
WAVer: A Model Checking-based Tool to

Verify Web Application Design

D. Castelluccia1 M. Mongiello2 M. Ruta3 R. Totaro4

Dipartimento di Elettrotecnica ed Elettronica
Politecnico di Bari
I-70125 Bari, Italy

Abstract

Web Applications are becoming more and more widespread and efficient, then an increase of their
reliability is now strongly required. Hence methods to support design and automatically perform
validation of a Web Application (WA) could be helpful. In this paper we present WAVer, a
prototype tool for performing the verification of a WA design by means of Symbolic Model Checking
techniques. The tool first performs the modeling of the WA and furthermore verify it by means of
a model checker. Specifically, the mathematical model of the WA is represented by a Finite State
Machine (FSM). Then, by using the CTL formal language, we formalize basic criteria to establish
correctness of the application. The prototype system we have implemented embeds a component
which automatically imports WA design from a UML tool; CTL specifications are added and
translated as source code for NuSMV model checker. Finally, the checker performs verification: if
there is a violation of specifications, NuSMV allows to locate errors in WA design and appropriate
adjustments are carried out.

Keywords: web application, verification, model checking.

1 Introduction

Nowadays, Web Applications (WAs) are a powerful support to human activ-
ities, especially in business, scientific or medical fields. The relevance that

1 Email: d.castelluccia@virgilio.it
2 Email: mongiello@poliba.it
3 Email: m.ruta@poliba.it
4 Email: r.totaro@poliba.it

Electronic Notes in Theoretical Computer Science 157 (2006) 61–76

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.01.023
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81986113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:d.castelluccia@virgilio.it
mailto:mongiello@poliba.it
mailto:m.ruta@poliba.it
mailto:r.totaro@poliba.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


WAs are assuming asks for an increase of their reliability, flexibility and secu-
rity; there is the need of methods and tools for supporting the WA design and
performing both an automated verification and validation of it. In this con-
text, Symbolic Model Checking techniques [15] can be a valid choice within
verification methods; notice that with respect to other test and simulation
approaches, Model Checking ones do not need a preliminary interaction with
the user for selecting inputs as test case, hence it could be used in design
phase allowing to locate mistakes or malfunctions. This strategy should made
a more accurate design, before implementing WA as prototype to be tested;
then it saves time and reduces costs in development cycle.

According to above considerations, first of all, it is necessary to trans-
form a generic Web Application design in a model to be verified by means
of NuSMV. In our previous papers [6][7][8] we built a mathematical model,
where a WA design is represented by a FSM, where windows, links, pages and
actions are states. For the sake of simplicity we use a limited number of states
because we consider only the logical-functional structure of web pages ignor-
ing the interactive aspects to avoid a possible uncontrolled increase in state
number. Secondly, after automatically verifying specifications about correct-
ness, the obtained SMV model is subsequently refined: explanations provided
by model checker are analyzed to establish if there is a violation in Computa-
tional Tree Logic (CTL) [15] axioms. Finally errors in WA design are located
and corrected.

In the proposed approach, the SMV model is derived from a WA navi-
gation model which is drawn in Unified Modeling Language (UML), accord-
ing to extensions proposed by Conallen [2] (they result particularly useful in
modeling web systems, characterized by client/server interactions as well as
frame-based navigation). UML diagrams provide a valid support to verify
WA requirements, however they need to be turned into our corresponding
mathematical model.

Hence, in this paper we introduce a tool, able to transform UML diagrams
in XMI files and to turn them into corresponding Web Application Graphs
(WAGs). Then the tool translates the WAG in a SMV model finally used as
input for the model checker NuSMV. It automatically performs verification of
CTL specifications.

Verification of properties of a Web Application by means of Symbolic
Model Checking techniques is very useful in web planning, because it de-
termines a gradual refinement of the WA design, before it was definitely im-
plemented.

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7662



2 Model Checking

Model Checking techniques consist of estimating the compliance between the
mathematical model of a system and a set of formal axioms representing cor-
rectness specifications.

In what follows we assume the reader be familiar with the CTL [1] formal
language as well as with the SMV model checker [17].

The syntax of the formulas can be defined using Backus-Naur form. It is
build by using propositional atoms as well as CTL formulas. Any propositional
logic formula is a CTL formula and CTL formulas may also contain path
quantifiers followed by temporal operators.

The semantics of the language is defined through a Kripke structure that
defines a model for describing the semantics of a temporal logic [13].

The model checker we used in this approach is New Symbolic Model Verifier
(NuSMV) [17], a tool for checking finite state systems against specifications
expressed as CTL formulas. The symbolic model checking approach of SMV
allows to describe the transition relations of the model systems in a more com-
pact way, i.e., encode the transition relation as a Boolean function represented
by an ordered Binary Decision Diagram.

3 Proposed model

We propose a mathematical model of a WA based on an extension of the
simple graph generally adopted to model pages and links between pages. The
verification procedure consists of six principal steps:

(i) Modeling of the system as finite state machine;

(ii) Manual verification of some route in the graph to immediately check problematic state
transitions in the model (optional);

(iii) Formalization of fundamental correctness properties as CTL axioms to be verified in
the model;

(iv) Automatic verification by means of model checker to verify accuracy of CTL axioms
in every state;

(v) Analysis of possible explanations provided by model checker (only if a violation of a
specification occurs);

(vi) Correction and refinement of the WA design.

In the following subsections, we describe each step.

3.1 Modeling a Web Application

Most intuitive and immediate model of a WA can be built by means of logical
associations from state to state, where each of them represents a web page
whereas transitions represent links connecting web pages [3]. This kind of

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 63



representation is very simple, but theoretically it is more correct also consider
links as states of the model, because in this way a verification of properties
related to coherence and consistence of connections can be performed.

In general, due to complexity of the hypertextual structure of the Web, a
WA cannot be modeled using a simple graph structure where nodes represent
pages and arcs represent hyperlinks. In fact, the widespread use of frames,
while controversial, makes a window be composed by several pages. To solve
this question, in previous paper we proposed [6] [7], we identified a new kind
of object in a WA and consequently a new kind of state in the model, that is
the “window” state. A generic window could be divided in one or more frames
where one or more web pages can be loaded.

Last essential question in WA modeling is to distinguish between links
connecting to other web pages and links triggering an action of the server (for
example, the download of a file or login operations). Hence, we extend the WA
model to include “action” states representing actions performed in a specific
web page, typically said “Server Page”. In the paper [8], WAs are modeled as
FSM where pages, links, windows and actions are states.

In what follows we resume and formalize above considerations by means
of two definitions.

Definition 3.1 A Web Application Graph (WAG) is a graph G = (N, C) where nodes N
are divided as N = W ∪ P ∪ L ∪ A (Windows, Pages, Links and Actions), such that:

(i) W, P, L, A are pairwise disjoint, i.e., W ∩ P = ∅, W ∩ L = ∅ W ∩ A = ∅ L ∩ P = ∅
L ∩ A = ∅ P ∩ A = ∅ and

(ii) arcs connect only windows with pages, pages with links or actions, links with windows
and actions with windows, i.e., C ⊆ (W × P ) ∪ (P × (L ∪ A)) ∪ ((L ∪ A) × W );

(iii) ∀w ∈ W∃p ∈ P : (w, p) ∈ C, that is: “Every window contains at least one page”;

(iv) ∀x ∈ (L ∪ A)∃w ∈ W : (x, w) ∈ C, that is: “Every link points to a window and every
action creates a window”.

Figure 1 depicts a simple WAG we use as reference throughout the paper.

Definition 3.2 A navigation path is a sequence w1w2 . . . wn where ∀1 < i < n − 1

∃p ∈ P∃x ∈ (L ∪ A) : wi → p ∧ p → x ∧ x → wi+1

To express in a CTL formalism and verify properties of the above Web
Application Graph, we reserve four propositional letters w, p, l, a to distinguish
nodes modeling windows, pages, links and actions respectively. Hence we
enforce transitions only as established in the previous Definition 3.1.

Such conditions could also be verified in the WAG by checking the following
CTL formulas:
• AG((w ∨ p ∨ l ∨ a) ∧ (¬w ∨ ¬p) ∧ (¬w ∨ ¬l) ∧ (¬w ∨ ¬a) ∧ (¬p ∨ ¬a) ∧ (¬p ∨ ¬l) ∧ (¬p ∨
¬a) ∧ (¬l ∨ ¬a))

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7664



Fig. 1. The WAG used as example

• AG(w ⇒ AXp ∧ p ⇒ AX(l ∨ a) ∧ l ⇒ AXw ∧ a ⇒ AXw)

3.2 Simulation Process

The first step of our approach is the translation of the WAG in the NuSMV
formalism (model declaration language); then, a preliminary simulation could
be useful for a first verification of the model behavior; it allows to check if
state transitions in the SMV code are coherent with WAG.

Notice that in the specific example of WAs, the simulation process points
out an important question related to Model Checking techniques, but relative
to any WAG. More precisely, the declaration of state transitions forces model
checker to consider specific properties for next states. The missing declaration
of state transitions in any endpoint-node, i.e., a node which does not allow
further transitions, makes model checker free for assigning any possible value
of property to non-existent next states.

However, NuSMV does not provide any formal construct to define an
endpoint-node of the graph, then we solved the problem realizing an inde-
pendent endless cycle, where all the final states are connected.

3.3 Axioms of correctness

By means of Model Checking techniques, we test the validity of interesting
properties (related to typical features of a WA) in the model. To formalize
axioms of correctness, we use following “labels” to name some state in the
WAG:
• private denotes that a window or a page contains private information, hence it is visible

only to a specific category of users;

• login, logout denotes that in the current state the server is busy because it is performing
either a user login action or a user logout action;

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 65



• error denotes that a page contains an error message.

First of all we must check the correct use of propositional letters w, p, l, a

in the model by imposing the following CTL specification:
• private is applicable only to pages or windows, so it is not applicable to links or actions

AG(l ∨ a ⇒ ¬private)

• login and logout are applicable only to actions
AG(w ∨ p ∨ l ⇒ ¬login ∧ ¬logout)

• error is applicable only to pages
AG(w ∨ l ∨ a ⇒ ¬error)

• a private window must contain at least one private page
AG(w ∧ private ⇒ EX(private))

• a not private window must not contain private pages
AG(w ∧ ¬private ⇒ AX(¬private))

Furthermore, using these propositions we can check some interesting prop-
erties of a web application design. For example we can check whether the
access to private page occurs through a login, hence whether it is correct:
• we must find some private information after a login action:

AG(login ⇒ EF (private))

• after a login action we can make a logout action in the future or the application must
manage a login error and it must be possible to make a login again:
AG(login ⇒ AG(w ⇒ EX((EXlogout) ∨ error) ∨ EFlogin)

• after a logout action we can load only not private pages before a new login:
AG(logout ⇒ A(¬privateUlogin))

• the homepage must verify the following property:
A(¬privateUlogin)

Another property of web application design concerns the error manage-
ment; we can check the web application behavior when an error occurs. For
instance:
• for every not logout action the web application must manage eventually an error page:

AG(a ∧ ¬logout ⇒ EXEXerror))

• the user must repeat the login action when an error occurs:
AG(error ⇒ A(¬privateUlogin))

3.4 Verification Process and Model Refinement

With the aid of following definitions we can introduce the concept of verifica-
tion of a Web Application.

Definition 3.3 [Verifying a Web Application] Given a WAG G modeling a web application,
given an initial state s and a property p, the web application verifies p iff p holds for s in
G.

In Figure 2 we added properties to the states in Web Application Graph
used as reference.

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7666



Fig. 2. The WAG with labeled properties

To perform verification, WAG and CTL specifications have to be expressed
in NuSMV input language. After the automatic verification by means of
the model checker, the analysis of possible possible explanations allows to
understand incorrect WA behavior and to refine the model. Typically, after
the first verification several faults are found in the model of the WA.

According to the above WAG, the first set of axioms we submit to the
checker is the one related to state labels and atomic propositions: because the
model checker does not provide any explanation, we can conclude that they
are correctly assigned to states in the WAG.

Hence, we submit to NuSMV six axioms previously outlined concerning
login and logout actions. The model checker identifies an error and provides
corresponding explanation. In particular it shows a sequence that stops after
login, because the “private” property is missing in a state of the WAG; hence,
we will assign the “private” label to both “Member” window and “NewsListP”
page. Remember that a private window must contains at least one private
page.

To complete correct checking of these properties, we introduce a new state
in the model to represent logout action which has to be preceded from a page.
“NewsListP” page is logically the better candidate for this purpose, because
it is always loaded in the assigned frame and then a user can logout at any
moment. However, a fixed specification points out to insert a connection
between “Logout” state and “HomepageW” state, to make possible to follow
a path bringing a new login action.

Verification process goes on with the analysis of axioms related to the error
management: every “action” state of the model implies a server elaboration
phase; it could have either positive or negative result. In the last case, a

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 67



Fig. 3. WAG after verification process

correct WA should display to user an error page and should inhibit any further
operation to not authorized users.

In the graph pictured in Figure 3 an “error” page after “Login” one is
shown; notice that “Logout” state has only a connection to “HomepageW”
state because it does not need of a following “error” page (logout action cannot
have a negative result). Then, we inhibit axioms verification “Logout” state
in the following way:

AG((type = action&property! = logout) → EX(EXproperty = error))

However, the WA must permit to the user to restart server elaborations –
after a login failure– with right data of login. Hence, we insert in the WAG the
new “HomepageLink” state, for representing the connection between “error
login” page and “Homepage”one.

3.5 Extension of the model

Now, after performing the verification step, we can extend the WAG by means
of introduction of WA access policies. We use the same previously applied
approach.

We briefly recall fundamental mechanisms of access policy in a generic WA.
They essentially consist of:
• authentication: it confirms user identity; particularly in the form-based authentication,

user has to provide name and password, they are verified and recognized by the server
which can authorize or deny access;

• authorization: it is a process for granting specific resources to specific users; the definition
of users “roles” and related resources is performed by WA administrator. S/He generally
creates a user account and by means of it a user accesses to specific resources.

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7668



Fig. 4. WAG with access policies

Hence, we extend the graph model assigning some resources to two cate-
gories of users:
• authorized users: they can view specific areas of the WA, not accessible to anonymous

users;

• administrators: they can insert or cancel a new user, can view the list of authorized users
and can access to all the resources of the WA.

Therefore, if a user performs an access to the WA for the first time, be-
fore registration s/he is unknow for the system. Her/his login data has to be
recognized and stored, then we also must introduce a mechanism of user regis-
tration. To add these features, the original graph related to the WA example
has been extended as illustrated in the following Figure4.

A direct consequence of such extensions is the elimination of “private” la-
bels. In fact now we cannot only distinguish private pages and public pages
accessible by anonymous users, but also we must distinguish private pages ac-
cessible by authorized users and private pages accessible by the administrator.

We think “private” label has became insufficient now, hence we introduce

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 69



a new correctness axiom called “accessibility”; it can assumes following values:
• none if web pages are visible by anonymous users;

• partial if web pages are visible by authorized normal users;

• all if web pages are visible by administrators.

For the sake of simplicity, in our reference graph we consider only three
users categories, but we are able to analyze models including more classes of
users. They can be divided according to different levels of functionality or
can be simply related to personal areas and resources (multiple subjects in
the same category). Notice that possible extensions of the model does not
compromise the validity of the reference example, whose correctness has been
also proved in case of additional users categories.

In what follows we formalize and represent the graph grouping possible
states of a user, independently by accessibility of pages s/he views at the
moment. Hence we build a second supplementary model, for maintaining
current states of users during navigation in WA:
• noLog is an anonymous user which did not perform login operations;

• member is an authorized user which performed login as user of the WA;

• admin is an authorized user which performed login as administrator of the WA.

The state transitions permitted in this model can be represented by means
of the simple following graph:

To verify some important specification, we synthesize following axioms:
• a member cannot have administrator functions and an anonymous user cannot view pages

belonging to a member:
AG(member ⇒!all); AG(noLog ⇒ (!partial∧!all))

• administrator can access to resources belongings to every authorized user:
AG(admin ⇒ (all ∨ partial))

Besides, we previously introduced some CTL specifications, that we now
must correct according to new accessibility property, by removing specifica-
tions related to the “private” label. In particular about:
• initial state (Homepage):

A(none ∪ login)

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7670



Fig. 6. XMI2SMV component within verification tool

• login and access to pages:
AG(login ⇒ EF (partial ∨ all)); AG(logout ⇒ A(none ∪ login))

• error management:
AG(login ∧ EXEXerror) ⇒ A(none ∪ login)

The above specifications point out that the accessibility logically replaces
the correctness axiom related to private pages, providing a better precision in
management of private resources of different users in the WA.

Now, verification process consists of establishing if state transitions in the
model are coherent with accessibility of the pages. Hence, we define further
NuSMV module besides MAIN one; by means of it we synchronize user state
transitions according to WA state transitions. For this purpose we use the
“stateName” variable passed as input parameter every time the module is
started.

4 From XMI to SMV

4.1 Features of the tool

Design documentation expresses the business logic of the WA in a visual fash-
ion by using UML. Main benefit of UML is to allow representation of all the
components of a WA by means of diagrams, notations and extension mech-
anisms. Conallen [2] defined new kinds of elements inside a metamodel and
introduced a set of new stereotypes and new icons to represent components
like static web pages as well as dynamic ones, frames, forms and to model
interactions with databases.

To use UML diagrams in conjunction with Model Checking techniques
for performing automatic verification, we implemented a component which is
able to automatically translate a WA diagram, exported by an UML tool as
XMI file, in the corresponding WAG; then, the WAG is translated in NuSMV
code given as input to the model checker. Figure 6 shows the location of this
component, called XMI2SMV, within the tool:

The XMI2SMV component includes three packages, according to three
principal features it has.

XMIManager. It imports UML diagram as XMI file, then it analyzes

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 71



of the mathematical model.

The class named “StateTableCreator”is the main class of the package. It
builds the State Table by analyzing tags in the .xmi document and filling two
preliminary tables: Class Table, which contains all the classes declared in the
XMI file, and Transition Table, which contains all declared associations in the
XMI file. These two tables include information for building the State Table;
the “StateTableCreator” is able to rebuild the WAG according to XMI model
by converting each class and every association in a state or in a state transition
of the WAG.

A simple example will make clear the approach:
• every class targeted as “Server Page” will become a state labeled as “action”;

• every class targeted as “Client Page” will make both a state labeled as “page” and a state
labeled as “window”;

• the declaration of the “Frameset” class will elicit elimination of some just created win-
dows, because the corresponding pages are displayed in the same window;

• every association link will become a state labeled as “link”.

Result is a basic and incomplete WAG: it has only nodes and arcs coming
from the State Table. Correctness axioms will be assigned to the nodes by the
following Graph Manager package.

Graph Manager. It is the main package of the tool, because it:
• calls main classes of connected packages to start operations like WAG creation or SMV

code building;

• manages the labeling of the states in the model according to correctness axioms;

• internally stores WAG by means of suitable data structures, such as an adjacency matrix
and a vector of “nodes”.

More specifically, this package assigns the following labels to each node

Fig. 7. StateTableCreator class

XMI file and extracts information about the FSM representing the WA.

More specifically, we reach this goal by means of realization of a State

Table; it stores relationships between the WA as web system and the same
WA as FSM, where states and state transitions respect fundamental principles

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7672



of the model (according to the fundamental correctness axioms described in
previous sections): firstLoad, login and logout which are about mechanisms of
user authentication; error which is about management of error pages; none,
partial and all which are about accessibility of private pages.

However, to identify the states satisfying the above properties, the Graph

Manager needs information about main pages of WA. Hence WA designers
have to provide a XML file, containing names of: homepage, registration
server page, both login and logout server pages, private pages displayed after
either administrator or user login (and linked to logout page), error pages and
so on. Each name is used by a function of “Setting” class; it selects the node
of the graph corresponding to a specific web page and assigns to it the label
related to the appropriate axiom of correctness.

To inspect the graph or to select a specific node, the Graph Manager

exploits its internal model of the WAG. It is based on two special structures:
an adjacency matrix, where are stored –for each node– information about
connections with adjacent nodes, and a vector of “Nodes”, where each “Node”
is a vector containing the name of the specific node followed by labels of the
axioms of correctness.

Finally, when WAG is completed, “addSpecification” function allows to
add CTL specifications to the model; hence for each specification, “WagMan-
ager” class initializes a new class “Specification” and stores CTL specifications
in its formula field.

SMVManager. The third package of the tool builds the SMV code re-
lated to the WA, whose model and CTL specifications are provided by the
Graph Manager. “SMVGenerator” is the main class of the package and coor-
dinates following actions:
• analysis of all the WAG states to obtain information useful for the translation of the

model in the corresponding NuSMV formalism;

• building and syntactic arrangement of MAIN module contents modeling the WA states;

• building and syntactic arrangement of the further SYNCHRO module contents modeling
the user state;

• adding of the correctness axioms in the MAIN module;

• performing the SMV code automatic verification.

As previously stated, to perform such actions, the package is equipped with
a XML file, containing information to be inserted in SMV code and related to
every WAG.

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 73



5 Related Work

Tin this Section we briefly describe the more relevant proposals in the field
of web application verification. Some approaches consider the web similar to
a database, hence propose conceptual models of its structure; more recent
approaches focus on web applications under a web engineering point of view.
A complete review of all the modeling techniques is in [10].

HDM [11] is one of the first model-driven design of hypermedia applica-
tions; successive proposals are RMM[14], Strudel [9] and Araneus[18]. They all
build on the HDM model and support specific navigation constructs. In par-
ticular, Araneus describes the data structure based on the entity relationship
model.

In the second perspective, that is considering a Web Application as a
software object, several modeling techniques have been adopted. Conallen [2]
proposes a UML-based methodology. The main benefit of the method is the
feature which allows to represent all the components of a Web Application
using a standard UML notation. OOHDM [20] is an object-oriented method
to represent design structure in WAs. The method considers Web Applications
as navigational views over an object model and provides some basic constructs
for designing the navigation model. UWE [16] is an object-oriented, iterative
and incremental approach based on the UML.

WebML [21] introduces graphical and XML representation of concepts for
designing Web Applications. Anyway, all the proposals are modeling tech-
niques. To perform verification of a WA it is necessary to use verification or
testing techniques.

The method proposed in [19] is based on a UML model of WAs and con-
siders the testing and validation of the developed web system. In [5], a Web
Application analysis based on queue models is proposed. Finally, in [4] the
authors verify the correct use of duplicated pages inside a web constructed
using HTML language and ASP code. Once again the proposed method does
not consider a formal approach.

On the other hand, model checking based on a μ − calculus language has
been used in [3], but the approach does not present the analysis of dynamic
pages. Anyway in this work the author considers a model of the web like a
graph in which states are pages and transitions between states are hyperlinks
in the pages. Hence hyperlinks cannot be qualified by properties as we do.

In [22] the automata are used to outline the framework of the links in a hy-
pertext. Hence a branching temporal logic (HyperText Logic) HTL is defined.
By means of it a sequence of transitions between states in the automata can
be described. The logic is also used to verify the propositions of the temporal

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7674



logic, but again dynamic pages are not considered.

In [12] a tool for automatically discovering and systematically exploring
web-site execution paths is proposed: it is a spider-like program which follows
all the possible static links in every HTML web page and surfs through all dy-
namic components of a web application, including both submission/execution
forms and client-side scripts. During web site examination, the tool allows
to check for many kind of errors, in single web pages as well as in a naviga-
tion paths, by means of a regression test. However, the WA must be already
implemented in HTML to perform all tests. Hence possible discovered errors
have a great cost of repairing.

6 Conclusion

In this paper, we proposed a formal model and a tool for verification of the
UML design of WA. The method is based on model checking and the properties
to be verified on the model are expressed in CTL. The implemented system
parses the XMI code obtained as output of a UML design tool and builds the
SMV model where properties are verified.

The proposed method and tool have the main advantage of joining the
two phases of design and verification of a WA in a single automated activity.
Hence, we can say WAVer performs an “a priori” verification of the WA design,
saving time and costs and increasing software quality; the verification is fully
automated because WAVer embeds NuSMV model checker which establish
system correctness. Simulation and results prove the benefit of our approach.

References

[1] E. M. Clarke, O. M. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.

[2] J. Conallen. Building Web applications with UML. Addison Wesley Publ. Co., Reading,
Massachussetts, 2002.

[3] L. de Alfaro. Model checking the World Wide Web. In Proceedings of the 13th International
Conference on Computer Aided Verification (CAV’01), pages 77–85, 2001.

[4] G. Di Lucca and M. Di Penta. An approach to identify duplicated web pages. In 26th Annual
International Computer Software and Applications Conference, pages 481 – 486, Oxford,
England, 2002.

[5] M. Di Penta, G. Antoniol, G. Casazza, and E. Merlo. Modeling web maintenance centers
through queue models. In Fifth European Conference on Software Maintenance and
Reengineering, pages 131 – 139, Lisbon, Portugal, 2001.

[6] E. Di Sciascio, F. M. Donini, M. Mongiello, and G. Piscitelli. Anweb: a system for automatic
support to web application verification. In Proc. of SEKE ’02, pages 609–616. ACM, New
York, July 2002.

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–76 75



[7] E. Di Sciascio, F. M. Donini, M. Mongiello, and G. Piscitelli. Web applications design and
maintenance using symbolic model checking. In Proc. of CSMR ’03, pages 63–72, Benevento,
Italy, March 26–28 2003. IEEE.

[8] E. Di Sciascio, F. M. Donini, M. Mongiello, R. Totaro, and D. Castelluccia. Design verification
of web applications using symbolic model checking. In ICWE, Lecture Notes in Computer
Science, pages 69–74. Springer, 2005.

[9] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. Catching the boat with
strudel: experiences with a web-site management system. In ACM - SIGMOD, pages 414–425,
1998.

[10] P. Fraternali. Tools and approaches for developing data-intensive web applications: a survey.
ACM Computing Survey, 31(3):227–263, 1999.

[11] F. Garzotto, P. Paolini, and D. Schwabe. Hdm - a model-based approach to hypertext
application design. ACM TOIS, 11(1):1–26, 1993.

[12] P. Godefroid, M. Benedikt, and J. Freire. Veriweb: Automatically testing dynamic web sites.
In 11th International World Wide Web Conference (WWW ’02), Honolulu, May 2002.

[13] M. R. A. Huth and M. D. Ryan. Logic in Computer Science. Cambridge University Press,
1999.

[14] T. Isakowitz, E. Stohr, and P. Balasubramanian. Rmm : a methodology for structured
hypermedia design. Comm. ACM, 38(8):34–44, 1995.

[15] J. P. Katoen. Concepts algorithms and tools for model checking, volume 32-1 of Lecture Notes
of the Course ”Mechanised Validation of Parallel Systems”. Friedrich-Alexander-Universitat
Erlangen-Nurnberg, 1999.

[16] N. Koch and A. Kraus. The expressive power of uml-based web engineering. In Proc. of
IWOOST ’02, 2002.

[17] K. L. McMillan. The SMV system, February 1992.
http://www.cs.cmu.edu/ modelcheck/smv/smvmanual.r2.2.ps.

[18] P.Atzeni, G. Mecca, and P. Meriado. Design and maintenance of data-intensive web sites. In
Proc. of EDBT-98, pages 436–450, 1998.

[19] F. Ricca and P. Tonella. Testing processes of web applications. Annals of software engineering,
14(1):93–114, 2002.

[20] G. Rossi and D. Schwabe. Object-oriented design structures in web application models. Annals
of software engineering, 13(1):97–110, 2002.

[21] S.Ceri, P.Fraternali, and M. Matera. Conceptual modeling of data-intensive web application.
IEEE Internet Computing, 6(4):20–30, 2002.

[22] P.D. Stotts and J.C. Furuta. Hyperdocuments as automata: verification of trace-based
browsing properties by model checking. TOIS, 16(1):1–30, 1998.

D. Castelluccia et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 61–7676


	Introduction
	Model Checking
	Proposed model
	Modeling a Web Application
	Simulation Process
	Axioms of correctness
	Verification Process and Model Refinement
	Extension of the model

	From XMI to SMV
	Features of the tool

	Related Work
	Conclusion
	References

