
European Journal of Combinatorics 27 (2006) 193–206

www.elsevier.com/locate/ejc

Suborbital graphs for the normalizer ofΓ0(m)

Refik Keskin

Department of Mathematics, Faculty of Science andArts,Sakarya University, Sakarya, Turkey

Received 12 August 2003; accepted 30 September 2004
Available online 4 January 2005

Abstract

In this study, we characterize all circuits in the suborbital graph for the normalizer ofΓ0(m) when
m is a square-free positive integer. We propose a conjecture concerning the suborbital graphs.
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1. Introduction

Let m be a positive integer and letΓ1(m) be the normalizer of the congruence subgroup
Γ0(m) of the modular group inPSL(2, R). ThenormalizerΓ1(m) was studied by various
authors (see [6,7] andthe references there). A necessary and sufficient condition forΓ1(m)

to act transitively onQ̂ = Q ∪ {∞} is given in [6]. In [1], the authors investigated the
suborbital graph for the modular group on̂Q and so conjectured that the suborbital graph
G(∞, u/n) is a forest if andonly if G(∞, u/n) contains no triangles wheren > 1. Then,
in [3], the author proved that the conjecture is true. In [4], we investigated the suborbital
graph for the Hecke groupH (

√
m) on the set of cusps ofH (

√
m) whereH (

√
m) is the

Hecke groupgenerated by the mappings

z→ z+√m, z→−1/z, m= 1, 2, 3.
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We showed that the length of a circuit inG(∞, u
n

√
m) is no larger than the orders of the

elliptic elements ofH (
√

m) whenn > 1. In this study, we are interested inΓ1(m) whenm
is a square-free positive integer and we investigate the circuits in the suborbital graph for
the normalizerΓ1(m) on Q̂ = Q ∪ {∞}. We characterize all the circuits in the suborbital
graphG(∞, u/n) whenn > 1 (seeSection 3for the definition of the suborbital graph
G(∞, u/n)). Whenn > 1, we showed that any circuit inG(∞, u/n) is in the form

v→ T(v)→ T2(v)→ T3(v)→ · · · → Tk−1(v)→ v

for a uniqueelliptic elementT in Γ1(m) of orderk and for somev ∈ Q ∪ {∞}. Then we
propose a conjecture concerning the suborbital graphs.

2. The action of ΓΓΓ 1(m) on Q̂̂Q̂Q

A complete description of the elements ofΓ1(m) is given in [10]. If we represent the
elements ofΓ1(m) by the associated matrices, then thenormalizer consists exactly of the
matrices(

ae b/h
cm/h de

)

wheree|(m/h2) andh is the largestdivisor of 24 for whichh2|m with the understanding
that the determinant of the matrix ise > 0, and that(e, m/h2e) = 1. The following
theorem is proved in [6].

Theorem 2.1. Let m have prime power decomposition2α13α2 pα3
3 · · · pαr

r . ThenΓ1(m) acts

transitively onQ̂ if and only ifα1 ≤ 7, α2 ≤ 3, αi ≤ 1, i = 3, 4, . . . , r .

If m is a square-free positive integer, thenh = 1. Therefore we give the following (see
also [7]).

Theorem 2.2. Let m be a square-free positive integer. Then we have

Γ1(m) =
{(

a
√

q b/
√

q
cm/
√

q d
√

q

)
: 1 ≤ q, q|m; a, b, c, d ∈ Z; adq− bcm/q = 1

}
.

Let m be a square-free positive integer. Then, in view of the above theorem, the follow-
ing theorem holds. (Here, for the sake of completeness, we give a simple proof.)

Theorem 2.3. Let m be a square-free positive integer. ThenΓ1(m) actstransitively on the
setQ̂ = Q ∪ {∞} of the cusps ofΓ1(m) where we represent∞ as 1

0 = −1
0 .

Proof. Let k/s ∈ Q̂ with (k, s) = 1. Let q1 = (s, m). Thens = s∗q1 for some integer
s∗. Sincem is square-free,(s, m/q1) = 1. Thus we have(s, km/q1) = 1. Therefore there
exist twointegersx andy suchthat(m/q1)ky− sx= 1. Letq2 = m/q1 and let

T(z) = k
√

q2z+ x/
√

q2

s
√

q2z+ y
√

q2
.

Then it is easily seen thatT ∈ Γ1(m) andT(∞) = k/s. Thus the proof follows. �
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Let (m, n) = 1 and letΓ ∗0 (n) be defined by

Γ ∗0 (n) =
{(

a
√

q b/
√

q
cm/
√

q d
√

q

)
∈ Γ1(m) : c ≡ 0(mod n)

}
.

ThenΓ ∗0 (n) is a subgroup ofΓ1(m) andΓ0(mn) ⊂ Γ ∗0 (n) ⊂ Γ1(m).
Let (G, X) be a transitive permutation group, and suppose thatR is an equivalence

relation on X. R is said to beG-invariant if (x, y) ∈ R implies (g(x), g(y)) ∈ R for all
g ∈ G. The equivalence classes of aG-invariant relation are called blocks.

We now give alemma from [2].

Lemma 1. Suppose that(G, X) is a transitive permutation group, and H is a subgroup of
G such that, for some x∈ X, Gx ⊂ H. Then

R= {(g(x), gh(x)) : g ∈ G, h ∈ H }
is an equivalence relation. Furthermore, R= 
, the diagonal of X× X ⇔ H = Gx, and
R= X × X ⇔ H = G.

Lemma 2. Let (G, X) be a transitive permutation group, and≈ the G-invariant
equivalence relation defined inLemma1; then g1(α) ≈ g2(α) if and only if g1 ∈ g2H.
Furthermore, the number of blocks is|G : H |.

Let G = Γ1(m) and X = Q̂. In this caseG∞ = 〈T〉 whereT(z) = z + 1. It is
clear thatG∞ ⊂ Γ ∗0 (n) ⊂ G. Let ≈ be the relation defined in Lemma 1, and assume

that r/s, x/y ∈ Q̂. Then according toTheorem 2.3, there existT, S ∈ Γ1(m) suchthat
T(∞) = r/s, S(∞) = x/y where

T(z) = r
√

q1z+ ∗
(s
√

q1 )z+ ∗ , S(z) = x
√

q2z+ ∗
(y
√

q2 )z+ ∗
for some divisorsq1 andq2 of m. Therefore,r/s ≈ x/y if andonly if T(∞) ≈ S(∞) if and
only if T−1S∈ Γ ∗0 (n). We then see thatT−1S∈ Γ ∗0 (n) if andonly if r/s ≈ x/y if andonly
if ry − sx ≡ 0(mod n). The number of equivalence classes under≈ is |Γ1(m) : Γ ∗0 (n)|.
We give the following from [11].

Theorem 2.4. Let (m, n) = 1. Then the index|Γ1(m) : Γ ∗0 (n)| of Γ ∗0 (n) in Γ1(m) is

|Γ : Γ0(n)| = n
∏
p|n

(
1+ 1

p

)
.

3. The suborbital graph for ΓΓΓ 1(m) on Q̂̂Q̂Q

Let (G, X) be a transitive permutation group. ThenG acts onX × X by

g(α, β) = (g(α), g(β)) (g ∈ G, α, β ∈ X).

The orbits of this action are called suborbitals ofG. The orbit containing(α, β) is
denoted byO(α, β). From O(α, β) we can form a suborbital graphG(α, β): its vertices
are the elements ofX, and there is a directed edge fromγ to δ if (γ, δ) ∈ O(α, β).
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A directed edge fromγ to δ is denoted byγ → δ or δ← γ . If (γ, δ) ∈ O(α, β), then we
will say that there exists an edgeγ → δ in G(α, β).

ClearlyO(β, α) is also a suborbital, and it is either equal to or disjoint fromO(α, β). In
the former case,G(α, β) = G(β, α) and the graph consists of pairs of oppositely directed
edges. It is convenient to replace each such pairby a single undirectededge, so that we have
an undirected graph which we call self-paired. In the latter case,G(β, α) is just G(α, β)

with the arrows reversed, and we callG(α, β) andG(β, α) paired suborbital graphs.
The above ideas were first introduced by Sims [8], and are also described in a paper by

Neuman [5] and in the books by Tsuzuku [9] and by Bigg and White [2], the emphasis
being on applications to finite groups.

If α = β, thenO(α, α) is the diagonal ofX × X. The corresponding suborbital graph
G(α, α), called the trivial suborbital graph, is self-paired: it consists of a loop based at each
vertexx ∈ X. We will be mainly interested in the remaining non-trivial suborbital graphs.

We now investigate the suborbital graphs for the action ofΓ1(m) on Q̂. SinceΓ1(m)

acts transitively on̂Q, each non-trivial suborbital graph contains a pair(∞, u/n) for some
u/n ∈ Q. Furthermore, it can be easily shown thatO(∞, u/n) = O(∞, v/n) if and only
if u ≡ v(mod n). Therefore, we may suppose thatu ≤ n where(u, n) = 1.

Theorem 3.1. There is an isomorphism G(∞, u/n) −→ G(∞, (n − u)/n) given by
v→ 1− v.

Proof. It is clear thatv→ 1− v is one-to-one and onto. Suppose that there exists an edge
r/s → x/y in G(∞, u/n). Then(r/s, x/y) ∈ O(∞, u/n) and therefore there exists an
elementS in Γ1(m) suchthat S(∞) = r/s andS(u/n) = x/y. Let Ψ (z) = 1− z. Then
Ψ SΨ ∈ Γ1(m). Moreover, we get

Ψ SΨ (∞) = Ψ S(∞) = Ψ (r/s) = 1− r/s

and

Ψ SΨ ((n− u)/n) = Ψ S(u/n) = Ψ (x/y) = 1− x/y.

Then (1 − r/s, 1 − x/y) ∈ O(∞, (n − u)/n). This shows that there exists an edge
1− r/s→ 1− x/y in G(∞, (n− u)/n). �

Theorem 3.2. Suppose(m, n) = 1. Then there exists an edge r/s→ x/y in G(∞, u/n)

if and only if
m

q
|s, q|y, ry − sx= ∓n, andx ≡ ∓qur(mod n), y ≡ ∓qus(mod n)

for some divisor q of m.

Proof. Suppose that there exists an edger/s → x/y in G(∞, u/n). Then(r/s, x/y) ∈
O(∞, u/n), and therefore, there existsT ∈ Γ1(m) suchthatT(∞) = r/s andT(u/n) =
x/y. Suppose that

T(z) = a
√

qz+ b/
√

q

(cm/
√

q )z+ d
√

q
, adq− bcm/q = 1

for someq|m. Then we havea/(cm/q) = r/s and(auq+bn)/(cmu+dqn)= x/y. Since
(a, cm/q) = 1, there existsi ∈ {0, 1} suchthata = (−1)i r , cm/q = (−1)i s. On theother
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hand, since(m, n) = 1, we see that(q, auq+ bn) = 1. Moreover, since

d(auq+ bn)− b(ucm/q+ dn) = u,

and

aq(ucm/q+ dn)− cm/q(auq+ bn) = n,

it follows that (auq + bn, cmu+ dqn) = 1. Thus there existsj ∈ {0, 1} such that
(−1) j x = auq+ bn, (−1) j y = cmu+ dqn. Hence we obtain the matrix equation(

a b
cm/q dq

)(
1 uq
0 n

)
=
(

(−1)i r (−1) j x
(−1)i s (−1) j y

)
. (3.1)

Taking determinants in (3.1) we seethat n = (−1)i+ j (ry − sx). Furthermore, we
have x ≡ (−1)i+ j qur(mod n) and y ≡ (−1)i+ j qus(mod n). So, ry − sx = ∓n,
and x ≡ ∓qur(mod n), y ≡ ∓qus(mod n). In addition, since cm/q = (−1)i s and
(−1) j y = q(ucm/q+ dn), we havem

q |s andq|y.
Now suppose that for some divisorsq of m, q|y, m

q |s, ε(ry − sx) = n, and x ≡
εqur(mod n), y ≡ εqus(mod n) where ε = ∓1. Then, we haveεx = qur + bn,
εy = qus+kn for some integersk andb. Sincem|sq, sq= cm for some integerc. On the
other hand, sinceq|y and(q, n) = 1, we see thatq|k. This shows thatεy = qus+qdn for
some integerd. Thus we obtain the matrix equation(

r b
s dq

)(
1 uq
0 n

)
=
(

r εx
s εy

)
. (3.2)

Taking determinants in (3.2) we get(rdq− sb)n = ε(ry − sx) = n. Thusrdq − sb= 1.
By usings = cm/q, weobtainrdq− bcm/q = 1. If we take

T(z) = r
√

qz+ b/
√

q

(cm/
√

q )z+ d
√

q
,

then we haveT(∞) = r/s andT(u/n) = (rqu + bn)/(mcu+ dqn) = x/y. So, we see
that(r/s, x/y) ∈ O(∞, u/n). Therefore there is an edger/s→ x/y in G(∞, u/n). �

From now on, unless otherwise stated, we will assume that(m, n) = 1.

Corollary 1. There exists an edge r/s→ x/y in G(∞, 1) if and only if ry−sx= ∓1, and
q|s, m

q |y for some q|m. Inparticular, if k is an integer, thenthere is an edge k→∞ = 1
0

in G(∞, 1).

Now let us represent the edges ofG(∞, u/n) as hyperbolic geodesics in the upper half-
planeU = {z ∈ C : Im z > 0}, that is, as Euclidean semi-circles or half-lines perpendicular
to the real line. Then we have

Lemma 3. No edges of G(∞, 1) cross inU .

Proof. Let r1/s1→ x1/y1 be an edge inG(∞, 1). ThenT(∞) = r1/s1 andT(1) = x1/y1
for someT ∈ Γ1(m). Let S(z) = z+ 1. ThenT S(∞) = r1/s1 andT S(0) = x1/y1. Since
any element ofΓ1(m) preserves the geodesics, we may suppose that the edges 0→∞ and
r/s→ x/y cross inU . But this is impossible, sincery − sx= ±1. �
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In Section 2, we introduced for each integern, anΓ1(m)-invariant equivalence relation
≈ on Q̂ with r/s ≈ x/y if andonly if ry − sx≡ 0(mod n). If thereis an edger/s→ x/y
in G(∞, u/n), then this implies thatry − sx= ∓n. So,r/s ≈ x/y. Thus each connected
component ofG(∞, u/n) lies in a single block for≈.

Let F(∞, u/n) denote the subgraph ofG(∞, u/n) whose vertices form the block
[∞] = {x/y : y ≡ 0(mod n)}.

SinceΓ1(m) acts transitively on̂Q, it permutes the blocks transitively. It can be easily
seen that the subgraphs whose vertices form the blocks are all isomorphic.

Theorem 3.3. There is an edge r/s→ x/y in F(∞, u/n) if and only if
m

q
|s, q|y, ry − sx= ∓n andx ≡ ∓qur(mod n)

for some divisor q of m.

Lemma 4. There is an isomorphism F(∞, u/n) −→ F(∞, (n − u)/n) given byv →
1− v.

Proof. Let Ψ be as inTheorem 3.1. If r/s ∈ [∞], then 1− r/s = (s− r )/s ∈ [∞]. The
proof then follows. �

Let us represent the edges ofF(∞, u/n) as hyperbolic geodesics in the upper half-plane
U = {z ∈ C : Im z > 0}. Then we have

Lemma 5. No edges of F(∞, u/n) cross inU .

Proof. Suppose that the edgesr/sn → x/yn and r ′/s′n → x′/y′n cross inU . Then
ry − sx = ∓1, and m

q |sn, q|yn for someq|m. Also, r ′y′ − s′x′ = ∓1, and m
q′ |s′n,

q′|y′n. Since(m, n) = 1, m
q |s, q|y, and m

q′ |s′, q′|y′. Therefore, the edgesr/s → x/y

andr ′/s′ → x′/y′ in G(∞, 1) cross inU . This is impossible byLemma 3. �

Lemma 6. There does not exist any integer between two adjacent vertices in F(∞, u/n).

Proof. Suppose that there exists an edger/sn→ x/yn in F(∞, u/n) and assume that
k lies between the vertices. Thenkn lies between the adjacent verticesr/s and x/y
in G(∞, 1). There is also anedgekn → ∞ in G(∞, 1). But, this is impossible by
Lemma 3. �

Theorem 3.4. Let (m, n) > 1. Then there exists an edge r/s→ x/y in G(∞, u/n) if and
only if

ry − sx= ∓ n

q1
,

q

q1
|y, m|sq,

and

x ≡ ∓ q

q1
ru

(
mod

n

q1

)
, y ≡ ∓ q

q1
su

(
modn

q

q1

)
for some divisor q of m with q1 = (q, n).

Proof. The proof is similar. �
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4. Circuits in G(∞, u/n)

Let (G, X) be a transitive permutation group and letG(α, β) be a suborbital graph. If
v→ w or w→ v in G(α, β) we represent this asv � w. By a circuit of lengthn we will
meann verticesv1, v2, . . . , vn suchthatvi �= v j for i �= j , andv1→ v2 � · · ·� vn � v1
wheren ≥ 3. A circuit of length 3 is called a triangle. A graph which contains no circuit is
called a forest. IfG has an element of finite ordern, then it iseasy to construct a circuit of
lengthn. Assume thatT is of finiteordern andα ∈ X for which T(α) �= α. ThenG(α, β)

is anon-trivial suborbital graph whereβ = T(α). Wecan construct a circuit of lengthn as
follows. It is obvious that there exists an edgeα → β in G(α, β). On theother hand, it is
easy to see that ifw→ v is an edge inG(α, β), thenT(w)→ T(v) is an edge inG(α, β).
Thus we obtain the circuitα→ T(α)→ T2(α)→ · · · → Tn−1(α)→ α in G(α, β).

It is easy to see thatG(∞, 1) contains many circuits. For instance, ifn is odd, then
∞ → 1 → 1/2 → 1/3 → · · · → 1/(n − 1) → 0 → ∞ is a circuit of lengthn in
G(∞, 1) whereG(∞, 1) is the suborbital graph for the action ofΓ1(2) on Q̂. Moreover,
∞ → 1 → 2/3 → 1/2 → 1/3 → 0 → ∞ is a circuit of length 6 inG(∞, 1) where
G(∞, 1) is the suborbital graph for the action ofΓ1(3) on Q̂.

We describe some circuits in G(∞, u/n) whenn > 1. We know that any element of
finite order ofPSL(2, C) is an elliptic element and that any elliptic element of any discrete
subgroup ofPSL(2, R) is of finite order. To construct a circuit inG(∞, u/n) for someu/n,
we may consider elliptic elements ofΓ1(m). Moreover, we know from [6] (see also [7])
that the orders of the elliptic elements ofΓ1(m) may be 2, 3, 4, or 6. Let

T(z) = 2z− 1

3z− 1
, S(z) = −3

√
2z+ 5/

√
2

−5
√

2z+ 4
√

2
, U(z) = −2

√
3z+ 1/

√
3

−7
√

3z+√3
.

ThenT ∈ Γ1(3), S∈ Γ1(2), U ∈ Γ1(3), andT3 = S4 = U6 = I . Therefore

∞→ T(∞)→ T2(∞)→∞
is a triangle inG(∞, T(∞)),

∞→ S(∞)→ S2(∞)→ S3(∞)→∞
is a circuit of length 4 inG(∞, S(∞)), and

∞→ U(∞)→ U2(∞)→ U3(∞)→ U4(∞)→ U5(∞)→∞
is a circuit of length 6 inG(∞,U(∞)). That is,

∞→ 2/3→ 1/3→∞
is a triangle inG(∞, 2/3),

∞→ 3/5→ 7/10→ 4/5→∞
is a circuit of length 4 inG(∞, 3/5), and

∞→ 2/7→ 5/21→ 13/14→ 4/21→ 1/7→∞
is a circuit of length 6 inG(∞, 2/7). In the following we proveour maintheorems.
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Theorem 4.1. Suppose that(m, n) = 1 and n > 1. Thenany circuit in G(∞, u/n) is in
the form

v→ T(v)→ T2(v)→ T3(v)→ · · · → Tk−1(v)→ v

for a unique elliptic mapping T of order k and for somev ∈ Q̂.

Proof. Assume thatG(∞, u/n) contains a circuit. Let this circuit be in the formv1 →
v2 � v3 � · · · � vk � v1 where eachv j is different from the others. Since(v1, v2) ∈
O(∞, u/n), there exists someS ∈ Γ1(m) suchthat S(∞) = v1, andS(u/n) = v2. By
applyingS−1 to the above circuit and takingwi = S−1(vi ), we obtain a circuitC in the
form

∞→ u/n � w3 � · · ·� wk−1 � wk �∞
wherew1 = ∞, w2 = u/n. Since∞ ∈ [∞], we see that the edges of the above circuit lie
in [∞]. Since noedges ofF(∞, u/n) cross inU , either u/n < w3 < · · · < wk−1 < wk

or u/n > w3 > · · · > wk−1 > wk.
Suppose thatu/n < w3 < · · · < wk−1 < wk. Let wk = x/yn > u/n and suppose

that∞ → x/yn in F(∞, u/n). Then 1/0 → x/yn, so yn− 0r = n. That is,y = 1.
Since 1/0→ x/n, we seethat(m/q)|0 andq|n for someq|m. Thusq = 1 and therefore
x ≡ u(mod n). Thenx = u+ bn for some integerb > 0. This shows thatx/n = u/n+ b,
which implies that there exists an integera in the interval(u/n, x/n). Therefore,a mustlie
between two adjacent vertices of the above circuitC. But this is impossible byLemma 6.
Therefore,wk ←∞ is impossible and thus we havewk →∞. Let r/sn→∞ be an edge
in F(∞, u/n), then it is seen thats = 1. Sincer/n → 1/0, (m/q)|n andq|0 for some
q|m. Thus we see thatq = m. Therefore 1≡ −rmu(mod n). Sincewk = x/yn→ ∞,
we havey = 1 and 1+ xmu≡ 0(mod n). Let wk = x/n = (u+ k0)/n, k0 ≥ 1. Then, we
have 1+mu(u+ k0) ≡ 0(mod n). Thus the mapping

ϕ(z) = −u
√

mz+ (mu(u+ k0)+ 1)/n
√

m

−n
√

mz+ (u+ k0)
√

m

is in Γ ∗0 (n) andϕ(∞) = u/n, ϕ((u+ k0)/n) = ϕ(wk) = ∞. Moreover, it can beseen that

ϕ

(
u+ x

y

n

)
= u+ y

m(k0y−x)

n
.

Sinceϕ is increasing andu/n < ϕ(u/n), we seethat

u/n < ϕ(w3) < · · · < ϕ(wk−1).

By applying the mappingϕ to the circuitC,

∞→ u/n � w3 � · · ·� wk−1 � wk →∞,

we obtain another circuitC∗ in the form

∞→ u/n→ ϕ(u/n) � ϕ(w3) � · · ·� ϕ(wk−1)→∞
of the same length. Letϕ(wk−1) = r/n. Then sincer/n → ∞, we have 1≡ −rmu
(mod n). Since 1≡ −xmu(mod n), we getmxu ≡ mru(mod n). Since(mu, n) = 1,
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weobtainx ≡ r (mod n). Thusx/n = r/n+ b for some integerb. If r/n is different from
x/n, thenb �= 0, so there exists an integera betweenr/n andx/n. Firstly, assume that
r/n < x/n. Then either r/n is a vertex in the circuitC or there exist two adjacent vertices
w j andw j+1 in C suchthatw j < r/n < w j+1. Assume thatw j < r/n < w j+1. Then
the edgesr/n→∞ andw j � w j+1 cross inU , which isimpossible byLemma 5. If r/n
is a vertex in the circuitC, then the integera must lie between two adjacent vertices of the
circuit C. But this is impossible byLemma 6. Now assume thatx/n < r/n. Then either
x/n is an vertex in the circuitC∗, or there exist two adjacent verticesw j andw j+1 in C
suchthatϕ(w j ) < x/n < ϕ(w j+1). The same argument gives a contradiction. Therefore
r/n = x/n, i.e., ϕ(wk−1) = wk. Now assume thatϕ i (wk−i ) = wk for 1≤ i ≤ s, and then
we show thatϕs+1(wk−s−1) = wk. Sincewk−s−1 � wk−s andϕs(wk−s) = wk, we have
ϕs+1(wk−s) = ϕ(wk) = ∞. By applyingϕ to the circuitC, s+ 1 times, we get the circuit

∞→ u/n→ ϕ(u/n)→ ϕ2(u/n)→ · · · → · · ·� ϕs+1(wk−s−1) �∞.

A similar argument shows thatϕs+1(wk−s−1) → ∞ andϕs+1(wk−s−1) = wk. Now we
show that

ϕk(∞) = ∞, ϕk(u/n) = u/n, andϕk(wk) = wk.

Taking i = k − 1, we obtainwk = ϕk−1(w1) = ϕk−1(∞). Thusϕk(∞) = ϕ(wk) = ∞.
Moreover, ϕk(u/n) = ϕk(ϕ(∞)) = ϕ(ϕk(∞)) = ϕ(∞) = u/n and ϕk(wk) =
ϕk−1(ϕ(wk)) = ϕk−1(∞) = ϕ−1(∞) = wk. Thereforeϕk has three different fixed points
and this implies thatϕk is the identity mapping. Soϕ is an elliptic element of the order
k. Sinceϕ is elliptic, k0 = 1 andm ≤ 3. On the other hand, sinceϕ is injective and
ϕ i (wk−i ) = wk = ϕ i+1(wk−i−1), we seethatϕ(wk−i−1) = wk−i . Thus it can be seen that
wi = ϕ i−1(∞). Moreover, we see that our circuit is in the form

∞→ u/n→ w3→ · · · → wk−1→ wk →∞.

Therefore the circuitC is of the form

∞→ ϕ(∞)→ ϕ2(∞)→ ϕ3(∞)→ · · · → ϕk−1(∞)→∞
for theelliptic mappingϕ of orderk where

ϕ(z) = −u
√

mz+ (mu(u+ 1)+ 1)/n
√

m

−n
√

mz+ (u+ 1)
√

m
.

Then it follows that the first circuit

v1→ v2 � v3 � · · ·� vk � v1

is equal to the circuit

v1→ T(v1)→ T2(v1)→ · · · → Tk−1(v1)→ v1

whereT = SϕS−1 andT is an elliptic mapping inΓ1(m) of orderk.
Now suppose thatu/n > w3 > · · · > wk−1 > wk. Then there exists a circuit in

F(∞, (n− u)/n) in the form

∞→ (n− u)/n � 1−w3 � · · ·� 1−wk−1 � 1−wk �∞.
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But the above circuit must be of the form

∞→ ϕ(∞)→ ϕ2(∞)→ ϕ3(∞)→ · · · → ϕk−1(∞)→∞
for some elliptic elementϕ of orderk and

ϕ(z) = −(n− u)
√

mz+ (m(n− u)(n− u+ 1)+ 1)/n
√

m

−n
√

mz+ (n− u+ 1)
√

m
.

Then, one can easily see that our circuit inF(∞, u/n) must be inthe form

∞→ ΨϕΨ (∞)→ Ψϕ2Ψ (∞)→ Ψϕ3Ψ (∞)→ · · · → Ψϕk−1Ψ (∞)→∞
whereΨ (z) = 1− z. Moreover, it can beseen that

ΨϕΨ (z) = −u
√

mz+ (mu(u− 1)+ 1)/n
√

m

−n
√

mz+ (u− 1)
√

m

and thatΨϕΨ is an elliptic element of orderk. Thus it follows that the first circuit

v1→ v2 � v3 � · · ·� vk � v1

is equal to the circuit

v1→ T(v1)→ T2(v1)→ · · · → Tk−1(v1)→ v1

whereT = SΨϕΨ S−1 andT is an elliptic mapping of orderk. �

Corollary 2. G(∞, u/n) contains a circuit if and only if mu2∓mu+ 1≡ 0(mod n) and
m ≤ 3.

Proof. The first part of the theorem is obvious. Letmu2∓mu+1≡ 0(mod n) andm ≤ 3.
Then the mapping

ϕ(z) = −u
√

mz+ (mu(u∓ 1)+ 1)/n
√

m

−n
√

mz+ (u∓ 1)
√

m

is in Γ ∗0 (n) andϕ(∞) = u/n. Moreover,ϕ is of finite order and the order ofϕ is equal to
4 if m is 2 and 6 if m= 3. The proof then follows. �

Corollary 3. Let m≤ 3. If G(∞, u/n) contains a circuit of length k, thenΓ ∗0 (n) contains
anelliptic element of order k where k≥ 3.

We give some lemmas which will be useful in the proof of the next theorem. In what
follows, we will assume that(m, n) > 1.

Lemma 7. Let r/s and x/y be rational numbers such that ry− sx = −1, where
s ≥ 1, y ≥ 1. Then there exist no integers between r/s and x/y.

Proof. Let k be an integer such thatr/s < k < x/y. Thenr < sk and x > ky. Thus
1= sx− ry > sx− sky= s(x − ky) ≥ s, which isa contradiction. �

Lemma 8. Suppose that there is an edge r/sn � x/y in G(∞, u/n). Then we have n|y
and ry− snx= ∓n. In particular, if∞ � x/y, then y= n.



R.Keskin / European Journal of Combinatorics 27 (2006) 193–206 203

Proof. Let r/sn → x/y be an edge inG(∞, u/n). Then byTheorem 3.4, thereexists
some divisor q of m suchthat y ≡ ∓ q

q1
snu(mod n q

q1
) and ry − snx = ∓ n

q1
where

q1 = (q, n). Then it follows thatn|y and thereforeq1 = 1. This shows thatry−snx= ∓n.
Now suppose thatx/y → r/sn is an edge inG(∞, u/n). Then byTheorem 3.4, there
exists some divisor q of m suchthatsnx− ry = ∓ n

q1
andsn≡ ∓yu q

q1
(mod n q

q1
) where

q1 = (q, n). Thus we see thatn| q
q1

yu and thereforen| q
q1

y, since(u, n) = 1. Then

q

q1
snx− ry

q

q1
= ∓ n

q1

q

q1
.

Thus it follows thatn|(nq/q2
1), which implies thatq2

1|q. Sincem is a square-free integer
andq|m, we seethatq1 = 1. Therefore,snx− ry = ∓n, which implies thatn|ry. Thus,
n|y, since(n, r ) = 1. If∞ � x/y, then the proof is similar. �

Corollary 4. Let C be a circuit in G(∞, u/n) in the form

∞→ u/n � w3 � · · ·� wk−1 � wk �∞.

Then there exist no integers between adjacent vertices of C inQ and any rational number
of the form a/n does not lie between adjacent vertices of C inQ.

Proof. By Lemma 8, any edge ofC whose vertices inQ is of the formx/yn � r/snwith
snx− ryn = ∓n. Suppose that the integerk lies betweenx/yn andr/sn. Thenkn must
lie betweenx/y andr/s, which is impossible byLemma 7. Now suppose thatx/yn and
r/sn are adjacent vertices ofC with x/yn < a/n < r/sn. Thenx/y < a < r/s and
sx− ry = −1, which contradictsLemma 7. �

Now let us represent the edges ofG(∞, u/n) as hyperbolic geodesics in the upper
half-planeU = {z ∈ C : Im z > 0}. Then we have

Corollary 5. Let C beany circuit in G(∞, u/n) in the form

∞→ u/n � w3 � · · ·� wk−1 � wk �∞.

Then no edges of C cross inU .

Proof. First of all, we note that the edge∞ � x/n and any other different edge in the
form x/yn � r/sn with snx− ryn = ∓n do not cross inU by Corollary 4. Now suppose
that the edgeswi → wi+1 andw j � w j+1 cross inU . Sincewi → wi+1, thereexists
T ∈ Γ1(m) suchthat T(∞) = wi andT(u/n) = wi+1. Applying the mappingT to the
vertices of the above edges, we see that the edges∞→ u/n andT−1(w j ) � T−1(w j+1)

cross inU . Sincethe edges∞→ u/n andT−1(w j ) � T−1(w j+1) are in the circuit

T−1(∞)→ T−1(u/n) � · · ·∞ → u/n � · · ·� T−1(w j )

� T−1(w j+1) � · · ·� T−1(∞),

we havex/yn= T−1(w j ) andr/sn= T−1(w j+1) with ryn−snx= ∓n. Then the edges
∞→ u/n andx/yn � r/sn cross inU , whichis impossible. �

Theorem 4.2. Let (m, n) > 1. Thenany circuit in G(∞, u/n) is in the form

v→ T(v)→ T2(v)→ T3(v)→ · · · → Tk−1(v)→ v
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for a unique elliptic mapping T of order k and for somev ∈ Q̂.

Proof. Let G(∞, u/n) contain a circuit in the form

v1→ v2 � v3 � · · ·� vk � v1

where eachv j is different from theothers. Then since(v1, v2) ∈ O(∞, u/n), thereexists
someS ∈ Γ1(m) suchthat S(∞) = v1, S(u/n) = v2. ThenS−1(v1) = ∞, S−1(v2) =
u/n. By applying S−1 to the circuit and takingwi = S−1(vi ), weobtain the circuitC

∞→ u/n � w3 � · · ·� wk−1 � wk �∞
wherew1 = ∞, w2 = u/n. Since noedges ofC cross inU , either u/n < w3 < · · · <
wk−1 < wk or u/n > w3 > · · · > wk−1 > wk. Suppose thatu/n < w3 < · · · < wk−1 <

wk. Let wk = x/n and suppose thatwk = x/n ← ∞. Then(∞, wk) ∈ O(∞, u/n).
Thus there existsT1 ∈ Γ1(m) suchthatT1(∞) = ∞ andT1(u/n) = wk = x/n. Then it
is seen thatT1(z) = z+ b for some integerb and sox/n = (u/n) + b. Therefore, there
exists an integera betweenu/n andx/n. Sincea is not any vertex of the above circuitC,
there exist two verticesw j andw j+1 suchthatw j < a < w j+1. But this is impossible
by Corollary 4. Therefore wk → ∞. Thus a simple calculation shows that there exists a
divisorq of m suchthatm|qn and 1+ xuq≡ 0(mod n). Letwk = (u+ k0)/n. Then since
m|qn andqu(u+ k0)+ 1≡ 0(mod n), the mapping

ϕ(z) = −u
√

qz+ (qu(u+ k0)+ 1)/n
√

q

(−nq/
√

q )z+ (u+ k0)
√

q

is in Γ1(m) andϕ(∞) = u/n, ϕ(wk) = ϕ((u+ k0)/n) = ∞. Moreover, itis easy to see
that

ϕ

(
u+ x

y

n

)
= u+ y

q(k0y−x)

n

for 0≤ x/y �= k0.
By applyingϕ to the above circuitC, weobtain another circuitC∗

∞ → u/n→ ϕ(u/n) � ϕ(w3) � · · ·� ϕ(wk−1)→∞,

which is of the same length. Sinceϕ is increasing andu/n < ϕ(u/n), we seethat
u/n < ϕ(w3) < · · · < ϕ(wk−1). Let ϕ(wk−1) = r/n. Sincer/n → ∞ andwk =
x/n → ∞, there exist two mappingsT1 andT2 suchthat T1(∞) = x/n, T1(u/n) = ∞,
T2(∞) = r/n, and T2(u/n) = ∞. Thus we getT2T−1

1 (∞) = T2(u/n) = ∞ and
T2T−1

1 (x/n) = T2(∞) = r/n. Thus we see thatT2T−1
1 (z) = z + b for some integer

b. This implies thatb + x/n = r/n. Assume thatx/n �= r/n. Then there exists an
integera betweenx/n and r/n. Firstly, assume thatr/n < x/n. Then either r/n is a
vertex in the circuitC or there exist two adjacent verticesw j andw j+1 in C suchthat
w j < r/n < w j+1. Thecasew j < r/n < w j+1 is impossible byCorollary 4. If r/n
is a vertex in the circuitC, then the integera must lie between two adjacent vertices of
C, which is impossible by Corollary 4. Now assume thatx/n < r/n. Then either x/n
is a vertex in the circuitC∗ or there exist two adjacent verticesw j andw j+1 in C such
thatϕ(w j ) < x/n < ϕ(w j+1). By Corollary 4, we getanother contradiction. Therefore
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r/n = x/n, i.e., ϕ(wk−1) = wk. Now assume thatϕ i (wk−i ) = wk for 1≤ i ≤ s, and then
we show thatϕs+1(wk−s−1) = wk. Sincewk−s−1 � wk−s andϕs(wk−s) = wk, we have
ϕs+1(wk−s) = ϕ(wk) = ∞. By applyingϕ to the circuitC, s+ 1 times, we get the circuit

∞→ u/n→ ϕ(u/n)→ ϕ2(u/n) � · · ·� ϕs+1(wk−s−1) �∞.

A similar argument shows thatϕs+1(wk−s−1) = wk. Thus we getϕk(∞) = ∞,
ϕk(u/n) = u/n, andϕk(wk) = wk. Therefore, ϕk is the identity mapping and thusϕ
is an elliptic mapping of orderk. Sinceϕ is an elliptic mapping,k0 = 1 andq ≤ 3.
Moreover, it can be seen thatϕ(wk−i−1) = wk−i andwi = ϕ i−1(∞). Therefore, we see
that our circuit C is in the form

∞→ u/n→ w3→ · · · → wk−1→ wk →∞.

Thus the circuitC is of the form

∞→ ϕ(∞)→ ϕ2(∞)→ ϕ3(∞)→ · · · → ϕk−1(∞)→∞
for theelliptic mappingϕ of orderk where

ϕ(z) = −u
√

qz+ (qu(u+ 1)+ 1)/n
√

q

(−nq/
√

q )z+ (u+ 1)
√

q

q|m, q ≤ 3, andm|qn. Then it follows that the first circuit

v1→ v2 � v3 � · · ·� vk � v1

is equal to the circuit

v1→ T(v1)→ T2(v1)→ · · · → Tk−1(v1)→ v1

whereT = SϕS−1 andT is an elliptic mapping inΓ1(m) of orderk.
Now assume thatu/n > w3 > · · · > wk−1 > wk. Then there exists a circuit

∞→ (n− u)/n � 1−w3 � · · ·� 1−wk−1 � 1−wk �∞
in G(∞, (n − u)/n) with (n − u)/n < 1− w3 < · · · < 1− wk−1 < 1− wk. But this
circuit must be of the form

∞→ ϕ(∞)→ ϕ2(∞)→ ϕ3(∞)→ · · · → ϕk−1(∞)→∞
for theelliptic mappingϕ of orderk where

ϕ(z) = (n− u)
√

qz+ (q(n− u)(n− u+ 1)+ 1)/n
√

q

(−(n− u)q/
√

q )z+ (n− u+ 1)
√

q
,

q|m, q ≤ 3, andm|qn. Thenour circuit must be in the form

∞→ ΨϕΨ (∞)→ Ψϕ2Ψ (∞)→ Ψϕ3Ψ (∞)→ · · · → Ψϕk−1Ψ (∞)→∞
whereΨ (z) = 1− z. Moreover, it can beseen that

ΨϕΨ (z) = −u
√

qz+ (qu(u− 1)+ 1)/n
√

q

(−nq/
√

q )z+ (u− 1)
√

q

and thatΨϕΨ is an elliptic element of orderk. Then it follows that our first circuit

v1→ v2 � v3 � · · ·� vk � v1
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is equal to the circuit

v1→ T(v1)→ T2(v1)→ · · · → Tk−1(v1)→ v1

whereT = SΨϕΨ S−1 andT is an elliptic mapping inΓ1(m) of orderk. �

Corollary 6. Let (m, n) > 1. Then G(∞, u/n) contains a circuit if and only if qu2 ∓
qu+ 1≡ 0(mod n) for some divisor q of m with m|qn, q≤ 3.

Proof. The first part of the theorem is obvious. Letqu2 ∓ qu+ 1 ≡ 0(mod n) for some
divisorq of m with m|qn, q ≤ 3. Then the mapping

ϕ(z) = −u
√

qz+ (qu(u∓ 1)+ 1)/n
√

q

(−nq/
√

q )z+ (u∓ 1)
√

q

is in Γ1(m) andϕ(∞) = u/n. Moreover, it can be seen easily thatϕ is of finite order and
that the order ofϕ is equal to 3, 4, and 6 whenq is 1, 2, and 3 respectively. The proof then
follows. �

Corollary 7. Let (m, n) > 1. If G(∞, u/n) contains a circuit of the length k, thenΓ1(m)

contains an elliptic element of order k.

At this point, it is reasonable to conjecture that

Conjecture 1. Let n > 1 and letΓ1(m) act transitively onQ ∪ {∞}. Thenany circuit of
the length k in the suborbital graph G(∞, u/n) is of the form

v→ T(v)→ T2(v)→ T3(v)→ · · · → Tk−1(v)→ v

for a unique elliptic element T inΓ1(m) of order k and for somev ∈ Q ∪ {∞}.
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