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1. Introduction

Facility location problems have been extensively studied in the OR and theoretical computer science literature [10,20].
In a facility location problem the following data are given: a set of demand points D, a set of locations F where facilities may
be opened, the costs of opening facilities and the transportation costs from demand points to facilities. One has to decide
where to open facilities and how to assign the demand points to them, such that the total cost (of opening facilities and
transportation) is minimized.
In this paper, we study the multilevel facility location problem, (MFLP) where facilities are organized on n levels F =

V1 ∪ · · · ∪ Vn and each demand point k ∈ D has to be assigned to a path p ∈ V1 × · · · × Vn of open facilities passing each
level. The demand of each demand point k is dk. The cost of opening a facility i ∈ F is fi and the cost of transporting one unit
of demand from facility i to facility j is the same for all demand points, namely cij. The cost of transporting a unit of demand
from a demand point k to a facility i ∈ V1 is cki. We assume that each facility can serve an unlimited demand and that the
transportation costs form a metric. One has to decide where to open facilities and how to assign a demand point to a path
of open facilities such that the total cost is minimized. The metric MFLP is encountered in supply chains and the placement
of servers in internet [11].
For n = 1, the MFLP reduces to the classical uncapacitated facility location problem (UFLP). Since the UFLP is NP-hard,

the MFLP is NP-hard as well. The focus of our paper will be on approximation algorithms for the metric MFLP. We call a ρ-
approximation algorithm a polynomial time algorithm which gives a solution of cost at most ρ times the cost of an optimal
solution. ρ is called the approximation guarantee (factor) of the algorithm. For the metric UFLP, a series of approximation
algorithms have been developed in recent years, encompassing a broad range of techniques, such as: LP-rounding [21,9],
greedy algorithms [12], local search [16,5], primal–dual [14,8] and dual fitting [17,15]. Until recently, the best approximation
ratio for the UFLP has been 1.517 and it is attained by the algorithm proposed by Mahdian, Ye and Zhang [17]. In [7],
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Byrka modifies the approximation algorithm proposed by Chudak and Shmoys in [9] and improves the approximation
guarantee to 1.5. Guha and Khuller proved in [12] that there is no ρ-approximation algorithm with ρ < 1.463, unless
NP ⊆ DTIME(nlog log n).
For the MFLP with n = 2, the first constant approximation algorithm was developed by Shmoys, Tardos and Aardal

in [21] and was based on LP-rounding. In [2], Aardal, Chudak and Shmoys extend the algorithm proposed in [21] to an
arbitrary number of levels and improve the approximation guarantee to 3. Although it has the best known approximation
guarantee, their algorithm has the drawback of having to solve a linear programwith an exponential number of variables. In
the search of more efficient algorithms, several combinatorial algorithms have been developed in the recent years. The first
such algorithm was developed by Meyerson, Munagala and Plotkin [18] and has an approximation guarantee of O(ln(|D|)).
Subsequently, Guha, Meyerson and Munagala [13] improved the approximation guarantee to 9.2. Bumb and Kern [6] used
the primal–dual technique to improve the approximation factor to 6. In [3], Ageev proves an important result for the
development of approximation algorithms for the MFLP, namely that any ρ-approximation algorithm for the UFLP leads
to a 3ρ-approximation algorithm for the MFLP. The reduction used by Ageev is similar to the one proposed by Edwards
in [11]. By improving the reduction procedure, Ageev, Ye and Zhang [4] obtain a performance guarantee of 3.27, the best
known performance guarantee obtained by a combinatorial algorithm for the metric MFLP. Zhang shows in [22] that for
n = 2, a 1.77-approximation algorithm can be obtained by combining techniques such as randomized rounding, dual fitting
and a greedy procedure.
The first contribution of this paper is a new integer programming formulation for the MFLP. Our integer program can

be seen as an extension to more levels of the integer program introduced in [1] for the maximization version of the
two level facility location problems. The difference between the integer program we are using and the commonly used
integer program in the approximation algorithms for MFLP, is that instead of assigning demand points to paths, we assign
them to adjacent edges between consecutive levels. The integer program thus preserves the ‘‘level structure’’ of the MFLP.
As a consequence, the number of variables in its linear programming relaxation is decreased from an exponential one
(|D||V1| × · · · × |Vn| + |F |, as in [2,6]) to a polynomial one (|F | + |D||V1| + |D|

∑n−1
l=1 |Vl||Vl+1| in this paper). The number

of constraints is however higher, but still polynomial: |D| + 2|D|
∑n−1
l=1 |Vl| + |D||Vn| constraints versus |D| + |F | in [2,6].

The second contribution of the paper is a novel 3-approximation algorithm based on randomized rounding. For n = 1, our
algorithm reduces to the 3-approximation algorithm of Chudak and Shmoys described in [9]. For n > 1, the algorithm is
more elaborated, due to the fact that for each demand point, one has to insure a path of open facilities passing all levels.
The algorithm exploits the ‘‘level structure’’ preserved by the integer program: if one knows which facilities to open on the
lowestm levels (m ≥ 1) in order to insure optimality, the problem is reduced to a facility level problem on n−m levels. In
each level, facilities are opened according to a procedure similar to the one used in [9] for the one level problem. Due to the
fact that the integer program formulated in this paper allows the decomposition of MFLP on levels, we hope that it could be
useful in designing an algorithm with an approximation ratio less than 3.
The paper is organized as follows: Section 2 contains the new integer program and some properties of its LP-relaxation.

Section 3 contains the algorithm and its analysis. In Section 4 we present conclusions and further research ideas.

2. On an integer formulation of the MFLP and its LP-relaxation

In this section we describe a new integer programming formulation for the multilevel facility location problem. Our
formulation is inspired by the one introduced in [1] for the maximization version of the two level facility location problems.
Unless otherwise specified, we will call a path p an n-tuple (i1, . . . , in) ∈ V1 × · · · × Vn. We will indicate that i is a

component of p by i ∈ p.
The integer programming formulationmost commonly used in approximation algorithms for MFLPmodels naturally the

description of the problem (see [2,6]). The assignment of a demand point k ∈ D to a path p is indicated by a 0–1 variable xkp
and the opening of a facility i ∈ F through the 0–1 variable yi. The constraints require that each demand point is assigned to
one path (i.e.

∑
p∈V1×···×Vn

xkp = 1) and that all the facilities on a path p to which a demand point was assigned are opened
(i.e.

∑
p′:i3p′ xkp′ ≤ yi, for each i ∈ F ). Although straightforward, this formulation has |D| × |V1| × · · · × |Vn| + |F | variables

and requires extra technical details in solving it (see [2,11]).
Instead of assigning demand points to paths, we will assign demand points to edges, such that each demand point is

assigned to an edge between each two consecutive levels of facilities and the edges have a vertex in common. For modeling
this, we introduce the following 0–1 variables:

- yi, i ∈ F indicate whether i ∈ F is open,
- xki, i ∈ V1, k ∈ D, indicate whether demand point k is assigned to facility i ∈ V1
- zkij, (i, j) ∈ Vl × Vl+1, for l = 1, . . . , n− 1 indicate whether demand point k uses the edge (i, j).

We denote the transportation costs by

c(x, z) :=
∑
k∈D

∑
i∈V1

dkckixki +
∑
k∈D

n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dkcijzkij
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and the costs for opening facilities by

f (y) :=
∑
i∈F

fiyi.

We formulate the MFLP as the integer program (Pint) (see Fig. 1).

Fig. 1. The integer program (Pint).

Constraints (1) ensure that each demand point k ∈ D gets connected to exactly one facility on the first level. Constraints
(2) say that demand point k uses an edge (i, j) ∈ V1 × V2 only if k is assigned to facility i ∈ V1, i.e., xki = 1. Constraints (3)
ensure that demand point k uses an edge (i, j) ∈ Vl × Vl+1, 2 ≤ l ≤ n− 1 only if k uses an edge (j′, i), with j′ ∈ Vl−1. Finally,
constraints (4), respectively, (5) say that a demand point kwill be assigned to a facility i ∈ V1, respectively will use an edge
(j, i) ∈ Vl−1 × Vl, for 2 ≤ l ≤ n, only if facility i is open. Denote by COPT the optimal value of (Pint).
Note that the variables xki can be eliminated from the above integer program and constraints (1) and (2) replaced by∑
i∈V1

∑
j∈V2
zkij = 1, as it is done for 2 levels in [1]. Although (Pint) is not the most compact formulation, we prefer to use

it, as it is more suitable for the description of the approximation algorithm we propose.
In the remaining of the paper we will heavily make use of the Linear Programming relaxation of (Pint) described in Fig. 2.

Fig. 2. The linear program (PLP).

First observe that the LP-program (PLP) has |F |+|D||V1|+|D|
∑n−1
l=1 |Vl||Vl+1| variables and |D|+2|D|

∑n−1
l=1 |Vl|+|D||Vn|

constraints.
Remark that it is not necessary to impose in (PLP) that xki ≤ 1, for k ∈ D and i ∈ V1 since this is insured by constraint

(6). Furthermore, we conclude from (7) that
∑
i∈V1

∑
j∈V2
zkij = 1 and, using (8) iteratively, that

∑
i∈Vl

∑
j∈Vl+1

zkij = 1.
Therefore, zkij ≤

∑
j∈Vl+1

zkij ≤ 1 for each 1 ≤ l ≤ n− 1, i ∈ Vl, j ∈ Vl+1, k ∈ D.
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Moreover, in an optimal solution (x, y, z) of (PLP), for each i ∈ V1, k ∈ D, xki ≤ 1 which implies that yi ≤ 1. Finally, in an
optimal solution, from

∑
j∈Vl−1

zkji ≤ 1 follows that yi ≤ 1, for 2 ≤ l ≤ n, i ∈ Vl and k ∈ D.
Denote by CLP the optimum value to (PLP). Clearly, CLP ≤ COPT .
The results in next sectionwill heavily rely on the optimal dual solution of (PLP) and the primal complementary slackness

conditions. Let vk be the dual variables corresponding to constraints (6), tki the dual variables corresponding to (7) for i ∈ V1
and (8) for i ∈ Vl, l ≥ 2 and uki the dual variables corresponding to (9) for i ∈ V1, respectively (10) for i ∈ Vl, with l ≥ 2. The
dual (DLP) is described in Fig. 3.

Fig. 3. The dual program (DLP).

Let (x∗, y∗, z∗), respectively (v∗, t∗, u∗) be optimal solutions for (PLP), respectively (DLP). The primal complementary
slackness constraints give the following relations between the two optimal solutions:

(C1) ∀k ∈ D and i ∈ V1, x∗ki > 0 implies v
∗

k − t
∗

ki − u
∗

ki = dkcki
(C2) ∀(i, j) ∈ Vl × Vl+1, 1 ≤ l ≤ n− 2, and k ∈ D, z∗kij > 0 implies t

∗

ki − t
∗

kj − u
∗

kj = dkcij
(C3) ∀(i, j) ∈ Vn−1 × Vn and k ∈ D, z∗kij > 0 implies t

∗

ki − u
∗

kj = dkcij
(C4) ∀i ∈ F , y∗i > 0 implies

∑
k∈D u

∗

ki = fi.

Next we will present some properties of the optimal solutions (x∗, y∗, z∗), respectively (v∗, t∗, u∗).
We say that a demand point k ∈ D is LP-assigned to a path (i1, . . . , in) ∈ V1×· · ·×Vn, in the optimal solution (x∗, y∗, z∗)

of (PLP), if x∗ki1 > 0, z
∗

ki1 i2
> 0, . . . , z∗kin−1 in > 0. Note that a demand point may be assigned to more than one path.

Lemma 1. If a demand point k is LP-assigned to path (i1, . . . , in) ∈ V1 × · · · × Vn in an optimal solution (x∗, y∗, z∗), then
cki1 +

∑n−1
l=1 cilil+1 ≤

v∗k
dk
.

Proof. Based on (C1)–(C2), it follows that:

v∗k − t
∗

ki1 − u
∗

ki1 = dkcki1
t∗kil − t

∗

kil+1 − u
∗

kil+1 = dkcil il+1 , for 1 ≤ l ≤ n− 2

t∗kin−1 − u
∗

kin = dkcin−1 in .

By summing up these equalities, we obtain that

dk

(
cki1 +

n−1∑
l=1

cil il+1

)
= v∗k −

n∑
l=1

u∗kil .

Since u∗kil ≥ 0, the claim follows. �

In other words, we have shown that the transportation costs along any path to which k is assigned in the primal optimal
solution, cannot exceed v∗k .

3. A 3-approximation algorithm for MFLP

In this section wewill describe a 3-approximation algorithm for theMFLP based on randomized rounding. The algorithm
aims to construct a random solution (X, Y , Z) for (Pint) such that E(c(X, Z)+ f (Y )) ≤ 3CLP ≤ 3COPT .



A.F. Gabor, J.-K.C.W. van Ommeren / Discrete Applied Mathematics 158 (2010) 453–460 457

Before presenting the algorithm, we will introduce some definitions and notations.
Let (x∗, y∗, z∗), respectively (v∗, t∗, u∗) be optimal solutions to (PLP), respectively (DLP). For each demand point k, denote

by Ck the transportation costs incurred by k in the optimal solution, i.e.,

Ck =
∑
i∈V1

dkckix∗ki +
n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dkcijz∗kij.

Denote by N(k) the neighborhood of k, i.e. the set of facilities i ∈ V1 with x∗ki > 0 and i ∈ Vl, 2 ≤ l ≤ n − 1 for which there
exists a j ∈ Vl−1 such that z∗kji > 0. Clearly, if i ∈ N(k) ∩ Vl for some k ∈ D,1 ≤ l ≤ n− 1, (8) imply that

∑
j∈Vl+1

z∗kij > 0.
In the next Lemma we present some properties of an optimal solution of (PLP).

Lemma 2. (a) For each i ∈ N(k) ∩ Vl, l ≥ 2 the set {j ∈ Vl−1|z∗kji > 0} ⊆ N(k).
(b) For each k ∈ D and i ∈ V1 ∩ N(k), there exists a path p in N(k) such that i ∈ p and k is LP-assigned to p.
(c) For each k ∈ D and i ∈ N(k) ∩ Vl, 2 ≤ l ≤ n, there exists a path p in N(k) such that i ∈ p and k is LP-assigned to p.
Proof. (a) Consider a j ∈ Vl−1 such that z∗kji > 0. If l = 2, respectively l > 2, constraints (7), respectively constraints (8)
imply that x∗kj > 0, respectively that there exists an il−2 ∈ Vl−2 such that z

∗

kil−2j
> 0. In both cases, j ∈ N(k).

(b) From constraint (7) follows that if x∗ki > 0, there exists a facility i2 ∈ V2 such that z
∗

kii2
> 0. Clearly, i2 ∈ N(k). The

claim then follows by using (8) in an induction procedure on the level l.
(c) Follows from (b) and (a). �

Approximation algorithm

– Order the demand points in increasing order of v
∗
k+Ck
dk
.

– Declare all the demand points unclustered and let the set of clustered points be Cl = ∅.
– Repeat until Cl ⊇ D (that is all points are clustered).
– Choose among the unclustered demand points the demand point kwith the smallest value of v

∗
k+Ck
dk
.

– Declare k a cluster center.
– Choose an index i ∈ V1 with probability x∗ki.
– Iteratively, perform the following: for each level l, 1 ≤ l ≤ n − 1, if facility i ∈ Vl was opened, open facility j ∈ Vl+1
with probability

z∗kij∑
j∈Vl+1

z∗kij
.

– Assign to the cluster centered at k, Clk, all facilities in N(k) and the unclustered demand points k′ with N(k)
⋂
N(k′) 6=

∅. Set Cl = Cl ∪ Clk (that is declare these points clustered).
– Assign all the demand points in Clk to the path of opened facilities in Clk.

Denote by CC the set of cluster centers. Lemma 2 together with constraints (6) and the fact that
∑
j∈Vl+1

z∗kij∑
j∈Vl+1

z∗kij
= 1,

imply that the probabilities used in the algorithm are well defined.
Before analyzing the solution returned by the algorithm, note the following important property of cluster centers.

Lemma 3. (a) The neighborhoods of any two cluster centers are disjoint.
(b) In the neighborhood of any cluster center, there exists a path of open facilities.

Proof. (a) Consider two cluster centers k and k′. Suppose that v
∗
k+Ck
dk
≤

v∗
k′
+Ck′
dk′
. If there was an i ∈ N(k) ∩ N(k′), then k′

would belong to the cluster centered at k and k′ would not be a cluster center. Hence, N(k) ∩ N(k′) = ∅.
(b) Follows from the definition of the neighborhood and the way of opening facilities in the algorithm. �

Since each demand point is contained in exactly one cluster and in each cluster there is one path of open facilities, each
demand point will be assigned to one path. Thus, we have obtained the following random solution (X, Y , Z) to (Pint):
for each i ∈ F ,

Yi =
{
1, if iwas opened
0, otherwise;

for each (i, k) ∈ V1 × D,

Xki =
{
1, if i is on the path to which kwas assigned
0, otherwise;

and for each (i, j, k) ∈ Vl × Vl+1 × D, 1 ≤ l ≤ n− 1,

Zkij =
{
1, if (i, j) is on the path to which kwas assigned
0, otherwise.

Remark 4. For a demand point k′ ∈ Clk and a facility i ∈ V1, Xk′ i = 1 if and only if Xki = 1. Moreover, for each
(i, j) ∈ Vl × Vl+1, 1 ≤ l ≤ n− 1, Zk′ ij = 1 if and only if Zkij = 1.

It remains to prove that E(c(X, Z)+ f (Y )) ≤ 3CLP .
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Lemma 5. (a) For each k ∈ CC, a facility i ∈ N(k) ∩ Vl will be opened with probability x∗ki, if l = 1, and with probability∑
j∈Vl−1

z∗kji, if 2 ≤ l ≤ n.
(b) The expected cost of opening facilities satisfies: E(f (Y )) ≤

∑
i∈F fiy

∗

i .

Proof. (a) Recall that the algorithm opens only facilities which are in the neighborhood of some cluster center. In Lemma 3
we have proved that each facility is in at most one cluster. Consider a cluster center k ∈ CC . For facilities on the first level
the claim follows directly from the algorithm. The probability of opening a facility i in N(k) ∩ V2 is:

P(i is opened) =
∑

j∈V1∩N(k)

P(Yi = 1|Yj = 1)P(Yj = 1)

=

∑
j∈V1

z∗kji∑
i∈V2
z∗kji
x∗kj =

∑
j∈V1

z∗kji,

where for the last equality we have used (7).
Suppose that each facility i ∈ N(k)∩ Vl on a level 2 ≤ l < n is opened with probability

∑
j∈Vl−1

z∗kji and consider a facility
i′ in N(k) on level l+ 1. This facility is opened with probability:

P(i′ is opened) =
∑

i∈Vl∩N(k)

P(Yi′ = 1|Yi = 1)P(Yi = 1)

=

∑
i∈Vl

z∗kii′∑
i′∈Vl+1

z∗kii′

∑
j∈Vl−1

z∗kji =
∑
i∈Vl

z∗kii′ ,

where for the last equality we have used (8).
(b) Since the neighborhoods of two cluster centers are disjoint, each facility is opened at most once. Constraints (9) and

(10), together with (a) imply that for each facility i ∈ F , P(Yi = 1) ≤ y∗i . The expected cost for opening facilities can then be
bounded by:

E(f (Y )) =
∑
i∈F

fiP(Yi = 1) ≤
∑
i∈F

fiy∗i . �

Next we will bound the transportation costs.

Lemma 6. (a) The probability that the edge (i, j) ∈ Vl × Vl+1, 1 ≤ l ≤ n− 1 is used by a cluster center k is P(Zkij = 1) = z∗kij.
(b) For a cluster center k ∈ D, the expected transportation costs are Ck.

For a demand point k′ ∈ (Clk ∩ D) \ {k}, the expected transportation costs are at most 2vk′ + Ck′ .

Proof. (a) Let k ∈ CC . Lemma 5 together with (8) imply that the probability that edge (i, j) ∈ Vl × Vl+1, 1 ≤ l ≤ n − 1 is
used by k can be calculated as follows:

P(Zkij = 1) = P(Yj = 1|Yi = 1)P(Yi = 1)

=
z∗kij∑

j∈Vl+1
z∗kij

∑
j∈Vl+1

z∗kij = z
∗

kij.

(b) For a cluster center k ∈ D, the expected transportation costs are

E

(∑
i∈V1

dkckiXki +
n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dkcijZkij

)
=

∑
i∈V1

dkckiP(Xki = 1)+
n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dkcijP(Zkij = 1)

=

∑
i∈V1

dkckix∗ki +
n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dkcijz∗kij = Ck.

(c) Consider a demand point k′ ∈ (Clk ∩ D) \ {k}. By the definition of a cluster, there exists a facility il ∈ N(k) ∩ N(k′).
From the definition of a neighborhood and Lemma 2 it follows that there exist two paths p = (i1, . . . , in) and p′ =

(i′1, . . . , i
′
n) such that il ∈ p, i

′

l ∈ p
′, k is assigned to p and k′ is assigned to p′. The transportation costs till facility il along these

paths, can be bounded by using Lemma 1:

cki1 + · · · + cil−1 il ≤
v∗k

dk
(11)
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and

ck′ i′1 + · · · + ci′l−1 il ≤
v∗k′

dk′
. (12)

Denote by distkk′ the distance between k and k′. By using the triangle inequality, distkk′ can be bounded by:

distkk′ ≤ cki1 +
l−1∑
s=1

cis is+1 + ck′ i′1 +
l−1∑
s=1

ci′s i′s+1 ≤
v∗k

dk
+
v∗k′

dk′
.

The transportation cost of k′ can now be bounded by:

E

(
n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dk′cijZk′ ij +
∑
i∈V1

dk′ck′ iXk′ i

)
=

n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dk′cijP(Zk′ij = 1)+
∑
i∈V1

dk′ck′iP(Xk′i = 1)

=

n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dk′cijP(Zkij = 1)+
∑
i∈V1

dk′ck′iP(Xki = 1) (13)

≤

n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dk′cijP(Zkij = 1)+
∑
i∈V1

dk′(cki + distkk′)P(Xki = 1) (14)

=
dk′
dk
Ck + dk′distkk′ ≤

dk′
dk
Ck + dk′

(
vk

dk
+
vk′

dk′

)
≤ Ck′ + 2v∗k′ , (15)

where for (13) we have used Remark 4, for (14) we have used the triangle inequality, and for (15) we have used that
Ck+v∗k
dk
≤
Ck′+v

∗

k′
dk′
, which follows from the fact that k′ ∈ Clk and from the way clusters were constructed. �

We are able now to bound the expected costs of (X, Y , Z).

Theorem 7. The expected costs of the solution (X, Y , Z) found by our algorithm satisfy:

E(c(X, Z)+ f (Y )) ≤ 3CLP ≤ 3COPT .

Proof. In Lemma 5 we have proved that:

E(f (Y )) ≤
∑
i∈F

fiy∗i .

From Lemma 6 and the fact that each demand point is assigned to the path opened in the cluster to which it belongs, follows
that the transportation costs can be bounded by

E(c(X, Z)) =
∑
k∈CC

∑
k′∈Clk∩D

E

(
n−1∑
l=1

∑
(i,j)∈Vl×Vl+1

dk′cijZk′ij +
∑
i∈V1

dk′ck′ iXk′i

)

≤

∑
k∈CC

[
Ck +

∑
k′∈(Clk∩D)\k

(Ck′ + 2v∗k′)

]
≤

∑
k∈D

(Ck + 2v∗k ).

Since
∑
k∈D Ck +

∑
i∈F fiy

∗

i =
∑
k∈D v

∗

k = CLP , we conclude that

E(c(X, Z)+ f (Y )) = E(c(X, Z))+ E(f (Y ))

≤

∑
k∈D

Ck +
∑
i∈F

fiy∗i + 2
∑
k∈D

v∗k = 3CLP ≤ 3COPT . �

Theorem 7 implies that the algorithm we proposed is a 3-approximation (randomized) algorithm.
Derandomization. The 3-approximation algorithm described above can be derandomized, while maintaining the approxi-
mation guarantee. A technique often used in derandomization is the method of conditional probabilities (see e.g. [19] for an
extensive presentation of the method). The main idea behind the derandomization is to find a solution of lower cost than
the expected value. In our problem, we have calculated the expected cost as the sum of the expected costs of all clusters.
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Since in each cluster Clk, k ∈ CC only facilities along one path pwere opened, the costs incurred by the cluster were the costs
incurred for opening facilities along p and the transportation costs of each demand point in the cluster along the respective
path (we will shortly call these costs the cost of p). We have shown that in a cluster, the expected cost is bounded by∑

i∈Clk∩F

fiy∗i +
∑

k′∈Clk∩D

(Ck′ + 2v∗k′). (16)

Clearly, in each cluster Clk, theremust exist a path p′ such that the transportation costs of all demand points in the cluster
along p′ and the costs of opening facilities on p′ are no larger then the bound in (16). One can find such a path in polynomial
time via a shortest path algorithm in the graph defined on F ∩ Clk ∪ {k}with the distances c̃ki = fi +

∑
k′∈Clk∩D

ck′ i for each
i ∈ V1 and c̃ij = cij + fj for each (i, j) ∈ Vl × Vl+1, l = 1, . . . , n − 1. The solution obtained by opening facilities along these
shortest paths in every cluster, and by assigning all the demand points in a cluster to the corresponding path, yields lower
cost than the expected value. Thus, we have a deterministic 3-approximation algorithm for the MFLP.

4. Conclusions

In this paper we have proposed a new integer programming formulation for the MFLP, which has an LP-relaxation with
a polynomial number of constraints and variables. We have also shown how one can use this formulation to design a 3-
approximation algorithm for the MFLP. Since many algorithms for facility location problems use LP based techniques, (LP-
rounding, primal–dual, dual fitting), it would be interesting to further investigate if the new LP-relaxation may be used in
decreasing the approximation guarantee for the MFLP.
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