Suborbital graphs for the normalizer of $\Gamma_0(m)$

Refik Keskin

Department of Mathematics, Faculty of Science and Arts, Sakarya University, Sakarya, Turkey

Received 12 August 2003; accepted 30 September 2004
Available online 4 January 2005

Abstract

In this study, we characterize all circuits in the suborbital graph for the normalizer of $\Gamma_0(m)$ when m is a square-free positive integer. We propose a conjecture concerning the suborbital graphs.

MSC: 46A40; 05C05; 20H10

1. Introduction

Let m be a positive integer and let $\Gamma_1(m)$ be the normalizer of the congruence subgroup $\Gamma_0(m)$ of the modular group in $PSL(2, \mathbb{R})$. The normalizer $\Gamma_1(m)$ was studied by various authors (see [6,7] and the references there). A necessary and sufficient condition for $\Gamma_1(m)$ to act transitively on $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ is given in [6]. In [1], the authors investigated the suborbital graph for the modular group on $\hat{\mathbb{Q}}$ and so conjectured that the suborbital graph $G(\infty, u/n)$ is a forest if and only if $G(\infty, u/n)$ contains no triangles where $n > 1$. Then, in [3], the author proved that the conjecture is true. In [4], we investigated the suborbital graph for the Hecke group $H(\sqrt{m})$ on the set of cusps of $H(\sqrt{m})$ where $H(\sqrt{m})$ is the Hecke group generated by the mappings

$$z \rightarrow z + \sqrt{m}, \quad z \rightarrow -1/z,$$

$m = 1, 2, 3$.

E-mail address: rkeskin@sakarya.edu.tr.

0195-6698/$-$ see front matter © 2004 Elsevier Ltd. All rights reserved.
2. The action of \(\Gamma_1(m) \) on \(\hat{\mathbb{Q}} \)

A complete description of the elements of \(\Gamma_1(m) \) is given in [10]. If we represent the elements of \(\Gamma_1(m) \) by the associated matrices, then the normalizer consists exactly of the matrices

\[
\begin{pmatrix}
 ae & b/h \\
 cm/h & de
\end{pmatrix}
\]

where \(e | (m/h^2) \) and \(h \) is the largest divisor of 24 for which \(h^2 | m \) with the understanding that the determinant of the matrix is \(e > 0 \), and that \((e, m/h^2e) = 1 \). The following theorem is proved in [6].

Theorem 2.1. Let \(m \) have prime power decomposition \(2^{a_1}3^{a_2}p_3^{a_3} \cdots p_r^{a_r} \). Then \(\Gamma_1(m) \) acts transitively on \(\hat{\mathbb{Q}} \) if and only if \(a_1 \leq 7, a_2 \leq 3, a_i \leq 1, i = 3, 4, \ldots, r \).

If \(m \) is a square-free positive integer, then \(h = 1 \). Therefore we give the following (see also [7]).

Theorem 2.2. Let \(m \) be a square-free positive integer. Then we have

\[
\Gamma_1(m) = \left\{ \left(\frac{a\sqrt{q}}{cm/\sqrt{q}}, \frac{b/\sqrt{q}}{d\sqrt{q}} \right) : 1 \leq q, q | m; a, b, c, d \in \mathbb{Z}; adq - bcm/q = 1 \right\}.
\]

Let \(m \) be a square-free positive integer. Then, in view of the above theorem, the following theorem holds. (Here, for the sake of completeness, we give a simple proof.)

Theorem 2.3. Let \(m \) be a square-free positive integer. Then \(\Gamma_1(m) \) acts transitively on the set \(\hat{\mathbb{Q}} = \mathbb{Q} \cup \{ \infty \} \) of the cusps of \(\Gamma_1(m) \) where we represent \(\infty \) as \(\frac{1}{0} = \frac{-1}{0} \).

Proof. Let \(k/s \in \hat{\mathbb{Q}} \) with \((k, s) = 1 \). Let \(q_1 = (s, m) \). Then \(s = s^*q_1 \) for some integer \(s^* \). Since \(m \) is square-free, \((s, m/q_1) = 1 \). Thus we have \((s, km/q_1) = 1 \). Therefore there exist two integers \(x \) and \(y \) such that \((m/q_1)ky - sx = 1 \). Let \(q_2 = m/q_1 \) and let

\[
T(z) = \frac{k\sqrt{q_2}z + x/\sqrt{q_2}}{s\sqrt{q_2}z + y\sqrt{q_2}}.
\]

Then it is easily seen that \(T \in \Gamma_1(m) \) and \(T(\infty) = k/s \). Thus the proof follows. \(\square \)
Let \((m, n) = 1\) and let \(\Gamma_0^*(n)\) be defined by
\[
\Gamma_0^*(n) = \left\{ \left(\frac{a\sqrt{q}}{cm/\sqrt{q}}, \frac{b\sqrt{q}}{dm/\sqrt{q}} \right) : c \equiv 0 \pmod{n} \right\}.
\]

Then \(\Gamma_0^*(n)\) is a subgroup of \(\Gamma_1(m)\) and \(\Gamma_0(mn) \subset \Gamma_0^*(n) \subset \Gamma_1(m)\).

Let \((G, X)\) be a transitive permutation group, and suppose that \(R\) is an equivalence relation on \(X\). \(R\) is said to be \(G\)-invariant if \((x, y) \in R\) implies \((g(x), g(y)) \in R\) for all \(g \in G\). The equivalence classes of a \(G\)-invariant relation are called blocks.

We now give a lemma from [2].

Lemma 1. Suppose that \((G, X)\) is a transitive permutation group, and \(H\) is a subgroup of \(G\) such that, for some \(x \in X\), \(G_x \subset H\). Then
\[
R = \{(g(x), gh(x)) : g \in G, h \in H\}
\]
is an equivalence relation. Furthermore, \(R = \Delta\), the diagonal of \(X \times X \iff H = G_x\), and \(R = X \times X \iff H = G\).

Lemma 2. Let \((G, X)\) be a transitive permutation group, and \(\approx\) the \(G\)-invariant equivalence relation defined in Lemma 1; then \(g_1(\alpha) \approx g_2(\alpha)\) if and only if \(g_1 \in g_2H\). Furthermore, the number of blocks is \(|G : H|\).

Let \(G = \Gamma_1(m)\) and \(X = \hat{\mathbb{Q}}\). In this case \(G_\infty = \langle T \rangle\) where \(T(z) = z + 1\). It is clear that \(G_\infty \subset \Gamma_0^*(n) \subset G\). Let \(\approx\) be the relation defined in Lemma 1, and assume that \(r/s, x/y \in \hat{\mathbb{Q}}\). Then according to Theorem 2.3, there exist \(T, S \in \Gamma_1(m)\) such that \(T(\infty) = r/s\), \(S(\infty) = x/y\) where
\[
T(z) = \frac{r\sqrt{q_1z} + *}{(s\sqrt{q_1})z + *}, \quad S(z) = \frac{x\sqrt{q_2z} + *}{(y\sqrt{q_2})z + *}
\]
for some divisors \(q_1\) and \(q_2\) of \(m\). Therefore, \(r/s \approx x/y\) if and only if \(T(\infty) \approx S(\infty)\) if and only if \(T^{-1}s \in \Gamma_0^*(n)\). We then see that \(T^{-1}s \in \Gamma_0^*(n)\) if and only if \(r/s \approx x/y\) if and only if \(ry - sx \equiv 0 \pmod{n}\). The number of equivalence classes under \(\approx\) is \(|\Gamma_1(m) : \Gamma_0^*(n)|\). We give the following from [11].

Theorem 2.4. Let \((m, n) = 1\). Then the index \(|\Gamma_1(m) : \Gamma_0^*(n)|\) of \(\Gamma_0^*(n)\) in \(\Gamma_1(m)\) is
\[
|\Gamma : \Gamma_0(n)| = n \prod_{p | n} \left(1 + \frac{1}{p} \right).
\]

3. The suborbital graph for \(\Gamma_1(m)\) on \(\hat{\mathbb{Q}}\)

Let \((G, X)\) be a transitive permutation group. Then \(G\) acts on \(X \times X\) by
\[
g(\alpha, \beta) = (g(\alpha), g(\beta)) \quad (g \in G, \alpha, \beta \in X).
\]

The orbits of this action are called suborbitals of \(G\). The orbit containing \((\alpha, \beta)\) is denoted by \(O(\alpha, \beta)\). From \(O(\alpha, \beta)\) we can form a suborbital graph \(G(\alpha, \beta)\): its vertices are the elements of \(X\), and there is a directed edge from \(\gamma\) to \(\delta\) if \((\gamma, \delta) \in O(\alpha, \beta)\).
A directed edge from y to δ is denoted by $y \rightarrow \delta$ or $\delta \leftarrow y$. If $(y, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $y \rightarrow \delta$ in $G(\alpha, \beta)$.

Clearly $O(\beta, \alpha)$ is also a suborbital, and it is either equal to or disjoint from $O(\alpha, \beta)$. In the former case, $G(\alpha, \beta) = G(\beta, \alpha)$ and the graph consists of pairs of oppositely directed edges. It is convenient to replace each such pair by a single undirected edge, so that we have an undirected graph which we call self-paired. In the latter case, $G(\beta, \alpha)$ is just $G(\alpha, \beta)$ with the arrows reversed, and we call $G(\alpha, \beta)$ and $G(\beta, \alpha)$ paired suborbital graphs.

The above ideas were first introduced by Sims [8], and are also described in a paper by Neuman [5] and in the books by Tsuzuku [9] and by Bigg and White [2], the emphasis being on applications to finite groups.

If $\alpha = \beta$, then $O(\alpha, \alpha)$ is the diagonal of $X \times X$. The corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is self-paired: it consists of a loop based at each vertex $x \in X$. We will be mainly interested in the remaining non-trivial suborbital graphs.

We now investigate the suborbital graphs for the action of $\Gamma_1(m)$ on \hat{Q}. Since $\Gamma_1(m)$ acts transitively on \hat{Q}, each non-trivial suborbital graph contains a pair $(\infty, u/n)$ for some $u/n \in \hat{Q}$. Furthermore, it can be easily shown that $O(\infty, u/n) = O(\infty, v/n)$ if and only if $u \equiv v \pmod{n}$. Therefore, we may suppose that $u \leq n$ where $(u, n) = 1$.

Theorem 3.1. There is an isomorphism $G(\infty, u/n) \rightarrow G(\infty, (n - u)/n)$ given by $v \rightarrow 1 - v$.

Proof. It is clear that $v \rightarrow 1 - v$ is one-to-one and onto. Suppose that there exists an edge $r/s \rightarrow x/y$ in $G(\infty, u/n)$. Then $(r/s, x/y) \in O(\infty, u/n)$ and therefore there exists an element S in $\Gamma_1(m)$ such that $S(\infty) = r/s$ and $S(u/n) = x/y$. Let $\Psi(z) = 1 - z$. Then $\Psi S \Psi \in \Gamma_1(m)$. Moreover, we get

$$\Psi S \Psi(\infty) = \Psi S(\infty) = \Psi(r/s) = 1 - r/s$$

and

$$\Psi S \Psi((n - u)/n) = \Psi S(u/n) = \Psi(x/y) = 1 - x/y.$$

Then $(1 - r/s, 1 - x/y) \in O(\infty, (n - u)/n)$. This shows that there exists an edge $1 - r/s \rightarrow 1 - x/y$ in $G(\infty, (n - u)/n)$. \(\square\)

Theorem 3.2. Suppose $(m, n) = 1$. Then there exists an edge $r/s \rightarrow x/y$ in $G(\infty, u/n)$ if and only if

$$\frac{m}{q}|s, q|y, ry - sx = \mp n,$$

and $x \equiv \mp qu\pmod{n}$, $y \equiv \mp qu\pmod{n}$

for some divisor q of m.

Proof. Suppose that there exists an edge $r/s \rightarrow x/y$ in $G(\infty, u/n)$. Then $(r/s, x/y) \in O(\infty, u/n)$, and therefore, there exists $T \in \Gamma_1(m)$ such that $T(\infty) = r/s$ and $T(u/n) = x/y$. Suppose that

$$T(z) = \frac{a\sqrt{q}z + b/\sqrt{q}}{(cm/\sqrt{q})z + d/\sqrt{q}}, adq - bcm/q = 1$$

for some $q|m$. Then we have $a/(cm/q) = r/s$ and $(auq + bn)/(cmu + dqn) = x/y$. Since $(a, cm/q) = 1$, there exists $i \in \{0, 1\}$ such that $a = (-1)^i r$, $cm/q = (-1)^i s$. On the other
hand, since \((m, n) = 1\), we see that \((q, auq + bn) = 1\). Moreover, since
\[
d(auq + bn) - b(ucm/q + dn) = u,
\]
and
\[
aq(uqm/q + dn) - cm/q(auq + bn) = n,
\]
it follows that \((auq + bn, cmu + dqn) = 1\). Thus there exists \(j \in \{0, 1\}\) such that
\((-1)^j x = auq + bn, (-1)^j y = cmu + dqn\). Hence we obtain the matrix equation
\[
\begin{pmatrix}
a & b \\
(cm/q dq) & (1 uq) \\
0 & n
\end{pmatrix}
= \begin{pmatrix}
(-1)^j r & (-1)^j x \\
(-1)^j s & (-1)^j y
\end{pmatrix}.
\]
Taking determinants in (3.1) we see that \(n = (-1)^{i+j}(ry - sx)\). Furthermore, we have
\(x \equiv (-1)^{i+j} qur \mod n\) and \(y \equiv (-1)^{i+j} qus \mod n\). So, \(ry - sx = \mp n\), and \(x \equiv \mp qur \mod n\), \(y \equiv \mp qus \mod n\). In addition, since \(cm/q = (-1)^j s\) and
\((-1)^j y = q (ucm/q + dn)\), we have \(m/q\) is and \(q|y\).

Now suppose that for some divisors \(q\) of \(m\), \(q|y, \frac{m}{q}|s, \varepsilon(ry - sx) = n\), and \(x \equiv \varepsilon qur \mod n\), \(y \equiv \varepsilon qus \mod n\) where \(\varepsilon = \mp 1\). Then, we have \(\varepsilon x = qur + bn\), \(\varepsilon y = qus + kn\) for some integers \(k\) and \(b\). Since \(m|sq, sq = cm\) for some integer \(c\). On the other hand, since \(q|y\) and \((q, n) = 1\), we see that \(q|k\). This shows that \(\varepsilon y = qus + qdn\) for some integer \(d\). Thus we obtain the matrix equation
\[
\begin{pmatrix}
r & b \\
s & dq
\end{pmatrix}
\begin{pmatrix}
1 & uq \\
0 & n
\end{pmatrix}
= \begin{pmatrix}
r \varepsilon x \\
\varepsilon y
\end{pmatrix}.
\]
Taking determinants in (3.2) we get \((rdq - sb)n = \varepsilon(ry - sx) = n\). Thus \(rdq - sb = 1\). By using \(s = cm/q\), we obtain \(rdq - bcm/q = 1\). If we take
\[
T(z) = \frac{r\sqrt{d} + b}{(cm/q + dq)^r/dq},
\]
then we have \(T(\infty) = r/s\) and \(T(u/n) = (ruq + bn)/(mcu + dqn) = x/y\). So, we see that \((r/s, x/y) \in O(\infty, u/n)\). Therefore there is an edge \(r/s \to x/y\) in \(G(\infty, u/n)\). □

From now on, unless otherwise stated, we will assume that \((m, n) = 1\).

Corollary 1. There exists an edge \(r/s \to x/y\) in \(G(\infty, 1)\) if and only if \(ry - sx = \mp 1\), and \(q|s, \frac{m}{q}|y\) for some \(q|m\). In particular, if \(k\) is an integer, then there is an edge \(r/s \to \infty = \frac{1}{0}\) in \(G(\infty, 1)\).

Now let us represent the edges of \(G(\infty, u/n)\) as hyperbolic geodesics in the upper half-plane \(U = \{z \in \mathbb{C} : \text{Im} z > 0\}\), that is, as Euclidean semi-circles or half-lines perpendicular to the real line. Then we have

Lemma 3. No edges of \(G(\infty, 1)\) cross in \(U\).

Proof. Let \(r_1/s_1 \to x_1/y_1\) be an edge in \(G(\infty, 1)\). Then \(T(\infty) = r_1/s_1\) and \(T(1) = x_1/y_1\) for some \(T \in \Gamma_1(m)\). Let \(S(z) = z + 1\). Then \(TS(\infty) = r_1/s_1\) and \(TS(0) = x_1/y_1\). Since any element of \(\Gamma_1(m)\) preserves the geodesics, we may suppose that the edges \(0 \to \infty\) and \(r/s \to x/y\) cross in \(U\). But this is impossible, since \(ry - sx = \pm 1\). □
In Section 2, we introduced for each integer n, an $\Gamma_1(m)$-invariant equivalence relation \sim on $\hat{\mathcal{Q}}$ with $r/s \sim x/y$ if and only if $r y - s x \equiv 0 \pmod{n}$. If there is an edge $r/s \to x/y$ in $G(\infty, u/n)$, then this implies that $r y - s x = \mp n$. So, $r/s \approx x/y$. Thus each connected component of $G(\infty, u/n)$ lies in a single block for \sim.

Let $F(\infty, u/n)$ denote the subgraph of $G(\infty, u/n)$ whose vertices form the block $[\infty] = \{x/y : y \equiv 0 \pmod{n}\}$.

Since $\Gamma_1(m)$ acts transitively on $\hat{\mathcal{Q}}$, it permutes the blocks transitively. It can be easily seen that the subgraphs whose vertices form the blocks are all isomorphic.

Theorem 3.3. There is an edge $r/s \to x/y$ in $F(\infty, u/n)$ if and only if

$$\frac{m}{q} \mid s, q \mid y, r y - s x = \mp n \text{ and } x \equiv \mp qur \pmod{n}$$

for some divisor q of m.

Lemma 4. There is an isomorphism $F(\infty, u/n) \to F(\infty, (n-u)/n)$ given by $v \to 1-v$.

Proof. Let ψ be as in Theorem 3.1. If $r/s \in [\infty]$, then $1 - r/s = (s-r)/s \in [\infty]$. The proof then follows. \(\square\)

Let us represent the edges of $F(\infty, u/n)$ as hyperbolic geodesics in the upper half-plane $\mathcal{U} = \{z \in \mathbb{C} : \Im z > 0\}$. Then we have

Lemma 5. No edges of $F(\infty, u/n)$ cross in \mathcal{U}.

Proof. Suppose that the edges $r/sn \to x/yn$ and $r'/s'n \to x'/y'n$ cross in \mathcal{U}. Then $r y - s x = \mp 1$, and $\frac{m}{q} \mid s, q \mid y$, for some $q \mid m$. Also, $r'y' - s'x' = \mp 1$, and $\frac{m}{q} \mid s', q \mid y'$. Therefore, the edges $r/s \to x/y$ and $r'/s' \to x'/y'$ in $G(\infty, 1)$ cross in \mathcal{U}. This is impossible by Lemma 3. \(\square\)

Lemma 6. There does not exist any integer between two adjacent vertices in $F(\infty, u/n)$.

Proof. Suppose that there exists an edge $r/sn \to x/yn$ in $F(\infty, u/n)$ and assume that k lies between the vertices. Then kn lies between the adjacent vertices r/s and x/y in $G(\infty, 1)$. There is also an edge $kn \to \infty$ in $G(\infty, 1)$. But, this is impossible by Lemma 3. \(\square\)

Theorem 3.4. Let $(m, n) > 1$. Then there exists an edge $r/s \to x/y$ in $G(\infty, u/n)$ if and only if

$$r y - s x = \mp \frac{n}{q_1}, \frac{q_1}{q_1} \mid y, m \mid s q_1,$$

and

$$x \equiv \mp \frac{q}{q_1} ru \left(\mod \frac{n}{q_1}\right), \quad y \equiv \mp \frac{q}{q_1} su \left(\mod \frac{n q}{q_1}\right)$$

for some divisor q of m with $q_1 = (q, n)$.

Proof. The proof is similar. \(\square\)
4. Circuits in $G(\infty, u/n)$

Let (G, X) be a transitive permutation group and let $G(\alpha, \beta)$ be a suborbital graph. If $v \to w$ or $w \to v$ in $G(\alpha, \beta)$ we represent this as $v \equiv w$. By a circuit of length n we will mean n vertices v_1, v_2, \ldots, v_n such that $v_i \neq v_j$ for $i \neq j$, and $v_1 \to v_2 \equiv \cdots \equiv v_n \equiv v_1$ where $n \geq 3$. A circuit of length 3 is called a triangle. A graph which contains no circuit is called a forest. If G has an element of finite order n, then it is easy to construct a circuit of length n. Assume that T is of finite order n and $\alpha \in X$ for which $T(\alpha) \neq \alpha$. Then $G(\alpha, \beta)$ is a non-trivial suborbital graph where $\beta = T(\alpha)$. We can construct a circuit of length n as follows. It is obvious that there exists an edge $\alpha \to \beta$ in $G(\alpha, \beta)$. On the other hand, it is easy to see that if $w \to v$ is an edge in $G(\alpha, \beta)$, then $T(w) \to T(v)$ is an edge in $G(\alpha, \beta)$. Thus we obtain the circuit $\alpha \to T(\alpha) \to T^2(\alpha) \to \cdots \to T^{n-1}(\alpha) \to \alpha$ in $G(\alpha, \beta)$.

It is easy to see that $G(\infty, 1)$ contains many circuits. For instance, if n is odd, then $\infty \to 1 \to 1/2 \to 1/3 \to \cdots \to 1/(n - 1) \to 0 \to \infty$ is a circuit of length n in $G(\infty, 1)$ where $G(\infty, 1)$ is the suborbital graph for the action of $I_1(2)$ on \hat{Q}. Moreover, $\infty \to 1 \to 2/3 \to 1/2 \to 1/3 \to 0 \to \infty$ is a circuit of length 6 in $G(\infty, 1)$ where $G(\infty, 1)$ is the suborbital graph for the action of $I_1(3)$ on \hat{Q}.

We describe some circuits in $G(\infty, u/n)$ when $n > 1$. We know that any element of finite order of $PSL(2, \mathbb{C})$ is an elliptic element and that any elliptic element of any discrete subgroup of $PSL(2, \mathbb{R})$ is of finite order. To construct a circuit in $G(\infty, u/n)$ for some u/n, we may consider elliptic elements of $I_1(m)$. Moreover, we know from [6] (see also [7]) that the orders of the elliptic elements of $I_1(m)$ may be 2, 3, 4, or 6. Let

$$T(z) = \frac{2z - 1}{3z - 1}, \quad S(z) = \frac{-3\sqrt{2}z + 5/\sqrt{2}}{-5\sqrt{2}z + 4\sqrt{2}}, \quad U(z) = \frac{-2\sqrt{3}z + 1/\sqrt{3}}{-7\sqrt{3}z + \sqrt{3}}.$$

Then $T \in I_1(3)$, $S \in I_1(2)$, $U \in I_1(3)$, and $T^3 = S^4 = U^6 = I$. Therefore

$$\infty \to T(\infty) \to T^2(\infty) \to \infty$$

is a triangle in $G(\infty, T(\infty))$,

$$\infty \to S(\infty) \to S^2(\infty) \to S^3(\infty) \to \infty$$

is a circuit of length 4 in $G(\infty, S(\infty))$, and

$$\infty \to U(\infty) \to U^2(\infty) \to U^3(\infty) \to U^4(\infty) \to U^5(\infty) \to \infty$$

is a circuit of length 6 in $G(\infty, U(\infty))$. That is,

$$\infty \to 2/3 \to 1/3 \to \infty$$

is a triangle in $G(\infty, 2/3)$,

$$\infty \to 3/5 \to 7/10 \to 4/5 \to \infty$$

is a circuit of length 4 in $G(\infty, 3/5)$, and

$$\infty \to 2/7 \to 5/21 \to 13/14 \to 4/21 \to 1/7 \to \infty$$

is a circuit of length 6 in $G(\infty, 2/7)$. In the following we prove our main theorems.
Theorem 4.1. Suppose that \((m, n) = 1 \text{ and } n > 1\). Then any circuit in \(G(\infty, u/n)\) is in the form
\[
v \to T(v) \to T^2(v) \to T^3(v) \to \cdots \to T^{k-1}(v) \to v
\]
for a unique elliptic mapping \(T\) of order \(k\) and for some \(v \in \hat{Q}\).

Proof. Assume that \(G(\infty, u/n)\) contains a circuit. Let this circuit be in the form \(v_1 \to v_2 \subseteq v_3 \subseteq \cdots \subseteq v_k \subseteq v_1\) where each \(v_j\) is different from the others. Since \((v_1, v_2) \in \hat{O}(\infty, u/n)\), there exists some \(S \in \Gamma_1(m)\) such that \(S(\infty) = v_1\), and \(S(u/n) = v_2\). By applying \(S^{-1}\) to the above circuit and taking \(w_i = S^{-1}(v_i)\), we obtain a circuit \(C\) in the form
\[
\infty \to u/n \subseteq w_3 \subseteq \cdots \subseteq w_{k-1} \subseteq w_k \subseteq \infty
\]
where \(w_1 = \infty, w_2 = u/n\). Since \(\infty \in [\infty]\), we see that the edges of the above circuit lie in \([\infty]\). Since no edges of \(F(\infty, u/n)\) cross in \(\mathcal{U}\), either \(u/n < w_3 < \cdots < w_{k-1} < w_k\) or \(u/n > w_3 > \cdots > w_{k-1} > w_k\).

Suppose that \(u/n < w_3 < \cdots < w_{k-1} < w_k\). Let \(w_k = x/yn > u/n\) and suppose that \(\infty \to x/yn\) in \(F(\infty, u/n)\). Then \(1/0 \to x/yn\), so \(yn - 0r = n\). That is, \(y = 1\). Since \(1/0 \to x/n\), we see that \((m/q)|0\) and \(q|n\) for some \(q|m\). Thus \(q = 1\) and therefore \(x = u + bn\) for some integer \(b > 0\). This shows that \(x/n = u/n + b\), which implies that there exists an integer \(a\) in the interval \((u/n, x/n)\). Therefore, \(a\) must lie between two adjacent vertices of the above circuit \(C\). But this is impossible by Lemma 6. Therefore, \(w_k \to \infty\) is impossible and thus we have \(w_k \to \infty\). Let \(r/sn \to \infty\) be an edge in \(F(\infty, u/n)\), then it is seen that \(s = 1\). Since \(r/n \to 1/0\), \((m/q)|n\) and \(q|0\) for some \(q|m\). Thus we see that \(q = m\). Therefore \(1 \equiv -rmu\,(\text{mod } n)\). Since \(w_k = x/yn \to \infty\), we have \(y = 1\) and \(1 + xmu \equiv 0\,(\text{mod } n)\). Let \(w_k = x/n = (u + k_0)/n, k_0 \geq 1\). Then, we have \(1 + mu(u + k_0) \equiv 0\,(\text{mod } n)\). Thus the mapping
\[
\varphi(z) = \frac{-u\sqrt{mz} + (mu(u + k_0) + 1)/n\sqrt{m}}{-n\sqrt{mz} + (u + k_0)\sqrt{m}}
\]
is in \(F^*_0(n)\) and \(\varphi(\infty) = u/n, \varphi((u + k_0)/n) = \varphi(w_k) = \infty\). Moreover, it can be seen that
\[
\varphi\left(\frac{u + \frac{x}{n}}{y}\right) = \frac{u + \frac{y}{m(k_0)y - x}}{n}.
\]
Since \(\varphi\) is increasing and \(u/n < \varphi(u/n)\), we see that
\[
u/n < \varphi(w_3) < \cdots < \varphi(w_{k-1}).
\]
By applying the mapping \(\varphi\) to the circuit \(C\),
\[
\infty \to u/n \subseteq w_3 \subseteq \cdots \subseteq w_{k-1} \subseteq w_k \to \infty,
\]
we obtain another circuit \(C^*\) in the form
\[
\infty \to u/n \to \varphi(u/n) \subseteq \varphi(w_3) \subseteq \cdots \subseteq \varphi(w_{k-1}) \to \infty
\]
of the same length. Let \(\varphi(w_{k-1}) = r/n\). Then since \(r/n \to \infty\), we have \(1 \equiv -rmu\,(\text{mod } n)\). Since \(1 \equiv -xmu\,(\text{mod } n)\), we get \(mxu \equiv mr\,(\text{mod } n)\). Since \((mu, n) = 1\),
we obtain \(x \equiv r \pmod{n} \). Thus \(x/n = r/n + b \) for some integer \(b \). If \(r/n \) is different from \(x/n \), then \(b \neq 0 \), so there exists an integer \(a \) between \(r/n \) and \(x/n \). Firstly, assume that \(r/n < x/n \). Then either \(r/n \) is a vertex in the circuit \(C \) or there exist two adjacent vertices \(w_j \) and \(w_{j+1} \) in \(C \) such that \(w_j < r/n < w_{j+1} \). Assume that \(w_j < r/n < w_{j+1} \). Then the edges \(r/n \rightarrow \infty \) and \(w_j \equiv w_{j+1} \) cross in \(U \), which is impossible by Lemma 5. If \(r/n \) is a vertex in the circuit \(C \), then the integer \(a \) must lie between two adjacent vertices of the circuit \(C \). But this is impossible by Lemma 6. Now assume that \(x/n < r/n \). Then either \(x/n \) is an vertex in the circuit \(C^* \), or there exist two adjacent vertices \(w_j \) and \(w_{j+1} \) in \(C \) such that \(\varphi(w_j) < x/n < \varphi(w_{j+1}) \). The same argument gives a contradiction. Therefore \(r/n = x/n \), i.e., \(\varphi(w_{k-1}) = w_k \). Now assume that \(\varphi^i(w_{k-i}) = w_k \) for \(1 \leq i \leq s \), and then we show that \(\varphi^{s+1}(w_{k-s-1}) = w_k \). Since \(w_{k-s-1} \equiv w_{k-s} \) and \(\varphi^s(w_{k-s}) = w_k \), we have \(\varphi^{s+1}(w_{k-s}) = \varphi(w_k) = \infty \). By applying \(\varphi \) to the circuit \(C \), \(s + 1 \) times, we get the circuit

\[
\infty \rightarrow u/n \rightarrow \varphi(u/n) \rightarrow \varphi^2(u/n) \rightarrow \cdots \rightarrow \varphi^{s+1}(w_{k-s-1}) \equiv \infty.
\]

A similar argument shows that \(\varphi^{s+1}(w_{k-s-1}) \rightarrow \infty \) and \(\varphi^{s+1}(w_{k-s-1}) = w_k \). Now we show that

\[
\varphi^k(\infty) = \infty, \varphi^k(u/n) = u/n, \text{ and } \varphi^k(w_k) = w_k.
\]

Taking \(i = k - 1 \), we obtain \(w_k = \varphi^{k-1}(w_1) = \varphi^{k-1}(\infty) \). Thus \(\varphi^k(\infty) = \varphi(w_k) = \infty \). Moreover, \(\varphi^k(u/n) = \varphi^k(\varphi(\infty)) = \varphi(\varphi^k(\infty)) = \varphi(\infty) = u/n \) and \(\varphi^k(w_k) = \varphi^k(\varphi(w_k)) = \varphi^{k-1}(\infty) = \varphi^{-1}(\infty) = w_k \). Therefore \(\varphi_k \) has three different fixed points and this implies that \(\varphi_k \) is the identity mapping. So \(\varphi \) is an elliptic element of the order \(k \). Since \(\varphi \) is elliptic, \(k_0 = 1 \) and \(m \leq 3 \). On the other hand, since \(\varphi \) is injective and \(\varphi^i(w_{k-i}) = w_k = \varphi^{i+1}(w_{k-i-1}) \), we see that \(\varphi(w_{k-i-1}) = w_{k-i} \). Thus it can be seen that \(w_i = \varphi^{i-1}(\infty) \). Moreover, we see that our circuit is in the form

\[
\infty \rightarrow u/n \rightarrow w_3 \rightarrow \cdots \rightarrow w_{k-1} \rightarrow w_k \rightarrow \infty.
\]

Therefore the circuit \(C \) is of the form

\[
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^2(\infty) \rightarrow \varphi^3(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
\]

for the elliptic mapping \(\varphi \) of order \(k \) where

\[
\varphi(z) = \frac{-u\sqrt{mz} + (mu(u + 1) + 1)/n\sqrt{m}}{-n\sqrt{mz} + (u + 1)\sqrt{m}}.
\]

Then it follows that the first circuit

\[
v_1 \rightarrow v_2 \equiv v_3 \equiv \cdots \equiv v_k \equiv v_1
\]

is equal to the circuit

\[
v_1 \rightarrow T(v_1) \rightarrow T^2(v_1) \rightarrow \cdots \rightarrow T^{k-1}(v_1) \rightarrow v_1
\]

where \(T = S_0S^{-1} \) and \(T \) is an elliptic mapping in \(\Gamma_1(m) \) of order \(k \).

Now suppose that \(u/n > w_3 > \cdots > w_{k-1} > w_k \). Then there exists a circuit in \(F(\infty, (n - u)/n) \) in the form

\[
\infty \rightarrow (n - u)/n \equiv 1 - w_3 \equiv \cdots \equiv 1 - w_{k-1} \equiv 1 - w_k \equiv \infty.
\]
But the above circuit must be of the form
\[\infty \rightarrow \varphi(\infty) \rightarrow \varphi^2(\infty) \rightarrow \varphi^3(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty \]
for some elliptic element \(\varphi \) of order \(k \) and
\[\varphi(z) = \frac{-(n-u)\sqrt{m}z + (m(n-u)(n-u+1) + 1)/n}{-n\sqrt{m}z + (n-u+1)\sqrt{m}}. \]

Then, one can easily see that our circuit in \(F(\infty, u/n) \) must be in the form
\[\infty \rightarrow \Psi \varphi \Psi(\infty) \rightarrow \Psi \varphi^2 \Psi(\infty) \rightarrow \Psi \varphi^3 \Psi(\infty) \rightarrow \cdots \rightarrow \Psi \varphi^{k-1} \Psi(\infty) \rightarrow \infty \]
where \(\Psi(z) = 1 - z \). Moreover, it can be seen that
\[\Psi \varphi \Psi(z) = \frac{-u\sqrt{m}z + (mu(u-1) + 1)/n\sqrt{m}}{-n\sqrt{m}z + (u-1)\sqrt{m}} \]
and that \(\Psi \varphi \Psi \) is an elliptic element of order \(k \). Thus it follows that the first circuit
\[v_1 \rightarrow v_2 \equiv v_3 \equiv \cdots \equiv v_k \equiv v_1 \]
is equal to the circuit
\[v_1 \rightarrow T(v_1) \rightarrow T^2(v_1) \rightarrow \cdots \rightarrow T^{k-1}(v_1) \rightarrow v_1 \]
where \(T = S \Psi \varphi \Psi S^{-1} \) and \(T \) is an elliptic mapping of order \(k \).

Corollary 2. \(G(\infty, u/n) \) contains a circuit if and only if \(mu^2 \equiv mu + 1 \equiv 0(\text{mod } n) \) and \(m \leq 3 \).

Proof. The first part of the theorem is obvious. Let \(mu^2 \equiv mu + 1 \equiv 0(\text{mod } n) \) and \(m \leq 3 \). Then the mapping
\[\varphi(z) = \frac{-u\sqrt{m}z + (mu(u \equiv 1) + 1)/n\sqrt{m}}{-n\sqrt{m}z + (u \equiv 1)\sqrt{m}} \]
is in \(\Gamma_0^*(n) \) and \(\varphi(\infty) = u/n \). Moreover, \(\varphi \) is of finite order and the order of \(\varphi \) is equal to 4 if \(m \) is 2 and 6 if \(m = 3 \). The proof then follows.

Corollary 3. Let \(m \leq 3 \). If \(G(\infty, u/n) \) contains a circuit of length \(k \), then \(\Gamma_0^*(n) \) contains an elliptic element of order \(k \) where \(k \geq 3 \).

We give some lemmas which will be useful in the proof of the next theorem. In what follows, we will assume that \((m, n) > 1 \).

Lemma 7. Let \(r/s \) and \(x/y \) be rational numbers such that \(ry - sx = -1 \), where \(s \geq 1, y \geq 1 \). Then there exist no integers between \(r/s \) and \(x/y \).

Proof. Let \(k \) be an integer such that \(r/s < k < x/y \). Then \(r < sk \) and \(x > ky \). Thus \(1 = sx - ry > sx - sky = s(x - ky) \geq s \), which is a contradiction.

Lemma 8. Suppose that there is an edge \(r/sn \equiv x/y \) in \(G(\infty, u/n) \). Then we have \(n\mid y \) and \(ry - snx = \mp n \). In particular, if \(\infty \equiv x/y \), then \(y = n \).
Proof. Let \(r/sn \to x/y \) be an edge in \(G(\infty, u/n) \). Then by Theorem 3.4, there exists some divisor \(q \) of \(m \) such that \(y \equiv \mp \frac{a}{q_1} \text{sn}u \pmod{n/q_1} \) and \(ry - sn = \mp \frac{n}{q_1} \) where \(q_1 = (q, n) \). Then it follows that \(n|y \) and therefore \(q_1 = 1 \). This shows that \(ry - sn = \mp n \).

Now suppose that \(x/y \to r/sn \) is an edge in \(G(\infty, u/n) \). Then by Theorem 3.4, there exists some divisor \(q \) of \(m \) such that \(snx - ry = \mp \frac{n}{q_1} \) and \(sn \equiv \mp yu \frac{a}{q_1} \pmod{n/q_1} \) where \(q_1 = (q, n) \). Thus we see that \(n|\frac{a}{q_1}yu \) and therefore \(n|\frac{a}{q_1}y \), since \((u, n) = 1 \). Then

\[
\frac{q}{q_1}snx - ry \frac{q}{q_1} = \mp \frac{n}{q_1}.
\]

Thus it follows that \(n|(nq/q_1^2) \), which implies that \(q_1^2|q \). Since \(m \) is a square-free integer and \(q|m \), we see that \(q_1 = 1 \). Therefore, \(snx - ry = \mp n \), which implies that \(n|ry \). Thus, \(n|y \), since \((n, r) = 1 \). If \(\infty \subseteq x/y \), then the proof is similar. \(\square \)

Corollary 4. Let \(C \) be a circuit in \(G(\infty, u/n) \) in the form

\[
\infty \to u/n \subseteq w_3 \subseteq \cdots \subseteq w_{k-1} \subseteq w_k \subseteq \infty.
\]

Then there exist no integers between adjacent vertices of \(C \) in \(\mathbb{Q} \) and any rational number of the form \(a/n \) does not lie between adjacent vertices of \(C \) in \(\mathbb{Q} \).

Proof. By Lemma 8, any edge of \(C \) whose vertices in \(\mathbb{Q} \) is of the form \(x/yn \equal{} r/sn \) with \(snx - ryn = \mp n \). Suppose that the integer \(k \) lies between \(x/yn \) and \(r/sn \). Then \(kn \) must lie between \(x/y \) and \(r/s \), which is impossible by Lemma 7. Now suppose that \(x/yn \) and \(r/sn \) are adjacent vertices of \(C \) with \(x/yn < a/n < r/sn \). Then \(x/yn < a < r/s \) and \(sx - ry = -1 \), which contradicts Lemma 7. \(\square \)

Now let us represent the edges of \(G(\infty, u/n) \) as hyperbolic geodesics in the upper half-plane \(\mathcal{U} = \{ z \in \mathbb{C} : \text{Im} z > 0 \} \). Then we have

Corollary 5. Let \(C \) be any circuit in \(G(\infty, u/n) \) in the form

\[
\infty \to u/n \subseteq w_3 \subseteq \cdots \subseteq w_{k-1} \subseteq w_k \subseteq \infty.
\]

Then no edges of \(C \) cross in \(\mathcal{U} \).

Proof. First of all, we note that the edge \(\infty \equiv x/n \) and any other different edge in the form \(x/yn \equiv r/sn \) with \(snx - ryn = \mp n \) do not cross in \(\mathcal{U} \) by Corollary 4. Now suppose that the edges \(w_i \to w_{i+1} \) and \(w_j \to w_{j+1} \) cross in \(\mathcal{U} \). Since \(w_i \to w_{i+1} \), there exists \(T \in \Gamma_1(m) \) such that \(T(\infty) = w_i \) and \(T(u/n) = w_{i+1} \). Applying the mapping \(T \) to the vertices of the above edges, we see that the edges \(\infty \to u/n \) and \(T^{-1}(w_j) \to T^{-1}(w_{j+1}) \) cross in \(\mathcal{U} \). Since the edges \(\infty \to u/n \) and \(T^{-1}(w_j) \to T^{-1}(w_{j+1}) \) are in the circuit

\[
T^{-1}(\infty) \to T^{-1}(u/n) \subseteq \cdots \to u/n \subseteq \cdots \subseteq T^{-1}(w_j),
\]

we have \(x/yn = T^{-1}(w_j) \) and \(r/sn = T^{-1}(w_{j+1}) \) with \(ryn - snx = \mp n \). Then the edges \(\infty \to u/n \) and \(x/yn \equiv r/sn \) cross in \(\mathcal{U} \), which is impossible. \(\square \)

Theorem 4.2. Let \((m, n) > 1\). Then any circuit in \(G(\infty, u/n) \) is in the form

\[
v \to T(v) \to T^2(v) \to T^3(v) \to \cdots \to T^{k-1}(v) \to v
\]
for a unique elliptic mapping T of order k and for some $v \in \hat{Q}$.

Proof. Let $G(\infty, u/n)$ contain a circuit in the form

$$v_1 \rightarrow v_2 \Leftarrow v_3 \Rightarrow \cdots \Rightarrow v_k \Leftarrow v_1$$

where each v_j is different from the others. Then since $(v_1, v_2) \in O(\infty, u/n)$, there exists some $S \in \Gamma_1(m)$ such that $S(\infty) = v_1, S(u/n) = v_2$. Then $S^{-1}(v_1) = \infty, S^{-1}(v_2) = u/n$. By applying S^{-1} to the circuit and taking $w_i = S^{-1}(v_i)$, we obtain the circuit C

$$\infty \rightarrow u/n \Leftarrow w_3 \Rightarrow \cdots \Rightarrow w_{k-1} \Leftarrow w_k \Leftarrow \infty$$

where $w_1 = \infty, w_2 = u/n$. Since no edges of C cross in U, either $u/n < w_3 < \cdots < w_{k-1} < w_k$ or $u/n > w_3 > \cdots > w_{k-1} > w_k$. Suppose that $u/n < w_3 < \cdots < w_{k-1} < w_k$. Let $w_k = x/n$ and suppose that $w_k = x/n \leftarrow \infty$. Then $(\infty, w_k) \in O(\infty, u/n)$. Thus there exists $T_1 \in \Gamma_1(m)$ such that $T_1(\infty) = \infty$ and $T_1(u/n) = w_k = x/n$. Then it is seen that $T_1(z) = z + b$ for some integer b and so $x/n = (u/n) + b$. Therefore, there exists an integer a between u/n and x/n. Since a is not any vertex of the above circuit C, there exist two vertices w_j and w_{j+1} such that $w_j < a < w_{j+1}$. But this is impossible by Corollary 4. Therefore $w_k \rightarrow \infty$. Thus a simple calculation shows that there exists a divisor q of m such that $m|qn$ and $1 + xuq \equiv 0(\mod n)$. Let $w_k = (u + k_0)/n$. Then since $m|qn$ and $qu(u + k_0) + 1 \equiv 0(\mod n)$, the mapping

$$\varphi(z) = \frac{-u\sqrt{q}z + (qu(u + k_0) + 1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u + k_0)\sqrt{q}}$$

is in $\Gamma_1(m)$ and $\varphi(\infty) = u/n, \varphi(w_k) = \varphi((u + k_0)/n) = \infty$. Moreover, it is easy to see that

$$\varphi\left(\frac{u + x}{n}\right) = \frac{u + y}{q(k_0) - y}$$

for $0 \leq x/y \neq k_0$.

By applying φ to the above circuit C, we obtain another circuit C^*

$$\infty \rightarrow u/n \rightarrow \varphi(u/n) \Leftarrow \varphi(w_3) \Rightarrow \cdots \Rightarrow \varphi(w_{k-1}) \rightarrow \infty,$$

which is of the same length. Since φ is increasing and $u/n < \varphi(u/n)$, we see that $u/n < \varphi(w_3) < \cdots < \varphi(w_{k-1})$. Let $\varphi(w_{k-1}) = r/n$. Since $r/n \rightarrow \infty$ and $w_k = x/n \rightarrow \infty$, there exist two mappings T_1 and T_2 such that $T_1(\infty) = x/n, T_1(u/n) = \infty, T_2(\infty) = r/n, and T_2(u/n) = \infty$. Thus we get $T_2T_1^{-1}(\infty) = T_2(u/n) = \infty$ and $T_2T_1^{-1}(x/n) = T_2(\infty) = r/n$. Thus we see that $T_2T_1^{-1}(z) = z + b$ for some integer b. This implies that $b + x/n = r/n$. Assume that $x/n \neq r/n$. Then there exists an integer a between x/n and r/n. Firstly, assume that $r/n < x/n$. Then either r/n is a vertex in the circuit C or there exist two adjacent vertices w_j and w_{j+1} in C such that $w_j < r/n < w_{j+1}$. The case $w_j < r/n < w_{j+1}$ is impossible by Corollary 4. If r/n is a vertex in the circuit C, then the integer a must lie between two adjacent vertices of C, which is impossible by Corollary 4. Now assume that $x/n < r/n$. Then either x/n is a vertex in the circuit C^* or there exist two adjacent vertices w_j and w_{j+1} in C such that $\varphi(w_j) < x/n < \varphi(w_{j+1})$. By Corollary 4, we get another contradiction.
\(r/n = x/n, \) i.e., \(\varphi(w_{k-1}) = w_k \). Now assume that \(\varphi^i(w_{k-i}) = w_k \) for \(1 \leq i \leq s \), and then we show that \(\varphi^{s+1}(w_{k-s-1}) = w_k \). Since \(w_{k-s-1} \subseteq w_{k-s} \) and \(\varphi^s(w_{k-s}) = w_k \), we have \(\varphi^{s+1}(w_{k-s}) = \varphi(w_k) = \infty \). By applying \(\varphi \) to the circuit \(C, s + 1 \) times, we get the circuit

\[
\infty \rightarrow u/n \rightarrow \varphi(u/n) \rightarrow \varphi^2(u/n) \equiv \cdots \equiv \varphi^{s+1}(w_{k-s-1}) \equiv \infty.
\]

A similar argument shows that \(\varphi^{s+1}(w_{k-s-1}) = w_k \). Thus we get \(\varphi^k(\infty) = \infty, \varphi^k(u/n) = u/n, \) and \(\varphi^k(w_k) = w_k \). Therefore, \(\varphi^k \) is the identity mapping and thus \(\varphi \) is an elliptic mapping of order \(k \). Since \(\varphi \) is an elliptic mapping, \(k_0 = 1 \) and \(q \leq 3 \). Moreover, it can be seen that \(\varphi(w_{k-i-1}) = w_{k-i} \) and \(w_i = \varphi^{i-1}(\infty) \). Therefore, we see that our circuit \(C \) is in the form

\[
\infty \rightarrow u/n \rightarrow w_3 \rightarrow \cdots \rightarrow w_{k-1} \rightarrow w_k \rightarrow \infty.
\]

Thus the circuit \(C \) is of the form

\[
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^2(\infty) \rightarrow \varphi^3(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
\]

for the elliptic mapping \(\varphi \) of order \(k \) where

\[
\varphi(z) = \frac{-u\sqrt{q}z + (qu(u + 1) + 1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u + 1)\sqrt{q}}.
\]

\(q|m, q \leq 3, \) and \(m|qn \). Then it follows that the first circuit

\[
v_1 \rightarrow v_2 \equiv v_3 \equiv \cdots \equiv v_k \equiv v_1
\]

is equal to the circuit

\[
v_1 \rightarrow T(v_1) \rightarrow T^2(v_1) \rightarrow \cdots \rightarrow T^{k-1}(v_1) \rightarrow v_1
\]

where \(T = S\varphi S^{-1} \) and \(T \) is an elliptic mapping in \(G_1(m) \) of order \(k \).

Now assume that \(u/n > w_3 > \cdots > w_{k-1} > w_k \). Then there exists a circuit

\[
\infty \rightarrow (n-u)/n \equiv 1 - w_3 \equiv \cdots \equiv 1 - w_{k-1} \equiv 1 - w_k \equiv \infty
\]

in \(G(\infty, (n-u)/n) \) with \((n-u)/n < 1 - w_3 < \cdots < 1 - w_{k-1} < 1 - w_k \). But this circuit must be of the form

\[
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^2(\infty) \rightarrow \varphi^3(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
\]

for the elliptic mapping \(\varphi \) of order \(k \) where

\[
\varphi(z) = \frac{(n-u)\sqrt{q}z + (q(n-u)(n-u + 1) + 1)/n\sqrt{q}}{(-(n-u)q/\sqrt{q})z + (n-u + 1)\sqrt{q}}.
\]

\(q|m, q \leq 3, \) and \(m|qn \). Then our circuit must be in the form

\[
\infty \rightarrow \Psi \varphi (\infty) \rightarrow \Psi \varphi^2 (\infty) \rightarrow \Psi \varphi^3 (\infty) \rightarrow \cdots \rightarrow \Psi \varphi^{k-1} (\infty) \rightarrow \infty
\]

where \(\Psi (z) = 1 - z \). Moreover, it can be seen that

\[
\Psi \varphi (z) = \frac{-u\sqrt{q}z + (qu(u - 1) + 1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u - 1)\sqrt{q}}
\]

and that \(\Psi \varphi \) is an elliptic element of order \(k \). Then it follows that our first circuit

\[
v_1 \rightarrow v_2 \equiv v_3 \equiv \cdots \equiv v_k \equiv v_1
\]
is equal to the circuit
\[v_1 \rightarrow T(v_1) \rightarrow T^2(v_1) \rightarrow \cdots \rightarrow T^{k-1}(v_1) \rightarrow v_1 \]
where \(T = S\Psi\varphi\Psi S^{-1} \) and \(T \) is an elliptic mapping in \(\Gamma_1(m) \) of order \(k \). □

Corollary 6. Let \((m, n) > 1\). Then \(G(\infty, u/n) \) contains a circuit if and only if \(qu^2 \equiv qu + 1 \equiv 0\,(\text{mod} \, n) \) for some divisor \(q \) of \(m \) with \(m|qn, q \leq 3 \).

Proof. The first part of the theorem is obvious. Let \(qu^2 \equiv qu + 1 \equiv 0\,(\text{mod} \, n) \) for some divisor \(q \) of \(m \) with \(m|qn, q \leq 3 \). Then the mapping
\[
\varphi(z) = \frac{-u\sqrt{q}z + (qu \mp 1) + 1/n\sqrt{q}}{(-nq/\sqrt{q})z + (u \mp 1)\sqrt{q}}
\]
is in \(\Gamma_1(m) \) and \(\varphi(\infty) = u/n \). Moreover, it can be seen easily that \(\varphi \) is of finite order and that the order of \(\varphi \) is equal to 3, 4, and 6 when \(q \) is 1, 2, and 3 respectively. The proof then follows. □

Corollary 7. Let \((m, n) > 1\). If \(G(\infty, u/n) \) contains a circuit of the length \(k \), then \(\Gamma_1(m) \) contains an elliptic element of order \(k \).

At this point, it is reasonable to conjecture that

Conjecture 1. Let \(n > 1 \) and let \(\Gamma_1(m) \) act transitively on \(\mathbb{Q} \cup \{\infty\} \). Then any circuit of the length \(k \) in the suborbital graph \(G(\infty, u/n) \) is of the form
\[v \rightarrow T(v) \rightarrow T^2(v) \rightarrow T^3(v) \rightarrow \cdots \rightarrow T^{k-1}(v) \rightarrow v \]
for a unique elliptic element \(T \) in \(\Gamma_1(m) \) of order \(k \) and for some \(v \in \mathbb{Q} \cup \{\infty\} \).

References

[11] R. Keskin, Some subgroups of the normalizer of \(\Gamma_0(m) \) (submitted for publication).