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†Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, 69364 Lyon, France; ‡Université de
Lyon, Laboratoire transdisciplinaire Joliot-Curie, CNRS USR 3010, École Normale Supérieure de Lyon, 69364 Lyon, France; and §Université de
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ABSTRACT Progress in cellular biology based on fluorescent microscopy techniques, shows that the spatial organization of
the nucleus is dynamic. This dynamic is very complex and involves a multitude of phenomena that occur on very different
time and size scales. Using an original light scattering experimental device, we investigated the global internal dynamics of
the nucleus of a living cell according to the phases of the cell cycle. This dynamic presents two different and independent kinds
of relaxation that are well separated in time and specific to the phase of the cell cycle.
INTRODUCTION

Progress in cellular biology has indicated that the spatial orga-

nization of the nucleus is dynamic (1–8). A large number of

experiments have been carried out to investigate this dynamic

using fluorescent microscopy techniques (9–15). All of these

investigations have produced a set of results, which show that

the internal dynamics of the nucleus is very complex and

includes many different processes, occurring on very different

time and size scales. These studies suggest that this dynamic is

a function of the biological activity of the nucleus. However,

all previous studies only provide partial information on the

nucleus dynamics as they only show the dynamics of

processes associated with biological objects that are labeled.

Hence, there is no information on correlations between

different processes, and as a consequence the global internal

dynamics of the nucleus remains poorly known. Yet, it is

obvious that detailed knowledge of the global dynamics

would be very useful to complete the current picture we

have of the living cell nucleus.

In previous work (16,17), we showed that the global

internal dynamics of a living cell nucleus could be probed

by means of quasi elastic light scattering (QELS) experi-

ments. Using an original QELS set-up we investigated this

dynamic in the case of nuclei of living cells treated with a

DNA replication inhibitor (hydroxyurea [HU]). We observed

that the internal dynamics of the nucleus exhibits many

relaxation times, from millisecond to a few dozen of seconds

and is heterogeneous, both in time and space. In this study

we report on the internal dynamics of a living cell nucleus

during the different phases of the cell cycle by means of

QELS experiments. Our results show that the internal

dynamics of a living cell nucleus evolves as the cell prog-

resses through the cell cycle. In particular, we are able to

observe two independent kinds of relaxation, which we
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have investigated in detail. The slowest relaxation time has

a characteristic time t2 of the order of 1 s and probably orig-

inates from the Brownian diffusion of large protein clusters

through the nucleus. The fastest relaxation time seems to

be due to very broad distributions of processes, most prob-

ably associated with chromatin remodeling. This relaxation

time is smaller and its distribution broader as the chromatin

evolves from a condensed state (early G1-phase) to the most

uncondensed state (S-phase).

MATERIALS AND METHODS

QELS measurements and experimental set-up

QELS is a well-known technique in physics (18,19) that provides informa-

tion on the global dynamics of the investigated system. QELS is particularly

useful to investigate processes that are correlated both in time and space. The

principle of QELS is to record and analyze the time fluctuations of the light

intensity scattered by the sample. In practice, a laser beam passes through the

sample and, in a given direction q (i.e., for a given scattering wave vector q),

the scattered light intensity I(q,t) is detected with a photo-detector. Because

light Scattering processes arise from local fluctuations of the sample refrac-

tive index: dn(r,t) (18), QELS experiments lead to information on the

dynamics of processes such as fluctuations of density, concentration, local

‘‘organization’’, and chemical composition.

In the case of the nucleus, the scattering volume is made up of both chro-

mosome territories and an interchromosome domain. Inside these territories

there are both motions (20,21) and remodeling (7,20–25) of chromatin

fibers. In the interchromosome domain displacements and changes of the

various nuclear body structures (13,24,25), diffusion of macromolecular

‘‘complexes’’ (such as protein clusters) as well as diffusion of small mole-

cules (proteins, nucleotides.) (2,6,11,12,26–28) are observed. All these

processes induce local variations in the nucleus refractive index and there-

fore scatter light.

Information on the nucleus internal dynamics can be obtained by

measuring the time autocorrelation functions of the scattered intensity,

namely þI(0)I(t),. This function compares the scattered light intensity

with itself at two different times; 0 and t and the decay of this function as

a function of t (i.e., the autocorrelation loss), gives rise to the sample

dynamics. As a consequence, we expect to observe many different mecha-

nisms, hence many relaxation times. As we already observed (16,17), the

recorded autocorrelation functions are bimodal and they do not reach a

base line (Fig. 1). This latter feature arises from the existence of relaxation
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times >1 s (16,17). The short time decay of these autocorrelation functions

seems to be slower than that of an exponential (Fig. 1, inset). Due to this

latter feature, the recorded autocorrelation functions are fitted to the

following test function:

�
Ið0ÞIðtÞ

�
¼ ðA1expð�ðt=t1ÞaÞ þ A2expð�t=t2ÞÞ2þB;

which always fits well the measured autocorrelation functions (Fig. 1).

Because the autocorrelation functions are unknown for times>1 s, the fitting

process has to be carried out with care (17). Numerical simulations showed

that using this procedure the values of t1 and a are rather well estimated, the

discrepancy for the value of t2, however, is much larger (17).

The experimental set-up we used is described in detail in Suissa et al. (17).

The beam of a He-Ne laser (l¼ 632.8 nm, power in the range 0.1—0.5 mW)

is focused with a microscope objective onto a glass surface on which the

cells are adherent. This objective lens is also used to visualize, with a

CCD camera (Kappa DX2H; Kappa Opto-Electronics GmbH, Gleinchen,

Germany; monitored by LYNX; Clara Vision, Massy, France), a field of

this surface of ~150 � 150 mm2. This setup allows us to see the cells on

the surface as well as the reflection from the laser beam. Then the nucleus

of one cell is brought into contact with the laser beam. In a given direction

we form the image of the illuminated volume of the nucleus on the entrance

face of a monomodal optical fiber (the scattering volume is estimated to be of

~50 mm3). The detected light is time correlated using a correlator (Broo-

khaven BI-9000; Brookhaven Instruments, Holtsville, NY). This correlator

builds the autocorrelation function of the scattered intensity, for times

included between 10�5 and a few seconds, allowing us to probe the sample

dynamics in the range of 10�4–1 s. The polarization of the incoming beam is

parallel to the scattering plane and there is no analyzer placed before the

detector, therefore all the polarizations are measured. Transmission measure-

ments through the nucleus showed that >95% of the incoming intensity is

transmitted. We can thus conclude that the scattering is weak and therefore

FIGURE 1 Typical autocorrelation function recorded from QELS exper-

iment on a nucleus (f z 34�) on semilog scale. The solid line is the curve

fit obtained using the equation provided in the text. (Inset) Very short times

of the autocorrelation function (delay times <5 � 10�3 s) in linear sale; the

solid line is the curve fit obtained using the test function: A � Bta, this fit

allows for the estimation of a (15).
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multiple scattering can be neglected. Note that for all the experiments

described here, the direction of the detector with the incoming beam

made an angle f of 34� 5 1� that corresponds to a scattering angle q of

~24� 5 2� (17).

Experimental system

Our aim was to investigate the evolution of the internal dynamics of the cell

nucleus in the different phases of the cell cycle. We carried out this study

using a neuroblastoma cell line called SHEP. These cells are tumor cells

of neural origin (29). (See details about cell culture conditions and protocol

in the Supporting Material Part A and Suissa et al. (17).) Under normal

culture conditions, SHEP cells have the following repartition: ~60%, 15%,

and 25% of cells in G1-, S-, and G2/M-phase, respectively. As a simple

visual observation does not allow distinguishing the different phases of

the cell cycle, the measured distributions obtained on such populations,

D(Natur.), are blends that reflect this particular cell repartition, i.e.,

D(Natur.) z 0.6D(G1) þ 0.15D(S) þ 0.25D(G2), where D(G1), D(S),

and D(G2) are the distributions of pure G1-, S-, and G2-phases, respectively.

Using a cytostatic drug, HU (30,31), cell populations can be synchronized.

This procedure allows us to work with three different kinds of cell popula-

tions: 1), a population of cells in which cells in G1-phase are dominant; 2),

a population of cells in which cells in S-phase are dominant; and 3), a pop-

ulation of cells in which cells in G2-phase are dominant. By combining these

three different distributions we can obtain the respective distributions of the

pure G1-, S-, and G2-phases.

First, SHEP cells are left at 37�C in a culture medium containing 0.5 mM of

HU for 15 hr (see the Supporting Material Part A). Then, cell cultures are

released from HU by removing medium containing HU. After such a treat-

ment, we notice that the evolution of the cell populations displays three

different time periods that we call: G1*, S*, and G2* periods, during which

the G1-, S-, and G2-phases are dominant, successively (Fig. 2) (see details

in the Supporting Material Part A). In the G1* period, ~90%, 5%, and 5%

of the cell populations are in the G1-, S-, and G2-phases, respectively. For

FIGURE 2 Cell distribution over the different phases, G1 (squares), S

(triangles), and G2/M (circles) respectively, as a function of time after

replacing the culture medium containing 0.5 mM of HU by the usual culture

medium (color online; black: G1-phase, blue: S-phase, red: G2-phase).

(Results obtained by fluorescence activated cell sorter analysis; see details

in the Supporting Material Part A).
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the S* period, ~50%, 25%, and 25% of the investigated cells are in S-, G1-,

and G2-phases, respectively. Finally the G2* period contains ~55%, 25%,

and 20% of the investigated cells in G2-, S-, and G1-phases, respectively.

For each period, the obtained distributions should reflect the cell repartition.

Therefore the measured distributions during the G1*, S*, and G2* periods,

i.e., D(G1*), D(S*), and D(G2*), respectively, are linked to the distributions

of the pure phases, D(G1), D(S), and D(G2) by the following relations:

D(G1*) z 0.9D(G1) þ 0.05D(S) þ 0.05D(G2); D(S*) z 0.25D(G1) þ
0.55D(S) þ 0.2D(G2); and D(G2*) z 0.2D(G1) þ 0.25D(S) þ
0.55D(G2). Hence, we can deduce estimations of D(G1), D(S), and D(G2)

that are simply given by Eqs. 1–3, respectively:

DðG1Þzð86DðG1�Þ � 5DðS�Þ � 6DðG2�ÞÞ=75; (1)

DðSÞzð � 20DðG1�Þ þ 99DðS�Þ � 34DðG2�ÞÞ=45; (2)

DðG2Þzð � 8DðG1�Þ � 36DðS�Þ þ 81DðG2�ÞÞ=37: (3)

The characteristics of the different experiments that were carried out for

investigating the G1*, S*, and G2* periods are indicated in the Supporting

Material Part A. For each investigated period, the measurements taken on

the different cell cultures always give the same features for the respective

distributions of t1, a, and t2, indicating that the obtained results are repro-

ducible.

RESULTS AND DISCUSSION

As we observed previously (16,17), the time t2 is always at

least one order of magnitude larger than the characteristic

time t1. We never observe any functional relationship

between both timescales; t1 and t2 always seem to be inde-

pendent from one to another. Therefore we believe these two

relaxations correspond to independent biological processes.

Furthermore, no correspondence between the values of a

and t1 is ever found.

Measurements analysis

The complexity of the system composition and the large

number of relaxation mechanisms that this complexity

implies is not the only difficulty, which is met when investi-

gating the nucleus dynamics. Both composition and structure

of the nucleus are not spatially homogenous (32). The

nucleus is an active system with chemical reactions taking

place continuously. It is a system that slowly evolves with

time as the cell cycle progresses (for example, the amount

of DNA is doubled during the S-phase). Very different activ-

ities can simultaneously occur at a very short distance from

one another. (Indeed, at a given time, two completely

different activities can occur in two neighboring chromo-

some territories, for example, at the same time in the nucleus,

there are always both transcription and repair activities as

well as other activities in the different nuclear foci (33–35).)

The activity within a given chromosome territory can vary

over rather short time periods (33–35). Hence, because the

scattering volume is smaller than the nucleus volume (the

scattering volume has a size of ~50 mm3 and contains ~8

chromosome territories), one expects the probed dynamics

to depend on its location. One also expects the probed
dynamics to vary as a function of time due to displacements

and reorientations of the chromosome territories as well as

activity variations within the chromosome territories. There-

fore, the measurement of only one single autocorrelation

function of the scattered intensity cannot give access to the

overall internal dynamics of the nucleus, but only a ‘‘snap-

shot’’ of this dynamic, in the scattering volume. Indeed,

for each investigated nucleus, we observe large variations

in the measured values of t1, t2, and a from one measure-

ment to another. However, by repeating these measurements

many times on the same ‘‘system’’ (i.e., different nuclei and

so different scattering volumes, and on cells in the same cell

cycle phase), characteristic time distributions reflecting the

global internal dynamics of the nucleus during this particular

stage can be obtained. To observe the changes in the internal

dynamics of the nucleus as a function of the phases of the cell

cycle, we simply compare the probability densities of these

three parameters following the procedure we used in Suissa

et al. (17). This particular data analysis allows for the inves-

tigation of multimodal distributions because the width of the

measurement is taken into account.

Slow dynamics

Evolution of the slow dynamics during interphase

The probability densities obtained for t2 times during the

G1*, S*, and G2* periods are displayed in Fig. 3 a. For the

G1* period the distribution exhibits a broad and asymmetrical

bump, with a long tail, whose maximum is located at ~0.5 s. In

the S* period the measured distribution still presents a broad

and asymmetrical bump, with a long tail, whose maximum is

now located at ~0.62 s. For the G2* period the probability

density of t2 times again displays a broad and asymmetrical

bump, whose maximum is located around 0.85 s.

Using these distributions and Eqs. 1–3, the probability

densities of t2 times for pure G1-, S-, and G2-phases have

been estimated and are presented in Fig. 3 b. Distributions

of t2 times in the G1- and S-phases do not seem very different

even if the distribution in the S-phase seems to be slightly

broader. In the G2-phase, we observe an important shift to

slower times for the slow dynamics. Our results show clearly

a diminished rate in the internal slow dynamics of the nucleus

as the cell cycle progresses. We note that diminishing times

of these slow dynamics within the nucleus was observed in

presence of HU in the cell culture medium for cells in S- or

G2-phases with regard to cells in G1-phase (17).

Interpretation

We have shown previously (16) that this slow dynamic is

very likely diffusive in nature, with a mean diffusion coeffi-

cient D of the order of 4.10�2 mm2s�1. This value of the

mean diffusion coefficient is very similar to those obtained

by Shav-Tal et al. (11) for the diffusion of mRNA–proteins

complexes within the nucleus (10�2–9.10�2 mm2s�1). There-

fore we believe that this slow relaxation originates from the
Biophysical Journal 97(2) 453–461
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Brownian diffusion of large ‘‘objects’’, such as mRNA–

proteins complexes or transcription machinery within the

nucleus. In that case, the observed slowdown as the cell cycle

progresses may be explained by an increase in the nucleus

viscosity due to the increase in its concentration after DNA

replication. We notice that the slow dynamics is about twice

as slow in the G2-phase than in the G1-phase. This result

a

b

FIGURE 3 (a) Measured probability densities of t2 times obtained:

during the G1* period, the S* period, and the G2* period, respectively.

(b) Probability densities of the relaxation time t2 estimated from the raw

results by using Eqs. 1–3 (color online; black line: G1-phase, blue line:

S-phase, red line: G2-phase).
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suggests that the diffusion of these ‘‘objects’’ through the

nucleus is likely diffusion hindered by fixed obstacles that

must be bypassed (a 3D labyrinth), rather than diffusion

through an entanglement such as that seen in the case of a

concentrated polymer solutions. Otherwise, the effect of

the increase of the concentration on the viscosity would be

much stronger. Furthermore, in the framework of a Brownian

motion of large ‘‘objects,’’ this particular relaxation time is

related to the mean size of the objects present in the scat-

tering volume during the measurement, assuming they all

experience the same viscosity. Because there is only a small

number of these ‘‘objects’’ in the scattering volume, one can

imagine that the variations in the measured values of t2

convey the time fluctuations of the size distribution of these

large ‘‘objects’’ within the scattering volume. Hence, the

distributions of t2 times likely reproduce the size distribu-

tions of these large ‘‘objects’’ inside the nucleus.

Fast dynamics

Evolution of the fast dynamics during interphase

G1* period. The measured probability density of t1 times for

this period is broad and exhibits two maxima: around 22 and

35 ms, respectively (Fig. 4 a) whereas the probability density

of a shows a broad asymmetrical maximum located around

0.68 (Fig. 4 a, inset).
S* period. The probability density of the t1 times has an

asymmetrical shoulder whose maximum is located around

15 ms (Fig. 4 b). It is noticeably different from that obtained

in the G1* period. On the other hand, the distribution of the

stretching coefficient a is not that different from that of the

G1* period. The probability density of a shows a maximum

located around 0.62 (Fig. 4 b, inset).
G2* period. This period displays a probability density of t1

times whose maximum is located around 20 ms (Fig. 4 c),

hence different from that obtained in the G1* period but

rather similar to that obtained in the S* period and the

stretching coefficient a exhibits a maximum located around

0.75 (Fig. 4 c, inset). It is therefore very different from those

obtained in both other periods.

It should be noticed that the G1* period shows clearly two

distinct kinds of nuclei having different fast dynamics.

Indeed we observe that 11 nuclei of 24, i.e., 46% of the

investigated nuclei, contribute to the peak at 22 ms only,

whereas the other nuclei contribute to the second peak.

Note that this bimodal distribution of nuclei was already

observed for nuclei of SHEP cells in G1-phase in a culture

medium containing HU (16). For both kinds of nuclei the

distributions of a seem similar.

Using these raw distributions and Eqs. 1–3, the probability

densities of t1 times and a for pure G1-, S- and G2-phases can

be estimated and are displayed in Fig. 5, a and b, for t1 times

and a, respectively. The differences observed show the strong

modifications occurring to the fast internal dynamics of

a living cell nucleus when the cell cycle progresses.
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FIGURE 4 Probability density of t1 times obtained during the (a) G1*,

(b) S*, and (c) G2* periods, respectively. (Inset) Corresponding probability

density of the stretching coefficient a.
In the G1-phase, the probability density of t1 times ranges

from 10 to 90 ms and exhibits two maxima: around 22

and 35 ms, respectively. This distribution is indeed the

sum of two independent distributions. One, rather

narrow, ranging from 10 to 40 ms and whose

maximum is located at ~22 ms and a second, which

is much broader, that ranges from 30 to 90 ms and

whose maximum is located around 40 ms (see the Sup-

porting Material Part B). The probability density of

a

b

FIGURE 5 (a) Probability densities of t1 times estimated from the exper-

imental results by using Eqs. 1–3. (b) Probability densities of a estimated the

same way as those of t1 and t2 (color online; black line: G1-phase, blue line:

S-phase, red line: G2-phase).
Biophysical Journal 97(2) 453–461
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a shows a broad and asymmetrical shoulder with

a maximum located around 0.68.

For the S-phase, the probability density of t1 times is less

broad; and ranges from 5 to 35 ms with one maximum

at ~10 ms and one shoulder around 25 ms. In contrast

to this the probability density of a presents a high and

narrow peak located around 0.62.

Finally the t1 time probability density of the G2-phase

ranges from 5 to 40 ms and shows a shoulder around

10 ms with a maximum around 20 ms. The probability

density of a is much broader, and exhibits a maximum

at ~0.75–0.8.

Interpretation

The fast part of the autocorrelation functions decreases as

a function of time with a stretched-exponential decay. A

wide variety of relaxation behavior can be fitted with such

a function. A commonly used interpretation is in terms of

the global relaxation of a system having a set of relaxation

processes, each of which decays exponentially in time with

a specific characteristic time (36,37). The characteristic

time provided by the fit with this kind of function is somehow

related to the average over all the characteristic times of the

distribution. The value of the stretching coefficient, which

defines the deviation from a single exponential decay, is

related to the width of the distribution of relaxation times;

the distribution being all the more broad because a is small

compare to 1. (According to the numerical simulations we

carried out, for a time distribution P(t) given by a log-normal

law, i.e., PðtÞ ¼ expð�ðlnðt=mÞÞ2=2s2Þ=ðts
ffiffiffiffiffiffi
2p
p
Þ, we

find a stretched exponential decay of the autocorrelation

function, i.e., expð�ðt=t1ÞaÞ, where: t1zmð1þ as2Þ and

az1=ð1þ s2Þb, with a z 0.11 and b z 0.5.). Hence, to

understand this complex dynamic one has to focus on both

t1 and a at the same time and not on each of them indepen-

dently. In this study, at least in the G1- and S-phases, most of

the measured values of a are <0.7. Such values of a indicate

that the probed distributions of relaxation times contributing

to the fast dynamics are very broad. According to numerical

simulations we carried out, we believe that such low values

of a very likely indicate that the probed distributions of

relaxation times are log-normal distributions, or sums of

log-normal distributions that overlap. According to Castaing

and Souletie (39), log-normal distributions of relaxation

times originate from the existence of hierarchical processes

monitoring the time evolution from one level to the following

(i.e., similar to ageing processes (39–42)).

Assuming log-normal distributions of relaxation times, for

each phase of the cell cycle, we can estimate the most probable

distributions of relaxation times contributing to the fast

dynamics that are probed during QELS experiments. These

distributions are estimated using the most probable values of

both t1 and a for each phase. (Table 1). We display these esti-

mated time distributions in Fig. 6 and observe that they are very

different from one phase to another.
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In the G1-phase (for both fast and slow nuclei), according

to the estimated distributions of relaxation times, the

fast dynamics seems to be characterized by a strong

contribution of the slow relaxations, i.e., with relaxa-

tion times larger than typically a few 10�2 s. This

contribution is more important than in the S- and

G2-phases. The weight of the processes having relax-

ation times >4.10�2 s in these time distributions is

of ~25% and 40% for the ‘‘fast’’ and the ‘‘slow’’

G1-phase, respectively, whereas it is <15% for both

the S- and G2-phases.

The estimated distribution of relaxation for the S-phase,

times is characterized by an important weight of the

fast relaxation times, i.e., with relaxation times typi-

cally >10�2 s. This contribution is much larger in

this case than in the other phases; ~50% of the distri-

bution in the S-phase and <25% in the other. Hence,

in relation to the fast dynamics in the other phases,

the fast dynamics in the S-phase likely involves

much faster processes.

In the G2-phase, the estimated distribution of relaxation

times seems to range over only 2 decades; from 10�3

to 0.1 s. Therefore, the fast dynamics in the G2-phase

is likely to be less rich and complex than those in G1-

or S-phases.

At this stage of our investigation, we have no clear

connections between our measurements and biological

processes. However, chromatin is the main compound of

the scattering volume and chromatin structure is known to

be hierarchical (43–45). Therefore we conjecture that the

remodeling of chromatin fibers is carried out by an ordered

succession of different processes, each process having its

own characteristic time. It is also known that the chromatin

compaction evolves during the cell cycle (46); chromatin is

highly condensed at the beginning of the G1-phase and de-

condensed continually as the cell progresses through the

G1- and S-phases. It will condense again at the very end of

the G2-phase, just before mitosis. We can imagine that the

more compact the chromatin is, the more complex and

hierarchical the compaction must be. This inevitably must

lead to the appearance of processes with long characteristic

times in the remodeling dynamics. The strong chromatin

compaction in the early G1-phase might explain why in

this phase we observe slower processes than in both other

phases where chromatin compaction is less. Furthermore,

TABLE 1 For each phase of the cell cycle, values of both t1

and a used to estimate the most probable time distributions

displayed in Fig. 6

Phase of the cell cycle t1 (ms) a

‘‘Fast’’ G1 22 0.69

‘‘Slow’’ G1 40 0.69

S 10 0.61

G2 20 0.79



Biophysical Journal 97(2) 453–461

Nucleus Dynamics during Interphase 459
one can speculate that the chromatin restructuring processes

are likely to be faster as well as much more complex in the

S-phase, where replication takes place and lasts for 2 h, in

contrast to the G1-phase, which lasts for ~10 h and where

the main activity within the nuclei is transcription, or the

G2-phase. As a consequence, in Suissa et al. (16,17), we

made the hypothesis that this fast mode might originate from

a

b

FIGURE 6 (a) Most probable distributions of relaxation times contrib-

uting to the fast mode for every phase of the cell cycle on a linear scale (color

online; green: ‘‘fast’’ G1-phase, black: ‘‘slow’’ G1-phase, blue: S-phase;

red: G2-phase). (Inset) Enlargement of these distributions at ‘‘long’’ times

on a semilog scale (i.e., t R 5 � 10�2 s). (b) Most probable distributions

of relaxation times contributing to the fast mode for every phase of the

cell cycle on a semilog scale (same colors).
chromatin remodeling. This hypothesis also seems consistent

with the fact that in the G1-phase the distributions of relax-

ation times seem to be much less broad for cells grown in

a normal culture medium than for cells treated with HU,

which inhibits DNA replication (16,17) (Supporting Material

Part C). Indeed, HU induces histones phosphorylation and

foci formation of H2AX (47) that should cause a different

chromatin compaction and therefore different remodeling

processes. Following this hypothesis, one can propose that

both dynamics observed in the G1-phase reflect the existence

of two different states of chromatin compaction during this

phase. These different states may be within the nucleus itself,

with both chromatin states: euchromatin and heterochro-

matin. The chromatin compaction for these two states is,

indeed, different and different dynamics can be expected de-

pending on whether we probe euchromatin or heterochro-

matin. However, these two dynamics might also originate

from different chromatin compactions at different stages of

the G1-phase (46); i.e., a different chromatin compaction

whether the cell is at the beginning or the end of the G1-phase.

To test out this hypothesis several experiments could

be carried out. For example, one can think of carrying out

QELS experiments on nuclei for which the remodeling of

chromatin has been modified by using ATP depletion

(23,24), chromatin ATP-dependent remodelers such as SWI/

SNF (48), heat shock (49), or virus infection of the cells (50).

CONCLUSIONS

To our knowledge, this work is one of the first attempts to

investigate the global internal dynamics of the living cell

nucleus. This study was carried by means of dynamic light

scattering experiments, using an experimental device we

specially built for that purpose. The internal dynamics of

the nucleus is probed in the timescale from milliseconds up

to times of the order of 1 s by measuring the autocorrelation

function of the scattered light intensity. Over this time range,

the autocorrelation functions of the scattered intensity are

bimodal, clearly demonstrating the existence of two different

relaxations well separated in time. Our measurements give

access to three parameters; two characterizing the fast

dynamics: the time t1 and the stretching coefficient a, and

one characterizing the slow dynamics the time, t2. In this

study, we present an investigation of this dynamic in the

different phases of the interphase; G1-, S-, and G2-phases

of the cell cycle. Results indicate clearly that the nucleus

internal dynamics evolves according to the phase of the cell

cycle.

1. For each investigated nucleus we observe large variations

in the measured values of t1, t2, and a from one measure-

ment to another. This indicates that during our measure-

ments we probe different mechanisms and observe several

concomitant biological processes. Therefore, we can

conclude that the internal dynamics of the living cell



460 Suissa et al.
nucleus is rich, complex and heterogeneous, both in time

and space. This is not surprising because the nucleus is

an active system with chemical reactions taking place

continually. Furthermore, very different activities can

simultaneously occur within the nucleus at very short

distance from one another and, at a given time, two

completely different activities can occur in two neigh-

boring chromosome territories.

2. Because we do not find any functional relationship

between them, we believe that both timescales we

observe are completely independent from each other

and therefore correspond to different biological processes

having no link between them.

3. By repeating the measurements many times, on several

different nuclei, we can build distributions for t1, t2,

and a that give a picture of the internal dynamics of the

living cell nucleus for times shorter than a few seconds.

At this stage of our study, we have not yet found connec-

tions between our measurements and specific biological

processes and thus, we cannot firmly assign the different

characteristic times we observe to a particular biological

phenomenon, or a mix of different biological phenomena.

Nevertheless, we can put forward some hypotheses con-

cerning the different timescales.

The slowest relaxation has a characteristic time t2 of

the order of 0.5–1 s and we believe that this slow re-

laxation originates from the Brownian diffusion of large

protein clusters through the nucleus. Therefore, the

observed slowdown of this slow relaxation in the S- and

mainly in the G2-phase in comparison to the G1-phase

might be explained by an increase in the nucleus viscosity

due to the increase in its concentration.

The fastest relaxation seems to be due to a set of

processes leading to a very broad continuous distribution

of characteristic times. Our results show that in any sub

volume of the nucleus larger than a few chromosome

territories, the distribution of processes at the origin of

the fast dynamics continually evolves with time, likely

according to the nucleus activity; the set of processes

involved vary within a few minutes, some processes dis-

appearing whereas others appear. Furthermore, for cells

in the G1-phase, our results suggest the existence of two

different kinds of fast dynamics. As this study is a pioneer-

ing investigation, it is difficult to draw definitive conclu-

sions from the results. Nevertheless, we believe that the

fast relaxation mode originates from the existence of hier-

archical processes monitoring the time evolution from one

level to the following. Hence, this fast relaxation might be

due to a set of collective processes associated with the

chromatin fibers remodeling.

4. Finally, we would like to insist on the fact that we believe

that QELS experiments should prove useful for the study of

the internal dynamics of living cell nuclei because this

technique is likely to be complementary to fluorescence

techniques, especially for investigating the chromatin
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dynamics. Moreover, it seems that the analysis of the fast

dynamics could be used to determine the phase of the cell

cycle in which a cell is (see the Supporting Material Part D).

SUPPORTING MATERIAL

Parts A–D, eight figures, and three tables are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(09)00952-7.
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