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SUMMARY

Plants and animals have evolved structurally related
innate immune sensors, designated NLRs, to detect
intracellular nonself molecules. NLRs are modular,
consisting of N-terminal coiled-coil (CC) or TOLL/
interleukin-1 receptor (TIR) domains, a central nucle-
otide-binding (NB) domain, and C-terminal leucine-
rich repeats (LRRs). The polymorphic barley mildew
A (MLA) locus encodes CC-containing allelic immune
receptors recognizing effectors of the pathogenic
powdery mildew fungus. We report the crystal struc-
ture of anMLA receptor’s invariant CCdomain, which
reveals a rod-shaped homodimer. MLA receptors
also self-associate in vivo, but self-association
appears to be independent of effector-triggered
receptor activation. MLA CC mutants that fail to
self-interact impair in planta cell death activity trig-
gered by the CC domain alone and by an autoactive
full-length MLA receptor that mimics its ATP-bound
state. Thus, CC domain-dependent dimerization of
the immune sensor defines a minimal functional
unit and implies a role for the dimeric CC module in
downstream immune signaling.

INTRODUCTION

Plants have evolved a multilayered innate immune system

against microbial pathogens (Jones and Dangl, 2006). The first

layer, termed microbe-associated molecular pattern (MAMP)-

triggered immunity (MTI), limits the growth of potential microbial
Cell Ho
intruders uponMAMPperception bymembrane-resident pattern

recognition receptors. Successful pathogens, however,

suppress MTI via the action of effectors delivered into host cells.

Recognition of effectors by intracellular host resistance (R)

proteins constitutes the second layer of the immune system,

designated effector-triggered immunity (ETI), that typically leads

to a localized host cell death response.

Most intracellular R proteins are modular consisting of

N-terminal coiled-coil (CC) or TOLL/interleukin-1 receptor (TIR)

domains, a central nucleotide-binding (NB) domain, and

C-terminal leucine-rich repeats (LRRs). They are referred to as

CNL or TNL, respectively, and belong to the NLR family of intra-

cellular immune sensors in plants and animals. NLRs are

a subfamily of signal transduction ATPases with numerous

domains (STAND) NTPases found in archaea, bacteria, fungi,

plants, and animals (Leipe et al., 2004). The NB domain is part

of the central NB–ARC module shared between human

apoptotic protease-activating factor 1 (APAF-1), R protein and

Caenorhabditis elegans CED-4 (Lukasik and Takken, 2009). No

TNL R proteins are found in monocotyledonous plants (Bai

et al., 2002), suggesting that TNLs were lost in this lineage

upon divergence from common angiosperm ancestors. By infer-

ence, the fundamental mechanism of CNL-mediated ETI should

be conserved in angiosperms.

The polymorphic barley mildew A (MLA) R locus encodes

functionally diversified CNL-type allelic immune receptors each

recognizing a distinct isolate-specific effector of the pathogenic

powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh,

Seeholzer et al., 2010). MLA receptors share >90% sequence

identity with most diversified selection sites residing in the

C-terminal LRR domain, suggesting that the largely invariant

CC and NB-ARC domains have invariant roles in MLA-triggered

immunity (Seeholzer et al., 2010). Consistent with this, domain

swap analyses between MLA1 and MLA6 revealed that the
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C-terminal LRR domain, but not the CC or the NB parts, deter-

mines recognition specificity of Bgh effectors (Shen et al.,

2003). Recognition of the Bgh effector AVRA10 by MLA10

induces nuclear associations between MLA and WRKY tran-

scription factors likely through the MLA CC domain (Shen

et al., 2007). Genetic evidence indicated that these WRKY

factors negatively act in MTI against Bgh. Thus, the MLA-

WRKY association appears to interfere with theWRKY repressor

function, resulting in derepression of MTI (Shen et al., 2007). A

subset of barleyMLA resistance specificities genetically requires

for their function the cochaperones RAR1 and SGT1 (Azevedo

et al., 2002; Shirasu, 2009; Shirasu et al., 1999). SGT1 and cyto-

solic HSP90, but not RAR1, interact specifically with the MLA

LRR domain. Together these proteins positively regulate MLA

receptor maturation (Bieri et al., 2004; Shirasu, 2009).

Similar to APAF-1, CED-4, and human NODs, some plant R

proteins form homomeric assemblies prior to or post effector

recognition (Ade et al., 2007; Danot et al., 2009; Gutierrez

et al., 2010; Mestre and Baulcombe, 2006). The studies of

N (TNL), RPS5 (CNL), and Prf (novel N-terminal domain) immune

sensors provided evidence for homo-oligomerization through

their N-terminal domains, although neither the structural basis

for this nor its significance in ETI are known. Furthermore, no

crystal structure of an R protein is available to date, although

recently the structure of a TIR domain from an Arabidopsis

non-R protein has been resolved and found to be a monomer

(Chan et al., 2010). Here we report the crystal structure of the

invariant CC domain of MLA and address the significance of its

homo-oligomerization. Our data provide mechanistic clues to

how CNL proteins contribute to ETI.

RESULTS

Recombinant MLA10 CC Domain Forms a Homodimer
The CC domain of MLA105–120 was expressed in Escherichia coli

and purified to homogeneity for crystallization. The crystal struc-

ture of the CC domain was determined at 2.0 Å resolution by

single-wavelength anomalous diffraction (SAD) (see Table S1

available online). The final atomic model contains residues 6–

120. No electron density was observed corresponding to the

five residues 91–95, likely due to their residual local flexibility in

the crystal (Figures 1A and 1B).

As predicted from the primary sequence, the monomeric

structure of the CC domain is mainly a helical and contains

two long antiparallel a helices linked by a short loop (Figure 1C),

thereby forming a helix-loop-helix structure. Although the hydro-

phobic residues predominantly line their interior sides, the two

a helices pack loosely against each other. Therefore most of

the two a helices are located apart, and only marginal contacts

are made between the N-terminal portion of a1a and the

N-terminal portion of a2b. Such interactions, however, appear

insufficient to stabilize the two seemingly independent a helices,

suggesting that other protein-protein interactions may be

involved to this end. Our analysis identified a strong candidate

dimer interface. In the crystals, two protomers of the CC domain

pack symmetrically mainly through the interior-lined residues in

the CC monomer (Figure 1A). Assembly of the CC domain dimer

resembles two springs slammed together, and such an inter-

twined packing arrangement gives rise to an extensive dimer
188 Cell Host & Microbe 9, 187–199, March 17, 2011 ª2011 Elsevier
interface, generating the burial of 7950 Å2 surface area (Fig-

ure 1A). This large buried surface area suggests that the CC

domain dimer would be highly stable and likely intrinsically

inseparable. Dimerization of the CC domain creates a rod-

shapedmolecule, with one helical bundle at each end (Figure 1A).

Strikingly different electrostatic properties exist for the two

opposite sides of the dimer (Figure S1). The overall dimensions

of the dimer are approximate length 90 Å, height 20 Å, and width

20 Å, as measured by the corresponding backbone carbon

atoms.

A large portion of the two a helices is involved in homodimeri-

zation of the CC domain. The helix a1 (residues 12–44) forms

a parallel two-strandedCC fold in the dimer structure (Figure 2A).

In strong support of the structural observation, a prediction

made by the program COILS gave a score of �0.95 for residues

26–56 to fold into a CC structure. CC formation in the CC domain

is primarily dependent on Ile12, Leu15, Leu19, Glu22, His26,

Val29, Ile33, Leu36, Leu40, and Met43 from the heptad repeat

sequences (Figure 2A). These residues are located either at

a or d (Figure 1C) positions that make hydrophobic contacts

with those from the other helix, which are characteristic of the

interactions observed in other CC structures (Kohn et al.,

1997). Failure to detect residues 12–22 for CC formation by the

program may have arisen from the nonhydrophobic residue

Glu22. However, Glu at position d (Figure 1C) has been observed

in other CC structures. The ends of the CC splay apart slightly

and, together with the N-terminal half of helix a2b and the

C-terminal third of helix a2a, form short antiparallel four-helix

bundles (Figure 2B). In total, 20 residues from both CC proto-

mers form a network of van der Waals interactions within one

helical bundle. Leu11, Leu15, Leu18, Phe99, Met103, and

Ser106 from one monomer and Leu36, Glu39, Met43, Ser73,

Ile76, and Val80 from the other one, that reside at the center of

one helical bundle, constitute the core of hydrophobic interac-

tions within one helix bundle (Figure 2B). To further strengthen

dimerization of the CC domain, the proximal C-terminal end of

a2b makes tight hydrophobic contacts with the C-terminal end

of a1a and the N-terminal end of a2a from the other CCmonomer

(Figure 2C). In addition, the electrostatic interaction between

Lys116 and His117 from the loop C-terminal to the helix a2a in

one monomer and Asp59 and Asp62 in the other monomer

contribute to CC domain dimerization, respectively (Figure 2C).

MLA Self-Association In Planta
To study potential MLA self-association in planta by coimmuno-

precipitation (coIP) experiments, we generated stable transgenic

barley plants coexpressing MLA1-HA and MLA1-Myc. For this

purpose, we crossed single-copy transgenic lines each express-

ing a functional MLA1-HA or MLA1-Myc under 50 native regula-

tory sequences (Bieri et al., 2004). The MLA1-HA and MLA1-

Myc coexpressing plants showed race-specific resistance

against Blumeria graminis isolates K1, but not A6, (containing

or lacking AvrA1, respectively; data not shown). IP of MLA1-Myc

from soluble total leaf extracts of these lines using anti-Myc anti-

bodies also recovered MLA1-HA, demonstrating coIP of MLA1-

HAandMLA1-Myc (Figure 3A, right). By contrast, IP using control

IgG from extracts of the coexpressing plants failed to detect

MLA1-HA (Figure 3A, right), verifying the specificity of the above

coIP. Thus, our results indicate MLA1 self-association in planta.
Inc.



Figure 1. The Coiled-Coil Domain of MLA10 Forms a Homodimer in the Crystal Structure

(A) Cartoon representation of themonomer structure of the CC domain fromMLA10. Amonomer contains three helices, labeled with a1, a2a, and a2b (top panel).

The three helices dimerize through an extensive interface (bottom panel). The residues involved in homodimerization are shown by yellow and cyan sticks.

The two monomers are colored in slate and pink.

(B) A diagram for the topology of the dimer showing pairwise interactions of the helices.

(C) Sequence of the CC domain, with the helices shown in cylinders on top. Residues that follow the pattern of heptad repeat are underlined. The letters ‘‘a’’ and

‘‘d’’ represent their positions in the heptad repeat. The conserved ‘‘EDVID’’ motif is indicated by the black box.
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Next we examined whether MLA1 self-association is depen-

dent on MLA1-induced immune responses. Total leaf protein

extracts of the coexpressing plants were prepared at several

time points after inoculation with the Bgh isolates K1 or A6

(incompatible or compatible interactions, respectively; Fig-

ure 3B). The amount of coimmunoprecipitated MLA1-HA gradu-

ally increased after challenge with both isolates (Figure 3B). This

corresponded with a similar elevated IP of MLA1-Myc and was
Cell Ho
correlated with the pathogen-inducible increase of total MLA1-

HA and MLA1-Myc (Figure 3B). These results indicate that

MLA1 self-association is not the consequence of AVRA1-depen-

dent receptor activation, but occurs in naive and infected plants.

Furthermore, this suggests that MLA1 self-association is not dis-

rupted upon perception of the cognate fungal effector.

We performed gel filtration analyses of leaf cell extracts de-

rived from the transgenic line expressing MLA1-HA by applying
st & Microbe 9, 187–199, March 17, 2011 ª2011 Elsevier Inc. 189



Figure 2. Detailed Interactions Involved in Homo-

dimerization of MLA10 CC Domain

(A) The CC interactions between the two a1 helices. The

side chains from the tow monomers are shown in stick

and colored in yellow and cyan, respectively. The color

codes are the same for (B) and (C).

(B) Detailed interactions involved in the four-helix bundle

formed by the a2a, a2b, and two a1 helices.

(C) Detailed interactions around one end of the homodimer

involving the helix-turn-helix (a1, a2a) and a2b.
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almost identical protein extraction conditions used in the afore-

mentioned coIP experiments. No significant changes in the

apparent size of a 300–400 kDa complex were observed upon

Bgh inoculation during compatible or AVRA1-dependent incom-

patible interactions. Under the experimental conditions tested,

MLA1-HA was barely detectable in fractions corresponding to

its monomeric size (105 kDa). However, the peak size of the

MLA complex was reduced to an apparent size of �200 kDa in

a buffer containing high NaCl concentrations (Figure 3C, lower

panel). The reduced peak size was still larger than monomeric

MLA (Figure 3C, lower panel), indicating incomplete complex

dissociation. Of note, essentially the same MLA1-HA profiles

were obtained with total extracts derived from leaf epidermal

peels, indicating the presence of the MLA1 complex(es) in cells

that are in direct physical contact with the fungus (Figure S2).

Thus, the vast majority of MLA1 forms (a) 300–400 kDa

complex(es) in planta that are not disrupted by the fungal trigger.

It is possible that these include MLA self-association seen by

coIP, since both methods detect complexes independent of

AVRA1-dependent receptor activation.

Structure-Guided Mutagenesis of the MLA10
CC Domain
To further investigate the role of the CC domain in MLA self-

association, we first employed the yeast two-hybrid assay.

Coexpression of identical truncated MLA10 variants fused to

prey or bait constructs revealed self-interactions of MLA101-225.

We failed to detect self-interactions of MLA10 full-length,

MLA101-523, and MLA101-46 (Figure 4A). Lack of interaction

with the former two truncated MLA10 proteins likely reflects
190 Cell Host & Microbe 9, 187–199, March 17, 2011 ª2011 Elsevier Inc.
their instability following expression in yeast

(Figure S3). Therefore we used MLA101-225 for

subsequent detailed analyses.

To define the functional significance of the

dimeric interface found in the CC structure

(Figures 1 and 2), individual residues lining

the interior between the protomers of the CC

dimer were substituted to glutamic acid (Fig-

ure 4B). Substitution of these residues is pre-

dicted to be thermodynamically unfavorable,

possibly destabilizing the dimeric structure.

Of 17 targeted single substitutions, three

located in helix a1 (I33E, L36E, and M43E) re-

sulted in loss of MLA101-225 self-interaction,

whereas interactions were still detectable to

varying degrees upon coexpression of eight

other variants (L11E, L15E, L18E, L25E, V29E,
V69E, L72E, and I76E; Figure 4C). Due to autoactivity of the

bait (yeast cells grew in the absence of prey on selection

medium; data not shown), the colony growth phenotype of

five substitutions (L19E, F23E, F99E, M103E, and L110E) could

not be examined. We confirmed that all tested substitution

derivatives accumulated in yeast (Figure S3). Collectively, these

data imply that CC substitutions in helix a1 disrupt MLA10 self-

interaction while most substitutions in helix a2a and a2b

weaken this interaction.

We tested CC dimer formation in solution by gel filtration chro-

matography. The recombinant �13 kDa wild-type CC domain

(MLA105-120) coeluted with a 25.6 kDa size marker, indicating

that the MLA CC domain exists exclusively as dimer in solution

(Figure 4D). Dimer formation of the recombinant wild-type CC

domain in solution was confirmed using chemical cross-linkers,

bis [Sulfosuccinimidyl] suberate (BS3) and ethylene glycolbis

(sulfosuccinimidyl-succinate) (Sulfo-EGS), followed by separa-

tion on SDS-PAGE (Figure 4E). Notably mutations of residues

at the dimer interface (L11E, I33E, L36E, M43E, V69E, L72E,

I76E, and L110E) resulted in insoluble or highly unstable CC vari-

ants (data not shown), which is consistent with their presumed

role in CC dimer formation/stability.

To examine the significance of the single amino acid substitu-

tions in MLA10-triggered immunity, we expressed full-length

MLA10 in a transient single-cell expression system in barley

leaf epidermal cells (Shen et al., 2007). We scored MLA10-spec-

ified disease resistance upon inoculation with the Bgh A6 isolate

expressing cognate AvrA10 by determining the frequency of

fungal haustorium formation inside single host cells (haustorium

index; Shen et al., 2007). Constructs of wild-type MLA10 or the



Figure 3. MLA Self-Associates In Planta

(A) CoIP of total leaf protein extracts of transgenic barley

plants expressingMLA1-HA and/or MLA1-Myc under their

native 50 regulatory sequences. The samples were

prepared at 17 hr postinoculation (hpi) with B. graminis

conidiospores of the avirulent isolate K1 expressing

AVRA1. Asterisk indicates nonspecific signals.

(B) Activation-independent in planta self-association.

Total leaf protein extracts were prepared at the indicated

time points (hpi) after inoculation with the B. graminis avir-

ulent isolate K1 expressing AVRA1 or the virulent isolate A6

lacking AVRA1 (incompatible or compatible, respectively).

Ø, noninoculated controls. Asterisk indicates nonspecific

signals.

(C) MLA exists in high molecular weight complex(es) in

planta. Gel filtration analyses of soluble cell extracts of

leaf material derived from transgenic barley lines contain-

ing a functional single-copy HA epitope-tagged MLA1

under the control of native 50 regulatory sequences.

Seven-day-old detached leaves were noninoculated or

inoculatedwith the avirulent or virulentB. graminis isolates

(see B) for 24 hr before soluble cell extracts were

prepared. Molecular sizes (in kDa) of the indicated frac-

tions are shown uppermost. Fraction numbers are shown

directly below. Gel filtration fractions derived from leaf

material was subjected to immunoblot analyses with HA-

specific antiserum (top two panels) or Ponceau S staining

to visualize RuBisCO complexes (third panel). Gel filtration

fractionsof noninoculated leafmaterial prepared in abuffer

containing 1 M NaCl were subjected to immunoblot anal-

yses with HA-specific antiserum (lowermost panel). Note

that the peak size of the MLA complex was reduced to

an apparent size of �200 kDa in the high salt buffer.
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MLA10 CC substitution variants described above, each fused at

the C terminus to yellow fluorescence protein (YFP), were biolis-

tically codelivered with a GUS reporter construct (Figure 4F). We

also tested aMLA10 CC variant, G37R, which represents a natu-

rally occurring G to R polymorphism in a1 of the CC of the

MLA34 resistance specificity (Seeholzer et al., 2010). MLA10-

YFP and all tested mutant derivatives showed YFP

fluorescence signals inside leaf epidermal cells 24 hr after

biolistic delivery, indicating expression and accumulation of

the fusion proteins (data not shown). Nearly all tested MLA10

variants lost disease resistance activity, except L18E and

G37R derivatives that retain wild-type-like MLA10 immunity

(Figure 4F). Upon codelivery of GUS and F99E, reporter gene

expression was barely observable, suggesting that this variant

may trigger a host cell death response that prevents sufficient

GUS accumulation (Figure 4F). The loss of MLA10 immunity

seen upon expression of most of the tested MLA10 CC variants

indicates functional importance and vulnerability of the MLA10

CC domain to such single substitutions. Together with the

exceptional CC sequence conservation among functionally
Cell Host & Microbe 9, 1
diversified MLA resistance specificities (See-

holzer et al., 2010), this suggests the existence

of invariant functional constraints acting on this

domain.

Interestingly, most of the MLA101-225 prey

variants, including those with disrupted CC

self-association, showed impaired interactions
with the truncated HvWRKY1260-353 bait, except for L18E (Fig-

ure 4C). However, the MLA101-46 fragment, containing most

residues of helix a1 of the CC domain, was previously shown

to be necessary and sufficient for the MLA-HvWRKY1 interac-

tion (Shen et al., 2007). Since helix a1 of the CC domain alone

is unlikely to form a stable dimer and MLA101-46 does not self

interact (Figures 1A and 4A), CC dimerization per se cannot

be essential for the heteromeric association but might regulate

the accessibility of the MLA101-46 region for the interaction

with the transcription factor. Notably, the MLA CC L18E variant

is the only targeted substitution that retains both disease resis-

tance and interaction with HvWRKY1 (Figures 4C and 4F).

Together this corroborates a link between disease resistance

activity, CC dimerization, and interaction with the transcription

factor and implies that the MLA CC dimer acts as functional

unit in the immune response.

Monomeric Full-Length MLA27 Binds ADP
To characterize nucleotide binding of MLA in the context of the

full-length protein, we expressed 20 cDNAs, each encoding
87–199, March 17, 2011 ª2011 Elsevier Inc. 191
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a naturally occurring MLA receptor variant in heterologous

prokaryotic and eukaryotic expression systems. Only one resis-

tance specificity, MLA27, was successfully purified to homoge-

neity following expression in insect cells. Purified MLA27 was

subsequently subjected to gel filtration chromatography. Inter-

estingly, the filtration profile showed a single peak between 66

and 200 kDa size marker proteins, indicating that MLA27 elutes

exclusively as an �105 kDa monomer (Figure 5A).

To assess proper folding of full-length MLA27, its ability to

bind nucleotides was examined (Figure 5B). A luciferase-based

ATP/ADP identification and quantification method was em-

ployed. A boiling method was used to release any bound nucle-

otides from the protein. Despite the high sensitivity of the assay

(detection level <<1 pmol of ATP), no ATP was detected in the

extract of 70 pmol MLA27. For ADP detection, the assay was

extended by adding phosphoenol pyruvate and pyruvate kinase,

which converts ADP back to ATP. Since MLA27 was purified in

a buffer containing 5 mM ADP, direct assaying for the presence

of protein-bound ADP was not possible. To remove unbound

nucleotides, MLA27 was subjected to gel filtration chromatog-

raphy and the resulting fractions were analyzed for the presence

of ADP and protein. Bovine serum albumin (BSA) dissolved in the

same ADP-containing buffer served as a reference. Both BSA

and MLA27 eluted between 200 and 600 ml and peak at approx-

imately 400 ml. No ADPwas detected in the fractions eluting from

the BSA-loaded column, but in the MLA-containing fractions

ADP was present and its elution profile corresponded to that of

the protein (Figure 5B). We calculated the total amount of coelut-

ing ADP (202 ± 26 pmol) to be �43% of that of MLA27 (471 ±

42 pmol). Assuming that NB-ARC proteins such as MLA27

have one NB site, this indicates an occupancy of the protein

with ADP of around 43%.

Notably, the ADP concentration remained elevated in the late

fractions after the MLA27-containing peak. We assumed that

this ADP has dissociated from the protein while migrating

through the column. Free ADP migrates more slowly and there-

fore elutes in later fractions. This hypothesis is consistent with

the observation that ADP was not detected in the corresponding

BSA reference fractions until elution of the column void volume

(±1 ml). ADP concentration measurements in the fractions

eluting between 200 and 900 ml subtracted with the BSA control

values revealed a total amount of 289 ± 42 pmol ADP in the
Figure 4. Structure-Guided Mutagenesis of the MLA10 CC Domain

(A) MLA10 CC self-interactions in yeast. Representative results of yeast two-hy

fusions of the B42 activation domain containing identical truncated MLA10.

(B) Structure of MLA10 CC homodimer (top) and amonomer (bottom). Hydrophob

R polymorphism at amino acid position 37 in MLA34 (Seeholzer et al., 2010) is s

(C) Single amino acid substitutions in the CC domain disrupt MLA10 CC self-inter

glutamate. aa, autoactivity of the bait construct alone (yeast cells grew in the absen

could not be examined.

(D) The recombinant wild-type CC domain of MLA105-120 exists exclusively as a

subsequently separated on a Superdex 75 gel filtration column in a buffer con

�13 kDa) coeluted with a 25.6 kDa protein size marker.

(E) Chemical crosslinking confirmed a dimer formation of the recombinant wild-ty

crosslinker BS3 or Sulfo-EGS in a buffer containing 100 mM NaCl. The protein s

(F) Disease resistance activity of wild-type MLA10 and MLA10 CC substitution var

torium index in barley leaf epidermal cells upon biolistic codelivery of the indicate

B. graminis expressing AVRA10. Fungal haustoria were microscopically scored 36

experiments. Asterisk indicates significant differences from empty vector (p < 0.01

observable.
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eluate. This amount corresponds to 61% of the amount of

MLA eluting and implies that a third of the nucleotide has disso-

ciated while migrating through the column. As the protein first

elutes around 5 min, this would be consistent with a relatively

stable MLA27-ADP complex with a half-life exceeding 5 min.

Taken together, we conclude that at least 61% of the purified

MLA27 protein is ADP bound, indicating that the NB domain of

the bulk of the purified full-length immune receptor is properly

folded.

CC-Dependent MLA10 Self-Association Is Required
for Full Activation of Cell Death in N. benthamiana

The perception of cognate effectors followed by replacement of

ADP by ATP at the NB domain of R proteins is proposed as

a general receptor activation mechanism to initiate an immune

response (Takken et al., 2006). Autoactivating mutations, i.e.,

independent of ligand, are frequently found at the conserved

MHD motif in the NB domain (van Ooijen et al., 2007), leading

in plants to a cell death response conventionally used as an

immune response proxy. Since P loopmutations in MLA10 result

in loss-of-disease resistance activity (data not shown) and full-

length MLA27 monomer was shown to bind ADP (Figure 5B),

we suspected on the basis of a structural MLA NB model (Fig-

ure S4) that substitutions at the conserved MHD motif would

render the receptor autoactive. Transient gene expression of

the MHD motif variant MLA10 D502V in barley leaf epidermal

cells resulted in a reduction of reporter expression (red fluores-

cence protein [RFP]-mediated fluorescence) compared to wild-

type, possibly reflecting autoactivation-triggered cell death

(Figure 6A).

To test the potential cell death activity of MLA10 D502V

quantitatively, we expressed the receptor in Nicotiana

benthamiana by Agrobacterium-mediated delivery of the

expression vector and measured electrolyte leakage of the

plant cells at 24 and 48 hr post Agrobacterium infiltration (hpi)

in leaf disks (Figure 6B). In comparison to wild-type MLA10,

the D502V variant induced a marked conductivity increase at

48 hpi (Figure 6B), suggesting cell death activity due to

receptor autoactivation in this heterologous expression system.

To assess the role of single MLA10 CC substitutions that were

shown to abolish both CC homomeric interactions in the yeast

two-hybrid experiments and loss of disease resistance activity
brid assays between bait fusions of the LexA DNA-binding domain and prey

ic amino acids at the dimer interface are indicated. The naturally occurring G to

hown in red.

actions in yeast. Hydrophobic amino acids indicated in (B) were substituted to

ce of prey on selectionmedium; data not shown), the colony growth phenotype

dimer. The CC domain was expressed in E. coli and the purified protein was

taining 100 mM NaCl. The wild-type CC domain (predicted molecular size,

pe CC domain in solution. The recombinant protein was incubated with either

amples were subjected to SDS-PAGE.

iants. Disease resistance activity was scored directly by determining the haus-

d plasmid vectors and GUS reporter. Bombarded leaves were inoculated with

hr after spore inoculation. Data show average and SD from three independent

). #, upon codelivery of GUS and F99E, the reporter gene expression was barely
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Figure 5. Monomeric Full-Length MLA27

Binds ADP

(A) MLA27 exists as a monomer following purifica-

tion from insect cells. MLA27 was expressed in

insects cells (SF21) and purified. The purified

MLA27 protein was subsequently separated on

a Superdex 200 gel filtration column. The position

of calibration proteins are indicated in kDa.

(B) MLA27 binds ADP in vitro. Purified MLA27 was

separated on a NAP5 size-exclusion column, and

the amount of protein and ADP in each fraction

was determined. MLA27 and BSA eluted in the

same fractions. ADP exclusively coeluted with

MLA27. Data show average and SD of two repli-

cates from two independent experiments.
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(I33E, L36E, and M43E; Figures 4C and 4F), we introduced the

autoactivating substitution D502V in the context of these CC

substitutions (D502V+I33E, D502V+L36E, and D502V+M43E,

respectively; Figure 6B). Strikingly, each of the three double

substitution variants suppressed the MLA10 D502V-mediated

cell death activity (Figure 6B). This suppression was not the

result of altered receptor abundance (Figure 6B, insert).

Together with the activation-independent MLA self-association

in vivo (Figure 3), this finding suggests that CC domain-depen-

dent dimerization (Figure 1) is necessary for immune receptor

activity leading to host cell death.

To further assess the significance of CC domain-dependent

MLA dimerization in the cell death response, we tested cell

death activity of the CC domain alone (MLA101-160) including

the linker region between the CC and the NB-ARC domains

(Figure S4). Surprisingly, the wild-type CC-domain was suf-

ficient to induce a marked conductivity increase, whereas
194 Cell Host & Microbe 9, 187–199, March 17, 2011 ª2011 Elsevier Inc.
the CC substitutions (I33E, L36E, and

M43E) failed to trigger the cell death

response (Figure 6C). A truncated CC

variant (MLA101-46) that does not self-

interact in yeast (Figure 4A) also failed

to trigger cell death (Figure 6C), although

this fragment was previously shown to

be necessary and sufficient for the

MLA-HvWRKY1 interaction (Shen et al.,

2007). Collectively, these data suggest

that the MLA CC dimer serves as

minimal functional receptor unit for initia-

tion of the cell death response.

DISCUSSION

Several NB-ARC proteins in vertebrates

including APAF-1, CED-4, and human

NODs are known to self-associate

through their N-terminal and/or central

NB-ARC domains (Danot et al., 2009; Qi

et al., 2010). Previous studies in plants

on N, RPS5, and Prf immune receptors

indicate that their N-terminal domains

provide a self-association platform for

homo-oligomerization (Ade et al., 2007;
Gutierrez et al., 2010; Mestre and Baulcombe, 2006). Our study

identified the MLA CC domain as a homodimerization module

with an autonomous folding capacity in solution (Figures 1, 2,

and 4). Unlike in vertebrates, self-association of the NB-ARC

domain has been rarely observed in plant NB-ARC proteins

(Ade et al., 2007). This indicates a unique self-association prop-

erty of the plant NLRs, which in turn might reflect distinct evolu-

tionary fusions of N-terminal domains (CC/TIR versus CARD/

PYD/BIR domains) to the shared NB-ARC domain in both phyla

(Shen et al., 2007; Shen and Schulze-Lefert, 2007). APAF-1,

CED-4, and plant N are known to form higher-order assemblies

upon receptor activation (Mestre and Baulcombe, 2006; Qi et al.,

2010; Yu et al., 2005). In contrast, we detected no higher-order

MLA assemblies in gel filtration chromatography upon effector-

dependent receptor activation (Figure 3C; Figure S2). Thus, if

such MLA complexes exist, these must be unstable and/or

transient in nature.



Figure 6. MLA10 Self-Association at the CC Domain Is

Required for Cell Death Activation

(A) Reporter gene expression upon biolistic codelivery of plasmids

containing wild-type MLA10-YFP or the MHD motif variant MLA10

(D502V)-YFP and RFP reporter in barley leaf epidermal cells. RFP-

expressing cells were microscopically scored 48 hr after biolistic

delivery. Data show average and SD of nine detached leaves

from two independent experiments. These are significantly different

(t test, p < 0.01).

(B) Quantification of cell death activity of MLA10 variants in Nicotiana

benthamiana. Leaf disks from N. benthamianawere obtained at 22 hr

after infiltration of Agrobacterium tumefaciens GV3101 (OD600 = 0.1)

harboring the MLA10 autoactivating mutation (D502V) and/or self-

association impaired mutations (shown in Figure 4) as indicated.

Electrolyte leakage was measured at 24 and 48 hpi. Data show

average and SD of more than four replicates from two independent

experiments. The insert in the graph shows protein accumulation of

the individual HA epitope-tagged MLA10 variants determined by

western blot analyses. Total leaf protein extracts were prepared at

22 hr after Agrobacterium infiltration. Asterisk indicates significant

difference (p < 0.01).

(C) Quantification of cell death activity of the indicated wild-type and

mutant MLA10 CC domains in N. benthamiana. Electrolyte leakage

was measured as described in Figure 6B. Data show average and

SD of more than four replicates from two independent experiments.

The insert in the graph shows protein accumulation of the indicated

MLA10 CC variants fused to YFP determined by western blot anal-

yses. Asterisk indicates significant difference (p < 0.01).
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Figure 7. Schematic Representation of the

MLA CC Dimer Initiating Downstream

Signaling

ADP-bound MLA monomers are assembled into

a homodimer by the large buried surface area

generated at the CC protomer-protomer interface

in combination with a plant-encoded folding

machinery. Perception of cognate effector

(AVRA) at the LRRdomain induces an initial confor-

mational change in the NB-ARC (NB) domain, al-

lowing replacement of ADP by ATP. Subsequently,

a second conformational change in the self-inter-

acting CC domains of the receptor dimer is

thought to enable downstream signaling. It is

possible that effector-triggered conformational

changes of MLA CC dimers induce proximity of

particular WRKY oligomers for downstream

signaling (e.g., cell death).
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We found a tight link between CC domain-dependent MLA

self-association in the context of the full-length receptor and

cell death activity (Figure 6). Combined with the crystal structure

information of theMLACCdomain, we propose that theMLA ho-

modimer defines a minimal functional receptor unit for triggering

cell death. However, full-length MLA27 from insect cells was

purified as a monomer (Figure 5A). It is possible that MLA dimer-

ization/complex formation in planta is partly driven by the large

buried surface area (7950 Å2) generated at the CC protomer-pro-

tomer interface (Figure 1) in combination with a plant-encoded

folding machinery including HSP90-RAR1-SGT1 (Bieri et al.,

2004; Shirasu, 2009). Very few studies have directly examined

nucleotide binding to plant NLRs. Biochemical analysis of au-

toactivating mutations of the tomato I-2 CNL-type R protein

showed in vitro markedly reduced ATP hydrolysis but did not

affect nucleotide binding (Tameling et al., 2006), suggesting

that the ATP bound form is the ‘‘on state’’ while ATP hydrolysis

switches the protein back to the ‘‘off state.’’ However, these

data were generated with truncated I-2 lacking the C-terminal

LRR domain.We detected exclusively ADP bound to in vitro puri-

fied full-length MLA27 from insect cells (Figure 5), indicative of

a stable inactive receptor monomer. Since wild-type I-2 lacking

the LRR domain can bind ATP and ADP (Tameling et al., 2002,

2006), theMLA27 LRRdomainmight exert an inhibitory role in re-

placing ADP by ATP in the MLA-NBS. Thus, we propose that

upon in planta effector recognition at the LRR domain and

exchange of ADP by ATP in the NB-ARC domain, conformational

changes in the self-interacting CC domains of MLA dimer

enables downstream immune signaling (Figure 7).

We hypothesized that the MLA CC domain can serve as

a template to predict CC dimer structures of other CNL-type R

proteins provided they possess both significant sequence and

secondary structure similarity. We selected Arabidopsis RPM1

for structure modeling, since its predicted CC domain fulfills

these criteria (48.5% sequence similarity and matching

structural profiles). RPM1 confers immunity to the bacterium
196 Cell Host & Microbe 9, 187–199, March 17, 2011 ª2011 Elsevier Inc.
Pseudomonas syringae expressing the

AvrRpm1 effector (Grant et al., 1995),

but it is unclear if RPM1 forms a homo-

oligomer. Our modeling suggests that
the RPM1 CC domain can form a dimer structure similar to

MLA (Figure S5). Remarkably, the surface electrostatic proper-

ties seem to be preserved between the CC domains of MLA

and RPM1, especially at the negatively charged helix a2a en-

compassing a conserved short region called the EDVID motif

(Rairdan et al., 2008). This motif was shown to be involved in in-

tradomain interactions between the CC and NBARC-LRR parts

of the R protein Rx conferring immunity to potato virus X (Rairdan

et al., 2008). The third and fourth positions within EDVID are

mostly hydrophobic residues. Surprisingly, the EDVID motifs,

which reside in themiddle of helix a2a (Figure 1C), are positioned

in the dimer exactly opposite of the ‘‘hinge’’ (between helix a2a

and a2b) of the other protomer (Figure S5). The molecular

dynamics (MD) simulation of the MLA CC dimer shows that the

‘‘hinge’’ flexibility leaves both EDVID motifs largely exposed on

the same side of the dimer surface (Movie S1). The third and

fourth residues in this motif point to the interior side of the MLA

and RPM1 CC dimers, respectively. Indeed, Val80 of MLA, the

fourth residue in the motif, contributes to hydrophobic interac-

tions within the helix bundle of the dimer (Figure 2B), while the

respective first, second, and fifth residues provide negative

charges at the dimer surface in both MLA and RPM1 (Figure S5).

Collectively these data suggest (1) that at least a subset of CNL-

type R proteins can form CC homodimers and (2) that the EDVID

motif together with the hinge region serve a role in connecting

intra- and intermolecular receptor interactions to enable down-

stream immune signaling.

The induced proximity model was first proposed for an auto-

processing mechanism of caspase dimerization to initiate

apoptosis by providing a close contact to monomeric procas-

pases (Salvesen and Dixit, 1999). Recently the CED-4 apopto-

some has been proposed to act as a scaffold to induce proximity

for caspase activation (Qi et al., 2010). Similar to the CED-4

apoptosome, Nod1 oligomerization enhances RICK self-associ-

ation, and enforced homo-oligomerization of Nod1 is sufficient

to activate the NF-lB transcription factor (Inohara et al., 2000).
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In plants, N-terminal mediated Prf oligomer is proposed to

induce proximity for the Prf coreceptors (Gutierrez et al., 2010).

Recently, Krasileva et al. (2010) reported an effector-indepen-

dent cell death induction triggered by the N-terminal TIR domain

of RPP1 fused to wild-type GFP, but not by the TIR domain fused

to a monomeric GFP, owing to a potentially enforced dimeriza-

tion of the TIR domain by the dimerizing property of wild-type

GFP. The crystal structure of the TIR domain of the flax L6

NLR revealed an interaction surface for TIR homodimerization,

and the L6 TIR domain alone is both necessary and sufficient

for immune signaling (Bernoux et al., 2011). Our results similarly

demonstrate that theMLACCdimer serves asminimal functional

module in cell death initiation whose activity is tightly controlled

in the context of the full-length receptor (Figures 6B and 6C).

Since single amino acid substitutions impair both cell death

activity and MLA CC dimerization (Figures 4C, 6B, and 6C), we

presume that only properly folded MLA homodimers are able to

trigger cell death in N. benthamiana. However, although unlikely,

we cannot exclude the possibility that a portion of the heterolo-

gously expressed barley MLA receptor initiates cell death

through association with the CC domain of N. benthamiana

NLR proteins. We previously showed that the helix a1 of the

MLA CC domain interacts with HvWRKY1 and HvWRKY2 tran-

scription factors and that this interaction is enhanced in the pres-

ence of the cognate fungal effector (Shen et al., 2007). Since

these WRKY transcription factors belong to a subgroup that

can form hetero- or homo-oligomers with distinct roles in plant

immune responses (Mangelsen et al., 2008; Xu et al., 2006), it is

possible that effector-triggered conformational changes of MLA

dimers induce proximity of particular WRKY oligomers for down-

stream signaling (Figure 7).

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant Proteins

Native and selenomethionine (SeMet) derivative proteins of GST-MLA10

(5–120) were expressed in BL21 (DE3) strain (Novagen) at 15�C with 15 hr of

isopropyl b-D-1-thiogalactopyranoside (IPTG) induction (0.3 mM). Native

proteins and SeMet derivatives used for crystallization were expressed in LB

andM9medium, respectively. Cells were collected, pelleted and resuspended

in buffer (25 mM Tris-HCl [pH 8.0], 150 mMNaCl, 3 mM DTT), lysed by sonica-

tion, and subsequently centrifuged at 25,000 g for 1 hr. The soluble proteins

were first purified using glutathione-Sepharose4B resin (GE Healthcare) and

the GST tag removed thereafter by PreScission protease. The processed

proteins were further subjected to ion-exchange (Source-15Q, Pharmacia)

and gel filtration (Superdex 200, Pharmacia) chromatography. Protein purifica-

tion was performed at 4�C. The CC domain variants of MLA10 (5–120) were

purified as described above. The purified CC variant proteins were subse-

quently separated on a gel filtration column (Superdex 75, Pharmacia) with

a buffer containing 10 mM Tris-HCl (pH 8.0), 100 mM NaCl. Labeled

25.6 kDa chymotrypsin and 12.4 kDa cytchrome c were used as protein size

marker. The recombinant wild-type CC domain (0.15 mM, 20 mL) was incu-

bated with the homobifunctional crosslinker bis [Sulfosuccinimidyl] suberate

(BS3) (20 mM, 5 mL) or ethylene glycolbis (sulfosuccinimidyl-succinate)

(Sulfo-EGS) (20 mM, 10 mL) on ice for 2 hr in the reaction buffer containing

15 mM HEPES (pH 7.5) and 150 mM NaCl. The reaction was then quenched

with 1.0 M Tris 7.5, 20 ml for 30 min, and the protein samples were separated

via 15% SDS-PAGE.

The full-length MLA27-1 with an N-terminal His6 tag was amplified by stan-

dard PCR and cloned into pFAST-Bac1 (Invitrogen). The protein was ex-

pressed in SF21 cells for 48 hr at 28�C. The cells were lysed in the buffer

(25 mM Tris-HCl [pH 8.0], 150 mM NaCl, and 10 mM ADP) by sonication. The

extract was loaded onto Ni-NTA beads. MLA27-1 was further purified by anion
Cell Ho
ion exchange (Source-15Q, Pharmacia) with buffer (25 mM Tris-HCl [pH 8.0],

3 mM DTT) and buffer (25 mM Tris-HCl [pH 8.0], 1 M NaCl, 3 mM DTT). The

protein was fractionated by gel filtration chromatography (Superdex 200,

Pharmacia) with a buffer containing 10 mM Tris-HCl (pH 8.0), 100 mM NaCl,

and 3 mM DTT.
Crystallization, Data Collection, Structure Determination,

and Refinement

Native and SeMet derivative of MLA10 were concentrated in buffer containing

10 mM Tris-HCl (pH 8.0), 100 mM NaCl, and 3 mM DTT to 8 mg/ml for crystal-

lization. Native protein was used for initial crystal screening and optimization.

Native protein crystals were generated by mixing the protein with an equal

amount of well solution (1.5 ml) by the hanging-drop vapor diffusion method.

The native protein was crystallized in the buffer containing 0.1 M sodium

acetate trihydrate (NaAc) (pH 4.6), 2.0 M sodium formate (NaCOOH) at

20�C. The anomalous diffraction data (Se-Peak) of SeMet was collected on

beamline BL17U at Shanghai Synchrotron Radiation Facility (SSRF) and pro-

cessed using the HKL-2000 package (Otwinowski and Minor, 1997).

The crystals belonged to space group P21212. The ordered selenium sites

were positioned by the program SOLVE (Terwilliger, 2000). The experimental

electron density calculated with the initial SAD phases and modified with the

program RESOLVE was sufficient for manual model-building under the

program Coot (Emsley and Cowtan, 2004). The model was subsequently

refined against the higher-resolution SeMet data set (to 2.0 Å) with the program

Refmac (Murshudov et al., 1999).

Statistics of data collection, phasing, and structure refinement are given in

Table S1.
Immunoprecipitation and Gel Filtration Chromatography,

and Immunoblotting

Protein extraction, immunoprecipitation (IP), and gel filtration chromatography

were essentially performed as described previously (Saijo et al., 2008) with the

followingmodifications. DynabeadsM-280 Sheep anti-Rabbit IgG (Invitrogen),

rabbit anti-Myc polyclonal antibody (Abcam, ab9106), and rabbit control IgG

(Abcam, ab46540) were used for IP. Total leaf protein extract (5 mg) in 1 ml

of the extraction buffer (Saijo et al., 2008) was rotated with 5 mg of the anti-

Myc antibody or 5 mg of the rabbit control IgG for 1 hr at 4�C. Subsequently,
antibody-protein complexes were captured by rotating with preblocked Dyna-

beads (�1 3 108 beads) for an additional 1 hr at 4�C according to the manu-

facturer’s instructions. After washing, the antibody-protein complexes were

eluted with 30 ml of 0.1 M glycine-HCl (pH 2.5) and neutralized with 3 ml of

1 M Tris-base. Immunoblotting was essentially performed as described previ-

ously (Bieri et al., 2004) except using Immobilon-P membrane (Millipore) and

goat anti-Myc polyclonal antibody (Abcam, Ab9132) and anti-goat IgG conju-

gated with horseradish peroxidase (Abcam, Ab7125) for detection. Mouse

anti-GFP monoclonal antibody (Clontech, 632381) and anti-mouse IgG conju-

gated with horseradish peroxidase (Abcam, ab20043) were used for detection

of YFP fusion proteins.
Single-Cell Transient Expression Assay

Single-cell transient gene expression assays using biolistic delivery of plasmid

DNA into plant epidermal cells were described previously (Shen et al., 2003).

pUbi-GUS or p35S-mCherry was used for the reporter gene expression.
Statistical Analysis

Statistical analysis of haustorium index and electrolyte leakage was performed

using R version 2.11.0. Unless otherwise indicated, data were evaluated

by using analysis of variance (ANOVA) followed by Tukey-Kramer honestly

significant difference test. A significant level of 0.01 was used for statistical

analysis.
ACCESSION NUMBERS

Crystallographic coordinates of the MLA CC dimer have been deposited in the

Protein Data Bank under the accession code PDB ID 3QFL.
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