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Abstract
The genome of the Plasmodium apicoplast, which has a higher copy number compared with current targets for molecular diagnosis of malaria,

appears to be a suitable target for detection of submicroscopic infections that are capable of sustaining transmission. Novel primers targeting

a conserved segment of the apicoplast (PFC10_AP|0010:rRNA) were designed and used in a number of different high throughput platforms

such as single-step PCR (ssPCR), nested PCR (nPCR) and loop-mediated isothermal amplification (LAMP) for parasite detection. Replicates of

ten-fold serial dilutions of Plasmodium falciparum 3D7 DNA, with equivalent parasite density ranges of 200 000 to 0.2 parasites/μL, were used

to determine the limit of detection and repeatability of each assay. A panel of 184 archived DNA samples extracted from either EDTA whole

blood or dried blood spots, from across West Africa and South East Asia was used to determine the diagnostic performance of the assays. All

assays amplified the 2 parasites/μL dilution except the ssPCR, which amplified two of the three replicates. Using an 18S rRNA PCR as

reference, the sensitivity was 98% (95% CI 93–100%) for the LAMP assay, 87% (95% CI 79–93%) for ssPCR and 100% (95% CI

97–100%) for nPCR. Specificity was 91% (95% CI 83–96%) for LAMP, 82% (95% CI 72–90%) for ssPCR and 66% (95% CI 54–76%) for

nPCR. The apicoplast genome-based nPCR detected more positive samples overall than the reference method. Discrepant samples were

confirmed as true positives using a probe-based real-time quantitative PCR assay. The results show that the apicoplast genome is a

suitable target for molecular diagnosis of malaria.
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Introduction
In 2012, compared with the year 2000, mortality attributed to

malaria decreased by 45% worldwide and by 49% in Africa,
saving an estimated 3.3 million lives. However, malaria remains
a global health burden with an estimated 627 000 malaria deaths
Microbiol Infect 2015; 21: 686.e1–686.e7
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worldwide in 2012 [1]. In 2010, the WHO recommended prior

treatment confirmation of clinical malaria by microscopy or a
rapid diagnostic test [2]. Although diagnostic capabilities have
recently been scaled up in the public sector, there is still a

significant gap to meet the global target of universal access to
malaria diagnosis in both private and public sectors and at

community level by 2015 [3].
Asymptomatic carriers contribute significantly to trans-

mission and commonly have low parasite densities [4]. How-
ever, the commonly used malaria diagnostic methods do not

reliably detect such low parasite densities. As malaria declines,
the number of samples to be screened to identify infected

individuals and to better target intervention measures will
ious Diseases. Published by Elsevier Ltd. All rights reserved
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increase substantially [5]. This is crucial for malaria elimination

programmes implementing active case detection with the aim of
reducing the human reservoir [6]. Identification of malaria

parasites in peripheral blood samples can be most reliably
performed by detecting parasite DNA, which has transformed

the possibilities for diagnosis and investigation of malaria
epidemiology [7]. Polymerase chain reaction, the most widely
used molecular method for malaria diagnosis, has been modified

and optimized to improve diagnosis and accuracy of species
identification [8–12], but a major disadvantage of PCR methods

is that they are almost impossible to perform at peripheral
health centres or in the field. Hence, isothermal amplification

methods that do not require multiple temperature cycles and
highly purified DNA template have been developed to address

these shortcomings [13–16].
Molecular diagnosis of malaria involves targeted amplification

and detection of parasite genes, the most common being the

conserved small subunit ribosomal RNA (rRNA) 18S locus
[8,10,12,16]. Unlike many other eukaryotes with hundreds to

thousands of copies of the rRNA gene, P. falciparum has only
seven copies [17]. Several targets have been amplified in

different PCR and isothermal assays, including the mitochondria
[18,19] particularly the Cytochrome b gene [20], the stevor genes,

metabolizing enzyme genes and repeat regions within the
genome [21–23]. The apicoplast is a plastid organelle, homol-

ogous to the chloroplasts in plants and found in apicomplexan
parasites. It is semi-autonomous with its own genome and
expression machinery. Its genome copy number has been

estimated to be approximately 15 for P. falciparum [24,25]. The
apicoplast is therefore an obvious target for a diagnostic test

aiming to detect low-density infections because of the high copy
number but it has not been investigated for diagnostic pur-

poses. This study reports the optimization and validation of the
FIG. 1. Conserved region of aligned apicoplast sequences of field isolates

GamPf171, GamPf172, GamPf045, GamPf055, GamPf081, GamPf104, GamPf1

K1, RO33, T994, W2 and Wellcome) against the reference sequence (ApiPl
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apicoplast of P. falciparum as a target for molecular diagnosis of

malaria using different molecular assays.
Materials and methods
Samples
Replicates of ten-fold serial dilutions of laboratory cultures of

P. falciparum clone 3D7 prepared as described elsewhere [26]
were used to determine the limit of detection of the three

novel assays. A total of 184 DNA samples from different studies
archived at the Medical Research Council Unit, The Gambia

were analysed to test the utility of the novel target for malaria
diagnosis with three different molecular methods, namely a
single step PCR (ssPCR), nested PCR (nPCR) and loop-

mediated isothermal amplification (LAMP). Samples were
selected to cover a wide geographical range, sample type and

parasite species; and comprised 80 samples from across three
West African countries, 88 samples from South East Asia, six

laboratory strains analysed in duplicates (3D7, W2, K1, Dd2,
T994 and HB3) and four negative controls (see Supporting

information, Table S1). All DNA samples had been extracted
with the QIAxtractor® robot (Qiagen GmbH, Hilden, Ger-

many) according to the manufacturers’ protocol and stored at
–20°C for a median period of 19 months (range 1–36 months).
Ethical approval was obtained from the Joint Gambian Gov-

ernment/MRC Ethics Committee.

Primer design and assay optimization
Plasmodium falciparum apicoplast sequences from 15 Gambian
isolates and eight laboratory clones were aligned against the

PlasmoDB reference sequence (ID: emb|X95275.2|) (Fig. 1).
Primers for both PCR and LAMP assays were designed from a
(GamPf059, GamPf066, GamPf069, GamPf071, GamPf072, GamPf059,

16, GamPf824 and GamPf825) and laboratory strains (D10, DD2, FCC2,

asmoDB) on Lasergene® MegAlign™ (DNASTAR Inc.).

fectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 686.e1–686.e7
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conserved region of the consensus sequence, a 1.5-kb segment

of a ribosomal RNA gene (PFC10_AP|0010:rRNA) encoding on
the apicoplast genome. PCR primers were designed using PRIMER

EXPRESS® and LAMP primers were designed using PRIMER EXPLORER

V4. The primers were validated in silico with a web tool, THE

SEQUENCE MANIPULATION SUITE by Bioinformatics Organization,
Inc. (Hudson, MA, USA). All assays were optimized for tem-
perature and concentration of primers, deoxyribonucleotides

(dNTPs) as well as magnesium chloride (MgCl2) using triplicates
of three laboratory strains and two negative controls. After

optimization, an experienced laboratory technician indepen-
dently repeated the assays using the optimal conditions to assess

repeatability. Table 1 shows the list of successful primers.

Amplification conditions
Nested PCR. Final amplification reaction mixture for the outer

PCR contained 0.2 μM each of both forward and reverse
primers, 1× Thermopol buffer, 1 Unit of Taq DNA polymerase

(New England Biolabs, (UK) Ltd. Hitchin, Hertfordshire.),
0.2 mM of each dNTP and 2 μl of DNA per sample. Amplifi-

cation conditions were 95°C for 5 min, 94°C for 30 s, 50°C for
30 s, 72°C for 30 s, repeated for 24 cycles, 72°C for 5 min. One

microlitre of the outer PCR product was used for the inner
PCR with similar conditions except annealing at 55°C and
repeated for 29 cycles. End product was determined by agarose

gel electrophoresis stained with ethidium bromide or by an
automated QIAxcel electrophoresis system (Qiagen GmbH).

The primers amplified a 138-bp fragment after the second
round of amplification.

Single-step PCR. The outer LAMP primers were used to
amplify a 205-bp fragment in a single-step amplification reac-

tion. The final amplification reaction mixture contained 0.3 μM
each of the forward and reverse LAMP primers, 1× Thermopol

buffer, 1 Unit of Taq DNA polymerase (New England Biolabs),
0.2 mM of each dNTP and 2 μl of DNA sample. The cycling
TABLE 1. List of successful primers used for loop-mediated isothe

assays

Name

LAMP primers
ApF3 (outer forward)
ApB3 (outer reverse)
ApLF (forward loop)
ApLB (reverse loop)
ApFIP (ApFIc + ApF2; forward inner)
ApBIP (ApBIc + ApF2; reverse inner)

Nested PCR primers
Api 1736 (outer forward)
Api 1976 (outer reverse)
Api 1808 (inner forward)
Api 1940 (inner reverse)

Single-step PCR Primers (Same as the LAMP outer primers)
ApF3 (forward)
ApB3 (reverse)
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conditions were 95°C for 5 min, 93°C for 30 s, 56°C for 30 s,

72°C for 1 min, repeated for 34 cycles, 72°C for 5 min. End
product was determined same as the nPCR above.

LAMP amplification conditions. Final amplification reaction
mixtures contained 1.6 μM each of the inner primers (FIP and

BIP), 0.2 μMeach of the outer primers F3 and B3c, 0.8μMeach of
the loop primers (LPF and LPB), 1× Isothermal Amplification
Buffer, 1 Unit of Bst 2.0 WarmStart™ DNA polymerase (New

England Biolabs), 1.0mMof each dNTP, 1.0mMMgCl2 and 2μl of
DNA sample. The reactionwas performed in a clear 96-well plate

at 65°C for 60 min in a water bath. End product was determined
both visually by naked eye, observing colour changes after adding

2 μL of 1000× SYBR® Green I (Life Technologies, Grand Island,
NY, USA) and electrophoresis and scored independently by two

observers. The LAMP primers amplified the expected loop-
structured fragments and specificity was confirmed with a re-
striction digest using FokI (New England Biolabs) (Fig. 2).

Data analysis
Sensitivity and specificity of the optimized assays were calculated

using a species-specific 18S rRNA nested PCR assay (18S rRNA
PCR) [10] as the reference standard. Cohen’s κ (κ coefficient)

was calculated to assess the degree of agreement between the
assays. The precision of the estimates was determined by
calculating 95% CI (rounded up to the nearest whole number)

for each test statistic. All statistical analysis was performed with
STATA 12 (StataCorp, College Station, TX, USA).

Discrepant results
Genus-specific real-time quantitative PCR (qPCR) primers and

probe targeting the 18S rRNA locus of Plasmodium spp [12].
was used to amplify samples with discrepant results to assess

the possibility of false-negative results with the reference
method. In this assay, samples were run in duplicates and intra-
assay coefficient of variation (CV) was calculated for the Ct
rmal amplification (LAMP), nested PCR and single-step PCR

50 to 30 sequence

CGGATAAAAGTTACTCTAGGGATA
TTATATTAGATATGGACCGAACTG
GAGGTGCCAAACCTTTT
ATTAAAGCGATACGTGAGCTGG
GGATGCGATAAGCCGACATCTTTTCCGAGAGTCCATATTGAC
TTAAGGGTAAGTCTGTTCGCCTTCTCACGACGTTCTGAAC

AAATGTCGGTCTTAATGATCC
TATGGACCGAACTGTCTCACG
GGATAACAGGCTAATCTTTTCC
CTCACGTATCGCTTTAATAGG

CGGATAAAAGTTACTCTAGGGATA
TTATATTAGATATGGACCGAACTG
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FIG. 2. Images of amplified DNA products on agarose gel electrophoresis (a); an automated electrophoresis system, QIAxcel (b); and LAMP visu-

alization by naked eye after addition of SYBR GreenI (c). Lane M, 100-bp DNA ladder; lane 1, loop-mediated isothermal amplification (LAMP) +ve; lane

2, LAMP + ve FokI digest; lane 3, LAMP −ve; lane 4, single-step PCR (ssPCR) +ve; lane 5, ssPCR −ve; lane 6, nested PCR (nPCR) +ve; lane 7, nPCR −ve.
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values with a cut-off of 10%. The qPCR assay was used to
resolve discrepancies and to provide absolute parasite densities

to determine the impact of low parasite density on specificity.
Results
Limit of detection and repeatability
Ten-fold serial dilutions of 3D7 DNA, with parasite density
ranging from the equivalent of 200 000 to 0.2 parasites/μL were
run in triplicate for each assay to determine the limit of

detection. All the assays amplified the 2 parasites/μL dilution
except ssPCR, which amplified in only two of the triplicates

(see Supporting information, Table S2). In addition, the nPCR
detected two of three replicates at aten-fold higher dilution of

0.2 parasites/μL, whereas LAMP and the reference method
both amplified only one of the three replicates. There were no

significant differences in results obtained when the assays were
independently repeated.

Comparison using archived DNA samples
Out of the total 184 samples, 105 (57%) were detected as
positive by the reference 18S rRNA PCR assay, 82% of which

were P. falciparum mono-infections, 7% were Plasmodium vivax
mono-infections, 1% were Plasmodium malariae mono-

infections, and 10% were mixed infections of P. falciparum and
P. vivax. The test positivity was 60% (110/184) for LAMP, 57%

(105/184) for ssPCR and 72% for nPCR. With samples positive
for all methods, including the reference assay, the test positivity
was 48% (89/184) (Fig. 3). Of the 79 samples negative by the

reference assay, six were positive by all three methods, eight by
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and In
nPCR and ssPCR, one by nPCR and LAMP and 12 by nPCR
alone. There were no discrepancies between scores of the

LAMP assay by the two independent observers, regardless of
method of end-point determination. The nPCR assay had the

highest sensitivity, followed by LAMP and then ssPCR with only
87%. LAMP had the highest specificity, followed by ssPCR and

then nPCR (Table 2).

Degree of agreement
The κ coefficient assessing the degree of agreement (after
correcting for agreement due to chance) with the reference
method was 0.9 for LAMP, 0.7 for ssPCR and 0.7 for nPCR

(Table 2). Comparing the LAMP assay with either ssPCR or
nPCR gave a κ coefficient of 0.7.

Other parameters
Using McNemar’s chi square to test for marginal homogeneity,

there were no significant differences in the performances of
LAMP and ssPCR compared with the reference method.
However, there was a significant difference with nPCR

(McNemar’s χ2 = 27.00; Exact significance probability <0.01).
Similarly, both LAMP and ssPCR showed no significant differ-

ences by either geographic origin or sample type whereas with
nPCR there was a significant difference by sample type, with

more discrepancies in the dried blood spot samples (McNe-
mar’s χ2 = 23.00; Exact significance probability <0.01), but not

by geographic origin.

Discrepant results
Discrepancies occurred significantly more with the dried blood

spot (85%, 23/27) compared to whole blood samples (15%, 4/
fectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 686.e1–686.e7
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FIG. 3. Venn diagram showing distribution of samples detected as positive by each of the methods. Proportions (%) refer to the total of 184 samples.

TABLE 2. Comparison of the optimized assays with the reference method (classifying 105 positive and 79 negative samples)

18S rRNA + ve 18S rRNA –ve Sensitivity Specificity Cohen’s κ coefficient

LAMP + ve 103 7 98% (95% CI 93–100%) 91% (95% CI 83–96%) 0.9 (95% CI 0.8–1.0)
LAMP −ve 2 72
ssPCR + ve 91 14 87% (95% CI 79–93%) 82% (95% CI 72–90%) 0.7 (95% CI 0.6–0.8)
ssPCR −ve 14 65
nPCR + ve 105 27 100% (95% CI 97–100%) 66% (95% CI 54–76%) 0.7 (95% CI 0.6–0.8)
nPCR −ve 0 52

Abbreviations: LAMP, loop-mediated isothermal amplification; nPCR, nested PCR; ssPCR, single-step PCR.
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27). The qPCR analysis of these samples indicated low parasite
densities (<35 parasites/μL), with the amplification curve

crossing the detection threshold after cycle 35, which corre-
sponds to parasite densities <20 parasites/μL in the standard

curve.

Usability of assays
All assays were high throughput, easy to use with optimized
protocols and were performed in a 96-well plate format.
Turnaround time for 88 samples with positive and negative

controls that could be analysed per 96-well plate was approx-
imately 300 min with the reference PCR method and nPCR,

150 min for ssPCR and 90–120 min for LAMP, depending on
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infect
whether end point determination was by naked eye or agarose
gel electrophoresis.
Discussion
The diagnosis of malaria has evolved rapidly within the last few
years. New and improved screening tools and strategies are

being developed, as currently available tools cannot promptly
detect low-density infections in the field. Consequently, nucleic

acid tests are optimized for increased sensitivity and simplified
for field deployability. Using a novel target with higher copy

number, the apicoplast genome, we validate its suitability for
ious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 686.e1–686.e7
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detection of low-grade malaria infections in a range of molec-

ular assays, including the LAMP assay that is potentially usable at
peripheral health facilities.

Although the primers were designed from aligned
P. falciparum sequences, they amplified non-falciparum species as

well, indicating that the target is possibly conserved across the
genus (see Supporting information, Fig. S1). Generally, the test
positivity by either LAMP or ssPCR assays targeting the api-

coplast genome was similar to the reference 18S rRNA PCR
method, although the LAMP assay had better agreement. The

apicoplast genome-based nPCR assay detected all samples
classified as positive by the other methods as well as 12 addi-

tional samples that were confirmed to be low-density infections
by a very sensitive, probe-based qPCR assay. This explains the

lower specificity of nPCR as it detected an important number of
positive samples—confirmed by the probe-based qPCR
assay—among samples considered negative by the reference

method. As expected, the majority (85%) of discrepancies
occurred with dried blood spot samples, probably because the

amount of blood screened per assay (approximately 4 μL of
blood in one 3-mm punch of dried blood spot) [27] would have

been much lower than in whole blood samples. The impact of
the sampling method on assay sensitivity is likely to be more

pronounced in low-density infections as parasite DNA would
be less efficiently extracted from dried filter paper blood spots

compared with whole blood samples.
The nPCR targeting the apicoplast genome was more sen-

sitive than the reference method, particularly for samples with a

parasite density <2 parasites/μL. Similar to other laboratory-
based PCR assays, its routine use in the field would be chal-

lenging, though the use of real-time screening PCR in a mobile
laboratory has been recently reported [28]. Hence, the LAMP

assay that is less complex was developed alongside. Overall, the
sensitivity and specificity of the apicoplast genome-based LAMP

assay was similar to previously described LAMP assays targeting
the 18SrRNA gene or the mitochondria [13,15]. End-product
determination of the LAMP assay by observing colour

changes after addition of SYBR® Green I is practical for field use
though it may be a problem for individuals with colour blind-

ness [29]. Colour charts of positive and negative results may be
needed, with systematic double reading.

A major limitation of this study is the unavailability of either
microscopy or rapid diagnostic test results for most of the

tested samples. As these are the currently used diagnostic tools
for malaria, it would have been interesting to evaluate the new

assays against standard diagnostic methods. Also, running rep-
licates of the discrepant samples could have increased the
sensitivity of the reference PCR method. In a recent study by

Hopkins et al., overall sensitivity of the reference nested PCR
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and In
assay was increased by repeating in three wells all samples that

tested negative in the first run with any amplification of the
expected fragment size scored as positive [30].

All the assays are high throughput and able to process
samples in a 96-well format. This is very important for the

potential use of field-based molecular assays for mass screening
and treatment campaigns as the fast turn-around-time will
enable infected subjects to be treated within a short time. The

faster turn-around time of the LAMP assay and comparable
sensitivity with the reference 18S rRNA method would support

further assessment to determine its performance under field
conditions. As more endemic regions begin to consider the

possibility of malaria elimination, field-based molecular assays
are poised to be the favoured option for surveillance and tar-

geted interventions [31]. More sensitive targets are currently
being explored for potential field-based molecular tests and the
apicoplast genome appears to be a suitable candidate.
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