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ABSTRACT Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show
spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by
two parameters only, the membrane tension o and the bending elasticity k.. For liposomes containing dimyristoyl phosphati-
dylcholine (DMPC) or a 10 mol% cholesterol/DMPC mixture, the mechanical property of the membrane, k_, is shown to be
temperature dependent on approaching the main (thermotropic) phase transition temperature T,,.. In the case of DMPC/
cholesterol bilayers, we also obtained evidence for a relation between the bending elasticity and the corresponding
temperature/cholesterol molecular ratio phase diagram. Comparison of DMPC/cholesterol with DMPC/cholesterol sulfate
bilayers at 30°C containing 30% sterol ratio shows that k_ is independent of the surface charge density of the bilayer. Finally,
bending elasticities of red blood cell (RBC) total lipid extracts lead to a very low k. at 37°C if we refer to DMPC/cholesterol
bilayers. At 25°C, the very low bending elasticity of a cholesterol-free RBC lipid extract seems to be related to a phase
coexistence, as it can be observed by solid-state 3'P-NMR. At the same temperature, the cholesterol-containing RBC lipid
extract membrane shows an increase in the bending constant comparable to the one observed for a high cholesterol ratio in

DMPC membranes.

INTRODUCTION

Biological membranes are highly dynamic systems. They
are able to deform themselves following external stresses
(erythrocytes in blood capillary) or cytoskeleton solicita-
tions (mitosis). In a general way, such geometric transfor-
mations cannot be considered without involving at least
some physical properties of the membrane such as lipid
fluidity, shear, stretching, and bending elasticities (Sack-
mann et al., 1986; Bloom et al., 1991; Sackmann, 1994).
Giant unilamellar vesicles were shown to deform similarly
(Berndl et al., 1990; Kis and Sackmann, 1991), proving
such behavior to be quite independent of the membrane
nature.

Shape changes can be understood by using reduced pa-
rameters. This means that shape transition lines are found
independently of liposome characteristics such as geometric
(volume, area) or mechanical (elasticity) ones (Seifert et al.,
1991; Heinrich et al., 1992). Nevertheless, the energy cost
of any deformation can be evaluated according to effective
parameters and compared to a reference state. To study the
connection between membrane composition and deform-
ability of sterol-containing bilayers, we can thus vary the
former and measure the response of the system.
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Sterols are widespread membrane molecules found in
most of the plasma membranes. In mammals, cholesterol is
known to act as a regulator of membrane fluidity and many
other different bilayer properties. One point to notice is a
modulation of the physical state of a sterol-containing mem-
brane as a function of its sterol enrichment. This is the case
for water permeability (Milon et al., 1986), chain order
parameters of phospholipids (Davis, 1983; Léonard and
Dufourc, 1991), polymorphism (Epand and Bottega, 1987;
Vist and Davis, 1990; Tampé et al., 1991; McKay and
Robert, 1994; Slotte, 1995), self-diffusion coefficients
(Almeida et al.,, 1992), viscoelasticity (Chabanel et al.,
1983; Elise Gabriel and Roberts, 1986), and membrane
mechanical properties (Evans and Needham, 1986; Need-
ham et al., 1988; Duwe et al., 1990; Needham and Nunn,
1990; Bloom et al., 1991). To reinvestigate the last point,
we began a systematic study to compare bending elasticities
as a function of sterol content and temperature, for model
and natural membranes. We will briefly give some theoret-
ical background for the understanding of the bending mod-
ulus measurement method using thermal fluctuations of
giant quasispherical vesicles. The influences of temperature
and sterol content were investigated for dimyristoyl phos-
phatidylcholine (DMPC)/cholesterol (Chol) bilayers. To
check whether the sterol effect is modified by a change in its
polar head region, cholesterol was substituted by an anionic
derivative, the cholesterol sulfate (CholS), found mainly in
the stratum corneum, a specialized outer layer of the skin.
Finally, these complex lipid mixtures were related to mem-
branes obtained from total lipid extracts of red blood cells
(RBCs), in the presence and absence of physiological cho-
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lesterol concentration. The macroscopic behavior of the
obtained liposomes using RBC lipid extracts is shown to be
related to microscopic and macroscopic information ob-
tained by solid-state *'P-NMR measurements.

THEORETICAL BACKGROUND
Mechanical properties of membranes

In 1973, Helfrich introduced three elasticities characterizing
the membrane mechanical responses to a stress (Helfrich,
1973), in the limit of a thin surface slightly deformed from
its equilibrium shape. The first one, i.e., shear elasticity, has
to play a role for biological membranes because of the
cytoskeleton but seems to be ineffective for bilayers in their
fluid state (Evans and Needham, 1987).

Stretching elasticity is important only if an expansion or
a compression of the area is expected. The energy per unit
area, f;, required to increase a surface element Sy by AS is

equal to
Kk (AS)Z
~=als,

A typical value for kg, the stretching modulus, is in the range
100-300 mJ/m? (Evans and Needham, 1987). Thus any
deformation involving k, needs a large amount of energy,
comparable with that required when increasing an oil/water
interface.

The third mechanical property of importance for mem-
branes is bending elasticity. Considering S, deformed ac-
cording to the two principal curvatures ¢, and ¢, at constant
area, the bending energy per unit area f. is

k. _
f;:zi(cl +C2_C0)2+kcclc2 0

In this expression, k., the splay modulus, is always positive,
a typical value for a lipid bilayer being 10™!° J (Faucon et
al., 1989; Duwe et al.,, 1990; Evans and Rawicz, 1990;
Niggemann et al., 1995). On the other side, k., the saddle-
splay modulus, can be either positive or negative, depending
on the molecular characteristics of the membrane. Up to
now there has been no experimentally determined value for
the saddle-splay modulus; simulations give absolute values
from kgT (where kg is the Boltzmann constant and T the
temperature) to &, i.e., ~25 X kgT (Szleifer et al., 1990).
Moreover, when a closed object like a perfect or a slightly
deformed sphere is considered, the integration of the Gaus-
sian curvature over the total surface, $c,c, dS, is equal to 477
(Gauss-Bonnet theorem; Darboux, 1972). As a result, there
is no contribution from the k_ term to the deformation free
energy when we consider only continuous perturbations of
a given shape.

Significant work has been done to invent experimental
methods that make it possible to measure the bending mod-
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ulus, k., of model membranes (Bo and Waugh, 1989; Evans
and Rawicz, 1990; Kummrow and Helfrich, 1991). Histor-
ically, the first one was the analysis of thermal fluctuations
of giant liposomes as seen by phase-contrast microscopy
(Servuss et al., 1976; Schneider et al., 1984; Bivas et al.,
1987; Faucon et al., 1989; Duwe et al., 1990; Niggemann et
al., 1995); this is used herein to study k. variation as a
function of the model membrane composition. Conse-
quently, a theoretical description of this phenomenon will
be given first, before going into details of the experimental
requirements.

Theoretical description of the thermal
fluctuation phenomenon

In this description, only quasispherical liposomes will be
considered, i.e., vesicles characterized, for a given inner
volume V', by a surface &, in excess compared to the area
of the sphere with the same volume. Defining R as the
radius of the sphere:

47R?
Py =4mRYH(1 + 5) 3)

where s = 0 is the excess area. Looking at such a vesicle by
a two-dimensional technique (Fig. 1), we observe the exis-
tence of membrane undulations originating from Brownian
motion, as in the case of red blood cell flickering phenom-
ena (Brochard and Lennon, 1975). These thermal fluctua-
tions induce permanent oscillations of the vesicle shape
around a spherical form. Then we can define (6, ¢, ¢) as the
function locating the bilayer center in the direction (6, ¢)
(spherical coordinate system) at a time ¢:

r(0, ¢, t) = R[1 + u(6, ¢, 1)] 4)

u(6, ¢, ) is the relative deformation assumed to be small
compared to 1 (Ju| << 1 and hence, s << 1). In that case, we
can write all of the characteristic quantities of a liposome as
a power series of u(0, ¢, t) (and its derivatives u,, Ugs o0 )s
keeping only the terms up to the second order. This can be
done for the volume, the surface, and the elastic energy
functionals, respectively V' {u}, ${u}, and F {u} (Mitov et
al., 1992):

1
Vi{u} = é V(i) d0de, V() = R3(§ +u+ uz)sin 0 (5

Flu} = é S(u, ug, u,) do de,

(Vzu) )sin 6

(6)

Su, ug, u,) = Rz(l +2u+ut+
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FIGURE 1

Two video images of a quasispherical vesicle, as seen through a phase-contrast microscope at different times (A and B). After image analysis,

the contour fluctuations function, p(¢,), can be drawn and superimposed for the two video images (C) and related to the amplitudes of the three-dimensional
shape through the autocorrelation function of the contour deformations. The bar at the lower corer in A corresponds to 10 wm.

F{u} = § Fo(u, ug, u,, ug, u,,) do de,
Fc(“o Ug, Up, Uggs Uy (7)

ke
=5 [4 — 4V%u + 4uV?u + (V*u)? + 2(Vu)*]sin 0

with

cos 6 u
Vi= + ———u, + .i
=% T Gno e sin? 0

2 ( 2 ui
(Vi) =\uo + G2 9)
where we can omit the Gaussian term in Eq. 7 as a constant
when the sphere topology is maintained (Darboux, 1972).

We consider now the volume and the area of our lipo-
some. We have shown previously that it is very expensive to
increase the overall area of the vesicle. On the other hand,
our experiences last no more than 10 min, the hydrostatic
pressure difference between the interior and the exterior of
the liposome being very small (otherwise, we cannot expect
large thermal fluctuations). We can thus assume that both
the area and the volume are constant during the observation
of the thermal fluctuation phenomenon. Consequently we
can write

Vi{u} =V, ®)
Flup = %, “

where V', and &, are the constants representing, respec-
tively, the total volume and area of the liposome.

The quasispherical vesicle, limited by a single bilayer and
fully characterized by (Vy, ), is immersed in a thermal
bath at a temperature 7. The shapes minimizing the bending
energy, Eq. 7, and keeping both the volume % {u} and area
&{u} constant are obtained by solving a variational problem

or, equivalently, by minimization of the functional (Arfken,
1985):

Flu} = Flu} + oF{u} — Ap - V{u} (10)

o and Ap are the Lagrange multipliers associated with the
constant area and volume constraints (physically, o can be
considered as a membrane tension and Ap as the pressure
difference between the inside and the outside of the mem-
brane).

After calculation (Mitov et al.,, 1992), we obtain the
expression for the fluctuation amplitudes u(6, ¢, 1):

Af iy
wo, . n=—7=+ 2 UOYY6.¢) (D)
\WT n=2|m|<n

Y™ being the spherical harmonics (Arfken, 1985). n.,,, is a
cutoff introduced in the summation to limit the deformation
to wavelengths larger than molecular size. Using the re-
duced membrane tension & = oR*/k, and the reduced pres-
sure difference p = ApR>/k, we write for the constant factor
A} (the static deformation compared to the sphere with a
radius R):

A p-2
@r 2p-0)

which is somehow an equivalent expression for the well-
known Laplace relation (Mitov et al., 1992). The dynamic
part itself, UR'(£), is not directly related to a theoretical
quantity, but the time average of its square modulus,
{U™(®)|?), can be obtained using the equipartition theorem:

~0>p~25 (12)

n=2, lm|<n

1 (13)

n— 1)+ 2)[c+ n(n + 1)]

kT
HOTEEEY
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Measurable quantities

Equations 11 and 13 show that the dynamic part of the
deformation (or equivalently the thermal fluctuations) is
defined using spherical harmonics, Y7'(6, ¢). Unfortunately,
we cannot observe the liposome in three-dimensional space
(using, for example, a confocal microscope) at a sufficiently
high resolution in time. As a result of the spherical symme-
try of the static shape, one can demonstrate that a two-
dimensional section of a quasispherical vesicle (Fig. 1) is
enough to obtain the information we are interested in, i.e.,
the fluctuation amplitudes ((U™).

The image analysis of Fig. 1 B leads to the instantaneous
contour of the equatorial section of the liposome, p(¢, ) =
R[1 + u(m/2, ¢, )] (Fig. 1 C). Two different methods have
been proposed in the literature to link this experimental
information to the bending modulus k.. One was introduced
by Engelhardt et al. (1985). Calling V,(#) the ¢ mode am-
plitude obtained using a Fourier analysis of the relative
contour deformation u(7/2, ¢, t) = (p(@, t) — R)/R at t, we
can write

2@
1
q=2, V)= B u(m/2, ¢, exp(_,qe) de
=0
= > UX®m2) (14)
n=q]

Npmax

SV,o0Ph= X

n=max(2,lq))

(URIOYm2)F  (15)

where O7'(0) is defined through the Legendre polynomials,
P, using the relation (Arfken, 1985)

. L 2t 1 (n—m)!
OO =D vy

X PY(cos 0)

The second method was introduced by Bivas et al.
(1987). It is based on the analysis of the autocorrelation
function of the contour fluctuations, &(vy, o):

27
_1id YRy 2
v, ) =22 |5- P ple + v, Dple, ) dp — p*()) |  (16)
0
where 1 is the correlation angle, p is the p complex conju-

gate function, and p(#) is the angle average of the contour
radius function p(¢, ¢):

1
p() = E§ 4p(p, 1) do
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Using spherical harmonics decomposition, the time average
of the autocorrelation function, &(y), can be written equiv-
alently (Faucon et al., 1989):

&y) = 2 (Bu(1)P(cos v)
n=2 (17)
keT sy [@3(m/2)]
% P 2 e = i + atn + 1]

_ kgT 2n+1)
B = gt X D= Do+ ntn T D] .
1
2n+1) )

=~ (UReP

from which k. and o can be determined using a least-
squares method (Mitov et al., 1992),

It is important to note that the autocorrelation function,
Eq. 16, and its decomposition into Legendre polynomials,
Eq. 17, give directly a proportionality relation, Eq. 18,
between the theoretical amplitudes of the spherical harmon-
ics, ((U™(®)|*), and the experimentally measurable quanti-
ties, (B,(1)). Comparing to Eq. 15, one observes that
(|Vq(t)|2) is unfortunately a complex sum over many
(U®[*), depending on k, and &. This complicates the
parameter-fitting procedure and makes this approach very
tedious at least, if not unsuitable.

MATERIALS AND METHODS

Lipids were obtained from Fluka (Buchs, Switzerland). Cholesterol sulfate
was kindly provided by Christian Dior Laboratory (St Jean de Braye,
France). Red blood cell membrane lipids were extracted by hexane/isopro-
panol according to the method of Radin (1981). In the case of red blood
cells this solvent mixture is preferable to commonly used chloroform/
methanol mixtures, as it dissolves almost no pigments (Radin, 1981).
Briefly, with constant stirring, 20 ml of packed cells are added dropwise to
500 ml of hexane/isopropanol (3:2, v:v), followed by filtering. The solvent
is evaporated under reduced pressure. The resulting lipidic film is imme-
diately dispersed in cyclohexane, lyophilized, and stored under vacuum at
—20°C. For further purification of RBC lipids from nonlipid contaminants,
Sephadex (G-25, coarse, beaded; Pharmacia Fine Chemicals) column chro-
matography is performed as described by Rouser et al. (1967) and Kates
(1972). The integrity of the lipid extract was qualitatively checked by
two-dimensional thin-layer chromatography (elution solvents: 1) chloro-
form/methanol/water (65:25:4 v:v:v); 2) butanol/acetic acid/water (6:2:2
v:v:v)). Only traces of lysolipids were detected. The relative amounts of the
main phospholipid classes in the lipid extract were determined by high-
resolution 3'P-NMR and found to be in accordance with known ratios (34%
phosphatidylcholine, 27% phosphatidylethanolamine, 24% sphingomyelin,
and 15% phosphatidylserine). The sterol content of the RBC lipids was
determined with a pathology laboratory system (BM/Hitachi 911; Hitachi,
Tokyo, Japan) by a standard kit (Boehringer Mannheim Meylan, France
SA) using cholesterol esterase and cholesterol oxydase reactions. Sterol
extraction from the total RBC lipids was achieved by the so-called acetone
precipation (Kates, 1972). Separation was verified by thin-layer chroma-
tography. The chromatography of the acetone-insoluble fraction shows all
phospholipids initially present, as well as the absence of free fatty acids,
cholesterol, and diacylglycerides.
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Solid-state *'P-NMR measurements on lipid dispersions in excess water
were carried out on a Bruker ARX300 implemented for high-power solid-
state spectroscopy and operating at 121.49 MHz. A phase-cycled Hahn-
echo pulse sequence (Rance and Byrd, 1983) with quadrature detection and
gated proton decoupling was used. Samples were allowed to equilibrate for
at least 30 min at a given temperature before the NMR signal was acquired;
the temperature was regulated to =1°C. Typical acquisition parameters
were a spectral window of 50 kHz, a 7/2 pulsewidth of 8 us, delay between
the two pulses forming the echo equal to 40 us, a recycle delay of 6 s (50
s for high-resolution spectra), and 2200 scans. Spectral simulations were
performed on an Alpha computer (Dec 4000, Digital, Nashua, NH) as
described by Pott and Dufourc (1995), assuming either a spherical or a
slightly ellipsoidal distribution of the bilayer normal. The amount of
isotropic lines superimposed on a powder pattern was determined by
simulation of a Gaussian or Lorentzian line and subsequent subtraction
from the experimental spectrum. Percentages are expressed relative to the
total spectral area.

The samples used for NMR studies were observed under a phase-
contrast microscope for direct visualization of the consequences of a
temperature change for liposome dispersions. Deionized water was added
to obtain a lipid concentration close to 0.2 mg/ml. The vesicles were
injected in a cell similar to the one described by Faucon et al. (1989). Then
the cell was sealed and maintained at different temperatures (room tem-
perature, 37°C and 50°C) for 1 day to allow equilibrium. The evolution of
the liposome shape was followed from their equilibrium temperature (37°C
and 50°C) to room temperature.

Electroformation of giant
quasispherical liposomes

According to the model introduced in the previous paragraph, bending
elasticity of membranes can be measured using quasispherical and unila-
mellar liposomes. GUVs (giant unilamellar vesicles) with a typical radius
of 10 um are used to obtain an accurate measurement of the thermal
fluctuation deformations by video microscopy (see below). They must also
be isolated and have no (visible) surface defects.

Such vesicles are prepared using electric fields to increase their forma-
tion rate and yield (Angelova et al., 1992b). Lipids are first solubilized into
an organic solvent (chloroform/methanol 9:1, lipid concentration ~0.2
mg/ml). Two different experimental chambers are prepared, depending on
the working distance of the microscope objective. The first one is used with
an oil immersion setup when a temperature control is needed (this thermal
regulation device is presented by Fernandez-Puente et al., 1994, and
detailed by Fernandez-Puente, 1994). It is built from two Indium Tin
Oxyde (ITO) covered glass slides separated by a 0.3-mm-thick silicon
spacer (Fig. 2 A) (inner volume ~100 ul). The second chamber is used for
room temperature observation with a water immersion objective (Angelova
et al.,, 1992b). It is made of a 1-mm-thick glass cell (similar to a fluores-
cence cell) where two parallel platinum wires of 0.8 mm diameter have
been introduced (Fig. 2 B) (inner volume ~300 ul).

The lipid solution is deposited on the electroformation cell conductor
(~2 pl of the chloroform/methanol lipid solution in a single spot for ITO
slides or in four to six different locations along the platinum wires).
Organic solvents are removed by evaporation under vacuum for 1 h, and
deionized water (Millipore mQ, Bedford, MA) is added slowly to prevent
lipid dispersion. Then the electric field is applied at 10 Hz from low voltage
(30 mV/mm) to “high” voltage (400 mV/mm) in 10 min. After a typical
period of 2 h, quasispherical vesicles are formed. Usually liposomes stick
(probably through filaments) to the conductor. Dispersion is then promoted
by a low-frequency (4-Hz) field, sometimes followed by “a few taps” on
the cell bottom. During the whole process, electroformation can be con-
trolled by microscopy.

Data treatment

Fluctuating vesicles are observed with a phase-contrast microscope (Ax-
iovert 135 with a water immersion X40/0.75 objective or IM35 with an oil
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FIGURE 2 Sketches of the electroformation cells used (4) when tem-
perature regulation is needed and (B) when observations are made at room
temperature.

immersion X 100/1.25 objective; Zeiss, Oberkochen, Germany) and a CCD
video camera (C2400-77; Hamamatsu, Hamamatsu City, Japan). Video
images are recorded on a U-matic recorder (VO 7630; Sony, Tokyo,
Japan), digitized on a Pericolor 1500 (Matra, Paris, France), and analyzed
on an Alpha Computer (Dec 4000; Digital) (Mitov et al., 1992).

The contour extraction procedure (Fig. 1, B and C) is very simple when
a phase-contrast microscope is used. The pictures in Fig. 1, A and B, were
obtained after a background substraction. The equatorial cross section of
the vesicle is a slightly deformed black circle. Looking at a defined
direction ¢ from the center O, the intensity resembles that of an inverted
Gaussian curve, which is close to the mean image intensity I everywhere,
except in the contour region, where it decreases abruptly (within 5-10
pixels) through a minimum I, the value (but not the position) of which
usually depends on the precise position of the objective with respect to the
liposome bilayer. Fitting this intensity profile with a Gaussian function
leads to the location of that minimum, assumed to be the membrane
position in the ¢ direction. Using that procedure once for every ¢ direction,
we obtain between 500 and 900 points for each contour, depending on the
liposome size (Fig. 1 C).

A detailed description of the experimental limitations inherent in such
a method can be found in Mitov et al. (1992). To summarize, the noise
introduced by the video system (essentially the video recorder) and the
digitization procedure leads to a white noise in the Fourier spectrum (an
unknown constant value added to all |V (9)]")) and a Dirac 8-function
added to the autocorrelation function &(v). Because of a nice mathematical
property of the 8-function and the Legendre polynomials, this noise has no
influence on the experimental (B, (#)), thus leading to a higher precision
than the Fourier method (Engelhardt et al., 1985). Using a large number of
analyzed images (N ~ 400) leads to a precision of the mean value (B, (f)}
~ N2 due to the intrinsically stochastic nature of the thermal fluctua-
tions. Moreover, it is known that video images are essentially the result of
light signal accumulation on the camera target, each pixel of the CCD plate
being illuminated for 40 ms. Each movement characterized by a speed
greater than one pixel (to be exact, the distance separating two pixels) per
40 ms is blurred. Another important improvement in our treatment is the
introduction of a correction factor to take into account this integration
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effect of the video camera (Faucon et al., 1989). We also note that the
integration effect becomes negligible when a stroboscopic lamp replaces
the usual incandescent light as a microscope source (Méléard et al., 1992)
or if a high-speed camera is used instead of an ordinary TV CCD camera.

The experimental autocorrelation functions can then be calculated and
their Legendre polynomial amplitudes estimated. From Egs. 17 and 18, we
deduce these amplitudes to be independent quantities that can be directly
corrected for the integration effect of the video camera (Faucon et al.,
1989). This is the main advantage of the approach using the autocorrelation
function compared to a more direct Fourier analysis of the contour defor-
mation (Engelhardt et al., 1985). With these corrected data and for a set of
p different experimental amplitudes B3P, 2 < n =< p + 1, we must
minimize the following sum using an iterative procedure:

P (B — (B
()

n=2

In this expression, By*® and D{*® are, respectively, the n-order experimen-
taly estimated average amplitude and the corresponding dispersion of the
P? Legendre polynomial amplitudes (B, (1)) being the theoretical expression
18. A least-squares method leads to the estimation of (k., @) for a given
liposome (Fig. 3). It can be noted that for low enough membrane tension,
k_ is obtained independently from & when n? is large compared to &
(Faucon et al., 1989).

Finally, this procedure is repeated on different liposomes to reach a k.
dispersion equal to a few percent (typically, a set of 10 different vesicles
is required to obtain a dispersion for k. of ~5%). It should be mentioned
that such an average estimation for k. requires about a month’s work for
each particular experimental condition, including a preliminary period for
the electroformation procedure adjustment.

RESULTS
DMPC bilayers

The general requirements already introduced were taken
into consideration for both the choice of fluctuating vesicles
inside the electroformation cell and the experimental data

w
T T

<

k (x10"7J)

Order

FIGURE 3 Results of the thermal fluctuations analysis of the liposome
shown in Fig. 1. , Result of the fitting procedure obtained without
introducing the correction factor (see text). — — —, Fitting procedure where
the thermal fluctuation amplitudes are corrected from the video integration
effect.
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that can be obtained from their analysis. In the case of
DMPC in excess water (we are close to the infinite dilution
condition, the lipid to water mass ratio being smaller than
0.1%), we know the phase diagram to be characterized by a
thermotropic behavior. Whereas we already know that the
vesicle reacts to a temperature change by a modification of
its membrane tension (K#s and Sackmann, 1991), it has
been reported recently that the bending rigidity also depends
on the temperature (Fernandez-Puente et al., 1994; Honger
et al., 1994; Niggemann et al., 1995).

The results for k., measurements obtained with pure
DMPC liposomes are reported in Table 1. We should recall
that for all of the results shown (as otherwise indicated), the
cell temperature was held constant at the required temper-
ature during the electroformation swelling and the thermal
fluctuation video recording procedures. For a temperature
range from 15°C to 50°C, the cell temperature is controlled
with a precision of about =0.25°C. The error bars in Table
1 are the usual standard deviations for k_ values only. It is
possible to detect three different regions for k. dependence
as a function of the temperature. For 7> T, + 6°C (T, =
23.9°C is the gel-to-liquid phase transition temperature for
DMPC; Lewis et al., 1987), k. seems to be independent of
the temperature, the increase being too small to be mean-
ingful compared to the error bars. This behavior does not
seem to be general for unsaturated lipids far from their
phase transition temperature (Niggemann et al., 1995),
whereas it has also been found for other saturated phos-
phatidylcholine bilayers (Fernandez-Puente et al., 1994).
Furthermore, k_ increases slowly when T is decreasing from
T, + 6°Cto T,, + 3°C. This effect is not very important
(~20%) but is statistically significant. This behavior is
followed by a relatively sharp drop in the range T,, + 3°C
to T,, + 1°C. Unfortunately, we were unable to measure k_
very close to T, for technical reasons.

However, we notice that it is possible to pass through the
phase transition region without destroying the vesicle dis-
persion (results not shown). Independently of the liposome
considered when reducing T to T}, we observe first a rapid
disappearance of the thermal fluctuations at the microscope
resolution. This phenomenon is not related to a very precise
temperature, because other liposomes still fluctuate. At a
temperature closer to T, one can distinguish between two

TABLE 1 Bending moduli for DMPC/Chol membranes

T k:OOIO kg()/ 10 kZOBO k(S:O/SO
(0 (X107®])  (X107°)  (X107°D)  (x107'°))
20 6.1 %02
24.8 09 0.1
25 0.8 % 0.13
252 1.45 * 0.06
26 1L1+01 1.63 * 0.07
27 1522006 223 +0.07
30 130 008  2.00*0.1 412025  61*03
40 127009  184+009 307x013  37=03

T is the cell temperature. The superscript on the bending modulus &,
indicates the DMPC/Chol molar ratio.
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different behaviors. Depending on the liposome followed
during the cooling process, either an “explosion” process is
observed (the liposome being destroyed), or the liposome
assumes a spherical shape that stays stable at T < T,,. The
latter restores its fluctuating shape after increasing the tem-
perature to T > T,,. All of the liposomes remaining now
show very large thermal fluctuation amplitudes, and the
mean shape resembles an ellipsoid.

Sterol-containing membranes

An important feature of the addition of cholesterol to a pure
saturated phospholipid seems to be the appearance of dipha-
sic equilibria (coexistence of two lamellar phases within a
bilayer) as a function of the temperature and the cholesterol
content (Vist and Davis, 1990; Almeida et al., 1992; Mc-
Mullen and McElhaney, 1995). With reference to the above,
we suspect that such phase transitions influence the bilayer
mechanical properties. Thus we first measured k_ as a func-
tion of the temperature for DMPC/cholesterol mixtures with
variable mole fractions of sterol.

According to the phase diagram published by Almeida et
al. (1992), we choose three different cholesterol molar ra-
tios: 10%, 30%, and 50%. A 10% cholesterol-containing
membrane should be a bilayer in which phase separation
occurs at 7 < 30%. Thirty percent cholesterol membranes
are close to the limit of the liquid order phase in the
temperature range studied here. A 50% cholesterol ratio is
roughly the upper limit content for mammalian lipid sys-
tems. It is also important for a comparison with the mea-
surements for RBC lipids (see below).

The bending elasticity obtained as a function of temper-
ature and cholesterol ratio for DMPC/cholesterol bilayers is
summarized in Table 1. We notice that k. changes versus
temperature are qualitatively identical for both pure DMPC
and DMPC systems containing 10% cholesterol. However,
this is not the case for larger sterol contents, at 30% and
50%, where k. increases continuously with a decrease in the
temperature 7. At a given high temperature (30°C and
40°C), k. also increases as a function of the cholesterol
fraction.

Qualitatively, a 10% cholesterol ratio in DMPC leads to
a liposome behavior very similar to the one of pure DMPC
bilayers when T is lowered to T,. All of the fluctuating
liposomes change their shape from a Brownian spheroid to
a nonfluctuating sphere. Some of them disappear at a tem-
perature close to T,,,, whereas others cross T, without any
apparent damage. At higher cholesterol content, it is always
possible to cross T, (defined for pure PC) without dramatic
changes in the stability and morphology of the GUVs,
leading to k. measurements at temperatures below T, for
30% cholesterol molar ratio bilayers.

We also measured the bending rigidity of other choles-
terol-containing model systems, to compare their behaviors
to that of DMPC/cholesterol bilayers. This was the case for
DMPC/CholS bilayers or for a total lipid extract from red
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blood cells. The data are reported in Table 2. DMPC/Chol
and DMPC/CholS systems containing both 30% sterol con-
tents at 30°C are characterized by the same k. (within the
experimental error).

Using the RBC lipid extraction procedure (see Materials
and Methods), we also succeeded in measuring bending
rigidity of natural protein-free membranes. The analysis of
the RBC lipid extract yield a cholesterol to lipid mass ratio
of 18.4%, as expected in the case of human red blood cells
(Devaux and Seigneuret, 1985), leading to a molar ratio
close to 40%. The measurements of k. for the lipid extract
give very interesting results (Fig. 4). At room temperature
(taken to be 25°C), bending elasticity of RBC lipid mem-
branes is better represented by three distinct values in the
range (2.68-4.7) X 107'° J, whereas the analysis of sterol-
free RBC lipid membranes leads to a single k_ estimation of
~1.0 X 107! J. The electroformation method was also
used with lipid extracts to produce giant vesicles at physi-
ological temperature. This procedure did not create any
technical problems, except for sterol-free RBC lipid ex-
tracts. In that case, all of the vesicles obtained were spher-
ical (no thermal fluctuations), explaining the absence of
values at 37°C. To improve the yield of fluctuating vesicles
and in that case only, the liposomes were swollen at room
temperature first, then 7 was slowly increased to 37°C.
Unfortunately, no improvement was noticeable. However,
comparing the results presented in Tables 1 and 2, we see
that the bending rigidity for cholesterol containing RBC
lipid extract at 37°C is quite identical to that of DMPC
membranes at high temperature.

To understand the results obtained for k. measurements
on lipid extracts by microscopic observations and, particu-
larly, the strange behavior of cholesterol-free RBC lipid
extract liposomes, samples can be studied by solid-state
3'P_.NMR experiments (Bloom et al., 1991). Thermal vari-
ations have been accomplished by first heating the samples
from 25° to 60°C, followed by a decrease in temperature to
25°C (temperature steps: 5°). Lipid extracts with and with-
out cholesterol are both characterized by a superposition of
an isotropic line on a powder pattern (data not shown). The
phospholipid fraction characterized by a fast isotropic re-
orientation was found to vary strongly, depending on the
method used for the dispersion preparation. However, for

TABLE 2 Bending moduli for DMPC/CholS and RBC lipid
extract bilayers

RBC RBC Sterol-free
DMPC/CholS extract extract RBC extract
T = 30°C T = 25°C T = 37°C T = 25°C
2.68 *0.19
k. 3.8+0.2 356 20.14 146=*0.16 1.0=x0.15
(X107 D) 4702

T is the temperature and k, is the bending rigidity. The concentration of
cholesterol sulfate (CholS) in DMPC bilayers is 30 mol%. In the case of
red blood cell lipid extracts, two kinds of bilayers were studied: with a
natural cholesterol amount (RBC extract) and after the elimination of
uncharged lipids (sterol-free RBC extract).
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FIGURE 4 k_dependence on temperature, as a function of the membrane
composition. For DMPC/Chol mixtures: O, pure DMPC; [, 10 mol%
Chol; ¢, 30 mol% Chol; A, 50 mol% Chol. @, Bending rigidity of 30
mol% cholesterol sulfate/DMPC bilayers at 30°C only. The behavior of red
blood cell lipid extract is shown with (X) and without sterol () for 25°C
and 37°C. Lines are used to help the reader; the arrow points to the bending
modulus of sterol-free RBC lipid extracts.

both systems (with and without cholesterol) and whatever
the sample preparation, the amount of isotropic line in-
creases with increasing temperature. In the case of the
cholesterol-free RBC extract, the amount of isotropic line
increases significantly for T = 40°C. This behavior is
irreversible, i.e., a decrease in temperature leads to un-
changed percentages of the isotropic line. In the case of the
cholesterol-containing RBC lipids, the amount of isotropic
line rises quasicontinuously with increasing temperature,
but in contrast to the sterol-free RBC lipids, this behavior is
reversible. Furthermore, one remarks an important differ-
ence between the two bilayer systems in the evolution of the
second spectral moment, M,, with temperature (Fig. 5). The
polar RBC lipids exhibit a substantial hysteresis in the
thermal variation. The first increase in temperature leads to
an important decrease in M, centered on 40°C. Once 60°C
is reached, cooling results in a remarkable increase in M,,
leading to a value of ~12.5 X 10° ppm? at 25°C, in contrast
to ~8 X 10 ppm? observed before the thermal treatment
(Fig. 5 A). In contrast, in the case of the cholesterol-
containing RBC lipids, M, decreases only slightly and al-
most linearly with increasing temperature, and reversibility
is observed (Fig. 5 B), a typical behavior for lipid disper-
sions containing high amounts of cholesterol (=30 mol%).
Yet the thermal evolution of M, for the dispersion without
cholesterol is quite surprising; the high values of M, at 25°C
in particular are remarkable. In this context it is interesting
to further analyze the shape of the *'P-NMR spectra. Actu-
ally, the unexpectedly high M, value obtained after thermal
treatment is reflected by the presence of a very large spec-
tral contribution, with the limit of the very broad powder
pattern lineshape on the left side at ~50 ppm (see magni-

without (A) and with (B) cholesterol, as a function of temperature. Filled
symbols correspond to an increase in the temperature and open symbols to
a decrease. Lines are drawn to help the reader.

fication in Fig. 6 A). By spectral simulation it was estimated
that ~10% of the phospholipids contribute to this subspec-
trum, with a chemical shift anisotropy, Aa, of ~90 ppm. In
the case of the cholesterol-containing lipid extract, spectra
acquired under the same conditions are characterized by a
single axially symmetrical powder pattern component with
a Ao of ~42 ppm (Fig. 6 B).

Finally, one can correlate NMR and k. measurements in
a qualitative manner by following the behavior of giant
vesicles when changing the temperature using direct micro-
scope visualization of NMR sample preparations. Qualita-
tively, RBC lipid extract GUVs (with cholesterol) never
show fluctuations when maintained for a long time at room
temperature. Some liposomes stick to others, indicating a
lowering of long-range repulsions. Raising the temperature
to ~50°C leads to the appearance of fluctuating vesicles.
While observing such liposomes during the lowering of T to
room temperature, a rapid decrease in the thermal fluctua-
tion amplitudes is detected. Finally, their shapes transform
into spherical objects. The cholesterol-free lipid extract
behaves differently when GUVs are observed at 25°C after
the incubation at 50°C. In the first seconds after the begin-

T T T T T T T
-60 -40 -20 0 20 40 60

T T T T
-60 -40 -20 0
ppm ppm

FIGURE 6 Selected *'P-NMR spectra of RBC lipid extracts without (A)
and with (B) cholesterol, at 25°C. In A a magnification (dotted line) and a
simulation (dashed line) are shown. The corresponding parameters were
10% for the isotropic line and 10% Ao =~ 20 ppm, 10% Ao =~ 90 ppm, and
70% Ao =~ 40 ppm for the powder patterns.
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ning of the observation, the larger liposomes resemble qua-
sispherical or ellipsoidal objects with large thermal fluctu-
ations (not shown). After a short time (~1 min) as T
decreases, most of these vesicles change their shape to
unusual polyhedral forms (Fig. 7). It can be noted that flat
membrane areas are quite rigid at microscope resolution,
whereas the high curvature points fluctuate and seem to be
responsible for the overall vesicle shape changes. This be-
havior is maintained when the cell stays at room tempera-
ture for a few days.

DISCUSSION

Since the pioneering work of Brochard and Lennon in 1975
clearly explaining the origin of the RBC flickering phenom-
enon, bending elasticities have been measured by using
different experimental approaches. The thermal fluctuation
analysis of giant vesicles is one of them. It is based on
optical observations and image analysis that does not imply
physical contacts with a solid material such as glass pipettes
(Evans and Rawicz, 1990; Waugh et al., 1992). However,
the application of this technique is clearly restricted to
sparse objects: we are speaking about giant, isolated, fluc-
tuating, unilamellar vesicles, a large number of qualities for
a simple mesoscopic-scale structure. However, from the
practical point of view, their formation rate and yield were
improved by using electroformation to obtain significant
populations of such objects.

As already mentioned, giant fluctuating liposomes are
fully characterized by two distinct parameters, the reduced
membrane tension o and the bending elasticity &, (Faucon et
al., 1989). The first one is related to a geometric property of
a particular vesicle (surface/volume ratio), and the second,
k., is a characteristic of the lipid bilayer itself. This is
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checked for given experimental conditions (temperature,
membrane composition) by recording the thermal fluctua-
tion of ~10 liposomes. This leads to a mean k, and an
associated error bar (standard deviation) generally smaller
than k/10 that can be used to analyze the relationships
between the mechanical modulus and any other biophysical
parameter. We demonstrate here that k. is tightly related to the
thermodynamic state characterizing the membrane, depending
on the phase diagram (temperature and/or composition).

Model membranes

For pure DMPC bilayers, k. remains constant within the
experimental error for large temperature changes far above
T,,.. Then it increases to T,, + 3°C (Fig. 4). To explain the
observed behavior, we return to simple microscopic models
relating bending modulus to the most characteristic molec-
ular parameters in the case of one-component membranes,
the molecular area A and the bilayer thickness b (Petrov and
Bivas, 1984; Szleifer et al., 1990):
bn
kc~KF nm=1 (19)
It is known from x-ray data from DMPC bilayers that a
temperature decrease induces a larger increase in the mem-
brane thickness b in the range 25-30°C than in the range
30-40°C (Kirchner and Cevc, 1993), and the thermal area
expansivity obtained by micromanipulation remains larger
at 29°C than at 35°C (Needham et al., 1988). Considering
our results, it appears that any changes in b or A are not
large enough to influence k. behavior for temperatures
greater than 30°C. This is no longer the case in the range
27-30°C, where a small but significant increase is observed

FIGURE 7 Video images of liposome suspensions from sterol-free RBC lipid extract used for NMR studies at room temperature. The bar in the lower

right image corresponds to 10 um.
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(around 20%). However, it has been reported that a larger
temperature dependence is obtained with unsaturated lipids
(Niggemann et al., 1995).

The dependence of k. on the molecular parameters was
also demonstrated by following the behavior of saturated
phosphatidylcholines as a function of their chain length
(Fernandez-Puente et al., 1994). It has been shown experi-
mentally that the bending modulus increases with the square
of the hydrophobic thickness (Fernandez-Puente et al,,
1994), meaning that the n-exponent in relation 19 is equal to
2 (Petrov and Bivas, 1984) for three saturated phosphati-
dylcholines (dilauroylPC, dimyristoylPC, and dipalmitoylPC).

To understand the thermal dependence for & close to T,
one must consider a local deformation. For one-component
bilayers, a curvature change induces a compression for the
hydrophobic part of the outer monolayer (located in the
opposite side compared to the curvature center) and an
expansion of the inner monolayer. This is the result of the
elastic interactions in the monolayer, which are concen-
trated mainly in the proximity of the hydrophilic region.
Very close to T,,, a small increase in the chain density
(related to the lateral tension in the hydrophobic part) after
a curvature change would initiate a pressure-induced phase
transition toward a pseudophase characterized by a more
condensed chain region. As a result, a coexistence of fluid-
like and gel-like hydrophobic domains will take place.
Changing the curvature will lead to a change of domain
relative proportion only, without any elastic response of the
chain region. Thus the vanishing stretching modulus of the
chain region strongly facilitates the curvature deformation,
explaining the decrease in the apparent bending modulus of
the bilayer in the vicinity of the phase transition temperature
(Fernandez-Puente et al., 1994).

With regard to Fig. 4, we conclude that the variation of &_
with temperature for a 10 mol% cholesterol bilayer is sim-
ilar to that of pure DMPC membranes. This is probably due
to the low amount of cholesterol used. However, Table 1
shows a k_ decrease (~10%) when T is changed from 30°C
to 40°C, whereas the corresponding bilayer thickness vari-
ations in the same temperature range are not significantly
different (Léonard, 1993). This indicates that the micro-
scopic model presented above cannot simply be extended to
other binary membrane systems. The molecular area that
must be used is not defined, for example, as well as the
leading factor X relating k_ to b"/A™ (Eq. 19). K is modified
when intramolecular forces change within a bilayer. This is
the case in the range 25-27°C when one observes a strong
decrease in the bending stiffness for pure DMPC mem-
branes (Fernandez-Puente et al., 1994; Honger et al., 1994),
and is especially evident in the present study when both the
temperature and the composition are modified. For DMPC/
Chol membranes, one must take into account the fact that
reinforcement of the lipid interactions in the hydrophobic
region is usually involved when the sterol amount is in-
creased, and a possible phase segregation into cholesterol
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poor and rich regions (Almeida et al., 1992; McMullen and
McElhaney, 1995). This phase separation process may be
important for mechanical properties, as they are known to
be related to molecular parameters (Needham and Evans,
1988; Needham et al., 1988; Needham and Nunn, 1990;
Fernandez-Puente et al., 1994). It may induce large varia-
tions as the different phases change in size, shape, and
relative amount. Such behavior can explain the lowering of
k. close to T,, at 10 mol% in cholesterol, but we did not
detect any anomalies for k. as a function of T for higher
sterol ratios.

Nevertheless, it is clear from our data that an increase in
cholesterol in a DMPC membrane induces a large increase
in k, for any given temperature. This effect is so important
for 50 mol% compared to DMPC bilayers at 30°C that it
was impossible to measure &, at 20°C. At 30 mol% choles-
terol content (T = 30°C), our k. value agrees with those
published, despite the fact that such values were character-
ized by larger error bars (Duwe et al., 1990). Surprisingly,
their data for 20 mol% cholesterol at T = 30°C seem to be
very close to our k_ value for a 10 mol% cholesterol bilayer
at the same temperature. Other results gave systematic k,
increase with cholesterol content, using PC lipids (Evans
and Rawicz, 1990; Song and Waugh, 1993), with noticeable
differences compared to our measurements. Such differ-
ences may be due to their different technical approaches, as
already mentioned in Materials and Methods. This should
be tested using the different approaches, at a given place,
similar to the work of Niggemann et al. (1995); this point is
under study in our laboratory.

For the same 30 mol% sterol fraction at 30°C, one may be
surprised to find an identical k., for DMPC/Chol and DMPC/
CholS membranes. This behavior was unexpected, because
NMR and fluorescence polarization results showed that the
ordering properties of cholesterol sulfate are less important
than that of cholesterol at the same molecular ratio (Le
Grimellec et al., 1984; Faure et al., 1996). Concerning the
influence of the charge density on k_, theoretical predictions
are contradictory. The basic idea involves the formation of
a double layer in front of charged membranes (Russel et al.,
1989). For a rigid interface, the double-layer ion distribution
is well defined and results from an equilibrium between
repulsive and attractive electric forces and Brownian motion
for solvated ions. Owing to the thermal fluctuation phenom-
enon of the bilayer, such an ideal equilibrium can never be
reached. The double-layer ion distribution must accommo-
date the removal of local osmotic unbalances induced by
local curvature changes. On one hand, a k_ increase was
foreseen because of increases in the area density charge or
the Debye length (Winterhalter and Helfrich, 1992),
whereas Lekkerkerker (1989) predicted a negligible effect.
If the addition of 30 mol% cholesterol sulfate to a mem-
brane results in a superposition of charge and sterol effects,
we conclude by comparison to DMPC/Chol results that the
sterol effect is the dominant one.
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Lipid extracts

The lipid fraction of plasma membranes is generally a
complex mixture of molecules that differ in their hydropho-
bic and hydrophilic regions. Moreover, these lipids are
organized asymmetrically with respect to the inner and
outer monolayers, and within a given monolayer, domains
do exist with different physical states. Although the precise
role of such domains is not known, they are commonly
accepted to be important to biological functions.

In the case of human erythrocytes, the membrane phos-
pholipid fraction is essentially composed of sphingomyelin
(SM) and phosphatidylcholine (PC) in the outer leaflet,
whereas phosphatidylethanolamine and phosphatidylserine
are mainly localized on the inner side (Barenholz and
Thompson, 1980). In an excess of water, the gel-to-liquid
phase transition temperature of a natural SM bilayer is in the
range 30-50°C, the heat capacity peak being characteristic
of a large biphasic region (Dobereiner et al., 1993). When
mixed with other phospholipids, the gel-to-fluid phase tran-
sition is supposed to be governed by SM, because the other
phospholipids remain in the fluid state down to —10-0°C.
Thus the thermotropic behavior of the RBC lipid extract in
the absence of cholesterol must be induced primarily by SM
in the temperature range we are interested in, i.e., from 20°C
to 40°C. *'P-NMR is obviously well suited to showing such
phase transitions at a microscopic scale (Bloom et al., 1991;
Nezil et al., 1992) (Figs. 5 and 6), the same mixture is
observed by phase-contrast microscopy (Fig. 7).

The analysis of >’P-NMR spectra as a superposition of
several powder patterns has already been described for the
case of phospholipid mixtures (Marassi and MacDonald,
1991; Shin et al., 1995). These spectral features are gener-
ally interpreted as being due to partial mixing (domain
formation of different phospholipids) or slow exchange
(different states for the same lipid, i.e., gel/fluid coexist-
ence), resulting in distinct powder patterns for each phos-
pholipid species.

For cholesterol-free RBC lipid extracts at 25°C (Fig. 5 A),
we observe a subspectrum with a very large Ao that is likely
to correspond to a phospholipid subpopulation with strongly
restricted dynamics, i.e., in a gel-like organization. As al-
ready mentioned in the temperature range studied (20—
60°C) (Débereiner et al., 1993), SM is known to be the only
lipid that can produce such a behavior. At a mesoscopic
scale, this temperature decrease behavior can be correlated
with the appearance of polyhedral vesicles (Fig. 7), which
was seen previously for DMPC GUVs at T < T, (see, for
example, Sackmann, 1994). Despite the fact that such ves-
icles were not suitable for the analysis of thermal fluctua-
tions, their excess area was large enough to allow the
development of gel domains on very extended flat regions.
Quasispherical vesicles obtained directly by electroforma-
tion are used to measure k. independently. The bending
rigidity of sterol-free RBC lipid extracts is close to 10~ 197,
which is just above that of egg yolk phosphatidylcholine
(k. = 0.7 X 10~"° J; Angelova et al., 1992a). This is quite

Biophysical Journal

Volume 72 June 1997

strange, if we consider the area covered by gel-like domain,
as can be seen in Fig. 7. Because the gel domain cannot
bend, the fluid region (which is obviously the continuous
phase) dominates the mechanical behavior of the membrane.

At room temperature, cholesterol-containing RBC lipid
extracts were characterized by a second moment M, com-
parable in its thermal evolution to those of PC/Chol systems
(Fig. 5 B). This can be attributed to the high cholesterol
amount (~40%) known to abolish any cooperative phase
transition. Bending elasticity measurements in the same
system lead to dispersed results. We note, however, that the
highest k_ at 25°C is almost twice as large as the lowest one.
This might be due to the scarcity of double-walled vesicles.
Clearly, the remaining two bending rigidities (2.7 X 10~'°
Jand 3.6 X 1079 J) are values that are easily distinguished
from the error bars. They are obtained in distinct cells
prepared at different times. Thus a possible temperature
shift between the two cells may be responsible for the large
bending elasticity changes if the temperature dependence of
k. is strong enough.

At physiological temperatures, we did not succeed in the
formation of fluctuating liposomes with cholesterol-free
RBC lipid extracts. Such a behavior can be explained if we
refer to Eq. 13 and assume a high reduced membrane
tension o at 37°C (remember that in that case only, the
liposomes were previously formed at 25°C, and then the cell
temperature was increased to 37°C). In comparison with
fluctuating vesicles at room temperature, an increase in &
can only be due to a smaller liposome excess area, an
increase in the inner volume being physically unacceptable.
This is not a common behavior for lipid vesicles, inasmuch
as the molecular area of the lipids usually increases as the
temperature rises. As a reduction of the total area is not
reasonable, we have to assume the formation of vesicles
(budding) that are too small to be observed. This interpre-
tation is supported by the appearance of an increasing
fraction of isotropic signal in the powder pattern of *'P-
NMR spectra with increasing 7. Such an isotropic peak in
solid NMR is generally attributed to the existence of very
small objects (<0.2 um, a size smaller than the optical
resolution), showing fast isotropic reorientation on the
NMR time scale (Burnell et al., 1980). This budding process
was seen previously in different model systems (Nezil et al.,
1992) and also with pure SM bilayers as the temperature
increased (Dobereiner et al., 1993). Contrary to the systems
studied by Nezil et al. (1992) (mixtures of 1-palmitoyl-2-
oleoylphosphatidylcholine: 1-palmitoyl-2-oleoylphosphati-
dylserine with or without cholesterol), we observe an irre-
versible budding process for cholesterol-free lipid extracts,
the irreversbility being attributed, in that case, to vesicular-
ization. With regard to the study of Débereiner et al. (1993),
one may propose this phenomenon to be due to the presence
of SM within the membrane. In this context it is noteworthy
that temperature-dependent budding and vesicularization
phenomena were also observed in the case of human eryth-
rocytes (Lelkes and Fodor, 1991), making our physical
observation biologically relevant.
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The very low bending modulus obtained for that system
compared to other model systems containing large amount
of cholesterol at high temperatures was very surprising for
us. Such membranes are characterized by a bending modu-
lus (k, = 1.5 X 107" J) comparable to that of DMPC
bilayers far above T, (k. =~ 1.3 X 10~ J). This can be due
to the existence of a transition of low cooperativity, previ-
ously seen for erythrocytes in which lipid phase transitions
or separations were reported for the range of 11-41°C
(Galla and Luisetti, 1980).

Strictly speaking, we cannot directly compare the me-
chanical effect of cholesterol at physiological concentra-
tions and temperatures with the corresponding cholesterol-
free natural mixture at 25°. Actually, the bending modulus
is not very different from that found with the cholesterol-
free DMPC model system. Close to T,,,, we saw the effect of
cholesterol to be related to the so-called condensing effect,
which can be simply interpreted by a molecular density
increase in the hydrophobic region. We must also note that
a cholesterol-free RBC lipid extract is shown here to be very
temperature sensitive, probably because of the existence of
SM phase separation within the bilayer. Thus the main
influence of cholesterol in natural mixtures could be pre-
sented as a solvent for such gel-like domains that regulates
this thermotropic behavior. This is obvious in Fig. 5 B,
where we do not detect any dramatic variation of the second
moment with temperature in the range 20—60°C. This find-
ing might be of biological relevance, knowing that the SM
and cholesterol contents in various membranes are often
coupled (Barenholz and Thompson, 1980).

CONCLUSION

The precise role of cholesterol in overall membrane stability
is not yet totally understood, but an important set of data
now seems to be converging. For example, Sankaram and
Thompson (1990a,b), Almeida et al. (1992), and McMullen
and McElhaney (1995) describe the consequences of a
variable amount of cholesterol added to different model
membranes on the phase diagram, in relation to natural
membrane functioning (protein partitioning related to the
lipid state) or to other mechanical properties (Needham and
Nunn, 1990; Bloom et al., 1991). Depending on the tech-
nique used, the information obtained is generally different
but complementary. The universal belief about natural or
model membranes is that they can be represented as com-
posite materials: different phases are spread within the
bilayer structure. The precise shape, size, or connectivity of
the coexisting phases are not known, but they clearly change
with the temperature, the cholesterol ratio, and the molec-
ular characteristics of the bilayer-forming lipid. In this paper
we document that the bending elasticity at 7 > T,,, is related
to the ability of the sterol core to induce an increase in the
ordering within the fluid chain region while maintaining the
fluid-state behavior of the phospholipid (Almeida et al.,
1992). This point is well demonstrated here, at least for a
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high cholesterol content (=30%), where the synthetic or
natural bilayers fluctuate in all temperature ranges studied
(from 20°C to 40°C).

Phase transitions can also induce large k. changes for
pure bilayers that had been presented as originating from
density fluctuations (Honger et al., 1994) or a mechanical
failure of one monolayer close to T, (Fernandez-Puente et
al., 1994). However, the precise relationship between any
mechanical property and the molecular arrangement within
the bilayer of binary mixture is not totally understood (Mil-
ner and Witten, 1988; Szleifer et al., 1990; Kozlov and
Helfrich, 1992). Experimentally, we detect a k. variation
with temperature similar to that of pure DMPC bilayers for
a 10 mol% cholestero/DMPC mixture only. At a higher
cholesterol content (=30%), a monotoneous nonlinear de-
crease in k. occurs when T is decreased. The interdigitized
model introduced by Sankaram and Thompson (1990b)
should lead to interesting behavior because of the restriction
of the slipping motion for the two monolayers (Yeung and
Evans, 1995). Whereas phase connectivity may play a role
in biological functioning, it is clear that reaching the per-
colation threshold in a membrane mixture can induce a very
large change in mechanical properties. Finally, the physical
budding phenomenon already seen with other model sys-
tems (Nezil et al.,, 1992; Dobereiner et al., 1993; Jiilicher
and Lipowsky, 1993) and, in our case, with cholesterol-free
RBC lipid extracts is supposed to be related to the differ-
ential area increase between the inner and outer layers of the
vesicle. This can occur when T is increased or when sub-
micronic vesicular structures fuse with a cytoplasmic mem-
brane and may thus be related to biological processes such
as endocytosis.
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