .Since H l W ; 3 ? 2 ? Sym 6 we conclude from Lemma 4.2 applied
Ž . Ž .to the dual of A that H l W A s N A l W and that there existsH

unique elements L and L in LL with L l L F A l W. Let U s1 2 1 2
² Ž . A: ² : ² :O W . Then Ur z is a subspace in R r z of dimension at least 42 0

Ž Ž .. Ž . Ž Ž ..centralized by C O W . Thus by Lemma 6.1 b , C O W is theA 2 A 2
Ž Ž ..intersection of two members of LL . Hence C O W s L l L , U sA 2 1 2

Ž . Ž . < < 5C L C L , r F L l L , and U s 2 .R 1 R 2 1 20 0

Ž . Ž . Ž .Put V s C L . We conclude from Lemma 6.1 b that N V ;R 1 H l C0 06 Ž . Ž .` Ž .3 ? 2 ? Sym 5 . On the other hand H l W is normal in H l W A
Ž .` Ž .and so H l W centralizes all conjugates of O W under A. Thus2
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Ž .` Ž . Ž . ² Ž . Ž .`:H l W F N V . It follows that N V s N V , H l W ;H H H l C0

36 ? 2 ? Mat . In particular, H acts doubly transitive on the 12 elements of11
H h 1q4 Ž .V and since VV ( 2 for h g H l C _ N V we conclude thatq 0 H

˜ H 1q24² :R [ V ( 2 .q
˜ ˜ ˜We claim that R is normal in C. By definition H normalizes R.

² H l C0:Moreover, R s V . Let t g H l C _ C . As C l C is of index0 2 0 0 2
two in C , t normalizes C l C . Also t permutes r and r9 and we2 0 2

˜ tconclude that R s R R is normalized by R , C l C , and t. Thus both0 0 0 0 2
˜Ž . Ž .² :C s R C l C and C s C l C t normalize R. Since C s0 0 0 2 2 0 2 1

˜ ˜² :C l C , C l H , R is indeed normal in C.1 2 1
˜ ˜Note that CrR is a completion of the amalgam

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜C RrR , C RrR , C RrR , WRrR .1 2 12ž /
˜ ˜ ˜Ž .As O W F R, we can apply Corollary 5.5 and conclude that CrR ( C (2

˜ 1q24 ˜Co . Thus C ; 2 ? Co and since C is a quotient of C, we obtain1 q 1

C̃ ( C.

In view of the preceding proposition our nearest goal is to find such an
amalgam inside of G. The first part, namely finding the subgroups, is
already accomplished. Indeed the groups C , C , C , C s H and W had0 1 2 12
been defined for X, in particular for G and for M. It remains to show that
the pairwise intersections are the same when regarded as subgroups of G
and M, respectively. The fact that the pairwise intersections between C ,1
C , H, and W are correct follows immediately from the definitions of these2
groups. Also H F M and C F M . Since r is perpendicular to Q in Qa 2 d a d
we conclude from Lemma 2.2 that C intersects C and H correctly.0 2

Ž . Ž . Ž² :.Moreover, N r F N r F N sd F M and so C and C inter-C M M d 0 11 s s

sect correctly. It remains to check the intersection C l W. As C F M0 0 r

and W F M this is accomplished bym

Ž .LEMMA 6.3. N m s M l M .M r mr

Proof. Let F s rm. Then F is a non-degenerated 2-space of ‘‘plus’’-
type with respect to the M invariant quadratic form on Q . Henced d

Ž . 8 yŽ . Ž .N r, m ; 3 ? V 3 ? 2 and Frr is of type 3C in M rr ( M 24M 6 rd
Ž w x. Ž . Ž . Ž .compare At . This shows that N m s N r, m F N m F M .M M M mr d d

˜COROLLARY 6.4. Let C be the subgroup of G generated by C , C , C , H,0 1 2
˜ 1q24 ˜and W. Then C ; 2 ? Co and C is the normalizer of the connectedq 1

component of J containing s .

Ž .We now proceed finding the remaining terms E and E cf. Section 34 8
of the 2-local geometry of M. Of the 3-local subgroups considered so far



3-LOCAL GEOMETRY OF THE MONSTER 405

only the normalizers of Fischer type subgroups contain a conjugate of E .4
ŽThis follows from the fact E centralizes all subgroups of odd order in M4

.which are normalized by E . This is not enough to reconstruct N4
as a subgroup of G and we are forced to first locate a further 3-local

Ž .subgroup of G containing E . By Lemma 4.2 g there exists a 2-space F4
in A all of whose 1-spaces are in BB and so of Fischer type. Moreover

Ž . Ž . Ž .N F rC F ( GL 3 and there exists L , L in LL with F F L l L .H H 2 1 2 1 2
Choose F so that r F F and let d be a further Fischer type subgroup
of F.

Ž .We are trying to locate subgroups of N F and for this we will produceG
a quadric d9 with F F Q . Let z9 be an involution in H so thatd9

U U Ž . rP z s P z9, but P z / P z9. Then by Lemma 3.3 b , z9 s z for somea a a a
r r Ž .r g M . Let A9 s A and V9 s V . Since s s C L has 12-conjugatesa i A9 i

r 2 � 4under H l H ; 2 ? Mat , s g V9. Thus s , s is an edge in V9 and12 i 1 2
there exists a unique quadric d9 adjacent to a , s , and s . In Q we see1 2 d9

w x w x 5that Q l P s s s Q l P , z9 and Q l P , z9 has order 3 . Asd9 a 1 2 d9 a d9 a

w x Ž . 5Q , z9 s AQ and C s s has order 3 we conclude thata a AQ 1 2a

Ž . w xC s s s Q l P , z9 . Hence F F Q .AQ 1 2 d9 a d9a

Since all 1-spaces in F are of Fischer type, F is a non-degenerate
Ž . 8 qŽ . Ž .2-space of ‘‘minus’’-type in Q and C F ; 3 ? V 3 . Since C F Fd9 M 6 Md9 d9

w xM we conclude At that Frr is of type 3 A in M rr, which means thatr r

Ž . 2 qŽ .C F ; 3 ? PV 3 . Let g be a point incident to d9 such that Q isM 8 gr

perpendicular to F in Q . Then Q is centralized by a Sylow 3-subgroupd9 g
Ž . Ž .of C F . Hence Q FrF is 3-central in C F rF and so also 3-centralM g Md9 d9

Ž . Ž . Ž . Ž .in C F . Thus C F l N Q is a maximal subgroup of C FM M M g Mr r r r

Ž .different from C F . HenceMd9

C F s C F , C F l N Q F N d , N d F M .Ž . Ž . Ž . Ž . Ž .² :¦ ;Ž .M M M M g M M dr d9 r r d9 g

Ž . Ž . Ž .Put T s C F . We conclude that T s C F and so N F normal-M M Hr d

Ž . Ž 2 qŽ .. Ž .izes T. Put M s TN F . Then M ; 3 = PV 3 ? GL 3 and inF H F 8 2
particular, M maps isomorphically onto the full normalizer of F in M.F

˜Ž . Ž . Ž . Ž .Note that C z s N F C z : HC z : C. As z centralizes F,M H T MF r
3Ž . qŽ . Ž .z g O T s T 9 ( PV 3 . As N F induces the full group of outer8 H

w xautomorphisms on T 9 and by At , T 9 has a unique class of involutions
invariant under all automorphisms, z is 2-central in T 9. In particular, there

Ž Ž ..exists a pure Conway foursgroup E in T 9 with z g E F O C z F2 T 9

˜Ž Ž ..O C z s R F R. Let t be an involution in E distinct from z. Then2 M 0r
g ˜ ˜gt s z for some g g T 9 F M l M . Put C s C . Then by conjugation ofr F t

˜ ˜Ž . Ž .the corresponding statements for z we get C t F C and C t F C .M t M tr F
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˜Ž .LEMMA 6.5. C E F C .C̃ t

Ž . 2q11q22Proof. Put C s C E . Then C ; 2 ? Mat . Moreover C l˜E C E 24 E
Ž . Ž . Ž .M s N r and so modulo O C , C l M has shape 3 ? Sym 6 . Simi-r C 2 E E rE

Ž . 2 Ž .larly modulo O C the intersection C l M is of shape 3 ? GL 3 . By2 E E F 2
w xAt no proper subgroup of Mat has two such subgroups and thus24

² : Ž .C s C l M , C l M O C . Since r has fixed points on any com-E E r E F 2 E
Ž .position factor for C on O C this impliesE 2 E

˜² :C s C l M , C l M F C .E E r E F t

Let E be a pure Conway type eight subgroup of T 9 such that E F8 8
Ž Ž ..O C x for all 1 / x g E and E F E . Put E s E and for i s 4, 82 T 9 8 8 4

˜ Ž .put C s F C . Then by Lemma 6.5, C s C E . MoreoverE 1/ x g E x E C ii i i

Ž .N E normalizes C and induces on E its full automorphism group. PutT i E ii

˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .N s C N E and L s C N E . Then x maps the amalgam C, N, LE T 4 E T 84 8 ˜Ž .isomorphically onto the amalgam C, N, L as in Section 3. Let M be the
˜ ˜ ˜ ˜group generated by C, N, and L. Then by Lemma 3.1, x maps M

isomorphically onto M. Thus to complete the proof of Lemma 1.6 it
remains to show that G s M. For this note first that M is generated by itsr

˜ ˜intersection with C and N. Moreover, M and M are both generated by1 8
˜their intersections with M and C. Finally M and M generate G and sor 1 8

G s M and Lemma 1.6 is proved.
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