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SUMMARY

Increasing evidence points to an important role for
the ribosome in the regulation of biological pro-
cesses and as a target for deregulation in disease.
Here, we describe a SILAC (stable isotope labeling
by amino acids in cell culture)-based mass spec-
trometry approach to probing mammalian ribopro-
teomes. Using a panel of cell lines, as well as genetic
and pharmacological perturbations, we obtained a
comparative characterization of the cellular ribopro-
teome. This analysis identified a set of riboproteome
components, consisting of a diverse array of proteins
with a strong enrichment for RNA-binding proteins.
Importantly, this global analysis uncovers a high inci-
dence of genetic alterations to riboproteome compo-
nents in cancer, with a distinct bias toward genetic
amplification. We further validated association with
polyribosomes for several riboproteome compo-
nents and demonstrate that enrichment at the ribo-
proteome can depend on cell type, genetics, or
cellular stimulus. Our results have important implica-
tions for the understanding of how ribosomes func-
tion and provide a platform for uncovering regulators
of translation.
INTRODUCTION

For many years now, gene expression has been measured as a

reflection of transcriptional activation, and the assumption has

been made that the absolute level of mRNA for a given gene

within the cell directly correlates with protein level for that

gene. Although mRNA level strongly correlates with protein

expression, more recent evidence highlights the very important

role that posttranscriptional events, including translation and
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microRNA (miRNA) regulation of mRNA, play in regulating gene

expression (Xue and Barna, 2012; Fabian and Sonenberg,

2012). Similar to key regulators of gene transcription (e.g., p53

or c-Myc), key regulators of translation are specifically targeted

in human diseases, including cancer. Indeed, recent data sug-

gest that RNA binding proteins (RBPs) are frequently associated

with disease. For example, Fragile-X mental retardation protein

is involved in Fragile-X syndrome and autism (Darnell et al.,

2011), proteins such as musashi-1 and -2 are involved in stem

cell biology and leukemia (Kharas et al., 2010), and the NPM1

gene is frequently translocated and mutated in a variety of

hematological malignancies (Grisendi et al., 2006). Additionally,

deficiency and mutation of ribosome and ribosome biogenesis

proteins themselves are associated with disease and develop-

mental abnormalities, including Diamond-Blackfan anemia,

Shwachman-Diamond syndrome, and X-linked dyskeratosis

congenita (Narla and Ebert, 2010). However, a more global

approach to systematically determine in greater detail the

players that coordinate translation is currently lacking. Such an

approach will, in turn, enable the identification of key regulators

of translation in specific conditions and help better elucidate the

role that these proteins play in disease pathology.

The majority of actively translating ribosomes exist in the cell

as polysomes, multiple ribosomes loaded on mRNAs to direct

translation. However, the process of priming RNA for translation,

subsequent loading of ribosomes, and efficient translation

require a significant number of extraribosomal factors including

initiation/elongation factors and RNA helices that are critical to

efficient translation (Jackson et al., 2010). Thus, it is likely that

many players required for correct translation remain to be uncov-

ered, and this represents amajor bottleneck to understanding, in

depth, exactly how translation is coordinated.

Here, we applied a SILAC (stable isotope labeling by amino

acids in cell culture)-based mass spectrometry approach to

comprehensively characterize the proteins that constitute the

actively translating ribosome, i.e., the riboproteome, as defined

(1) by the proteins associated with the ribosome itself, and which

may be required for either directing translation or quality control
thors
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of nascent proteins, and (2) by the proteins associated with

mRNAs undergoing active translation.

By employing this high-throughput approach to the analysis of

proteins associated with actively translating polysomes in

various cellular populations and under varying conditions, we

were able to obtain a comprehensive overview of the ribopro-

teome. We demonstrate the power of this approach to identify

differential riboproteome components among cancer cell lines

and in the analysis of genetic and pharmacological perturbations

to the riboproteome. This has allowed us to present a detailed

characterization of the prostate riboproteome and to highlight

the diversity of proteins that are associated with actively trans-

lating polysomes. Our data identify a number of components of

the riboproteome and demonstrate the ability of this approach

to address the dynamic nature of the riboproteome upon specific

perturbations. Furthermore, this platform will enable us to gain

important insights to the makeup of the riboproteome and will

help identify important factors associated with translational

regulation.

RESULTS

High-Throughput Analysis of the Riboproteome Using a
SILAC-Based Approach
We hypothesize that the process of active translation within the

cell is regulated by a multitude of proteins that can interact with

either the ribosome itself, the mRNAs that are being actively

translated, or proteins that may have the capacity to interact

with both the ribosome and mRNA.

In order to characterize the components that constitute the

actively translating ribosome (i.e., the riboproteome), we applied

a mass spectrometry approach to quantitatively evaluate

the protein components that are differentially associated with

translation in different cellular contexts, while also allowing for

a comprehensive overview of the proteins that make up the

riboproteome.

To this end, we cultured relevant cell lines of both mouse (e.g.,

mouse embryonic fibroblasts [MEFs]) and human origin (e.g.,

prostate cancer cell lines) with SILAC media to incorporate

amino acids for light (Lys0
C13; Arg0

N14) or heavy (Lys6
C13;

Arg10
N15) labeling of proteins, achieving a labeling efficiency of

greater than 95% (Table S1), and proceeded to isolate ribopro-

teome components as outlined in Figure 1A. Labeled cells

were seeded to ensure subconfluency at harvesting and were

treated with 100 mg/ml cycloheximide prior to harvesting (see

Experimental Procedures). Cells were collected in PBS contain-

ing cycloheximide, and equal amounts of cell lysates were

loaded on 15%–50% sucrose gradients. Polysomes were sepa-

rated by density gradient centrifugation and collected by frac-

tionation (Figure S1A). Protein from individual polysome fractions

was precipitated by deoxycholate-TCA precipitation and resus-

pended in buffer (0.1 M Tris [pH 8.8]; 1% SDS). Precipitated

protein from fractions containing polysomes for heavy and

light-labeled cells were combined in a ratio of 1:1 (v/v) and run

on an SDS-PAGE gel, which was subsequently stained using

Coomassie brilliant blue. The gel lane was cut into eight separate

pieces and submitted to the BIDMCMass Spectrometry Core for

analysis by microcapillary liquid chromatography-tandem mass
Cell Re
spectrometry (LC-MS/MS) analysis on a hybrid linear ion trap-

orbitrap mass spectrometer. All resulting MS data were further

processed with Mascot or Andromeda and the MaxQuant soft-

ware suite as previously described (Cox and Mann, 2008; Cox

et al., 2011).

This whole procedure required considerable optimization, as

preliminary experiments identified extensive protease activity

in polysomal fractions, resulting in degradation to ribosomal

components and affecting quality of mass spectrometry results

(Figure S1B). In order to resolve these issues, we employed a

comprehensive array of protease inhibitors (as detailed in Exper-

imental Procedures), which completely eliminated such protease

activity and degradation artifacts.

To uncover the riboproteomic diversity within cellular popula-

tions, we applied this approach to a number of cell systems that

included both relevant human prostate cell lines (Du145, PC3,

PPC1 prostate cancer cell lines, and the immortalized prostatic

epithelial cell lines PWR1E and RWPE1) andMEFs (immortalized

Npm1 wild-type and null) as outlined in Figures 1A and S1C.

Initially, we compared actively translating polysomes from the

normal prostatic epithelial cell lines PWR1E and RWPE1 (two

immortalized cell lines routinely used as normal controls for

prostate cancer studies) with the metastatic prostate cancer

cell line Du145 (Figure S1C). Second, we compared the ribopro-

teomes of the prostate cancer cell lines Du145 and PC3. The use

of these four cell lines allowed us to evaluate how the ribopro-

teome changes from a relatively normal situation (PWRE1,

RWPE1) to a cancerous state (Du145) and between two different

cancer cell lines that harbor distinct genetic alterations (Du145

PTENwt;TP53mut and PC3 PTENnull;TP53null) (Figure S1C). Third,

we compared the riboproteomes of PPC1 prostate cancer cells

(PTENnull;TP53null) treated with the mTOR inhibitors rapamycin

and PP242 (Figure S1C). Finally, we compared MEFs harboring

wild-type or null alleles for the ribosome biogenesis gene

Npm1 (Figure S1C).

These data allowed us to determine the overall composition of

the ribosome and its associated proteins and evaluate quantita-

tive differences in components of the mammalian riboproteome.

Importantly, an initial comparison between polysomes derived

from Du145 heavy- and light-labeled cells revealed that all quan-

tified proteins showed an average Log2 (H/L) ratio of around

0 (226 quantified proteins; mean 0.0029, SD ±0.1866) (Figure 1B;

Table S2), demonstrating that differences observed between cell

lines do not arise from variations in sample preparation and con-

firming both reliability as well as reproducibility of the technique.

In further support of this approach as a method to study

composition and quantitative differences among riboproteomes,

a comparison of the two normal and cancer cell line (hereafter

referred to as N/C) data sets revealed a substantial overlap

in identified proteins from immortalized normal epithelial cell

lines, with a significant positive correlation (R2 = 0.4662, p = <

0.0001). This demonstrates that these normal cell lines share

significant similarity, which, in turn, gives greater significance

to differences that exist between normal and cancer ribopro-

teomes (Figure 1C).

Importantly, we detected several differences between the ri-

boproteomes of N/C data sets as well as between cancer cell

types (hereafter referred to as C/C) using indicated cutoff values
ports 4, 1276–1287, September 26, 2013 ª2013 The Authors 1277



Figure 1. A Quantitative Riboproteomics Approach to Study the Composition of Riboproteomes
(A) Schematic representation of the SILAC-based mass spectrometry experiments.

(B) Scatterplot with normalized Log2 (H/L) ratios/Log10 intensities highlighting the distribution of all quantified proteins between Du145 H- and L-labeled cells.

Note that most of the proteins have a ratio of 1:1 between the light and heavy state and therefore have a value close to 0 on a Log2 axis (mean 0.0229; SD 0.1866).

(C) Standard scatterplot with normalized Log2 (H/L) ratios comparing the twoN/C data sets (RWPE1 versus Du145 and PWR1E versus Du145). All shared proteins

between the data sets are plotted. Both data sets show a highly significant positive correlation (R2 = 0.4662; p = < 0.0001).

(D–F) Standard scatterplots with normalized Log2 (H/L) ratios/Log10 Intensities (Normal versus Cancer n = 3, left panel; Cancer versus Cancer n = 3, middle panel;

PPC1DMSO versus PP242, n = 3, right panel) highlighting the distribution of quantified proteins in each screen (cutoff values for enriched proteins was 2 SDs (2s)

from the mean, dashed red lines). Proteins of interest in either experimental setting are highlighted.

See also Figure S1 and Tables S1, S2, S3, S4, S5, S6, S7, S8, and S9.
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(cutoffs are based on two SDs from the mean) (Figures 1D, 1E,

and S1D). These differences are described in greater detail

below and include a variety of proteins including RBPs (e.g.,

IGF2BP2, IGF2BP3), cell adhesion molecules (e.g., Integrin b1),

and signaling proteins (e.g., MARCKS) among others.

In addition, acute exposure to the mTOR inhibitors rapamycin

and PP242 in PPC1 cells reveals that only strong inhibition of the

mTOR kinase itself results in a clear perturbation to the ribo-

proteome (Figures 1F and S1E). This is consistent with the differ-

ential capacity of these drugs to inhibit mTOR activity toward

translation (DMSO < rapamycin < PP242) with numerous ribo-

somal proteins and RBPs (e.g., RpL4, RpL6, RpS6, LARP pro-

teins), demonstrating the most striking quantitative differences

(Figures 1F and S1E).

Comparing Npm1 wild-type or null immortalized MEFs, we

combined mass spectrometry data from two separate biological

replicates, including a label switch. No change in relative quan-

tification of ribosomal proteins was observed between Npm1

wild-type and null immortalized MEFs (Figure S1F). Interestingly,

Npm1 was identified as the most highly decreased protein in

Npm1-null riboproteomes (Figure S1F), due to the presence of

N-terminal peptides that remain as a result of the knockout

strategy (Grisendi et al., 2005), thereby serving as an internal

positive control.

Notably, our approach identified and quantified all but one

(RpL41, a lysine- and arginine-rich 25 amino acid protein that

is unlikely to be identified by this mass spectrometry approach

due to the large number of sites available for trypsin cleavage,

and the consequent inability to generate multiple peptides) ribo-

somal protein (Figure S1G), as well as other known translation-

associated proteins including initiation and elongation factors

(see Tables S3, S4, S5, S6, S7, and S8). We observed that ribo-

somal proteins of both the small and the large subunit cluster

around a normalized Log2 (H/L) = 0 (Figure S1H), indicating

that ribosomal proteins are unchanged between normal and

cancer cells, as well as between cancer cell lines and genetically

definedMEFs. These data make the important point that, at least

among these cell lines, core ribosomal protein composition in

polysomes is not altered.

Characterization of the Riboproteome
Overall, the number of proteins quantified in each of the individ-

ual groups of experiments varied from 575 to 991 (Figure S2A)

and offered the potential to uncover a significant overlap of pro-

teins that makes up the riboproteomic space inmammalian cells.

To first examine how the data sets compared to one another,

we carried out an unsupervised hierarchical clustering of the six

conditions analyzed (Figure S2B). Interestingly, theMEF data set

appeared to cluster independently from the human prostate

cancer cells, whereas, among the prostate cancer cells, PPC1

cell lines cluster together and the immortalized prostate epithe-

lial cell lines cluster together. The PC3 and Du145 experiments

displayed greater similarity to immortalized epithelial cells, likely

due to their shared comparison. These data indicate that the

riboproteome itself may have the capacity to categorize cell

types and tissues based on riboproteomic diversity, and, in

turn, can contribute to regulation of gene expression within a

given cellular compartment.
Cell Re
In addition to a number of significant differences identified

between the various samples, the hierarchical clustering clearly

demonstrated all prostate cell lines shared high similarity. Thus,

we chose to combine these data sets in order to gain a global

perspective of the prostate riboproteome. In the combined pros-

tate cell line data set, we identified a total of 1,499 quantified pro-

teins (Figure 2A; Table S9). Of these 1,499 proteins, 70% were

identified in at least two experimental data sets, whereas 24%

(363 of 1,499) were identified in all five experiments (Figure 2B;

Table S9). Indeed, this number of 363 core riboproteomic com-

ponents represents over 60% of the PC3/Du145 SILAC experi-

ment, which contained the lowest number of proteins identified

in the prostate cell line cohort (Figure S2A). It is also interesting

to note that 96% of proteins quantified in this PC3/Du145 data

set were found in at least one other data set, with only 21 proteins

quantified unique to this experiment (Figure S2; Table S9). These

data show strong overlap in proteins identified among the inde-

pendent riboproteome experiments and highlight the advantage

of using multiple cell lines to characterize the riboproteome.

We subsequently carried out Ingenuity Pathway Analysis

(http://www.ingenuity.com/) of all 1,499 proteins identified to

examine what (1) biological functions and (2) canonical pathways

may be specifically enriched in our data set. Importantly, we

found biological functions related to protein synthesis, post-

translational modification, and protein folding to be highly en-

riched in our combined data set (Figure S2D). In agreement

with this, the canonical pathway analysis demonstrated EIF2

signaling, regulation of eIF4 and p70S6K signaling, and mTOR

signaling pathways to be significantly represented (Figure S2E).

In addition, KEGG pathway analysis of proteins identified in all

five experimental data sets (363/1,499) compared to proteins

identified in at least one experiment (1,499) identified ribosome

related pathways to be highly enriched (Figure S2F).

Diversity of Protein Functional Groups and Enrichment
of RNA Binding Proteins in the Riboproteome
To better understand the various protein components that make

up the riboproteome, we used DAVID (david.abcc.ncifcrf.gov)

(Huang et al., 2009) to perform a gene ontology-based functional

categorization of the proteins identified in our combined data set

(Figure 2C). This analysis demonstrated a clear and significant

enrichment in ribosome and translation related processes. In

addition, a number of other diverse protein functional groups

were found to be included in the riboproteome, includingmelano-

some and glucose catabolic processes. Critically, we identified

a significant enrichment of RBPs to be constituents of the

riboproteome. As two recent papers published now describe

the RNA-binding protein interactome in detail (Baltz et al.,

2012; Castello et al., 2012), we compared riboproteome and

RBP-interactome data sets to evaluate the proportion of RBPs

that form part of the riboproteome. Using the data set from Cas-

tello et al. (2012), we find a considerable overlap between the

RBP interactome and riboproteome (Figure 2D). Strikingly, core

riboproteome components show themselves to be enriched in

RBP-interactome proteins (50% of proteins identified can be as-

signed to the RBP interactome, Figure 2E, left panel), whereas

those proteins identified in only one experimental condition

have a much lower RBP-interactome component (only 29% of
ports 4, 1276–1287, September 26, 2013 ª2013 The Authors 1279
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proteins identified can be assigned to the RBP interactome, Fig-

ure S2H, left panel). Moreover, it is interesting to note that, when

we break down our riboproteome RBPs according to the cate-

gories defined by Castello et al. (2012) in Figure S2G (i.e.,

mRNA-interactome; candidate RBP; no evidence), we find that

their proportional distribution in these three categories is highly

similar to those described by Castello et al. (2012) (Figures 2E

andS2H, right panels for RBPcategories from the riboproteome).

Riboproteomic Genes Are Frequently Amplified in
Human Cancer
As cellular proliferation is strongly coupled to translation, we next

evaluated if the riboproteome may be altered in human cancer

using the cBio Cancer Genomics Portal (http://cbioportal.org)

and the R package cgdsr, developed at Memorial Sloan-Ketter-

ing Cancer Center.

We first examined the distribution of copy-number alterations

in the riboproteome as compared with genes in the background

genome across 16 cancer types. This analysis included between

1,661 and 1,720 of the riboproteome genes (median = 1,675)

and 19,195 nonriboproteome background genes. The overall

analysis shows that the riboproteome is enriched for copy-num-

ber gains and high-level amplifications (Figures 3A and S3A) and

depleted for hemizygous and homozygous deletions (all p <

2.2e�16) (Figures 3B and S3B).

Based on these data, we sought to identify riboproteomic

genes that undergo the most frequent copy-number alterations

in specific cancer types. This analysis focused on 532 ribopro-

teome genes with complete copy-number data across 15 cancer

types. Riboproteome genes were ranked by the maximum num-

ber of cases where they showed a genomic amplification across

the 15 cancers (Figures 3C and S3C). Interestingly, we observed

that 38 riboproteome genes correlated with high-level amplifica-

tions in at least 10% of at least one cancer type (Figure 3D).

Although several genetic loci are represented in this data set

including 4p16.3, 1p33, and 19p13, more than half of these

genes (60%, 23 of 38) grouped to three specific genetic loci.

These loci represented 1q22, 3q26, and 8q24, with regions sur-

rounding chromosome 3q26 and 8q24 identified as showing

most frequent amplification (Figures 3C and 3D). Analysis of

the gene signature for the 3q riboproteomic gene locus (nine

genes) in the TCGA studies containing mutation data showed

that 51% (91 of 178 cases) of lung squamous cell carcinoma

contained an alteration in at least one of these genes (Figure 3E,
Figure 2. Analysis of the Prostate Riboproteome
(A) Venn diagram showing how proteins identified in each of the five SILAC experim

sets. Out of total of 1,499 proteins quantified between all experiments, 363 are s

(B) Pie chart illustrating the distribution of proteins identified across the various exp

detached blue pie slice, whereas proteins identified in all five experiments (24%

(C) Gene ontology (GO) analysis of the prostate riboproteome highlights multiple

riboproteome. A table of significantly enriched GO terms relating to translation id

(D) Venn diagram indicating the extent of overlap between the RNA binding prote

constituents described here.

(E) Pie charts to illustrate the extent to which components of the RBP interactome o

proteins that are also called within the Castello et al. (2012) data set for the co

illustrates how the RBP-interactome components identified in the riboproteomic d

by Castello et al. (2012).

See also Figure S2.

Cell Re
left panel). Ovarian serous cyst adenocarcinoma showed alter-

ations of 39% (Figure 3E, left panel), whereas patient samples

from other cancer types also showed alterations in this 3q

gene set (Figure 3E, left panel). Analysis of the same data sets

for the 8q riboproteome gene locus identified breast invasive

carcinoma to harbor frequent alterations to genes in this locus

(21% of cases, 103 of 482 cases) (Figure 3F, left panel). Ovarian

serous cyst adenocarcinoma patients also showed significant

alteration (38%%, 121 of 316 cases), whereas prostate cancer

patients showed alteration in 13% of patients at this locus (11

of 82 cases [Figures 3F, left panel and S3E]). Accordingly, closer

analysis of 3q26 and 8q24 riboproteome gene groups in individ-

ual patients clearly demonstrates frequent coamplification of

these genes, in linewith our hypothesis that riboproteomic genes

are preferentially amplified in cancer (Figures 3E and 3F, right

panels). Similarly, the 1q22 locus demonstrates a frequent

amplification in various cancer types (Figure S3D).

Interestingly, both 3q26 and 8q24 harbor established onco-

genes PIK3CA and MYC, respectively. Although it may be con-

sidered that the riboproteomic genes in these regions may be

simply amplified along with the dominant oncogene at the rele-

vant locus, our cBio analysis clearly identifies a number of pa-

tients with invasive breast carcinoma without MYC amplification

or mutation, while still harboring amplification of 8q24 ribopro-

teome genes (Figure 3F, right panel), suggesting that they have

the potential to promote tumorigenesis independent of MYC.

We also noted that the amplified riboproteomic loci were infre-

quently coamplified in a number of cancer types. For example,

limited co-occurrence of 3q26 and 1q22 amplification is

observed in patients from lung adenocarcinoma and breast inva-

sive carcinoma cancer data sets (Figures S3F and S3G).

The Riboproteomic Platform for the Identification of
Riboproteomic Components and Regulators of
Translation
Next, we focused on differences in N/C cells as well as C/C cells

to identify riboproteomic components and as ameans to validate

our approach. As mentioned above, our data sets revealed

marked differences in proteins quantified between polysomal

fractions of normal and cancer cells (i.e., RWPE1 and PWR1E

cells compared to Du145 cells), indicating that the Du145 cancer

cells display numerous differences in the composition of their

riboproteome (Figures 1D and S1D). These differences encom-

pass a variety of protein types and include a number of potential
ents utilizing prostate cell lines are shared between each of the individual data

hared by all five experiments.

eriments. Proteins identified in a single experiment (30%) are highlighted by the

) are indicated by a bold border.

different pathways and functional groups that are significantly enriched in the

entified by DAVID analysis is shown.

in (RBP) interactome identified by Castello et al. (2012) and the riboproteome

verlapwith the riboproteome. The left panel shows the percentage of identified

re riboproteomic data set (i.e., identified in all five experiments). Right panel

ata set are distributed among the various RBP-interactome categories defined

ports 4, 1276–1287, September 26, 2013 ª2013 The Authors 1281

http://cbioportal.org


(legend on next page)

1282 Cell Reports 4, 1276–1287, September 26, 2013 ª2013 The Authors



ribosome-associated proteins that were reproducibly enriched

on the polyribosomes of either normal or cancer cells, including

intracellular adhesion molecule 1 (ICAM1), vimentin (VIM), and

Integrin b1 (ITGB1) that are enriched in cancer cells as well as

the RBPs IGF2BP2 and IGF2BP3 that were among others repro-

ducibly enriched in normal cells (Figures S4A and S4B; Tables S3

and S4). In order to further establish the relevance of the ribopro-

teome in the context of cancer, we focused on differentially

quantified proteins associated with polyribosomes of prostate

cancer cells (i.e., PC3 cells compared with Du145 cells) (Figures

1E and S4C; Table S5).

Among these differentially quantified proteins, MARCKS stood

out as it was a highly differential factor (Figures 1E and S4C) and

a major cellular substrate for protein kinase C (PKC), suggesting

that MARCKS might represent a regulator of cellular translation

and a candidate for further validation.

Importantly, MARCKS was strongly associated with polyribo-

somes of the prostate cancer cell line PC3 when compared to

Du145 cells (Figure 4A). To further confirm this observation, we

isolated polysomal fractions from three prostate cancer cell lines

(PC3, PPC1, and Du145) as well as the two normal immortalized-

epithelial control cell lines (PWR1E, RWPE1) and subjected

pooled polysomal fractions to western blot analysis. Indeed,

we were able to confirm that PC3 and PPC1 cells displayed

increased amounts of MARCKS on polyribosomes when

compared to either Du145 or prostatic epithelial cell lines (Fig-

ure 4B). In addition, these cells also displayed high levels of

phosphorylation of the PKC sensitive serine residues of

MARCKS (S159 and S163) (Figure 4B). This analysis also vali-

dated our SILAC findings that ribosomal protein levels (e.g.,

RpS6, RpS14, and RpL7a) remain unaltered between cancer

cell lines (Figure 4A). In contrast to MARCKS, our SILAC analysis

revealed that Integrin b1was highly enriched in Du145 cells when

compared to PC3 cells, andwestern blot analysis also confirmed

this differential enrichment (Figure 4A).

To extend this validation and analysis further, we carried out

additional western blot analysis on lysates from each of the pros-

tate cell lines utilized in this screening. As expected, we were

able to confirm the presence of all proteins analyzed in the poly-

somal fractions collected (Figure 4C). Additionally, these data

confirm the SILAC predictions regarding differential expression

of proteins (e.g., compare Integrin b1 in PC3 and Du145 lysates,

or IGF2BP3 in Du145 and RWPE1 lysates, Figure 4C).

As an additional validation for polysomal association, we

employed a well-established method of puromycin-mediated
Figure 3. Alterations to the Riboproteome in Cancer

(A) Forest plot highlighting the enrichment of amplifications among riboproteomi

(B) A similar forest plot demonstrating significantly less heterozygous deletions

background genes.

(C) Circos plot to illustrate the distribution of all riboproteomic components acros

their genomic localization, whereas internal red regions highlight genomic region

TCGA repository.

(D) Table detailing the top amplified genes as identified in the TCGA repository a

(E and F) Summary from the TCGA for riboproteome genes in the regions of 3q and

panels show the number of patients harboring an alteration from the data sets an

carcinoma for the 8q locus were found to show high levels of alteration in both c

(amplification, homozygous deletion, or mutation).

See also Figure S3.

Cell Re
dissociation of ribosome-mRNA complexes (Blobel and Saba-

tini, 1971). As shown in Figure S4E, puromycin treatment results

in the loss of RpS6 and RpL13a from polyribosomes as deter-

mined by western blot analysis of pooled polysomal fractions.

As an example of a riboproteome component associating with

polyribosomes, the presence of MARCKS was also dramatically

decreased in polyribosome fractions upon puromycin treatment

(Figures 4D and S4E), which in addition supports the hypothesis

that MARCKS plays a role in translation through association with

actively translating ribosomes.

We next hypothesized that the riboproteomic platform would

allow for the identification of mechanisms of response to

pharmacological perturbation and for translational targets that

could be differentially exploited for therapeutic intervention in

cancer.

To this end, we performed riboproteomic analysis upon inhibi-

tion of mTOR using the inhibitors rapamycin (a TORC1 inhibitor

[Thoreen and Sabatini, 2009]) and PP242 (a mTOR kinase inhib-

itor that inhibits TORC1 and TORC2 activity simultaneously

[Feldman et al., 2009]) as mentioned above. This analysis re-

vealed that the riboproteome is indeed differentially responsive

to treatment modalities. Although, we find that rapamycin has lit-

tle impact on the composition of the riboproteome (Figure S1E;

Table S6), the more potent mTOR kinase inhibitor PP242 results

in a much stronger and more robust perturbation of the ribopro-

teome (Figure 1F; Table S7). Indeed, although inhibition of mTOR

by PP242 identifies a number of proteins, including some ribo-

somal proteins (e.g., see RpL4, RpL6, and RpS6 in Figure S4D;

Table S7) that show a rapid and significant disassociation from

the riboproteome upon treatment with PP242, this may repre-

sent a more general dissociation of the ribosome and a block

in translation. Interestingly, the RBP LARP1 (La ribonucleopro-

tein domain family member 1) appeared to be one of the most

dynamic components of the riboproteome in response to

mTOR inhibition by PP242 (Figures 1F and 4E). Although the

function of LARP1 is not completely understood, it has been re-

ported to play a role in cell division, apoptosis, and migration

(Burrows et al., 2010), and it has been shown to be an mTOR-

sensitive phosphoprotein (Hsu et al., 2011; Yu et al., 2011). We

confirmed the RNA binding activity of LARP1 (Burrows et al.,

2010), by using a micrococcal nuclease (MN) assay (Darnell

et al., 2011). Pooled sucrose gradient fractions containing

LARP1 protein were treated with and without MN. Ribosomes

were subsequently pelleted by ultracentrifugation, and the

protein in supernatant and pellet were isolated for western blot
c genes when compared to background genes in the cBio TCGA data set.

among riboproteomic genes in the cBio TCGA data set when compared to

s the genome. Blue bars represent individual riboproteomic components, and

s containing riboproteome genes found to be most frequently amplified in the

nd organized according to genomic loci.

8q, respectively, that are found to be frequently amplified in human cancer. Left

alyzed. As lung squamous cell carcinoma for the 3q locus and breast invasive

ases, the right panels illustrate the types of alteration found in these patients
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Figure 4. Riboproteomics Uncovers Ribo-

some-Associated Proteins

(A) Western blot analysis of total lysates and pol-

ysomal fractions from PC3 and Du145 H- and L-

labeled cell lines. Western blots for MARCKS,

RpL7a, Integrin b1, RpS6, RpS14, and b-actin are

shown.

(B) Western blot analysis of pooled polysomal frac-

tions showing differential enrichment of phospho-

MARCKS and MARCKS from ribosomes of Du145,

PC3, PWR1E, and RWPE1 cells (right panel) and

PC3, PPC1, Du145, and PWR1E cells (left panel).

Ponceau S staining served as a loading control.

(C) Western blot analysis from pooled polysomal

fractions validating ribosome-associated proteins

from ribosomes of PC3, PPC1, Du145, RWPE1

and PWR1E cells. For this analysis, polyribosomes

have been isolated from all cell lines and fractions

have been pooled to obtain subunits (S, fractions

#3-5, see Figure S1A), early light polysomes (L,

fractions #6-8, see Figure S1A) and late heavy

polysomes (H, fractions #9-11, see Figure S1A).

Western blots for Integrin b1, IGF2BP3, hnRNPC1/

2,Calmodulin, Hsp27, Hsp60 andNPMare shown.

Ponceau S staining served as a loading control.

(D) PC3 prostate cancer cells were subjected to

puromycin-mediated dissociation of ribosome-

mRNA complexes to demonstrate a specific as-

sociation of MARCKS with the ribosome. Protein

was isolated from individual fractions (#1–#7) of

the sucrose gradients using TCA/DOC precipita-

tion and subjected to western blot analysis for

MARCKS. The relative distribution of MARCKS

across the sucrose gradient was quantified using

the ImageJ software (http://rsbweb.nih.gov/ij).

(E)Western blot analysis fromprotein isolated from

individual fractions across the sucrose gradients of

PPC1 cell lysates treated with DMSO or PP242.

Shift in LARP1 (upper left panels) and RpL4 (lower

left panels) proteins can be readily observed upon

treatment with the mTOR kinase inhibitor. Right

panel: rate of change between DMSO and PP242

conditions for LARP1 (green) and RpL4 (blue) from

late to early fractions (#9–#3).

See also Figure S4.
analysis. As seen in Figure S4F, LARP1 behaved similar to the

well-characterized poly-A binding protein (PABP). Without MN

treatment, LARP1 pelleted with ribosomal proteins, indicating

its close association with polysome components. However,

upon treatment with MN, LARP1 no longer associated with ribo-

proteome components and is released into the supernatant

similar to PABP (Figure S4F). This indicates that LARP1 is pre-

dominantly an RBP, showing limited association with the ribo-

some itself. In addition, treating cells with PP242 prior to this

analysis, we observed that, whereas PABP appears to remain

tightly intact with polysome fractions, there appears to be

more LARP1 observed in the supernatant, suggesting that

mTOR inhibition can selectively influence binding of LARP1 at

the polysome (Figure S4G). Thus, these findings suggest that

mTOR activity toward LARP1 may represent an additional

means by which mTOR can regulate translation.

Finally, to examine whether the riboproteome is altered in

response to a genetic perturbation, we carried out SILAC ribo-
1284 Cell Reports 4, 1276–1287, September 26, 2013 ª2013 The Au
proteomic analysis on Npm1 wild-type and null immortalized

MEF (immortalized by deletion of the Trp53 gene) (Figure S1F).

Again, SILAC analysis of polysome fractions demonstrated a

high similarity between riboproteome components, with ribo-

somal proteins themselves showing no quantitative difference

between the Npm1 wild-type or null MEF preparations (Fig-

ure S1F; Table S8). However, there were a number of proteins

that demonstrated differential association with polysomes from

Npm1 wild-type and null MEFs, which may be relevant for trans-

lation in these cells (Figures S1F and S4H). Interestingly, we iden-

tified the heterogeneous nuclear ribonucleoprotein hnRNPC to

be one of the most highly increased proteins on the polysomes

of Npm1-null MEFs (Figure S4I; Table S8).

Thus, taken together these data validate this approach as an

effective means to study riboproteome composition in a wide

variety of cellular contexts and highlight this approach as a valu-

able resource that can be applied to the study of how perturba-

tions to genes and pathways impact the riboproteome.
thors
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DISCUSSION

Over the last number of years, there has been increasing aware-

ness of the role that ribosome, ribosome biogenesis, and various

other factors that relate to translation play in normal cellular

homeostasis, and in human disease (Xue and Barna, 2012).

However, there is a pressing need to understand in greater detail

the many factors that contribute to ribosome function and the

regulation of translation on a global scale. Thus, we set out to

analyze in a nonbiased, high-throughput manner the numerous

factors that coordinate ribosome function andmRNA translation.

Here, we present an overview of the riboproteome, as character-

ized by analysis of several different cell lines and different cellular

contexts.

The general overview described here allowed us to draw a

number of important conclusions relating to the various elements

that make up the riboproteome and allowed us to gain new

insight into how the ribosome and translation is regulated.

First, by cross-referencing data from independent SILAC ribo-

proteomic experiments, and using a comprehensive panel of

prostate cell lines, we were able to identify a core group of pro-

teins that are consistently identified in all experimental data sets,

whereby at least 70% of proteins quantified were found in at

least two experimental data sets. From this global analysis, we

show that our data set is highly enriched in factors that relate

directly to the ribosome, to translational initiation and elongation,

and to pathways that are known to regulate and control transla-

tion. Importantly, this comprehensive analysis also reveals that

the riboproteome consists of significant proportion of RBPs.

As recently reported, the mRNA-interactome revealed that a

wide variety of proteins previously unappreciated as RBPs can

bind tomRNA (Castello et al., 2012; Baltz et al., 2012). This diver-

sity of RBP functionality is also observed in those RBPs repre-

sented in our data set. However, there is also a large proportion

of proteins that we identify, even as core riboproteome compo-

nents, that are not annotated as having RNA binding properties,

indicating a further layer of functional complexity in those pro-

teins that work to regulate ribosome function and translation.

Second, our data sets indicate that the diversity within the

riboproteome itself may have the capacity to categorize cell

types and tissues and, importantly, may specifically contribute

to regulation of gene expression within a given cellular compart-

ment. Surprisingly, in the data sets we have analyzed the plas-

ticity of the riboproteome does not appear to extend to individual

ribosomal proteins themselves that are evenly represented in the

various cell types investigated, and they appear to be uniformly

altered in response to conditions that impact ribosomal transla-

tion, such as mTOR inhibition.

Third, by examining globally how the riboproteome may be

altered in diseases such as human cancer, we havemade further

unexpected observations. We find that riboproteomic compo-

nents display frequent copy-number amplifications in human

cancer, whereas genomic losses within the riboproteome are

significantly less than that for nonriboproteomic genes. We

further identified three genomic loci around 3q26, 8q24, and

1q22 containing genes that appear to be altered in a significant

number of patients for several of the cancer subtypes contained

in the cBio TCGA database. It is worth noting that both the re-
Cell Re
gions 3q26 and 8q24 contain the oncogenes PIK3CA and

MYC, respectively. Although MYC and PIK3CA are frequently

amplified in cancer (Beroukhim et al., 2010; Brown et al., 2012;

Kolasa et al., 2009), there are several examples within the cBio

data sets that the riboproteomic genes within these regions

may be amplified without coamplification of the resident onco-

gene. It is also interesting to note that both MYC and the PI3-

kinase signaling pathway represent important regulators of

translation themselves.

Fourth, in addition to characterizing the riboproteome

landscape in various cell types, we identified and validated a

number of proteins previously not known to be associated with

actively translating ribosomes (e.g., MARCKS, Integrin b1, and

IGF2BP3). These proteins represent a number of interesting

ribosome interactors and highlight the diversity of proteins that

actually participate in translation. In addition, they also point to

the potential of these data sets to identify novel regulators of

translation. Definitive riboproteome categorization of each pro-

tein identified will require validation as has been carried out for

proteins in this study, to fully endorse them as bona fide compo-

nents of the riboproteome. Although given the high enrichment

for RBPs, elongation/initiation factors, and known ribosome

biogenesis proteins, it is likely that many of these unexpected

proteins are true riboproteome components.

Last, our data demonstrate that the cancer riboproteome can

be pharmacologically modulated for therapy on the basis of this

molecular knowledge. On the one hand, we show that the ribo-

proteome responds dynamically and differentially to cancer

drugs (e.g., rapamycin versus PP242), whereas, on the other

hand its differential composition could be used to tailor therapies

and predict outcomes based on the riboproteomic profile of spe-

cific cell types.

Thus, quantitative, high-throughput riboproteomics repre-

sents a powerful platform that can be readily applied to various

cellular models to uncover how riboproteome composition con-

tributes to organismal function and disease.

EXPERIMENTAL PROCEDURES

SILAC Labeling and Mass Spectrometry

Metabolic labeling of prostate cell lines (PC3, PPC1, Du145, RWPE1, and

PWR1E) and MEFs was carried out using either normal arginine and lysine

or heavier isotopic variants of the two amino acids (L-lysine 2HCL [U-13C6],

L-arginine HCL [U-13C6, U-N15N4]) (Ong et al., 2002) using Invitrogen’s

SILAC-FLEX Media kits. SILAC-labeled protein mixtures were run by

SDS-PAGE, and gel lanes were cut into eight sections for overnight digestion

at pH 8.0 with modified sequencing grade trypsin (Promega). Peptidemixtures

were eluted, and each gel section was analyzed separately by microcapillary

LC-MS/MS using the EASY-nLC nanoflow HPLC (Thermo Fisher Scientific)

with a 75 mm inner diameter 3 15 cm length Picofrit capillary column (New

Objective) self-packed with 5 mm Magic C18 resin (Michrom Bioresources)

coupled to a hybrid LTQ Orbitrap XL-ETD mass spectrometer (Thermo Fisher

Scientific). The LTQ Orbitrap XL was operated in data-dependent acquisition

Top 5 mode (1 profile FT-MS spectrum followed by six centroided IT-

MS/MS spectra). The resolution was 30,000 in FT-MS mode and MS/MS

spectra were read out at low resolution in the LTQ XL ion trap. The gradient

consisted of 3%–38% acetonitrile in 0.1% formic acid (FA) at a flow rate

of 300 nl/min for 75 min, 38%–95% acetonitrile in 0.1% FA for 2 min and

held at 95% acetonitrile in 0.1%FA at for 7min followed by column reequilibra-

tion for 10 min at 3% acetonitrile in 0.1% FA. MS/MS fragmentation spectra

were searched for protein identification using the Andromeda search engine
ports 4, 1276–1287, September 26, 2013 ª2013 The Authors 1285



(http://www.andromeda-search.org) (Cox et al., 2011) against the reversed

and concatenated IPI_HUMAN protein database (v3.87) (http://www.ebi.ac.

uk/IPI/IPIhuman.html). Carbamidomethylation of cysteine was set as fixed

modification and variable modifications were oxidation of methionine and pro-

tein N-acetylation. Raw files for SILAC ratio analysis from each experiment

were combined and processed using MaxQuant v1.2.2.5 software (http://

www.maxquant.org/) (Cox and Mann, 2008). Initial peptide mass tolerance

was set to 12 ppm, and fragment ion mass tolerance was set to 0.8 Da. Two

missed cleavages were allowed and the minimal length required for a peptide

was six amino acids. One unique peptide was required for high-confidence

protein identifications and a minimum ratio count of two peptides (one unique

and one razor) were required for SILAC ratio determination. The peptide and

protein false discovery rates (FDR) were set to 0.01. Normalized SILAC ratios

(H/L) were used for subsequent analysis.

Polysome Isolation and Analysis

Polysome profiles were prepared fromMEFs and different prostate cancer cell

lines as follows. MEFs were seeded at 2 3 106 cells/15 cm and PPC1, PC3,

Du145, RWPE1, and PWR1E cells seeded at 10 3 106 cells/15 cm dish and

cultured overnight to ensure subconfluent cultures for polysome analysis.

PPC1 cells were treated the following day with either DMSO, rapamycin

(20 nM) or PP242 (500 nM) for 3 hr. For polysome preparation, cells were

then incubated with cycloheximide at a final concentration of 100 mg/ml for a

period of 15 min. Plates were then washed with ice-cold PBS containing

100 mg/ml cycloheximide (PBS/CHX), scraped, and collected in ice-cold

PBS/CHX. Cells were pelleted by centrifugation and subsequently lysed in

polysome lysis buffer (20 mM Tris-HCl [pH 7.4]; 5 mM MgCl2; 150 mM NaCl;

1% Triton X-100; 1% deoxycholate; 2.5 mM DTT; 200 U/ml RNasin;

100 mg/ml cycloheximide; 13 complete, EDTA-free protease inhibitor cocktail

[Roche]; 1 3 protease inhibitor set [without EDTA] [G-Biosciences]; a1-anti-

trypsin [EMD Biosciences]) and incubated on ice for 10 min with occasional

mixing. Extensive optimization of cell lysis was carried out to identify suitable

lysis buffer conditions that completely blocked protein degradation from

endogenous proteases, and we found it necessary to include the extensive

array of protease inhibitors provided in the G-Biosciences protease inhibitor

set. Lysates were centrifuged at 7,000 rpm for 5 min at 4�C, and the superna-

tant carefully removed. Protein concentrations for lysates were measured by

Bradford assay, and equal amounts of protein loaded on a 15%–50% sucrose

gradient containing 100 mg/ml cycloheximide, 0.2 mg/ml heparin, and 1 mM

DTT. Gradients were centrifuged at 36,000 rpm for 3 hr at 4�C in a Beckman

SW40 rotor and subsequently fractionated using an ISCO-Foxy Jr. fraction

collector. Polysome profiles were reordered using a UA-6 absorbance detec-

tor connected to the fraction collector and measuring absorbance at 254 nm.

Puromycin-induced polysome dissociation was carried out by the addition

of 1 mM puromycin directly to the lysis buffer lacking cycloheximide as previ-

ously described (Blobel and Sabatini, 1971; Fuchs et al., 2011). Briefly,

following lysis, the samples were incubated at 37�C for 15 min to dissociate

ribosome-mRNA complexes. Lysates were centrifuged at 13,000 rpm for

5 min at 4�C, and the supernatant was carefully removed and loaded on a

15%–50% sucrose gradient. Gradients were centrifuged and fractionated as

described above.

Bioinformatics Analysis of the Riboproteome

To cluster riboproteome experiments based on the riboproteins identified in

each experiment, we created a Booleanmatrix of riboproteome genes by ribo-

proteome experiments, in which each entry in the matrix was a 1 if the row’s

gene was identified in the column’s experiment, and a 0 otherwise. Clustering

of the experiments was then performed using a binary distance measure to

compute the distance matrix and average linkage for hierarchical clustering,

implemented with the R functions dist and hclust.

Venn diagrams indicating membership of riboproteome genes to SILAC

experiments were created using the Vennerable package in R.

To identify functional gene sets enriched in the riboproteome genes, we

uploaded the riboproteome genes to Ingenuity Pathway Analysis (http://

www.ingenuity.com) and identified the top biological functions gene sets

and canonical pathways gene sets enriched in the riboproteome gene set.

To identify KEGGpathways specifically enriched in the subset of riboproteome
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genes identified in five of five experiments as compared with the set identified

in only one of five experiments, we uploaded the five of five experiments gene

list to DAVID and used the one of five experiments gene list as background.

Gene ontology analysis was carried out using the online DAVID bioinformat-

ics resource tool.

TCGA-Based Analyses of RiboproteomeGenomic Alterations across

Human Cancers

To analyze global patterns of copy-number alterations in the riboproteome

versus the background protein-coding genome, we used the cgdsr package

in R to download Gistic copy-number alteration calls from the 16 cancer types

with available data for a large portion of the riboproteome (between 1,661 and

1,720 of the riboproteome genes analyzed for each cancer type, median =

1,675) and the background protein coding genome (19,195 genes). For each

cancer type, we recorded the number of homozygous deletions (GISTIC

score = �2), hemizygous deletions (GISTIC score = �1), diploid (GISTIC

score = 0), low-level copy-number gain (GISTIC score = 1), and high-level

amplification (GISTIC score = 2) among the riboproteome genes and among

the background genome. We compared the proportion of each of the GISTIC

scores observed among the riboproteome genes to the proportion observed

among the background protein-coding genome using the function prop.test

in R. To visualize and summarize the distribution of the proportions of alter-

ations across the cancer types, we created forest plots using the rmeta

package.

After characterizing the global properties of riboproteome genomic alter-

ations in human cancers, we performed gene-level analyses. At the time of

analysis, the cBio Cancer Genomics Portal contained five published data

sets and 15 provisional data sets from The Cancer Genome Atlas (TCGA)

profiling efforts (Cerami et al., 2012). Although the five published data sets

contain mutation data, the provisional TCGA data sets do not.

These analyses were limited to the 532 riboproteome genes with valid data

across 15 TCGA cancer types. For each gene, we computed the proportion of

cases of each cancer type that the gene showed homozygous deletion, hemi-

zygous deletion, diploid, low-level amplification, and high-level amplification,

based on GISTIC calls downloaded via cgdsr. For each riboproteome gene,

we computed its maximum proportion of each type of alteration across the

TCGA cancer types. Riboproteome genes and locations of riboproteome

genes undergoing frequent amplifications in cancer were visualized with Cir-

cos-like plots, implemented using ggplot in R.

Western Blot Analysis

Cells were lysed in lysis buffer containing Complete Mini protease inhibitors

(EDTA free) (Roche) and a Phosphatase Inhibitor cocktail (Thermo Scientific).

Total protein (5–50 mg) was subjected to SDS-PAGE on 4%–12% Bis-Tris

acrylamide NuPAGE gels in MOPS SDS running buffer (Invitrogen). The

following primary antibodies were used: MARCKS, phospho-MARCKS

(S152/156), Integrin b1, Calmodulin, Hsp27, Hsp60, RpL13a, RpL7a, and

RpS6 (all Cell Signaling Technology), HSP90 (BD Biosciences; BD Transduc-

tion Laboratories), hnRNPC1/C2 (Millipore), and Rps14 and b-actin (all from

Santa Cruz Biotechnologies). The NPM1 antibody was from DAKO and the

IGF2BP3 antibody was from ProteinTech. Subsequently, membranes were

incubated with secondary HRP-tagged antibodies (Amersham), and signals

were visualized with ECL or ECL plus (Amersham). It is important to note

that we used Ponceau S staining as a control for equal protein loading in our

western analysis of polysomal fractions, because typical housekeeping genes

like b-actin or a-tubulin are not enriched in riboproteome preparations and

therefore only barely detectable in polysome fractions (Figure 4A; data not

shown).

For further details on the materials and methods used in this study, please

see the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and nine tables and can be found with this article online at http://dx.

doi.org/10.1016/j.celrep.2013.08.014.
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