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~. INTRODUCTION 

The extremal length of a plane region is defined by a minimax type limit of 
certain geometric quantities. Extremal length is invariant under conformal 
mapping and in this light it has been studied by Gr6tzsch, Beurling, and 
Ahlfors [1]. In this paper the definition of extremal length is extended to 
discrete systems. This permits defining the extremal length (and extremal 
width) between any two nodes of an electric network. 

It  is then proved that the extremal length between two nodes of a network 
is identical with the joint resistance between these nodes. The method of 
proof employs linear programming theory. In particular the max-flow equals 
rain-cut theorem of Ford and Fulkerson [2] is used. In addition another 
theorem of this type is needed; we term it "max-potential equals min-work." 

In a previous paper a planar network was considered and a dual associated 
network termed the "conjugate" was defined [3]. It  was found that the joint 
resistance of the conjugate network is the reciprocal of the joint resistance 
of the original network. A simple proof of this result is given here by making 
use of the method of extremal length. 

The last section of the paper gives an inequality relating paths and cuts 
in a network. This inequality results from the theorem that extremal width 
and extremal length are reciprocals. 

I I .  RAYLEIGH'S RECIPROCAL THEOREM 

Consider the problem of finding the electrical resistance of a plate in the 
shape of a curvilinear quadrilateral as shown in Fig. 1. The resistance p is 
required between edges A and B. The edges C and D are supposed insulated. 
The  plate is of unit thickness and the top and bottom are insulated. I f  the 

* Prepared under Contract DA-36-061-ORD-490, U. S. Army Research Office, 
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plate is in the (x, y) plane let the specific resistivity be a scalar function of x 
and y, say r(x, y). Then Ohm's  law is 

rw = --  grad u. (1) 

0 

FIG. 1. A p l a t e  c o n d u c t o r .  

Here w is the current density vector and u is the electric potential. Since 
div w = 0, 

div (r -1 grad u) = O. (2) 

The  boundary conditions are: 

u = k  1 on A and u = k a  on B, (3) 

~u/~n = 0  on B and C. (4) 

Then if this boundary value problem is solved for u, the resistance is defined 
as  

[~u dx ~u 

Here P is a path going from edge A to edge B and Q is a path going from 
edge C to edge D. 

The conjugate problem is to find the resistance of a plate of the same shape 
but between edges C and D. Now edges A and B are insulated. The specific 
resistance of the conjugate conductor is taken to be r* = 1/r. Then the follow- 
ing result generalizes a theorem of Rayleigh. (He assumed r(x, y) to be 
constant [4].) 
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THEOREM 1. 

PROOF. 
equations" 

Conjugate conductors have reciprocal resistances. 

Define a stream function v(x ,y )  by the "Cauchy-Riemann 

~v 1 ~u ~v 1 ~u 
~x r e y '  Oy r ~x (6) 

Then by symmetry it is seen that v may be interpreted as the electrical 
potential for the conjugate problem in which the specific resistivity is 
r* = 1/r. Then u becomes a stream function. Substituting (6) in (5) gives 

f p [~y r* ~x 
~v 

(7) 

But the right side of (7) is, by definition, 1/p* and the theorem is proved. 
It  is worth noting that equations of the form (6) also appear in axially 

symmetric potential theory. For example consider the problem of finding 
the resistance of a body of revolution. Then in (6) r would be replaced by 
rl = r(x, y) /y  and y now denotes the distance to the axis of revolution. 

Theorem 1 furnishes a tool for calculating upper and lower bounds for 
resistance (see [3] and [4]). The method applies to conductors having the 
form of a plane (or curved) surface. It also applies, as was seen above, to 
conductors of revolution. 

III. DEFINITION OF EXTREMAL LENGTH 

The theory of extremal length as developed by Gr6tzsch, Beurling, and 
Ahlfors begins as follows. Consider a rectangle of length L and width W, 
then their theory gives the extremal length A as being simply L / W .  More 
generally their theory gives the extremal length of a curvilinear quadrilateral 
R such as shown in Fig. 1. In fact if by a conformal mapping R is transformed 
into a rectangle of length L and width W then A = L/W.  

For the present purpose it is desirable to employ a similar but more 
general definition of extremal length than is employed by Ahlfors and 
Sario [1]. Thus the extremal length of the quadrilateral R between edges A 
and B is here taken to be 

(f7 W d s  
EL  ~- sup inf 

w r W ~ d x d y  
R 

(8) 
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where r(x, y) is the specific resistivity, taken to be positive and continuous. 
Here W(x, y) denotes an arbitrary nonnegative continuous function. The 
line integral in the numerator is taken over a rectifiable path P joining A and 
B such as shown in Fig. 1. Then the infimum is taken for all such paths. 
Finally the supremum is taken over the class of functions W. This definition 
reduces to that of Ahlfors if we put r = 1. 

The interest of extremal length from the point of view of applied mathe- 
matics is that it is precisely the resistance, that is EL = p. Moreover an 
optimizing function W is the current strength, that is W = ] w ]. 

A related quantity of equal importance is the extremal width. The extremal 
width between edges A and B is here defined as 

EW = sup inf (f°wds)  (9) 
w Q f f  r W~ dx dy 

J J  R 

The line integral is taken over a rectifiable path Q separating edges A and B. 
Such a path Q is shown in Fig. 1. Then it may be shown that extremal length 
and extremal width are reciprocals, 

(EL) (EW) = 1. (10) 

This is equivalent to Rayleigh's reciprocal theorem. 
The considerations in this section and in the previous section are intended 

to motivate an analogous treatment of networks which follows. To clarify 
certain aspects of this analogy it is necessary to extend the definitions of 
extremal length and extremal width from two dimensions to three dimensions. 
Thus consider a simply connected three-dimensional body R. Now A and B 
will denote two separate parts of the boundary surface of R. Then we define 
the extremal length between A and B as 

(f EL sup inf P r W  ds 
= ( S a )  

P f f f  rW2 dx dy dz 
R 

where P is a path connecting A and B. We define the extremal width between 
A and B as 

E W  sup inf (f f° w as)  = ( 9 a )  

w o f f f  r W2 dx d~ £1~ 
R 

where Q is a surface separating A and B. 
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Presumably EL and EWas defined by (8a) and (ga) also satisfy relation (10). 
This  question will not be pursued but  the considerations on networks which 
follow indicate that  (10) is true. 

IV. NETWORK DEFINITIONS 

An electric network is depicted as a graph diagram such as shown in 

Fig. 2. Each arc of the associated graph is assigned a direction. The  directions 
are shown by arrows in Fig. 2. The  electric current flowing through the j t h  
arc in the positive direction is denoted by wj; j = 1, 2, '- ' ,  n. 

QP 

B 

FIG. 2. An electric network. 

Let  K~j be the node-arc incidence matrix. Thus  K~j = 1 if the j t h  arc is 
directed toward the vth node, K~j = - -  1 if t h e j t h  arc is directed away from 
the vth node, and K~:- = 0 if the j t h  arc and the vth node do not meet. Let  

y, = -- 2 K, jwj. (11) 

T h e n  it is said that  there is a source of current y~ at the vth node. Relation (11) 
may  be regarded as a statement of the first law of Kirchhoff. 

A path P between node A and node B is a set of arcs which form a simple 
curve. The  arcs marked with a P form a path between A and B in Fig. 2. 

A cut Q between node A and node B is a set of arcs which separate A 
from B and in addit ion no proper  subset of Q separates A from B. By "sepa- 
rate" is meant  that  every path P between A and B has arcs in common 
with Q. The  arcs marked with a Q form a cut between A and B in Fig. 2. 

A circuit is a set of arcs forming a simple closed curve. A direction is 
assigned to each circuit. Then  let F~j be the incidence matrix between circuits 
and arcs. Thus  F~- = 1 if the j t h  arc meets the ~th circuit in the same 
direction, F~j = - -  1 if the j t h  arc meets the ~th circuit in the opposite 
direction, and F~j = 0 if the j t h  arc does not meet the ~th circuit. 
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Let 

j = l  

where rj is the resistance of the j th  arc (rj > 0). Then it is said that there 
is an electromotive force e~ acting in the ath circuit. Relation (12) may be 
regarded as a statement of the second law of Kirchhoff. 

Of especial concern in this paper are "passive flows between A and B." 
Such a flow satisfies two conditions: 

I. The only sources are at A and B. 

II .  There are no electromotive forces in any circuit. 
The  last condition means e~ = 0 and the first condition means y~ = 0 except 
at A and B. A passive flow between A and B results when a steady electric 
current enters a passive network at A and leaves at B, all other nodes being 
insulated. By "passive" is meant that there are no internal sources of power. 

A flow wj of strength I from d to B can be written in the form 

wj = IPj 4- ~ i~F~j. (13) 
o; 

Here Pj corresponds to a unit flow from A to B on a directed path P, so 
Pj = 1 ( - -  1) if the j th  arc meets P in the positive (negative) direction and 
Pj = 0 otherwise. The i~ are arbitrary. Multiply (13) by rjwj and sum with 
respect toj .  Making use of (12) this gives 

2 rjwy = EI 4-, ~ ej~. 

Here E (the potential drop) is defined as 

(14) 

n 

E = ~ Pjrjwj. (15) 
1 

If  wj is a passive flow from A to B then e~ = 0 so (14) becomes 

~ r j w y  EI. (16) 
1 

The quadratic form on the left will be denoted by H(w). 
Let wj be a flow of strength I from A to B. Then  for each cut Q between 

A and B 
~1%1 >I. 
o 
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This intuitively evident inequality is applied in the next Section; a formal 
proof is omitted. 

The max-flow equals rain-cut theorem may be stated as follows: Let the 
flow capacity of the j th  arc of a network be Wj > O. Suppose that 2 0 W~ > 1 
for all cuts Q between notes A and B. Then there is a unit flow wj from A to B 
such that I w~l < Wj. 

V .  T H E  EXTREMAL W I D T H  OF A NETWORK 

The extremal width of a network relative to two nodes A and B is defined as 

2 

E W  = max min (17) 
w Q Z " r j W ~  

1 

Here rj denotes the resistance of arc j. In (17) first the minimum is found 
over all cuts Q separating A and B. Then the maximum is found relative to 
arbitrary nonnegative numbers Wj. 

THEOREM 2. The extremal width between two nodes of a network is equal 
to the reciprocal of the joint resistance between those nodes. 

PROOF. We may put the definition of extremal width in the following 
equivalent form. 

(EW) -1 = rain ~ rjW~ (18) 
W 

1 

subject to the constraints 

W~ > 1 for all cuts. (19) 
0 

By the max-flow min-cut theorem there is a unit flow w~- from A to B (sources 
only at A and B) which satisfies the constraints ] w~ [ < Wj. Thus it follows 
that ]~0 [ w~] ~ 1 for all cuts and 

~z 7z 

= Z r,w: _< Z r,W  
1 1 

So it may be assumed that there is an optimal solution Wj which satisfies 

W j =  Iw;I. 
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Thus the extremal width between A and B is the minimum of H(w) for 
flows of unit strength from A to B. Let 3wj be a flow without sources; then 
at the minimum the variation of H is 

3H = 2 ~ rjwj3wj : O. 
1 

In particular, if 3wj is a flow around a closed circuit C~ this can be written 

rjw~F,j = O. 
1 

This is condition I I  and it follows that the %. correspond to a passive flow 
of current between A and B. 

The joint resistance p between A and B is defined as 

p = E l i  (20) 

where I is the current entering at A and leaving at B in a passive flow from A 
to B. E is the potential drop from A to B. Substituting (20) in (16) gives 

pI ~ = ~ r~w~. (21) 
1 

Putting I ---- 1 in (21) we see that O = H. Comparing this with (18) shows 
that O = ( E W )  -1 and the proof is complete. 

VI. MAx-PoTENTIAL EQUALS .MIN-WORK 

With each network problem formulated in terms of current flows there is 
an associated problem formulated in terms of potentials. This principle is 
called "electrical duality" in some of the network literature. Theorem 3 to 
follow concerns the--electrical dual" to the max-flow equals rain-cut theorem. 
Similar results are given by Dennis [5] and Minty [6]. 

THEOREM 3. Let frictional forces act so that an amount of work cj > 0 
is required to traverse the j th  arc of a network. Let C denote the minimum net 
amount of work required to travel between two particular nodes, say A and B. 
By  contrast consider conservative forces acting so that each node may be ascribed 
a potential. Suppose that the magnitude of the potential increase across the j th  
arc does not exceed c~. Then the maximum potential difference between nodes A 
and B is C. 
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PROOF. Let x, be the potential of the vth node; v = 1, 2, "", m. Then the 
potential increase across the j th  arc is 

m 

zj = ~ x~K;~ (22) 
V = I  

if K~'j denotes the potential increase across t he j th  arc when the uth node has 
potential 1 and all other nodes have potential 0. Clearly K ' j  = K,j, the node- 
arc incidence matrix. Let  node A correspond to v = 1 and let node B cor- 
respond to v = 2. In  terms of the above definitions consider the following 
linear programming problem: 

maximize x 2 --  x 1 constrained by : (23) 

and 

2 x,K~ < q (24) 
] 

-- 2 x~K,j <_ c~. (25) 
1 

With each maximizing problem in linear programming there is associated 
another problem termed the dual. Moreover there is a duality theorem which 
states that the maximum of the original problem is equal to the minimum of 
the dual problem. This duality theorem would lead to a proof of Theorem 3, 
however to fill in the details requires considerable space. Shorter proofs 
have been suggested to the author by A. Charnes, A. W. Tucker, G. Minty, 
and R. Gomory. The following direct proof follows the suggestion of Minty. 

The  definition of C may be expressed in the form 

C = m~n • c~. (26) 
P 

where P is a path from A to B. The path P may be described as a sequence 
of successive arcs as follows 

P ~-~ (e, f, --', h). 

On the other hand P defines a sequence of successive nodes, 

P ~ ( 1 , p , q , " ' , t ,  2). 

If P is a minimizing path then 

C = c~ + cf + ".' + eL. 

(27) 

(28) 

(29) 
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If  the potentials x~ satisfy the condition of the theorem then 

co > I x~ - xx l ,  "",  ch >_ I x2 - x~ I. (30) 

Substituting these inequalities in relation (29) gives 

C >  [ x ~ -  xll + I x ~ -  x~[ + . . .  + I x 2 -  x~l 

(X~o - -  Xl) -~- (xq - -  X,)  -]- ,,,  @ (X 2 - -  Xt), (31)'  

This last relation collapses into 

C > x~ - -  x 1. (32) 

In  other words the maximum potential difference between A and B can not 

exceed C. 
To show that relation (32) can become an equality the numbers x, are 

chosen in the following special way. Let x, denote the min imum net amount  

of work required to travel from node 1 to node v. Suppose that nodes num- 
bered i a n d j  are the ends of an arc numbered k. If x i > xj then it follows 
by the construction that 

x~ < xj + c k. (33) 

This shows that the potentials x~ satisfy the condition of the theorem. By 
construction 

x 2 - -  x 1 = x 2 = C. (34) 

This completes the proof of Theorem 3. 

V I I .  EXTREMAL LENGTH AND RESISTANCE 

The extremal length of a network relative to two nodes A and B is defined as 

EL = max min (35) 

1 

Here r~ denotes the resistance of arc j .  First the min imum is found over all 

paths P joining A to B. Then  the maximum is found as the parameters W s 
vary over nonnegative values. 

THEOREM 4. The extremal length between two nodes of a network is equal 
to the joint resistance between those nodes. 
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PROOF. 
equivalent form. 

an Z 
1 

subject to the constraints 

~ rjWj > 1 for all paths. 

We may put the definition of extremal length in the following 

(36) 

(37) 

Let  rjWj = cj then (37) can be interpreted as stating that the minimum work 
f rom A to B exceeds 1. Then  the max-potential  rain-work theorem may be 
applied. Thus  there is an opt imum potential x, of the nodes. Let  zj be the 
corresponding potential increases across arcs and define wj by 

w~ = z/r~ (38) 

By Theorem 3 it follows that ~ ] z~- ] > 1 so the constraints (37) are also 
satisfied by replacing Wj by ]wj i. Nevertheless 

I wJl ~ wj. (39) 

I t  follows from (39) that 

Z rjw~ < ~_~rjW~ (40) 
1 1 

so it may be assumed that an optimal solution of the extremal length defini- 
t ion (35) is of the form W~ = [ wj [ where w~ comes from a potential, as is 
evidenced by the definition (38). 

Thus  the problem has been reduced to minimizing 

subject to the conditions 

T h e n  if v =/= 1 or 2 we have 

J 

(41) 

8H 
0 = ~ = -- 2 ~ K~jwj. (43) 

J 

This  shows that at the minimum wj defines a flow from A to B ; this is Kirch- 
hoff 's  first law. 

x 2 - - x l =  1. (42) 
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Relation (38) clearly implies that wj satisfies condition I I  for a passive 
network. Thus  % satisfies the conditions for the passive flow of current 
from A to B. 

I t  is seen from definition (15) for E, and (38) that 

- -  E = x2 - -  x I = 1. ( 4 4 )  

Substitution of (44) in (16) shows that in the present case p-1 = H. I t  then 
follows from (36) that p = EL and this completes the proof of Theorem 4. 

COROLLARY 1. Extremal length and extremal width are reciprocals. 
The proof follows from Theorems 2 and 4. 

VIII. CONJUGATE NETWORKS 

A graph is termed planar if it can be drawn on a plane in such a way that 
no arc crosses another. Each planar graph G is associated with another 
planar graph G* termed the dual. The  arcs of the primal graph G and the 
dual graph G* have a one-to-one correspondence determined by the arcs 
crossing. The  primal graph breaks up the plane into regions. There is exactly 
one node of the dual graph in each region of the primal graph. 

LEMMA 1. Let A and B be two nodes on an arc ~ of  a planar graph G. Then 

Q is a cut between A and B i f  and only i f  the corresponding set Q* in the dual 
graph G* is a circuit containing the arc ~*. 

PROOF. First suppose Q* is a circuit. Q* crosses = at only one point so 
one end of ~ is inside Q* and one end is outside. Thus  any path P between 
the ends A and B must intersect Q*. The arc where P intersects Q* is an 
arc of Q. Thus Q is either a cut or else Q has a proper subset Q1 which is a cut. 

Since Q* is a proper part of a circuit it has an end point. The  end point is a 
node of G* in a region R of G. Thus  R has one and only one are/3 of the cut 
Q1 on its border. But this is impossible because then/3 would be effectively 
bypassed by the other arcs of the border of R, say/3'. To see this it is noted 
that there is a path P having only/3 in common with Qa. (This follows by the 
definition of a cut.) Let  P '  denote the set of arcs after deleting /3 from P. 
Then it is clear that the set /3' + P '  contains a path. This path does not 
have arcs in common with Q1. This is a contradiction, proving Q to be a cut. 

Now suppose Q is an arbitrary cut. Then the argument just given proves 
that Q* can not have an end point. I t  follows that Q* must contain a circuit, 
say C*. Then given an arc 7 of Q there is a path P between A and B such that 
P and Q have only y in common. In  particular if 7 is in the set C it follows 
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that  P crosses C* once and only once. Thus  one end of P is inside C* and 
one end is outside. In  other words C separates A and B. By the definition of 
a cut, Q = C and so Q* is a circuit. This  completes the proof  of the lemma. 

Consider a primal  graph G and the dual graph G*. Le t  a be an arbi trary 
arc of G with ends A and B and let ~* be the corresponding arc of G* with 
ends C and D. The  arc a is deleted from G and the arc a* is deleted from G*. 
l~his leads to graphs N and N*  which we te rm conjugate. Two networks N 
and N*  are said to be conjugate if they have conjugate graphs and if corres- 
ponding arcs have reciprocal resistance. Thus  

rI* = 1 (45) 

where rj is the resistance of t h e j t h  arc of the network N and r* is the resistance 
of the j t h  arc of the network N*.  Conjugate networks are shown in Fig. 3; 
N is in full lines and N *  is in dot ted lines. 

D 

/ " . . . .  " h  f. . . . . . .  / \ 

I / \ I 

I . . . . .  i . . . .  1 
. . . .  @ . . . . .  I 

I 
..J. 
O 

FIG. 3. C o n j u g a t e  n e t w o r k s .  

THEOREM 5. 

PROOF. 
width so 

Conjugate networks have reciprocal joint resistances. 

The  conductance of N between A and B is given by  the extremal 

p-1 ~ max min - -  
w Q 

Now let We = r* W* so 

p-~ -= max min 
W* O 

72 

1 

S'. r*W*] 2 ~ O J  3} 

1 

(46) 
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According to Lemma 1 the cuts Q of N correspond to the paths P* from C 
to D. Thus the right side of (46) is the extremal length between C and D. 
But the extremal length is the resistance so p-1 = p,  and the proof of the 
theorem is complete. 

Theorem 5 is, of course, a discrete analogue of Rayleigh's reciprocal 
theorem. A different proof of this theorem was given in [3]. Another type of 
proof could be given by the Wang algebra [7]. 

IX.  THE PATH-CuT INEQUALITY 

The relationship between extremal width and extremal length leads to an 
inequality relating paths and cuts. 

THEOREM 6. Let Wj and Vj denote arbitrary nonnegative numbers associated 
with the n arcs of a network. Then 

j=I WjVj  - -  ~ (min~'~'~' V 0 \ Q(min o ~ W j ) .  (47) 

Here the first minimum is carried out over paths P between two nodes and the 
second minimum is carried out over cuts Q separating the same two nodes. 

PROOF. It follows from the definition of extremal width that 

E W  ~ min ~ (48) 
--  o Z r j W  ~ 

1 

Likewise the definition of extremal length gives 

EL ~ rain 
- -  p n 

ZrjW  
1 

(49) 

But (EL) (EW)  = 1 so (48) and (49) give 

(50) 
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Suppose first that Vj > 0 and Wj > 0. Then  let rj = V j / W j  in (50) and (47) 
results. The  general case can be obtained by taking the limit of both sides 
of (47) as some of the Vj and Wj approach zero. 

COROLLARY 2. Let  the arcs of  a network be colored red or blue. Then given 

any two nodes there is either a red path  between them or else there is a blue cut 

separating them. 

PROOF. Let  the arcs colored red have W~. = 0 and .Vj = 1. Le t  the arcs 
colored blue have W~ = 1 and Vj = 0. Then  the left side of (47) vanishes 
so it follows that one of the two factors on the right vanish. This  implies the 
statement of the corollary. 

A continuous analogy of inequality (47) for the plane is 

ffVWdxdy ~ (i~ff Vd,)(i~ffQWd~). (51) 

Here V and W are arbitrary nonnegative functions. Here R is a simply 
connected region of the plane and P denotes a path between two separate 
segments of the boundary and Q is a path separating the two segments of 
the boundary. 

A continuous analogy of inequality (47) for space is 

f f f R vw dx dy dz (i f f p r d,) (i f f fo WdS) (52) 

Here V and W are arbitrary nonnegative functions. Here R denotes a simply 
connected body and P denotes a path between two separate parts of the 
boundary and O is a surface separating these two parts of the boundary. 

Relations (51) and (52) for continuous conductors are stated here without 
proof in order to throw light on the corresponding network relation (47). 
The  proof for networks has made extensive use of finite linear programming 
theory. This  suggests that continuous conductors be treated by infinite 
linear programming theory. (Certain problems of infinite programming 
are treated in [8] and [9].) 
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