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Abstract

We consider lattice walks in the plane starting at the origin, remaining in the first quadrant i, j � 0 and
made of West, South and North-East steps. In 1965, Germain Kreweras discovered a remarkably simple
formula giving the number of these walks (with prescribed length and endpoint). Kreweras’ proof was very
involved and several alternative derivations have been proposed since then. But the elegant simplicity of the
counting formula remained unexplained. We give the first purely combinatorial explanation of this formula.
Our approach is based on a bijection between Kreweras walks and triangulations with a distinguished
spanning tree. We obtain simultaneously a bijective way of counting loopless triangulations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider lattice walks in the plane starting from the origin (0,0), remaining in the first
quadrant i, j � 0 and made of three kind of steps: West, South and North-East. These walks
were first studied by Kreweras [4] and inherited his name. A Kreweras walk ending at the origin
is represented in Fig. 1.

These walks have remarkable enumerative properties. Kreweras proved in 1965 that the num-
ber of walks of length 3n ending at the origin is:

kn = 4n

(n + 1)(2n + 1)

(
3n

n

)
. (1)
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Fig. 1. A Kreweras walk.

The original proof of this result is complicated and somewhat unsatisfactory. It was performed
by guessing the number of walks of size n ending at a generic point (i, j). The conjectured for-
mulas were then checked using the recurrence relations between these numbers. The checking
part involved several hypergeometric identities which were later simplified by Niederhausen [6].
In 1986, Gessel gave a different proof in which the guessing part was reduced [3]. More re-
cently, Bousquet-Mélou proposed a constructive proof (that is, without guessing) of these results
and some extensions [1]. Still, the simple looking formula (1) remained without a direct com-
binatorial explanation. The problem of finding a combinatorial explanation was mentioned by
Stanley in [10]. Our main goal in this paper is to provide such an explanation.

Formula (1) for the number of Kreweras walks is to be compared to another formula proved
the same year. In 1965, Mullin, following the seminal steps of Tutte, proved via a generating
function approach [5] that the number of loopless triangulations of size n (see below for precise
definitions) is

tn = 2n

(n + 1)(2n + 1)

(
3n

n

)
. (2)

A bijective proof of (2) was outlined by Schaeffer in his PhD thesis [8]. See also [7] for a more
general construction concerning loopless triangulations of a k-gon. We will give an alternative
bijective proof of the formula for the number of loopless triangulations. Technically speaking,
we will work instead on bridgeless cubic maps which are the duals of loopless triangulations.

It is interesting to observe that both (1) and (2) admit a nice generalization. Indeed, the num-
ber kn,i of Kreweras walks of size n ending at point (i,0) and the number cn,i of loopless
triangulations of size n of an (i +2)-gon both admit a closed formula (see (8) and (9)). Moreover,
the numbers kn,i and cn,i are related by the equation kn,i = 2ncn,i . This relation is explained in
Section 8. Alas, we have found no way of proving these formulas by our approach.

2. How the proofs work

We begin with an account of this paper’s contents in order to underline the (slightly unusual)
logical structure of our proofs.

• In Section 3, we first recall some definitions on planar maps. We also define a special
class of spanning trees called depth trees. Depth trees are closely related to the trees that can be
obtained by a depth first search algorithm.

Then, we consider a larger family of walks containing the Kreweras walks. These walks are
made of West, South and North-East steps, start from the origin and remain in the half-plane
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Fig. 2. An excursion.

i + j � 0. We borrow a terminology from probability theory and call these walks meanders. We
call excursion a meander ending on the second diagonal (i.e. the line i + j = 0). An excursion is
represented in Fig. 2.

Unlike Kreweras walks, excursions are easy to count. By applying the cycle lemma (see [9,
Section 5.3]), we prove that the number of excursions of size n (length 3n) is

en = 4n

2n + 1

(
3n

n

)
.

• In Section 4, we define a mapping Φ between excursions and cubic maps with a distin-
guished depth tree. In Section 5 we prove that the mapping Φ is an (n + 1)-to-1 correspondence
Φ between excursions (of size n) and bridgeless cubic maps (of size n) with a distinguished
depth tree. As a consequence, the number of bridgeless cubic maps of size n with a distinguished
depth tree is found to be:

dn = en

n + 1
= 4n

(n + 1)(2n + 1)

(
3n

n

)
.

• In Section 6, we prove that the correspondence Φ , restricted to Kreweras walks, induces a
bijection between Kreweras walks (of size n) ending at the origin and bridgeless cubic maps (of
size n) with a distinguished depth tree. As a consequence, we obtain:

kn = dn = 4n

(n + 1)(2n + 1)

(
3n

n

)
,

where kn is the number of Kreweras walks of size n ending at the origin. This gives a combina-
torial proof of (1).

• In Section 7, we enumerate depth trees on cubic maps. We prove that the number of such
trees for a cubic map of size n is 2n. As a consequence, the number of cubic maps of size n is

cn = dn

2n
= 2n

(n + 1)(2n + 1)

(
3n

n

)
.

This gives a combinatorial proof of (2).
• In Section 8, we extend the mapping Φ to Kreweras walks ending at (i,0) and discuss some

open problems.
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3. Preliminaries

3.1. Planar maps and depth trees

3.1.1. Planar maps
A planar map, or map for short, is an embedding of a connected planar graph in the sphere

without intersecting edges, defined up to orientation preserving homeomorphisms of the sphere.
Loops and multiple edges are allowed. The faces are the connected components of the com-
plement of the graph. By removing the midpoint of an edge we obtain two half-edges, that is,
one-dimensional cells incident to one vertex. We say that each edge has two half-edges, each of
them incident to one of the endpoints.

A map is rooted if one of its half-edges is distinguished as the root. The edge containing the
root is the root-edge and its endpoint is the root-vertex. Graphically, the root is indicated by an
arrow pointing to the root-vertex (see Fig. 3). All the maps considered in this paper will be rooted
without further mention.

3.1.2. Growing maps
Our constructions lead us to consider maps with some legs, that is, half-edges that are not part

of a complete edge. A growing map is a (rooted) map together with some legs, one of them being
distinguished as the head. We require the legs to be (all) in the same face called head-face. The
endpoint of the head is the head-vertex. Graphically, the head is indicated by an arrow pointing
away from the head-vertex. The root of a growing map can be a leg or a regular half-edge. For
instance, the growing map in Fig. 4 has 2 legs beside the head, and its root is not a leg.

3.1.3. Cubic maps
A map (or growing map) is cubic if every vertex has degree 3. It is k-near-cubic if the root-

vertex has degree k and any other vertex has degree 3. For instance, the map in Fig. 3 is 2-near-
cubic and the growing map in Fig. 4 is cubic. Observe that cubic maps are in bijection with
2-near-cubic maps not reduced to a loop by the mapping illustrated in Fig. 5.

The incidence relation between vertices and edges in cubic maps shows that the number
of edges is always a multiple of 3. More generally, if M is a k-near-cubic map with e edges

Fig. 3. A rooted map.

Fig. 4. A growing map.
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and v vertices, the incidence relation reads: 3(v − 1) + k = 2e. Equivalently, 3(v − k + 1) =
2(e − 2k + 3). The number v − k + 1 is non-negative for non-separable k-near-cubic maps (see
definition below). (This property can be shown by induction on the number of edges by con-
tracting the root-edge.) Hence, the number of edges has the form e = 3n + 2k − 3, where n is a
non-negative integer. We say that a k-near-cubic map has size n if it has e = 3n + 2k − 3 edges
(and v = 2n + k − 1 vertices). In particular, the mapping of Fig. 5 is a bijection between cubic
maps of size n (3n + 3 edges) and 2-near-cubic maps of size n + 1 (3n + 4 edges).

3.1.4. Non-separable maps
A map is non-separable if its edge set cannot be partitioned into two non-empty sets such

that only one vertex is incident to some edges in both sets. In particular, a non-separable map
not reduced to an edge has no loop nor bridge (a bridge or isthmus is an edge whose deletion
disconnects the map). For cubic maps and 2-near-cubic maps it is equivalent to be non-separable
or bridgeless. The mapping illustrated in Fig. 5 establishes a bijection between bridgeless cubic
maps and bridgeless 2-near-cubic maps not reduced to a loop.

Bridgeless cubic maps are interesting because their duals are the loopless triangulations. Re-
call that the dual M∗ of a map M is the map obtained by putting a vertex of M∗ in each face
of M and by connecting the vertices by edges crossing the edges of M wherever possible, one
edge of M∗ across each edge of M . See Fig. 6 for an example.

3.1.5. Depth trees
A tree is a connected graph without cycle. A subgraph T of a graph G is a spanning tree

if it is a tree containing every vertex of G. An edge of the graph G is said to be internal if it
is in the spanning tree T and external otherwise. For any pair of vertices u,v of the graph G,
there is a unique path between u and v in the spanning tree T . We call it the T -path between u

and v. A map (or growing map) M with a distinguished spanning tree T will be denoted by MT .
Graphically, we shall indicate the spanning tree by thick lines as in Fig. 7. A vertex u of MT is
an ancestor of another vertex v if it is on the T -path between the root-vertex and v. In this case,

Fig. 5. Bijection between cubic maps and 2-near-cubic maps.

Fig. 6. A cubic map and the dual triangulation (dashed lines).
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Fig. 7. A depth tree (left) and a non-depth tree (right).

v is called a descendant of u. Two vertices are comparable if one is the ancestor of the other. For
instance, in Fig. 7, the vertices u1 and v1 are comparable whereas u2 and v2 are not.

A depth tree is a spanning tree such that any external edge joins comparable vertices. More-
over, we require the edge containing the root to be external. In Fig. 7, the tree on the left side is a
depth tree but the tree on the right side is not a depth tree since the edge (u2, v2) breaks the rule.
A depth-map is a map with a distinguished depth tree. A marked-depth-map is a depth-map with
a marked external edge.

3.2. Kreweras walks and meanders

In what follows, Kreweras walks are considered as words on the alphabet {a, b, c}. The letter a

(respectively b, c) corresponds to a West (respectively South, North-East) step. For instance, the
walk in Fig. 1 is cbcccbbcaaaaabb. The length of a word w is denoted by |w| and the number
of occurrences of a given letter α is denoted by |w|α . Kreweras walks are the words w on the
alphabet {a, b, c} such that any prefix w′ of w satisfies

|w′|a � |w′|c and |w′|b � |w′|c. (3)

Kreweras walks ending at the origin satisfy the additional constraint

|w|a = |w|b = |w|c. (4)

These conditions can be interpreted as a ballot problem with three candidates. This is why Krew-
eras walks sometimes appear under this formulation in the literature [6].

Similarly, the meanders, that is, the walks remaining in the half-plane i + j � 0, are the words
w on {a, b, c} such that any prefix w′ of w satisfies

|w′|a + |w′|b � 2|w′|c. (5)

Excursions, that is, meanders ending on the second diagonal, satisfy the additional constraint

|w|a + |w|b = 2|w|c. (6)

Note that the length of any walk ending on the second diagonal is a multiple of 3. We define
the size of such a walk of length 3n to be n. Note also that a walk ending at point (i,0) has a
length of the form l = 3n + 2i where n is a non-negative integer. We define a Kreweras walk of
length l = 3n + 2i ending at (i,0) to have size n.

Unlike Kreweras walks, the excursions are easy to count.

Proposition 3.1. There are

en = 4n

2n + 1

(
3n

n

)
(7)

excursions of size n.
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Fig. 8. The projected walk associated to the excursion of Fig. 2.

Proof. We consider projected walks, that is, one-dimensional lattice walks starting and ending
at 0, remaining non-negative and made of steps +2 and −1. (They correspond to projections of
excursions on the first diagonal.) A projected walk is represented in Fig. 8. Projected walks can
be seen as words w on the alphabet {α, c} with |w|α = 2|w|c and such that any prefix w′ of w

satisfies |w′|α � 2|w′|c. The projected walks can be counted bijectively by applying the cycle
lemma (see Section 5.3 of [9]): there are

pn = 1

3n + 1

(
3n + 1

2n + 1

)
= 1

2n + 1

(
3n

n

)

projected walks of size n (length 3n).
Given an excursion, we obtain a projected walk by replacing the occurrences of a and b

by α. Conversely, taking a projected walk of length 3n and replacing the 2n letters α by a se-
quence of letters in {a, b} one obtains an excursion. This establishes a 4n-to-1 correspondence
between excursions (of size n) and projected walks (of size n). Thus, there are 4npn excursions
of size n. �

4. A bijection between excursions and cubic marked-depth-maps

In this section we define a mapping Φ between excursions and bridgeless 2-near-cubic
marked-depth-maps (2-near-cubic maps with a distinguished depth tree and a marked external
edge). We shall prove in Section 5 that the mapping Φ is a bijection between excursions and
bridgeless 2-near-cubic marked-depth-maps. The general principle of the mapping Φ is to read
the excursion from right to left and interpret each letter as an operation for constructing the map
and the tree. This step-by-step construction is illustrated in Fig. 10. The intermediate steps are
tree-growing maps, that is, growing maps together with a distinguished spanning tree (indicated
by thick lines).

• We start with the tree-growing map M0• consisting of one vertex and two legs. One of the
legs is the root, the other is the head (see Fig. 9). The spanning tree is reduced to the unique
vertex.

• We apply successively certain elementary mappings ϕa,ϕb,ϕc (Definition 4.1) correspond-
ing to the letters a, b, c of the excursion read from right to left.

• When the whole excursion is read, there is only one leg remaining beside the head. At
this stage, we close the tree-growing map, that is, we join the head and the remaining leg into a
marked external edge as shown in Fig. 11.

Let us enter into the details and define the mapping Φ . Consider a growing map M . We make
a tour of the head-face if we follow its border in counterclockwise direction (i.e. the border of the
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Fig. 9. The tree-growing map M0• .

Fig. 10. Successive applications of the mappings ϕa,ϕb,ϕc for the walk cacbaaccaaba (read from right to left).

Fig. 11. Closing the map (the marked edge is dashed).

head-face stays on our left-hand side) starting from the head (see Fig. 12). This journey induces
a linear order on the legs of M . We shall talk about the first and last legs of M .

We define three mappings ϕa , ϕb , ϕc on tree-growing maps.

Definition 4.1. Let MT be a tree-growing map (the map is M and the distinguished tree is T ).

• The mappings ϕa and ϕb are represented in Fig. 13. The tree-growing map M ′
T ′ = ϕa(MT )

(respectively ϕb(MT )) is obtained from MT by replacing the head by an edge e together with a
new vertex v incident to the new head and another leg at its left (respectively right). The tree T ′
is obtained from T by adding the edge e and the vertex v.

• The tree-growing map ϕc(MT ) is only defined if the first and last legs exist (that is, if the
head-face contains some legs beside the head) and have distinct and comparable endpoints. We
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Fig. 12. Making the tour of the head-face.

Fig. 13. The mappings ϕa and ϕb .

Fig. 14. The mapping ϕc .

call these legs s and t with the convention that the endpoint of s is an ancestor of the endpoint
of t .
In this case, the tree-growing map M ′

T = ϕc(MT ) is obtained from MT by joining together the
head and the leg s while the leg t becomes the new head (see Fig. 14). The spanning tree T is
unchanged.

• For a word w = a1a2 . . . an on the alphabet {a, b, c}, we denote by ϕw the mapping ϕa1 ◦
ϕa2 ◦ · · · ◦ ϕan .

Definition 4.2. The image of an excursion w by the mapping Φ is the map with a distinguished
spanning tree and a marked external edge obtained by closing the tree-growing map ϕw(M0• ),
that is, by joining the head and the unique remaining leg into a marked edge.

The mapping Φ has been applied to the excursion cacbaaccaaba in Figs. 10 and 11. Of
course, we still need to prove that the mapping Φ is well defined.
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Fig. 15. The last vertex incident to a leg on the T -path from the root-vertex to the head-vertex is v.

Proposition 4.3. The mapping Φ is well defined on any excursion w:
• It is always possible to apply the mapping ϕc when required.
• The tree-growing map ϕw(M0• ) has exactly one leg beside the head. This leg and the head

are both in the head-face, hence can be joined together.

Before proving Proposition 4.3, we need three technical results.

Lemma 4.4. Let w be a word on the alphabet {a, b, c} such that ϕw(M0• ) is well defined. Then,
ϕw(M0• ) is a tree-growing map.

Proof. Let MT = ϕw(M0• ). It is clear by induction that T is a spanning tree. The only point to
prove is that the legs of ϕw(M0• ) are in the head-face. We proceed by induction on the length
of w. This property holds for the empty word. If the property holds for MT = ϕw(M0• ) it clearly
holds for ϕa(MT ) and ϕb(MT ). If ϕc can be applied, the head is joined either to the first or to
the last leg of MT . Thus, all the remaining legs (including the head of ϕc(MT )) are in the same
face. �

We shall see shortly (Lemma 4.6) that whenever the tree-growing map ϕw(M0• ) is well de-
fined, the endpoints of any leg is an ancestor of the head-vertex. Observe that in this case the
endpoints of the legs are comparable.

Lemma 4.5. Let MT be a tree-growing map. Suppose that the endpoint of any leg is an ancestor
of the head-vertex. Suppose also that the first and last legs exist and have distinct endpoints. We
call these endpoints u and v with the convention that u is an ancestor of v. Then, v is the last
vertex incident to a leg on the T -path from the root-vertex to the head-vertex.

Proof. The situation is represented in Fig. 15. We proceed by induction on the number of edges
that are not in the T -path P from the root-vertex to the head-vertex. The property is clearly true
if the tree-growing map is reduced to the path P plus some legs. If not, the deletion of a edge not
in P does not change the order of appearance of the legs around the head-face. In particular, the
first and last legs are unchanged. �
Lemma 4.6. Let w be a word on the alphabet {a, b, c} such that ϕw(M0• ) is defined. Then the
endpoint of any leg of ϕw(M0• ) is an ancestor of the head-vertex.

Proof. We proceed by induction on the length of w. The property holds for the empty word. We
suppose that it holds for MT = ϕw(M0• ). It is clear that the property holds for the tree-growing
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maps ϕa(MT ) and ϕb(MT ). If ϕc can be applied, the endpoints of the first and last leg are distinct
and comparable. We call these endpoints u and v with the convention that u is an ancestor of v.
By the induction hypothesis, the conditions of Lemma 4.5 are satisfied by MT . Therefore, the
vertex v is the last vertex incident to a leg on the T -path from the root-vertex to the head-
vertex. Hence, any endpoint of a leg of ϕc(MT ) is an ancestor of v which is the head-vertex
of ϕc(MT ). �
Proof of Proposition 4.3. Let w be an excursion. We consider a suffix w′ of w and denote by
M ′

T = ϕw′(M0• ) the corresponding tree-growing map (if it is well defined).

• If M ′
T is well defined, it has |w′|a + |w′|b − 2|w′|c + 1 legs besides the head. (Observe that,

by (5) and (6), the quantity |w′|a + |w′|b − 2|w′|c is non-negative.)
We proceed by induction on the length of w′. The property holds for the empty word. Moreover,
applying ϕa or ϕb increases by 1 the number of legs whereas applying ϕc decreases this number
by 2. Thus, the property follows easily by induction.

• The tree-growing map M ′
T is well defined.

We proceed by induction on the length of w′. The property holds for the empty word. We write
w′ = αw′′ and suppose that M ′′

T = ϕw′′(M0• ) is well defined. If α = a or b the tree-growing
map M ′

T = ϕα(M ′′
T ) is well defined. We suppose now that α = c. The tree-growing map M ′′

T has
|w′′|a + |w′′|b − 2|w′′|c + 1 = |w′|a + |w′|b − 2|w′|c + 3 > 2 legs besides the head. It is clear by
induction that all these legs have distinct endpoints. Moreover, by Lemma 4.6, all the endpoints
of these legs are ancestors of the head-vertex. Thus the endpoints of the legs are comparable. In
particular, the endpoints of the first and last legs are comparable. Hence, the mapping ϕc can be
applied.

• The tree-growing map MT = ϕw(M0• ) is well defined and has exactly one leg beside the head.
This property follows from the preceding points since |w|a + |w|b − 2|w|c = 0. �

We now state the key result of this paper.

Theorem 4.7. The mapping Φ is a bijection between excursions of size n and bridgeless 2-near-
cubic marked-depth-maps of size n.

The proof of Theorem 4.7 is postponed to the next section. For the time being we explore its
enumerative consequences. We denote by dn the number of bridgeless 2-near-cubic depth-maps
of size n. Consider a 2-near-cubic map M of size n (3n+1 edges, 2n+1 vertices) and a spanning
tree T . Since T has 2n + 1 vertices, MT has 2n internal edges and n + 1 external edges. Hence,
there are (n+ 1)dn bridgeless 2-near-cubic marked-depth-maps. By Theorem 4.7, this number is
equal to the number en of excursions of size n. Using Proposition 3.1, we obtain the following
result.

Corollary 4.8. There are

dn = en

n + 1
= 4n

(n + 1)(2n + 1)

(
3n

n

)

bridgeless 2-near-cubic depth-maps of size n.
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Observe that dn is also the number of bridgeless cubic depth-maps of size n − 1 since the
bijection between cubic maps and 2-near-cubic maps represented in Fig. 5 can be turned into a
bijection between cubic depth-maps and 2-near-cubic depth-maps.

5. Why the mapping Φ is a bijection

In this section, we prove that the mapping Φ is a bijection between excursions and bridgeless
2-near-cubic marked-depth-maps. We first prove that the image of any excursion by the mapping
Φ is a bridgeless 2-near-cubic marked-depth-map (Proposition 5.1). Then we define a mapping
Ψ from bridgeless 2-near-cubic marked-depth-maps to excursions (Definition 5.4) and prove that
Φ and Ψ are inverse mappings (Propositions 5.7 and 5.9).

Proposition 5.1. The image Φ(w) of any excursion w is a bridgeless 2-near-cubic marked-
depth-map.

Proof. Let w′ be a suffix of w and let M ′
T = ϕw′(M0• ) be the corresponding tree-growing map.

• The tree-growing map M ′
T is 2-near-cubic.

Applying ϕa or ϕb creates a new vertex of degree 3 and does not change the degree of the
other vertices. Applying ϕc does not affect the degree of the vertices. The property follows by
induction.

• The head and the root of M ′
T are distinct half-edges.

The property holds for the empty word. We now write w′ = αw′′. If α = a or b the property
clearly holds for w′. Suppose now that α = c. Let u and v be the vertices incident to the first and
last legs of M ′′

T = ϕw′′(M0• ) with the convention that u is an ancestor of v. By definition, v is the
head-vertex of M ′

T = ϕc(M
′′
T ) and is a proper descendant of u. Hence, the head-vertex v and the

root-vertex of M ′
T are distinct.

• The tree T is a depth tree of M ′
T .

The external edges are created by applying the mapping ϕc, that is, by joining the head to another
leg. By Lemma 4.6, any vertex incident to a leg is an ancestor of the head-vertex. Hence, any
external edge joins comparable vertices. Moreover, by the preceding point, if the root is part of
a complete edge, then this edge is external (internal edges are created by the mappings ϕa or ϕb

which replace the head by a complete edge).

• Let u0 be the first vertex of M ′
T incident to a leg on the T -path from the root-vertex to the

head-vertex. Any bridge of M ′
T is in the T -path between u0 and the head-vertex.

We proceed by induction on the length of w′. The property holds for the empty word. We write
w′ = αw′′ and suppose that it holds for M ′′

T = ϕw′′(M0• ). If α = a or b the property clearly holds
for M ′

T = ϕα(M ′′
T ). We suppose now that α = c. We denote by u1 the first vertex of M ′′

T incident
to a leg on the T -path from the root-vertex to the head-vertex. Let u and v be the vertices incident
to the first and last legs of M ′′

T with the convention that u is an ancestor of v. By Lemma 4.6, the
vertices u1, u and v are all ancestors of the head-vertex v1 of M ′′

T . Hence, u and v are on the T -
path between u1 and v1. This situation is represented in Fig. 16. By definition, the tree-growing
map M ′

T is obtained from M ′′
T by creating an edge e1 between u and v1 while v becomes the new

head-vertex. We denote by P1 (respectively P2) the T -path between u1 and u (respectively u

and v1). We consider a bridge e of M ′
T . The edge e is a bridge of M ′′

T (since M ′′
T is obtained from

MT by deleting an edge). By the induction hypothesis, the bridge e is either in P1 or in P2. The
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Fig. 16. Bridges are in the T -path between u0 and the head-vertex.

edge e is not in the path P2 since the new edge e1 creates a cycle with P2. The bridge e is in P1,
therefore the vertices u1 and u are distinct. Hence u1 = u0 is the first vertex of M ′

T incident to
a leg on the T -path from the root-vertex to the head-vertex. Thus, the bridge e is in the T -path
from u0 to the head-vertex v of M ′

T .

• The depth-map Φ(w) has no bridge.
By the preceding points, any bridge of MT = ϕw(M0• ) is on the T -path between the head-vertex
and the endpoint of the only remaining leg. Hence, no bridge remains once the map closed. �

We will now define a mapping Ψ (Definition 5.4) that we shall prove to be the inverse of Φ .
The mapping Ψ destructs the tree-growing map that Φ constructs and recovers the walk. Looking
at Fig. 10 from bottom-to-top and right-to-left we see how Ψ works.

We first define three mappings ψa , ψb , ψc on tree-growing maps that we shall prove to be the
inverse of ϕa , ϕb and ϕc , respectively. We consider the following conditions for a tree-growing
map MT :

(a) The head-vertex has degree 3 and is incident to an edge and a leg at the left of the head.
(b) The head-vertex has degree 3 and is incident to an edge and a leg at the right of the head.
(c) The head-vertex has degree 3 and is incident to 2 edges which are not bridges. Furthermore,

the tree T is a depth tree.

The conditions (a)–(c) are the domain of definition of ψa , ψb , ψc, respectively. Before defin-
ing these mappings we need a technical lemma.

Lemma 5.2. If condition (c) holds for the tree-growing map MT , then there exists a unique
external edge e0 incident to the head-face with one endpoint u ancestor of the head-vertex and
one endpoint v0 descendant of the head-vertex.

Lemma 5.2 is illustrated by Fig. 17.

Proof of Lemma 5.2. We suppose that MT satisfies condition (c). One of the two edges incident
to the head-vertex is in the T -path from the root-vertex to the head-vertex. Denote it e. The edge
e separates the tree T in two subtrees T1 and T2. We consider the set E0 of external edges having
one endpoint in T1 and the other in T2. Any edge satisfying the conditions of Lemma 5.2 is in E0.
Since e is not a bridge, the set E0 is non-empty. Moreover, any edge in E0 has one endpoint that
is a descendant of the head-vertex. Since T is a depth tree, the other endpoint is an ancestor of the
head-vertex. It remains to show that there is a unique edge e0 in E0 incident to the head-face. By
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Fig. 17. The unique edge e0 satisfying the conditions of Lemma 5.2.

contracting every edge in T1 and T2 we obtain a map with 2 vertices. The edges incident to both
vertices are precisely the edges in E0 ∪ {e}. It is clear that exactly 2 of these edges are incident
to the head-face. One is the internal edge e and the other is an external edge e0 ∈ E0. This edge
e0 is the only external edge satisfying the conditions of Lemma 5.2. �

We are now ready to define the mappings ψa , ψb and ψc.

Definition 5.3. Let MT be a tree-growing map.

• The tree-growing map M ′
T ′ = ψa(MT ) (respectively ψb(MT )) is defined if condition (a)

(respectively (b)) holds. In this case, the tree-growing map M ′
T ′ is obtained by suppressing the

head-vertex v and the 3 incident half-edges. The other half of the edge incident to v becomes the
new head.

• The tree-growing map M ′
T ′ = ψc(MT ) is defined if condition (c) holds. In this case, we

consider the unique external edge e0 with endpoints u,v0 satisfying the conditions of Lemma 5.2.
The edge e0 is broken into two legs. The leg incident to v0 becomes the new head (the former
head becomes an anonymous leg).

• For a word w = a1a2 . . . an on the alphabet {a, b, c}, we denote by ψw the mapping ψan ◦
ψan−1 ◦ · · · ◦ ψa1 . Moreover, we say that the word w is readable on a tree-growing map MT if
the mapping ψw is well defined on MT .

Remarks.

• Applying one of the mappings ψa , ψb or ψc to a 2-near-cubic map cannot delete the root
(only half-edges incident to a vertex of degree 3 can disappear by application of ψa or ψb).

• The conditions (a), (b), (c) are incompatible. Thus, for any tree-growing map MT , there is
at most one readable word of a given length.

• Applying the mapping ψa , ψb or ψc decreases by one the number of edges. Therefore, the
length of any readable word on a tree-growing map MT is less than or equal to the number of
edges in MT .

We now define the mapping Ψ on bridgeless 2-near-cubic marked-depth-maps. Let MT be
such a map and let e be the marked (external) edge. Observe first that, unless MT is reduced to a
loop, the edge e has two distinct endpoints (or the endpoint of e would be incident to a bridge).
We denote by u and v the endpoints of e with the convention that u is an ancestor of v. We open
this map if we disconnect the edge e into two legs and choose the leg incident to v to be the head.
We denote by M�� the tree-growing map obtained by opening MT . By convention, opening the
T
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Fig. 18. The pair of first and last legs of the tree-growing map ψc(MT ) is the pair {s, t}.

2-near-cubic marked-depth-map reduced to a loop gives M0• . Note that we obtain MT by closing
M��

T . We now define the mapping Ψ .

Definition 5.4. Let MT be a bridgeless 2-near-cubic marked-depth-map. The word Ψ (MT ) is the
longest word readable on M��

T .

We want to prove that Φ and Ψ are inverse mappings. We begin by proving that the mapping
ψα is the inverse of ϕα for α = a, b, c.

We say that a tree-growing map satisfies condition (c′) if it satisfies condition (c) and is such
that the endpoint of every leg is an ancestor of the head-vertex.

Lemma 5.5.
• For α = a or b, the mapping ψα ◦ ϕα is the identity on all tree-growing maps and the

mapping ϕα ◦ ψα is the identity on tree-growing maps satisfying condition (α).
• The mapping ψc ◦ ϕc is the identity on tree-growing maps such that the endpoints of the

first and last legs exist and are distinct ancestors of the head-vertex. The mapping ϕc ◦ ψc is the
identity on tree-growing maps satisfying condition (c′).

Before proving Lemma 5.5, we need the following technical result.

Lemma 5.6. Let MT be a tree-growing map satisfying condition (c′) and let e0 be the edge
with endpoints u,v0 satisfying the conditions of Lemma 5.2. By definition, the tree-growing map
ψc(MT ) is obtained by breaking e0 into two legs s and h incident to u and v0, respectively, while
h becomes the new head. The pair of first and last legs of ψc(MT ) is the pair {s, t}, where t is
the head of MT .

Lemma 5.6 is illustrated by Fig. 18.

Proof of Lemma 5.6.

• Let v be the head-vertex of MT (i.e. the endpoint of t). By condition (c′), the endpoint of
any leg of MT is an ancestor of v. Therefore, in the tree-growing map ψc(MT ), the vertex v is
the last vertex incident to a leg on the T -path from the root-vertex to the head-vertex v0. Hence,
by Lemma 4.5, the leg t is either the first or the last leg of ψc(MT ).

• No leg lies between s and h on the tour of the head-face of ψc(MT ) since this leg would
have been inside a non-head face of MT . Thus the leg s is either the first or the last leg
of ψc(MT ). �
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Proof of Lemma 5.5.

• For α = a or b, it is clear from the definitions that ϕα ◦ ψα is the identity mapping on all
tree-growing maps and that ϕα ◦ψα is the identity on tree-growing maps satisfying condition (α).

• Consider a tree-growing map MT such that the endpoints of the first and last legs exist and
are distinct ancestors of the head-vertex v0. We call these legs s and t with the convention that
the endpoint u of s is an ancestor of the endpoint v of t . By definition, ϕc(MT ) is obtained by
joining the head of MT to s while t becomes the new head. Let e0 be the external edge created by
joining the head to s. The head-vertex v of the tree-growing map ϕc(MT ) is on the cycle made
of e0 and the T -path between its two endpoints u and v0, thus ϕc(MT ) satisfies condition (c).
Moreover, the external edge e0 satisfies the conditions of Lemma 5.2. Thus, ψc ◦ϕc(MT ) = MT .

• We consider a tree-growing map MT satisfying condition (c′). We consider the edge e0
with endpoints u,v0 satisfying the conditions of Lemma 5.2. By definition, ψc(MT ) is obtained
by breaking e0 into two legs s and h incident to u and v0, respectively, while h becomes the new
head. By Lemma 5.6, the pair of first and last legs of ψc(MT ) is {s, t}. Moreover, the endpoint u

of s is an ancestor of the endpoint v of t (by definition of e0, u, v0 in Lemma 5.2). Therefore, the
identity ϕc ◦ ψc(MT ) = MT follows from the definitions. �
Proposition 5.7. The mapping Ψ ◦ Φ is the identity on excursions.

Proof.

• For any word w on the alphabet {a, b, c} such that the tree-growing map ϕw(M0• ) is well
defined, the word w is readable on ϕw(M0• ) and ψw ◦ ϕw(M0• ) = M0• .
We proceed by induction on the length of w. The property holds for the empty word. We write
w = αw′ with α = a, b or c and suppose that it holds for w′. Let M ′

T = ϕw′(M0• ). If α = c, the
endpoints of the first and last legs of M ′

T are distinct and comparable (since ϕc is defined on
M ′

T ). Moreover, we know by Lemma 4.6 that these endpoints are ancestors of the head-vertex.
Thus, for α = a, b or c, Lemma 5.5 ensures that ψα ◦ ϕα(M ′

T ) = M ′
T . Therefore,

ψαw′ ◦ ϕαw′
(
M0•

) = ψw′ ◦ ψα ◦ ϕα ◦ ϕw′
(
M0•

) = ψw′ ◦ ψα ◦ ϕα

(
M ′

T

) = ψw′
(
M ′

T

)
,

and ψw′(M ′
T ) = M0• by the induction hypothesis.

• For any excursion w, we have Ψ ◦ Φ(w) = w.
By definition, the map MT = Φ(w) is obtained by closing ϕw(M0• ). In order to conclude that
M��

T = ϕw(M0• ), we only need to check that the head of M��
T is the head of ϕw(M0• ) (and the

non-head leg of M��
T is the non-head leg of ϕw(M0• )). This is true since the endpoint of the non-

head leg of ϕw(M0• ) is an ancestor of the head-vertex by Lemma 4.6. By the preceding point, the
word w is readable on M��

T = ϕw(M0• ) and ψw(MT ) = ψw ◦ ϕw(M0• ) = M0• . Since no letter is
readable on M0• , the longest word readable on M��

T is w. Thus, Ψ ◦ Φ(w) = Ψ (MT ) = w. �
It remains to show that Φ ◦ Ψ is the identity mapping on bridgeless 2-near-cubic marked-

depth-maps. We first prove that the image of a bridgeless 2-near-cubic marked-depth-map by Ψ

is an excursion.

Proposition 5.8. For any bridgeless 2-near-cubic marked-depth-map MT , the longest word w

readable on M�� is an excursion. Moreover, the tree-growing map ψw(M��) is M0• .
T T
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Proof. If MT is the map reduced to a loop the result is trivial. We exclude this case in what
follows. Let w be a word readable on M��

T and let NT = ψw(M��
T ). We denote by u0 the first

vertex of NT incident to a leg on the T -path from the root-vertex to the head-vertex.

• Any bridge of NT is in the T -path between u0 and the head-vertex.
We proceed by induction on the length of w. Suppose first that w is the empty word. Let e0 be
the marked edge of MT . By definition, the tree-growing map NT = M��

T is obtained from MT

by breaking e0 into two legs: the head and another leg incident to u0. Let e be a bridge of NT

and let N1,N2 be the two connected submaps obtained by deleting e. Since e is not a bridge
of MT , the edge e0 joins N1 and N2. Therefore, the root-vertex and head-vertex are not in the
same submap. Thus, the bridge e is in any path between u0 and the head-vertex, in particular, it
is in the T -path.

We now write w = αw′ with α = a, b or c and suppose, by the induction hypothesis, that
the property holds for w′. We denote by u′

0 the first vertex of N ′
T = ψw′(M��

T ) incident to a leg
on the T -path from the root-vertex to the head-vertex. Suppose first that α = a or b. The edge
incident to the head-vertex of N ′

T is a bridge hence, by the induction hypothesis, it is in the T -
path between u′

0 and the head-vertex v′
0 of N ′

T . Hence, u′
0 	= v′

0. Thus, u0 = u′
0 and every bridge

of NT = ψα(N ′
T ) is in the T -path between u0 and the head-vertex. Suppose now that α = c.

Since w is readable on M��
T , the tree-growing map N ′

T = ψw′(M��
T ) satisfies condition (c).

We consider the edge e0 with endpoints u,v0 satisfying the conditions of Lemma 5.2. The map
NT = ψc(N

′
T ) is obtained from NT by breaking e0 into two legs. By definition, the head-vertex

of NT is v0. Moreover, the vertex u0 is either u′
0 or u if u is an ancestor of u′

0. We consider a
bridge e of NT . If e is a bridge of N ′

T , it is in the T -path between u′
0 to the head-vertex of N ′

T

which is included in the T -path between u0 and v0. If e is not a bridge of N ′
T , we consider

the two connected submaps N1,N2 obtained from NT by deleting the bridge e. Since e is not a
bridge of N ′

T , the edge e0 joins N1 and N2. Hence, the endpoints u and v0 of e0 are not in the
same submap. Thus, the bridge e is in every path of NT between u and the head-vertex v0, in
particular, it is in the T -path between u0 and v0.

• The tree-growing map NT has at least one leg beside the head.
We proceed by induction. The property holds for the empty word. We now write w = αw′ with
α = a, b or c and suppose that the property holds for w′. Suppose first that α = a or b. Since
condition (α) holds, the edge incident to the head-vertex v′

0 of the tree-growing map N ′
T =

ψw′(M��
T ) is a bridge. By the preceding point, this edge is on the T -path between u′

0 and v′
0,

where u′
0 be the first vertex of N ′

T incident to a leg on the T -path from the root-vertex to the
head-vertex. Thus u′

0 	= v′
0 and NT = ψα(N ′

T ) has at least one leg (the one incident to u′
0) beside

the head. In the case α = c, the tree-growing map NT = ψc(N
′
T ) has one more legs than N ′

T ,
hence it has at least one leg beside the head.

• The head and root of NT are distinct half-edges.
By definition, the map M��

T has one leg beside the head whose endpoint is a proper ancestor
of the head-vertex. Hence, the head-vertex and root-vertex are distinct. We suppose now that
w = αw′ with α = a, b or c. If α = a or b the head of NT is an half-edge of N ′

T = ψw′(M��
T )

which is part of an internal edge. Hence it is not the root. If α = c, the head of NT is part of
an external edge e of N ′

T = ψw′(M��
T ). The edge is broken into the head of NT and another leg

whose endpoint is a proper ancestor of the head-vertex. Hence, the head-vertex and root-vertex
of NT are distinct.
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• If w is the longest readable word, then NT = M0• .
We first prove that the root-vertex and the head-vertex of NT are the same. Suppose they are
distinct. In this case, the head-vertex has degree 3 and is incident to at least one edge. If it is
incident to one edge, then one of the conditions (a) or (b) holds and w is not the longest readable
word. Hence the head-vertex is incident to two edges e1 and e2. One of these edges, say e1, is in
the T -path from the root-vertex to the head-vertex and the other e2 is not. By a preceding point,
the edge e2 is not a bridge. Therefore, e1 is not a bridge either (e1 and e2 have the same ability
to disconnect the map). In this case, condition (c) holds (since T is a depth tree) and w is not the
longest readable word. Thus, the root-vertex and the head-vertex of NT are the same. Therefore,
the root-vertex has degree 2 and is incident to the head and the root. The head and the root are
distinct (by the preceding point). Moreover, the root is a leg. Indeed, if the root was not a leg
it would be part of an external edge which is a bridge (which is impossible since the tree T is
spanning). Hence the root-vertex is incident to two legs: the root and the head. Thus, NT = M0• .

• The tree-growing map NT has 2|w|c − |w|a − |w|b + 1 legs beside the head.
The tree-growing map M��

T has one leg beside the head. Moreover, applying mapping ψa or ψb

decreases by one the number of legs whereas applying mapping ψc increases this number by
two. Hence the property follows easily by induction.

• The longest word w readable on M��
T is an excursion.

By the preceding points, any prefix w′ of w satisfies 2|w′|c − |w′|a − |w′|b + 1 � 1 (since this
quantity is the number of non-head legs of ψw′(M��

T )). Moreover, since ψw(M��
T ) = M0• has

one leg beside the root, we have 2|w|c − |w|a − |w|b + 1 = 1. These properties are equivalent
to (5) and (6), hence w is an excursion. �
Proposition 5.9. The mapping Φ ◦ Ψ is the identity on bridgeless 2-near-cubic marked-depth-
maps.

Proof. Let MT be a bridgeless 2-near-cubic marked-depth-map.

• For any word w readable on M��
T , the endpoints of any leg of ψw(M��

T ) is an ancestor of the
head-vertex.
We proceed by induction on the length of w. The property holds for the empty word. We now
write w = αw′ with α = a, b or c and suppose that it holds for w′. For α = a or b, the property
clearly holds for w. Suppose now that α = c. Since w is readable, the tree-growing map N ′

T =
ψw′(M��

T ) satisfies condition (c). We consider the edge e0 with endpoints u,v0 satisfying the
conditions of Lemma 5.2. By definition, the head-vertex v0 of NT = ψc(N

′
T ) is a descendant

of the head-vertex v of N ′
T . By the induction hypothesis, the endpoint of any leg of N ′

T is an
ancestor of v. Hence, the endpoint of any leg of NT is an ancestor of the head-vertex v0.

• For any word w readable on M��
T , we have ϕw ◦ ψw(M��

T ) = M��
T .

We proceed by induction. The property holds for the empty word. We now write w = αw′ with
α = a, b or c and suppose that the property holds for w′. If α = a or b the induction step is
given directly by Lemma 5.5 (since condition (α) holds for M ′

T = ψw′(M��
T )). If α = c, that is,

condition (c) holds for M ′
T = ψw′(M��

T ), we must prove that condition (c′) holds (in order to
apply Lemma 5.5). But we are ensured that condition (c′) holds by the preceding point. Thus,
for α = a, b or c, Lemma 5.5 ensures that ϕα ◦ ψα(M ′

T ) = M ′
T . Therefore,

ϕαw′ ◦ ψαw′
(
M��

T

) = ϕw′ ◦ ϕα ◦ ψα ◦ ψw′
(
M��

T

) = ϕw′ ◦ ϕα ◦ ψα

(
M ′

T

) = ϕw′
(
M ′

T

)
,

and ϕw′(M ′ ) = M�� by the induction hypothesis.
T T
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• Φ ◦ Ψ (MT ) = MT .
By definition, the word w = Ψ (MT ) is the longest readable word on M��

T . Hence, by Propo-
sition 5.8, ψw(M��

T ) = M0• . By the preceding point, ϕw(M0• ) = ϕw ◦ ψw(M��
T ) = M��

T . By
definition, the map Φ(w) is obtained by closing ϕw(M0• ) = M��

T , hence Φ(w) = MT . Thus,
Φ ◦ Ψ (MT ) = Φ(w) = MT . �

By Proposition 5.1, the mapping Φ associates a bridgeless 2-near-cubic marked-depth-map
with any excursion. Conversely, by Proposition 5.8, the mapping Ψ associates an excursion with
any bridgeless 2-near-cubic marked-depth-map. The mappings Φ and Ψ are inverse mappings by
Propositions 5.7 and 5.9. Thus, the mapping Φ is a bijection between excursions and bridgeless
2-near-cubic marked-depth-maps. Moreover, if an excursion w has size n (length 3n), the 2-near-
cubic depth-map Φ(w) has size n (3n + 1 edges). This concludes the proof of Theorem 4.7.

6. A bijection between Kreweras walks and cubic depth-maps

In this section, we prove that the mapping Φ establishes a bijection between Kreweras walks
ending at the origin and 2-near-cubic depth-maps. This result is stated more precisely in the
following theorem.

Theorem 6.1. Let w be an excursion. The marked edge of the 2-near-cubic depth-map Φ(w) is
the root-edge if and only if the excursion w is a Kreweras walk ending at the origin.

Thus, the mapping Φ induces a bijection between Kreweras walks of size n (length 3n) ending
at the origin and bridgeless 2-near-cubic depth-maps of size n (3n + 1 edges).

Figure 19 illustrates an instance of Theorem 6.1. Before proving this theorem we explore its
enumerative consequences. From Theorem 6.1, the number kn of Kreweras walks of size n is
equal to the number dn of bridgeless 2-near-cubic depth-maps of size n. The number dn is given
by Corollary 4.8. We obtain the following result.

Theorem 6.2. There are kn = 4n

(n+1)(2n+1)

(3n
n

)
Kreweras walks of size n (length 3n) ending at the

origin.

Fig. 19. The image of a Kreweras walk by Φ: the root-edge is marked.
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The rest of this section is devoted to the proof of Theorem 6.1.
Consider a growing map M such that the root is a leg. Recall that making the tour of the

head-face means following its border in counterclockwise direction starting from the head (see
Fig. 12). We call left (respectively right) the legs encountered before (respectively after) the root
during the tour of the head-face. For instance, the growing map in Fig. 12 has one left leg and
two right legs.

Lemma 6.3. For any Kreweras walk w ending at the origin, the marked edge of Φ(w) is the
root-edge.

Proof. Let w′ be a suffix of w and let M ′
T = ϕw′(M0• ) be the corresponding tree-growing map.

• The root of M ′
T is a leg and M ′

T has |w′|a −|w′|c left legs and |w′|b −|w′|c right legs. (Observe
that, these quantities are non-negative by (3) and (4).)
We proceed by induction on the length of w′. The property holds for the empty word. We now
write w′ = αw′′ with α = a, b or c and suppose that the property holds for w′′. If α = a or
b the property holds for w′ since applying ϕa (respectively ϕb) increases by one the number
of left (respectively right) legs. We now suppose that α = c. We know that |w′′|a − |w′′|c =
|w′|a −|w′|c +1 � 1. Hence, by the induction hypothesis, the tree-growing-map M ′′

T = ϕw′′(M0• )

has at least one left leg. Similarly, M ′′
T has at least one right leg. Therefore, the first (respectively

last) leg of M ′′
T is a left (respectively right) leg. Hence, applying ϕc to M ′′

T decreases by one the
number of left (respectively right) legs. Thus, the property holds for w′.

• For w′ = w, the preceding point shows that ϕw(M0• ) has only one leg beside the head and that
this leg is the root. Thus, the marked edge of Φ(w) is the root-edge. �
Lemma 6.4. For any bridgeless 2-near-cubic depth-map MT marked on the root-edge, the word
w = Ψ (MT ) = Φ−1(MT ) is a Kreweras walk ending at the origin.

Proof. Let w be a word readable on M��
T and let NT = ψw(M��

T ). Observe that the root of NT

is a leg (since it is the case in M��
T and the root never disappears).

• The tree-growing map NT has |w|c − |w|a left legs and |w|c − |w|b right legs.
We proceed by induction on the length of w. The property holds for the empty word. We now
write w = αw′ with α = a, b or c and suppose that the property holds for w′. If α = a or b the
property holds for w since applying ψa (respectively ψb) decreases by one the number of left
(respectively right) legs. We now suppose that α = c. The map N ′

T = ψw′(M��
T ) satisfies con-

dition (c). We have already proved (see the first point in the proof of Proposition 5.8) that the
endpoint of every leg is an ancestor of the head-vertex. Hence N ′

T satisfies condition (c′). There-
fore, Lemma 5.6 holds for N ′

T . We adopt the notations h, s, t of this lemma which is illustrated in
Fig. 18. By Lemma 5.6, the pair of first and last head of NT = ψc(N

′
T ) is the pair {s, t}. Hence,

in the pair {s, t} one is a left leg and the other is a right leg of NT . Moreover, the other left and
right legs of NT are the same as in N ′

T . Thus, applying ψc to N ′
T increases by one the number of

left (respectively right) legs. Hence, the property holds for w.

• The word w = Ψ (MT ) is a Kreweras walk ending at the origin.
By definition, w is the longest word readable on M��. By Proposition 5.8, ψw(M��) = M0• . By
T T
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the preceding point, we get |w|c − |w|a = 0 and |w|c − |w|b = 0 (since M0• has no left nor right
leg). Moreover, for any suffix w′ of w, the preceding point proves that |w′|c − |w′|a � 0 and
|w′|c − |w′|b � 0. These properties are equivalent to (3) and (4), hence w is a Kreweras walk
ending at the origin. �
7. Enumerating depth trees and cubic maps

In Section 4, we exhibited a bijection Φ between excursions and bridgeless 2-near-cubic
marked-depth-maps. As a corollary we obtained the number of bridgeless 2-near-cubic depth-
maps of size n:

dn = 4n

(n + 1)(2n + 1)

(
3n

n

)
.

In this section, we prove that any bridgeless 2-near-cubic map of size n has 2n depth trees (Corol-
lary 7.5). Hence, the number of bridgeless 2-near-cubic maps of size n is

cn = dn

2n
= 2n

(n + 1)(2n + 1)

(
3n

n

)
.

Given the bijection between 2-near-cubic maps and cubic maps (see Fig. 5), we obtain the fol-
lowing theorem.

Theorem 7.1. There are

cn = 2n

(n + 1)(2n + 1)

(
3n

n

)

bridgeless cubic maps with 3n edges.

By duality, cn is also the number of loopless triangulations with 3n edges. Hence, we recover
Eq. (2) announced in the introduction. As mentioned above, an alternative bijective proof of
Theorem 7.1 was given in [7].

The rest of this section is devoted to the counting of depth trees on cubic maps and, more
generally, on cubic (potentially non-planar) graphs. We first give an alternative characterization
of depth trees. This characterization is based on the depth-first search (DFS) algorithm (see Sec-
tion 23.3 of [2]). We consider the DFS algorithm as an algorithm for constructing a spanning tree
of a graph.

Consider a graph G with a distinguished vertex v0. If the DFS algorithm starts at v0, the
subgraph T (see below) constructed by the algorithm remains a tree containing v0. We call visited
the vertices in T and unvisited the other vertices. The distinguished vertex v0 is considered as
the root-vertex of the tree. Hence, any vertex in T distinct from v0 has a father in T .

Definition 7.2. Depth-first search (DFS) algorithm.
Initialization: Set the current vertex to be v0 and the tree T to be reduced to v0.
Core: While the current vertex v is adjacent to some unvisited vertices or is distinct from v0 do:
If there are some edges linking the current vertex v to an unvisited vertex, then choose one of
them. Add the chosen edge e and its unvisited endpoint v′ to the tree T . Set the current vertex to
be v′.
Else, backtrack, that is, set the current vertex to be the father of v in T .
End: Return the tree T .
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It is well known that the DFS algorithm returns a spanning tree. It is also known [2] that the
two following properties are equivalent for a spanning tree T of a graph G having a distinguished
vertex v0:

(i) Any external edge joins comparable vertices.
(ii) The tree T can be obtained by a DFS algorithm on the graph G starting at v0.

Before stating the main result of this section, we need an easy preliminary lemma.

Lemma 7.3. Let G be a connected graph with a distinguished vertex v0 whose deletion does not
disconnect the graph. Then, any spanning tree T of G satisfying conditions (i)–(ii) has exactly
one edge incident to v0.

Proof. Let e0 be an edge of T incident to v0 and let v1 be the other endpoint of e0. We partition
the vertex set V of G into {v0} ∪ V0 ∪ V1, where V1 is the set of descendants of v1. There is
no internal edge joining a vertex in V0 and a vertex in V1. There is no external edge either or it
would join two non-comparable vertices. Thus V0 = ∅ or the deletion of v0 would disconnect the
graph. �
Theorem 7.4. Let G be a loopless connected graph with a distinguished vertex v0 whose deletion
does not disconnect the graph. Let e0 be an edge incident to v0. If G is a k-near-cubic graph
(v0 has degree k and the other vertices have degree 3) of size n (3n + 2k − 3 edges), then there
are 2n trees containing e0 and satisfying conditions (i)–(ii).

Given that the depth trees are the spanning trees satisfying conditions (i)–(ii) and not contain-
ing the root, the following corollary is immediate.

Corollary 7.5. Any bridgeless 2-near-cubic map of size n (3n + 1 edges) has 2n depth trees.

Remark. Theorem 7.4 implies that any k-near-cubic loopless graph of size n has k2n trees satis-
fying the conditions (i)–(ii).

The rest of this section is devoted to the proof of Theorem 7.4. The proof relies on the intuition
that exactly n real binary choices have to be made during the execution of a DFS algorithm on a
k-near-cubic map of size n.

Given a graph G and a subset of vertices U , we say that two vertices u and v are U -connected
if there is a path between u and v containing only vertices in U ∪ {u,v}.

Lemma 7.6. Let v be the current vertex and let U be the set of unvisited vertices at a given time
of the DFS algorithm. The vertices that will be visited before the last visit to v are the vertices in
U that are U -connected to v.

Proof. Let S be the set of vertices in U that are U -connected to v. We make an induction on the
cardinality of S. If the set S is empty, there is no edge linking v to an unvisited vertex. Hence,
the next step in the algorithm is to backtrack and the vertex v will never be visited again. In other
words, it is the last visit to v, hence the property holds. Suppose now that S is non-empty. In
this case, there are some edges linking the current vertex v to an unvisited vertex. Let e be the
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Fig. 20. Partition of the vertices in S.

edge chosen by the DFS algorithm and let v′ ∈ U be the corresponding endpoint. Let S1 be the
set of vertices in U that are U -connected to v′ and let S2 = S \ S1. Observe that no edge joins
a vertex in S1 and a vertex in S2. This situation is represented in Fig. 20. The set of vertices in
U ′ = U \ {v′} that are U ′-connected to v is S′

1 = S1 \ {v′} (since a vertex is U -connected to v′ if
and only if it is U ′-connected to v′). By the induction hypothesis, S′

1 is the set of vertices visited
between the first and last visit to v′. Hence S1 is the set of vertices visited before the algorithm
returns to v. Since no edge joins a vertex in S1 and a vertex in S2, the vertices in S2 are the
vertices in U \ S1 that are (U \ S1)-connected to v. By the induction hypothesis, S2 is the set of
vertices visited before the last visit to v. Thus, the property holds. �
Proof of Theorem 7.4. Clearly, the spanning trees containing e0 and satisfying the conditions
(i)–(ii) are the spanning trees obtained by a DFS algorithm for which the first core step is to
choose e0. We want to prove that there are 2n such spanning trees.

We consider an execution of the DFS algorithm for which the first core step is to choose e0

and denote by T the spanning tree returned by the DFS algorithm (in order to distinguish it from
the evolving tree T ). After the first core step, the tree T is reduced to e0 and its two endpoints
v0 and v′

0. Let V be the vertex set of G and let V ′ = V \ {v0, v
′
0}. Since the deletion of v0 does

not disconnect the graph, every vertex in V ′ is V ′-connected to v′
0. Hence, by Lemma 7.6, every

vertex will be visited before the algorithm returns to v0. Thus, from this stage on, the current
vertex v is incident to 3 edges e, e1, e2, where e ∈ T links v to its father.

• We denote by v1 and v2 the endpoints of e1 and e2, respectively (these endpoints are not
necessarily distinct), and we denote by U the set of unvisited vertices. We distinguish three cases:

(α) at least one of the vertices v1, v2 is not in U ,
(β) the two vertices v1, v2 are in U and are U -connected with each other,
(γ ) the two vertices v1, v2 are in U and are not U -connected with each other.

The three cases are illustrated by Fig. 21. We prove successively the following properties:

– In case (α), no choice has to be done by the algorithm.

Indeed, there is at most one edge (e1 or e2) linking the current vertex v to an unvisited vertex.

– In case (β), the algorithm has to choose between e1 and e2. This choice necessarily leads
to two different spanning trees T . Indeed the edge e1 (respectively e2) is in T if and only if the
choice of e1 (respectively e2) is made.
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Fig. 21. Case (α) (left), case (β) (middle) and case (γ ) (right). The visited vertices are indicated by a square while
unvisited ones are indicated by a circle.

Suppose (without loss of generality), that the choice of e1 is made. The vertex v2 is (U ∪ {v1})-
connected to v1 (a vertex is (U ∪ {v1})-connected to v1 if and only if it is U -connected to v1).
Hence, by Lemma 7.6, the vertex v2 will be visited before the last visit to v1, that is, before the
algorithm returns to the vertex v. Therefore, the edge e2 will not be in the spanning tree T .

– In case (γ ), the algorithm has to choose between e1 and e2. Moreover, any tree T obtained
by choosing e1 can be also obtained by choosing e2.

Let S1 and S2 be the set of vertices in U that are U -connected to v1 and v2, respectively. Observe
that the sets S1 and S2 are disjoint and no edge links a vertex in S1 and a vertex in S2 (otherwise
the vertices v1 and v2 would be U -connected). Suppose that the choice of e1 is made. The set
of vertices in U \ {v1} that are U \ {v1}-connected to v1 is S1 \ {v1}. Hence, by Lemma 7.6, the
set of vertices visited before the last visit to v1, that is, before the algorithm returns to v is S1.
Since v2 is not in S1 the next step of the algorithm is to choose e2. Let U2 = U \ S1 be the set
of unvisited vertices at this stage. Since no vertex in S1 is adjacent to a vertex in S2, the set of
vertices in U2 \ {v2} that are (U2 \ {v2})-connected to v2 is S2 \ {v2}. Hence, by Lemma 7.6, the
set of vertices visited before the last visit to v2, that is, before the algorithm returns to v is S2.
Let T1 (respectively T2) be the subtree constructed by the algorithm between the first and last
visit to v1 (respectively v2). Since no vertex in S1 is adjacent to a vertex in S2, the subtree T1
could have been constructed exactly the same way if the algorithm had chosen e2 (instead of e1)
at the beginning. Similarly, the subtree T2 could have been constructed exactly in the same way
if the algorithm had chosen e2 at the beginning. Therefore, the tree T returned by the algorithm
could have been constructed if the algorithm had chosen e2 (instead of e1) at the beginning.

• During any execution of the DFS algorithm we are exactly n times in case (β).

The k-near-cubic graph G has 3n + 2k − 3 edges and 2n + 2k − 1 vertices. Hence, the spanning
tree T has 2n + 2k − 2 edges. Thus, there are n + k − 1 external edges among which k − 1 are
incident to v0. Let Eβ be the set of the n external edges not incident to v0. Since G is loopless and
the spanning tree T satisfies (i)–(ii), the edges in Eβ have distinct and comparable endpoints. For
any edge e in Eβ , we denote by ve the endpoint of e which is the ancestor of the other endpoint.
The vertex ve is incident to e, to the edge of T linking v to its father and to another edge in T
linking ve to its son (otherwise ve has no descendant). In particular, if e and e′ are distinct edges in
Eβ , then the vertices ve and ve′ are distinct. Thus, the set of vertices Vβ = {ve/e ∈ Eβ} has size n.

We want to prove that the case (β) occurs when the algorithm visit a vertex in Vβ for the first
time (and not otherwise). Let v be a vertex in Vβ . The vertex v is incident to an edge e1 in Eβ ,
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an edge e in T linking v to its father and another edge e2 in T linking v to its son. Let T be the
tree constructed by the algorithm at the time of the first visit to v and let U be the set of unvisited
vertices. Any descendant of v is in U . In particular, the endpoints v1 and v2 of e1 and e2 are
in U and are U -connected with each other (take the T -path between v1 and v2). Thus, we are in
case (β). Conversely, if we are in case (β) during the algorithm, the current vertex v is visited for
the first time (or one of the vertices v1, v2 would already be in U ). Moreover, by the preceding
point, one of the edges (e1 or e2) incident to v is not in T and joins v to one of its descendants.
Hence, the current vertex v is in Vβ .

• During the DFS algorithm we have to make n binary choices that will affect the outcome of
the algorithm (case (β)). The other choices (case (γ )) do not affect the outcome of the algorithm.
Therefore, there are 2n possible outcomes. �
8. Applications, extensions and open problems

8.1. Random generation of triangulations

The random generation of excursions of length 3n (with uniform distribution) reduces to the
random generation of 1-dimensional walks of length 3n with steps +2, −1 starting and ending
at 0 and remaining non-negative. The random generation of these walks is known to be feasible
in linear time. (One just needs to generate a word of length 3n + 1 containing n letters c and
2n + 1 letters α and to apply the cycle lemma.) Given an excursion w, the construction of the 2-
near-cubic marked-depth-map Φ(w) can be performed in linear time. Therefore, we have a linear
time algorithm for the random generation (with uniform distribution) of bridgeless 2-near-cubic
marked-depth-maps. For any bridgeless 2-near-cubic map there are 2n depth trees and (n + 1)

possible marking. Therefore, if we drop the marking and the depth tree at the end of the process,
we obtain a uniform distribution on bridgeless 2-near-cubic maps. This allows us to generate
uniformly bridgeless cubic maps or, dually, loopless triangulations, in linear time.

8.2. Kreweras walks ending at (i,0) and (i + 2)-near-cubic maps

The Kreweras walks ending at (i,0) are the words w on the alphabet {a, b, c} with |w|a + i =
|w|b = |w|c such that any suffix w′ of w satisfies |w′|a + i � |w′|c and |w′|b � |w′|c . There is
a very nice formula [4] giving the number of Kreweras walks of size n (length 3n + 2i) ending
at (i,0):

kn,i = 4n(2i + 1)

(n + i + 1)(2n + 2i + 1)

(
2i

i

)(
3n + 2i

n

)
. (8)

There is also a similar formula [5] for non-separable (i + 2)-near-cubic maps of size n (3n +
2i + 1 edges):

cn,i = 2n(2i + 1)

(n + i + 1)(2n + 2i + 1)

(
2i

i

)(
3n + 2i

n

)
. (9)

In this subsection, we show that the bijection Φ (Definition 4.2) can be extended to Kreweras
walks ending at (i,0). This gives a bijective correspondence explaining why kn,i = 2ncn,i .

Consider the tree-growing map Mi• reduced to a vertex, a root, a head and i left legs (Fig. 22).
We define the image of a Kreweras walk w ending at (i,0) as the map obtained by closing
ϕw(Mi•). We get the following extension of Theorem 6.1.
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Fig. 22. The tree-growing map Mi• when i = 3.

Theorem 8.1. The mapping Φ is a bijection between Kreweras walks of size n (length 3n + 2i)
ending at (i,0) and non-separable (i + 2)-near-cubic maps of size n (3n+ 2i + 1 edges) marked
on the root-edge with a depth tree that contains the edge following the root in counterclockwise
order around the root-vertex.

By Theorem 7.4, there are 2n such depth trees. Consequently, we obtain the following corol-
lary:

Corollary 8.2. The number kn,i of Kreweras walks of size n ending at (i,0) and the number cn,i

of non-separable (i + 2)-near-cubic maps of size n are related by the equation kn,i = 2ncn,i .

One can define the counterpart of excursions for Kreweras walks ending at (i,0). These are the
walks obtained when one chooses an external edge in a non-separable (i + 2)-near-cubic depth-
map such that the edge following the root is in the tree and applies the mapping Ψ = Φ−1. Alas,
we have found no simple characterization of this set of walks nor any bijective proof explaining
why this set has cardinality

4n(2i + 1)

(2n + 2i + 1)

(
2i

i

)(
3n + 2i

n

)
.
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