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Abstract

In this study, we characterize all circuits in the suborbital graph for the normaliz&js(of) when
m is a square-free positive integer. We proposergjecture concerning éaiborbital graphs.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Letm be a positie integer ad let'1(m) be the normalizer of the congruence subgroup
I'o(m) of the modular group ifPSL(2, R). Thenormalizerl’y(m) was sudied by various
authors (seed, 7] andthe references there). A necessary and sufficient conditiaf fon)
to act transitively o) = QU {oo} is given in [B]. In [1], the authors ingstigated the
suborbital graph for the modular group @hand so conjectured that the suborbital graph
G(oo, u/n) is a forestfandonly if G(co, u/n) contains no triangles where> 1. Then,
in [3], the author proved that the conjecture is true.4]j fve investigated the suborbital
graph for the Hecke groupl (,/m) on the set of cusps dfl (/m) whereH (,/m) is the
Hecke groumgyenerated by the mappings

z—>z4+/mz— —1/z, m=123.
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We showed tht the length of a circuit i (co, %Jﬁ) is no larger than the orders of the
elliptic elements oH (,/m) whenn > 1. In this study, we i@ interested in*1(m) whenm

is a gjuare-free positive integer and we investigate the circuits in the suborbital graph for
the normalizer1(m) onQ = Q U {oo}. We characterize all the circuits in the suborbital
graphG(oo, u/n) whenn > 1 (seeSection 3for the definition of the suborbital graph
G(o0, u/n)). Whenn > 1, we showed that any circuit i@(co, u/n) is in the form

v—> Tw) — Tz(v) — T3(v) — Tk_l(v) -

for auniqueelliptic elementT in I'1(m) of orderk and for somes € Q U {oc}. Then we
propose a conjecture concerning the suborbital graphs.

2. Theaction of I'1(m) on @

A complete description of the elements bf(m) is given in [L(. If we represent the
elements off'1(m) by the associated matrices, then ttgmalizer consis exactly of the
matiices

ae b/h
cm/h de
wheree|(m/h?) andh is the largestlivisor of 24 for whichh?|m with the understanding

that the determinant of the matrix & > 0, and that(e, m/h%e) = 1. The following
theorem is poved in [g].

Theorem 2.1. Let m have prime power decompositi3+2 pg3 .- pf'. Thenl'1(m) acts
transitively onQ if and onlyifer < 7,02 <3, <1,i =3,4,...,r.

If mis a gyuare-free positive integer, thén= 1. Therefore we give the following (see

also [7]).

Theorem 2.2. Let m be a square-free positive integer. Then we have

b
I'i(m) = {(cr?f/a d/://_(?) :1<gq,q/m;a,b,c,deZ; adqg—bcm/q= 1} .

Letm be a square-free positive integer. Then, in view of the above theorem, the follow-
ing theorem holds. (Here, for the sake of completeness, we give a simple proof.)

Theorem 2.3. Let m be a square-free positive integer. THaiim) actstransitively on the

set@ = QU {oo} of the cusps of'1(m) where ve represento as% = %1.

Proof. Letk/s € @ with (k,s) = 1. Letqy = (s, m). Thens = s*q; for some integer
s*. Sincem is quare-free(s, m/q;) = 1. Thus we havés, km/q;) = 1. Therefore there
exist twointegersx andy suchthat(m/gi)ky — sx = 1. Letgz; = m/qz and let

T - X /R
Cs/Mz+y @

Then it is easily seen that € I';(m) andT (c0) = k/s. Thus the proof follows. O
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Let(m, n) = 1 and let/;(n) be defined by

rgm) = {(cri«//\a/ﬁ tgﬁ) € I'(m) : ¢ = O(mod n)} .
ThenIj(n) is a subgroup ofl’1(m) andIo(mn) C I(n) C I'i(m).

Let (G, X) be a transitive permutation group, and suppose & an equralence
relaion on X. R is said to beG-invarant if (x, y) € Rimplies(g(x), g(y)) € R for all
g € G. The guivalence classes ofG-invariant réation are called blocks.

We now give demma from PJ.

Lemma 1. Suppose thatG, X) is a transitive permutation group, and H is a subgroup of
G such hat, for some xc X, Gx C H. Then

R={(9(x),gh(x)): g € G,h € H}
is an ejuivalence relation. Furthermore, R A, the diagonal of Xx X & H = Gy, and
R=XxX&H=0G.

Lemma?2. Let (G, X) be a transitive permutation group, ang the G-imariant
equivalence relation defined iremmal; then g(«) ~ gz(«) if and only if g € goH.
Furthermore, the number of blocks|is : H|.

LetG = I'(m) and X = Q In this caseGy, = (T) whereT(z) = z+ 1. ltis
clear thatG C Ij(n) C G. Let~ be the redtion defned inLemma 1 and &sume
thatr /s, x/y € Q. Then according taheorem 2.3there existT, S € I'1(m) suchthat
T(o0) =1/, S(00) = X/y where

r Z+ % X /U2Z + *
T@) = L S(z) = L
(S/01)Z+ * (Y/02)Z + *

for some divisorsg); andge of m. Therdore,r /s ~ x/yifandonly if T (co) ~ S(co) if and
onlyif T=1S € I} (n). We then se thaff ~1S e I'}(n) ifandonlyif r /s ~ x/y if andonly
if ry — sx = 0(mod n). The number of equivalence classes urwés |11 (m) : I ().
We give the following from [11].

Theorem 2.4. Let(m, n) = 1. Then he indexI'y(m) : Iy (n)| of I5(n) in I'1(m) is
1
IT: Tom)| =n]] (1+ —> )
pin P
3. Thesuborbital graph for I'1(m) on @
Let (G, X) be a transitive permutation group. Théracts onX x X by

g(a, B) = (9(x), 9(B)) 9eG, a,BeX).

The orbits of this action are called suborbitals®f The orbit containing(«, g8) is
denoted byO(«, 8). From O(«, 8) we can form a suborbital grapB(«, g): its vertices
are the elements oK, and theres a diected edge frony to § if (y,8) € O(a, B).
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A directed edge fromy to § is denoted byy — s or§ < y. If (y,8) € O(a, B8), then we
will say that there exists an edge— & in G(«, 8).

Clearly O(8, «) isalso a suborbital, and it is either equal to or disjoint frO, 8). In
the former caseG(«, B) = G(B, a) and the graph consists of pairs of oppositely directed
edges. Itis convenientto replace each suchipair single undirecteeldge, so that we have
an undirected graph which we call self-paired. In the latter cagg, «) is just G(«, B8)
with the arrows reversed, and we c@l{«, 8) andG(8, «) paired suborbital graphs.

The above ideas were first introduced by Si8ls nd are also described in a paper by
Neuman §] and in the books by Tsuzuk®] and by Bigg and White 2], the emphasis
being on applications to finite groups.

If « = B, thenO(«, @) is the dagonal of X x X. The corresponding suborbital graph
G(a, a), called the trivial suborbital graph, is self-paired: it consists of a loop based at each
vertexx € X. We will be mainly interested in the remaining non-trivial suborbital graphs.

We now investigate the suborbital graphs for the actior"ofm) on Q. Sincel(m)
acts transitively oY), each non-trivial suborbital graph contains a fair, u/n) for some
u/n € Q. Furthermoreit can be easily shown th&(co, u/n) = O(oco, v/n) if and only
if u= v(modn). Therefore, we may suppose thak n where(u, n) = 1.

Theorem 3.1. There is an isomorphism @Go,u/n) —> G(oo, (N — u)/n) given by
v—>1—w.

Proof. Itis clear thaty — 1 — v is one-to-one and onto. Suppose that there exists an edge
r/s — x/yin G(oo,u/n). Then(r/s, x/y) € O(oco, u/n) and therefore there exists an
elementSin I'1(m) suchthat S(co) = r/sandS(u/n) = x/y. Let ¥(z) = 1 — z. Then

¥ SY¥ e I'1(m). Moreover, we get

USVU(oco) = ¥S(oo) = W(r/s)y=1—r/s
and
vSY((n—uw/n) = ¥Su/n) = ¥(x/y) =1-x/y.
Then (1 —r/s,1 — x/y) € O(oo, (n — u)/n). This dhows that there exists an edge
l1-r/s—>1-x/yinG(co,(n—u)/n). 0O
Theorem 3.2. Supposém, n) = 1. Then here eists an edge fs — x/y in G(co, u/n)
if and only if
m
a|s, gly,ry — sx=Fn, andx = Fqur(modn), y = Fqus(modn)

for some divisor q of m.

Proof. Suppose that there exists an edgs — x/y in G(oco, u/n). Then(r/s, x/y) €
O(o0, u/n), and theefore, there exists € I'1(m) suchthatT (c0) =r/sandT(u/n) =
X/y. Suppose that

_a/qz+b//Aq 3 _
T2 = Cmva)z+dya’ adg—bcm/g=1

for someq|m. Then we have/(cm/q) = r/sand(aug+bn)/(cmu+dqn) = x/y. Since
(a,cm/q) = 1, there exists € {0, 1} suchthata = (—1)'r, cm/q = (—1)'s. On theother
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hand, sincém, n) = 1, we see thatq, auq+ bn) = 1. Moreover, since
d(aug+ bn) — b(ucnyq+dn) = u,

and
aq(ucm/gq +dn) — cm/gq(aug-+ bn) = n,

it follows that (auq + bn,cmu+ dqgn) = 1. Thus there exist§ € {0, 1} suchthat
(=1)!x = aug+ bn, (-1)!y = cmu+ dgn. Herce we obtain the matrix equation

( a b> <1 uq) B ((—1)fr (—1)J:x) (3.1)
cm/q dg/\0 n )~ \(-1's (-1)ly)" '
Taking determimnts in 8.1) we seethatn = (—1)'*i(ry — sx). Furthermore, we
havex = (—1)'*iqur(modn) andy = (—1)'*iqusimodn). So,ry — sx = Fn,
andx = Fqur(modn), y = Fqus(modn). In addtion, sincecm/q = (— 1)'s and
(—=D!ly = g(ucnyq +dny, we havem|sandq|y

Now suppose that for some leISO[}S of m, qly, m|s e(ry —sx) = n, andx =
equr(modn), y = equgmodn) wheree = F1. Then we havex = qur + bn,
ey = qus+ kn for some integerk andb. Sincem|sq, sq = cmfor some integec. On the
other hand, sincg|y and(q, n) = 1, we see thaf|k. This siows thaty = qus+ gdnfor
some integed. Thus we obtain the matrix equation

(a0 W)=(5) 62

Taking determiants in 8.2 we get(rdq — sb)n = e(ry — sx) = n. Thusrdq — sb= 1.
By usings = cm/q, weobtainrdg — bcnyq = 1. If we take

r/9z+b//q
(cm//a)z+d/q’

then we havel (c0) = r/sandT (u/n) = (rqu + bn)/(mcu+ dgn) = X/y. So, we see
that(r/s, x/y) € O(oco, u/n). Therdore there is an edge/'s — x/y in G(co,u/n). O

T2 =

From now on, unless otherwise stated, we will assume(thah) = 1.

Corollary 1. There exists an edgg¢s — X/y in G(co, 1) if and only ifry—sx = F1, and
qls, m|y for some ¢m. Inparticular, if k is an intege thenthere is an edge k— co = 0
in G(oo 1).

Now let us represent the edges &f(co, u/n) as hyperbolic geodesics in the upper half-
planel/ = {z € C : Imz > 0}, thatis, as Eclidean semi-circles or half-lines perpendicular
to the real line. Then we have

Lemma 3. No edges of G, 1) cross inA.

Proof. Letri/s1 — X1/y1 be an edge i (oo, 1). ThenT (c0) =r1/s1 andT (1) = X1/Y1
for someT € I'1(m). Let S(z) = z+ 1. ThenT S(co) =r1/s1 andT S0) = X1/y1. Since
any element of 1(m) preserves the geodesics, we may suppose that the edgesstand
r/s — Xx/y cross in. But this is impossible, sincey — sx=+1. O



198 R.Keskn / European Journal of Combinatorics 27 (2006) 193-206

In Section 2 we introduced for each integer an Iy (m)-invariant equivalence relation
~ onQ with r/s~ x/yifandonly if ry — sx = 0(modn). If thereis an edge /s — X/y
in G(oo, u/n), then his implies thaty — sx = n. So,r/s = x/y. Thus each connected
component of5(co, u/n) lies in a single block for:.

Let F(oco, u/n) denote the subgraph & (co, u/n) whose vertices form the block
[oo] = {X/y : y = 0(modn)}. .

Sincel1(m) acts transitively orf), it permutestie blocks transitively. It can be easily
seen that the subgraphs whose vertices form the blocks are all isomorphic.

Theorem 3.3. There is an edge/is — x/y in F(co, u/n) if and only if
g|s, qly,ry — sx= Fn andx = Fqur(modn)

for some divisor g of m.

Lemma 4. There is an isomorphism (o, u/n) —> F(oco, (n — u)/n) given byv —
1-—vw.

Proof. Let ¥ be as inTheorem 3.1If r /s € [o0], then 1—r/s = (s —r)/s € [o0]. The
proof then follows. O

Let us represent the edgesfofoo, u/n) as hyperbolic geodesics in the upper half-plane
U={zeC:Imz> 0}. Then we have

Lemma 5. No edges of koo, u/n) cross iniA.

Proof. Suppose that the edgegsn — x/yn andr’/s'’n — x’/y’n cross ini{. Then
ry —sx = F1, and%|sn, glyn for someqg|m. Also, r'y’ — s'x’ = 1, and$|s’n,
g’ly'n. Since(m,n) = 1, Ms, qly, and$|s’, g’'ly’. Therdore, the edges/s — Xx/y
andr’/s’ — x’/y’in G(oo, 1) cross in/. This is impcssible byLemma 3 O

Lemma 6. There does not exist any integer between two adjacent vertice&in &/n).

Proof. Suppose that there exists an edgen — x/ynin F(oco, u/n) and assume that
k lies between the vertices. Thém lies between the adjacent verticess and x/y
in G(oo, 1). There is ado anedgekn — oo in G(oo, 1). But, this is impossible by
Lemma3 O

Theorem 3.4. Let(m, n) > 1. Then here exsts an edge fs — x/y in G(oco, u/n) if and
only if

ry —sx= n.d ly, m[sq
_:Fqlsql ) i
and
q n q q
X=F—ru|mod— ), = F—su| modn—
$Ch ( Q1> Y ]th < Ch)

for some divisor g of m withig= (q, n).

Proof. The proofis similar. O
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4. Circuitsin G(oo, u/n)

Let (G, X) be a transitive permutation group and @&f«, 8) be a suborbital graph. If
v — worw — vin G(x, B) we represent this as= w. By a circut of lengthn we will
meam verticesvy, vy, .. ., v suchthatyj # vj fori # j,andvy - 1, S - S S vy
wheren > 3. A circuit of length 3 is called a triangle. A graph which contains no circuit is
called a forest. I has an element of finite order then it iseasy to construct a circuit of
lengthn. Assume thaT is of finite ordern anda € X for which T («) # «. ThenG(«, B8)
is anon-trivial suborbital graph wherg = T («). We can construct a circuit of lengthas
follows. It is obvious that there exists an edge> g in G(a, 8). On theother hand, it is
easy to see thatif — v is an edge irG(«, B8), thenT (w) — T(v) is an edge irG(«, B).
Thus we obtain the circuit — T(a) - T2(@) = - — T" Ya) - « in G(o, B).

It is easy to see thab(co, 1) contains many circuits. For instance nifis odd, then
0o —->1—-12—-1/3— ... - 1/(n—1) — 0 — oo is a circuit of lengthn in
G(o0, 1) whereG(co, 1) is the auborbital graph for the action df1(2) on Q Moreover,

oo —>1—->2/3—1/2— 1/3 - 0 — o is a circuit of length 6 inG(co, 1) where
G(o0, 1) is the suborbital graph for the action df1(3) on (@

We descitbe some gtuits in G(oco, u/n) whenn > 1. We know that any element of
finite order of PSL(2, C) is an elliptic element and that any elliptic element of any discrete
subgroup ofPSL(2, R) is of finite order. To construct a circuit i (oo, u/n) for someu/n,
we may consider elliptic elements 6% (m). Moreover, we know from §] (see also T])
that the orders of the elliptic elementsGf(m) may be 2, 3, 4or 6. Let

—3V22+5/V2 V@ = —2/32+1/V/3
~5V2z+ 42" I NI RSN
ThenT € I'1(3), Se I'1(2),U € I'(3), andT3 = S$* = U8 = | . Therdore

T2 = 2z —
T 3z-1

S(z) =
00 — T(00) = T?(c0) — 00
is a tringle inG (oo, T(00)),
00 — S(00) — Sz(oo) — 33(00) — 00
is a circuit of length 4 inG (oo, S(0)), and
oo — U(o0) — Uz(oo) — U3(oo) — U4(oo) — U5(oo) — 00
is a circuit of length 6 iNG (oo, U (00)). That is,
00— 2/3—>1/3—> x
is a triangle in G(o0, 2/3),
00— 3/5—>7/10— 4/5 - o0
is a circuit of length 4 inG (oo, 3/5), and
o0 — 2/7T—>5/21— 13/14— 4/21 — 1/7 — o0

is a circuit of length 6 inG(co, 2/7). In the fdlowing we proveour maintheorems.
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Theorem 4.1. Suppose thatm, n) = 1 and n > 1. Thenany circuit in G(oco, u/n) is in
the form

v—> TW) — Tz(v) — T3(v) — Tk_l(v) -
for a unique elliptic mapping T of order k and for some Q.

Proof. Assume thatG(co, u/n) contains a circuit. Let this circuit be in the form —
v2 S v3 S - 5w S vy where each; is different from he others. Sincévy, v2) €
O(oo, u/n), there eists someS € I'1(m) suchthat S(co) = v, andS(u/n) = vy. By
applyingS! to the above cigit and takingw; = S 1(vj), we obtain a circuitC in the
form

0= U/NSwWw3s - Swk1 S wk S 00

wherew; = oo, w2 = U/n. Sinceco € [oo], we see tht the edges of the above circuit lie
in [oo]. Since noedges ofF (0o, u/n) cross inl/, etheru/n < wz < -+ < wk—1 < wk
oru/n> wz > --- > wWk_1 > Wk.

Suppose thati/n < w3 < .-+ < wk—1 < wk. Letwx = X/yn > u/n and suppose
thatoo — x/ynin F(oco,u/n). Then YO0 — x/yn,soyn— 0r = n. Thatis,y = 1.
Since Y0 — x/n, we sedahat(m/q)|0 andq|n for someqg|m. Thusq = 1 and theefore
X = u(modn). Thenx = u + bnfor some integeb > 0. This shows that/n = u/n+ b,
which implies that there exists an integen the intervalu/n, x/n). Therdore,a mustlie
between two adjacent vertices of the above cir€uiBut this is impossible by emma 6
Thereforewy <« oo is impossible ad thus we havey — oo. Letr /sn — oo be an edge
in F(oco, u/n), then it s ®en thats = 1. Sincer/n — 1/0, (m/q)|n andq|0 for some
g|/m. Thus we see thaj = m. Therdore 1 = —rmu(modn). Sincewyx = X/yn — oo,
we havey = 1 and 14+ xmu= 0(modn). Letwyx = x/n = (U+Kko)/n, ko > 1. Then, we
have 1+ mu(u + kp) = 0(modn). Thus the mapping

—uy/mz+ (mu(u + ko) + 1)/ny/m
—ny/Mz+ (u+ ko)/m

isin I'5(n) andg(co) = u/n, p((U+Ko)/N) = ¢(wk) = co. Moreover, it can beseen that

X _y
(p(u+ y) _ u+ m(koy—X)

0(2) =

n n
Sincey is increasing and/n < ¢(u/n), we sedghat
u/n < e(wz) < -+ < @(wk-1)-
By applying the mappin@ to the circuitC,
00> U/MNSw3sS - - S w1 S wg = 00,
we obtain another circui€* in the form
00 = u/n—eU/N) S ewz) S -+ S p(wk-1) > 0

of the same length. Let(wk—1) = r/n. Then since/n — oo, we have 1= —rmu
(modn). Since 1= —xmumodn), we getmxu = mru(modn). Since(mu,n) = 1,
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we obtainx = r (modn). Thusx/n = r/n + b for some integeb. If r /n is different from
x/n, thenb # 0, so there exists an integarbetweerr /n andx/n. Firgly, assume that
r/n < x/n. Then éherr/nis a vertex in the circui€ or there exist two adjacent vertices
wj andwjy1 in C suchthatwj < r/n < wj;1. Assume thatvj < r/n < wjy1. Then
the @lgesr/n — oo andwj < wj1 cross i, which isimpossble byLemma 51f r/n

is a vertex in the circuiC, then he integera must lie between two adjacent vertices of the
circuit C. But this is impossible by emma 6 Now assume thak/n < r/n. Then éher
x/nis an vertex in the circuiC*, or there exist two adjacent verticag andwj1in C
suchthatep(wj) < x/n < ¢(wj+1). The same gument gives a contradiction. Therefore
r/n=x/n,i.e., p(wk-1) = wg. Now assume thap' (wk—i) = wx for1 <i <'s, and then
we show thatpSt1(wk_s_1) = wk. Sincewk_s_1 S wk_s andpS(wk_s) = wk, we have
¢St (wik_s) = @(wk) = 0o. By applying ¢ to the circuitC, s + 1 times, we get the circuit

s+1

oo — u/n— @u/n) — (pz(u/n)—> e S 07T (W—s—1) S 00,

A similar argumen shows thapSt1(wik_s_1) — oo andeSt(wk_s_1) = wk. Now we
show that
@*(00) = 00, ¥(u/n) = u/n, andeX(wy) = wk.

Takingi = k — 1, we obtainwk = ¢k 1(w1) = ¢*1(c0). ThuseX(c0) = @(wk) = co.
Moreover, ok (u/n) = ¢X(p(c0)) = @(EX(0)) = ¢(c0) = u/n and pk(wk) =
P L (wk)) = ¢k 1(00) = ¢~ 1(00) = wk. Therdore ¢¥ has three different fixed points
and this imflies thatgk is the identity mapping. Se is an elliptic element of the order
k. Sinceg is elliptic, ko = 1 andm < 3. On the other hand, singe is injective and
@ (wk—i) = wk = ¢ T1(wk_i_1), we sedhate(wk_i_1) = wk_i. Thus it can be seen that
wi = ¢' ~1(00). Moreover, we see thaur circuit is in the form

00— uU/N— w3z —> -+ —> Wk—1 —> Wk —> O0.
Therefore the circui€C is of the form

00 = ¢(00) = ¢?(00) = ¢(00) —> -+ > ¢ Ho0) > o0
for theelliptic mappingy of orderk where

—uy/mz+ (mu(u +1) +1)/ny/m
—ny/mz+ (u+1)/m

Then it follows that the first circuit

02 =

V>SS SwSsSn
is equal to the circuit
v = T1) = T2(v1) > - — Tk_l(vl) — V1

whereT = SpS~1 andT is an elliptic mapping i, (m) of orderk.
Now suppose thati/n > w3z > --- > wk—1 > wk. Then here exiss a circuit in
F (o0, (n — u)/n) in the form

o—->N—-uw/nsl-wss - --Sl-w151—wk S oo.
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But the almve circut must be of the form
00 = 9(00) = 9%(00) = ¢3(00) = - -+ = K (00) = 00
for some dliptic elementy of orderk and

—(n—u)y/mz+Mn—-wn-u+1 +1)/n/m
—ny/mz+ (n —u+1)/m '
Then, one can easily see that our circuiFtoo, u/n) must be inthe form

0(2) =

o0 — YoV¥U(oo) —> !P(pzlp(oo) — W(pg’lp(oo) - o W(pk’llp(oo) — 00
where ¥ (z) = 1 — z. Moreover, it can beseen that

—uy/mz+ (mu(u — 1) + 1)/n/m
—nymz+ (u—1)/m

and that¥¢ ¥ is an elliptic element of ordé¢. Thus it fdlows that the first circuit

oW (z) =

Vo> 1S S-S Su
is equal to the circuit
vi > T() = T2w1) - - > T ) — n
whereT = SWp ¥S 1 andT is an elliptic mapping of ordek. O

Corollary 2. G(oco, u/n) contains a circuit if and only if mdiFF mu+ 1 = 0(mod n) and
m < 3.

Proof. The first part of the theorem is obvious. lret? =mu+1 = 0(modn) andm < 3.
Then the mapping
—uy/mz+ (muu £ 1) + 1)/n/m

—ny/mz+ (uF 1/m

is in I'j(n) andg(oo) = u/n. Moreover,p is of finite oder and the order af is equal to
4if mis 2 ard 6 if m = 3. The proof then follows. O

(2 =

Corollary 3. Letm< 3. If G(co, u/n) contains a circuit of length k, thefi; (n) contains
anelliptic element of order k where k 3.

We give some lmmmas which will be useful in the proof of the next theorem. In what
follows, we will assume thaim, n) > 1.

Lemma?7. Let r/s and x/y be rational numbers such that ry sx = —1, where
s> 1,y > 1. Then here exist no integers betweefrsrand x/y.

Proof. Let k be an integer such thafs < k < x/y. Thenr < skandx > ky. Thus
1=sx—-ry > sx—sky=s(x — ky) > s, which isa mntradiction. O

Lemma 8. Suppose that there is an edgésn = x/y in G(oco, u/n). Then ve have ny
and ry— snx = Fn. In particular, if oo = x/y, then y=n.
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Proof. Letr/sn — x/y be an edge i|G(oo u/n). Then byTheorem 3. 4thereexists
some dvisor g of m suchthaty = -+ snu(modn ) andry — snx = q: where
g1 = (g, n). Then follows thatn|y and tchereforql — 1. This shows thaty — snx_ Fn.

Now suppose thak/y — r/snis an edge |rG(oo u/n). Then byTheorem 3.4there
exids some diisor g of m suchthatsnx—ry = ¢— andsn= ;yu%(mod n%) where

01 = (g, n). Thus we see that| 4 [yu and thereforel| qu, since(u,n) = 1. Then

gsnx—ryg = n a
1 a1 Q1 o

Thus it follows thain|(nq/q ), whichimplies thatql|q Sincem is a yuare-free integer
andg|m, we seghatqg; = 1. Thereforesnx— ry = Fn, whichimplies thatn|ry. Thus,
nly, since(n,r) = 1. If oo = x/y, then he proof is similar. O

Corollary 4. Let C be a circuit in Goo, u/n) in the form
00> UMNSw3sS - Swk-1 S wk S o0.

Then there exist no integers between adjacent vertices of(@and any rational number
of the form & n does not lie between adjacent vertices of @in

Proof. By Lemma 8 any @lge ofC whose vertices iff) is of the formx/yn < r /snwith
snx—ryn = Fn. Suppose that the integérlies betweerx/yn andr /sn. Thenkn must
lie betweenx/y andr /s, which isimpossble by Lemma 7 Now suppose thak/yn and
r/sn are adjacent vertices & with x/yn < a/n < r/sn. Thenx/y < a < r/s and
sx—ry = —1, which contradicttemma 7 O

Now let us reresent the edges @ (oo, u/n) as hyperbolic geodesics in the upper
half-planel/ = {z € C : Imz > 0}. Then we have

Corollary 5. Let C beany circuit in G(oco, u/n) in the form
00 —=>UMNSw3sS - Swk-1 S wk S o0.
Then no edges of C crossiin

Proof. First of all, we noé that he edgecc = x/n and any other different edge in the
form x/yn < r/snwith snx—ryn = Fn do not cross ifi/ by Corollary 4. Now suppose
that the edgesi — wij1 andwj < wjqq cross inlf. Sincewj — wj41, thereexigs

T e I'(m) suchthatT(c0) = wj andT (u/n) = wj4+1. Applying the mapping to the
vertices of the above edges, we see that the edges u/n andT‘l(wj) = T_l(wj+1)
cross ind. Sincethe elgesoo — u/nandT ~Y(wj) = T~Y(wj+1) are in the circuit

T oo) > THu/n s oo s> u/ns - s T Hw)
ST wj) S-S5 T o),

we havex/yn= T ~1(wj) andr/sn= T~(wj41) with ryn—snx= Fn. Then he edges
oo — u/nandx/yn s r/sncross ind, whichis impossible. O

Theorem 4.2. Let(m, n) > 1. Thenany circuit in G(oo, u/n) is in the form

v T = T?() > T3@W) > - —> Tk_l(v) —> v
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for a unique elliptic mapping T of order k and for some Q.
Proof. Let G(co, u/n) contain a circuit in the form
V> 1S S-S So

where eachj is different from theothers. Then sincev1, v2) € O(oo, u/n), thereexids
someS e I't(m) suchthat S(co) = v1, S(u/N) = vo. ThenS1(v1) = 0o, S (1) =
u/n. By applying S~ to the circuit and takingy; = S~1(vj), we obtain the circuiC

0= U/NSwWw3s - Swk1 S wk S 00

wherew1 = oo, w2 = u/n. Since noedges ofC cross ini/, etheru/n < w3z < --- <
Wk—1 < Wk Oru/N > w3z > --- > wk_1 > wk. JUppose thati/n < wz < --- < wk_1 <
wk. Let wy = x/n and suppose thaty = X/n <« oo. Then(co, wx) € O(oco, u/n).
Thus there exist31 € I'1(m) suchthatTi(co) = oo andTi(u/n) = wx = x/n. Then it
is seen thaff1(z) = z + b for some integeb and sox/n = (u/n) + b. Therdore, there
exigs an integen betweeru/n andx/n. Sincea is not any vertex of the above circudt,
there exist two verticesj andwj41 suchthatwj < a < wj11. But this is impossible
by Corollary 4. Therdore wx — oo. Thus a simple caldation shows that there exists a
divisorq of m suchthatm|gnand 1+ xuq = 0(mod n). Letwx = (u-+ kg)/n. Then since
m|gnandqu(u + ko) + 1 = 0(mod n), the maping

—u,/qz+ (qu(u + ko) + 1)/n/q
(=na//q)z+ (u+ko),/q
isin I'1(m) andg(co) = u/n, (wk) = ¢((U+ ko)/n) = co. Moreover, itis easy to see

that
X _y
w(u+ y) _ Ut qroy—

0(2) =

n n

for 0 < x/y # ko.
By applying ¢ to the above circuiC, we obtain another circuiC*

00— Uu/Nn— oU/N) S e(w3) S -+ S p(wk-1) = 00,

which is of the sme length. Sincep is increasing andi/n < ¢(u/n), we seethat
u/n < p(wz) < -+ < @(wk-1). Let p(wk—1) = r/n. Sincer/n — oo andwy =
X/n — oo, there existwo mgppingsT; and T, suchthat T1(co) = x/n, T1(u/n) = oo,
Ta(c0) = r/n, and Tp(u/n) = oo. Thus we getToT; Y(c0) = To(u/n) = oo and
T,T; 1 (x/n) = Ta(co) = r/n. Thus we see thal.T; }(z) = z + b for some integer
b. This imdies thatb + x/n = r/n. Assume thax/n # r/n. Then here eists an
integera betweenx/n andr/n. Firgly, assume that/n < x/n. Then éherr/n is a
vertexin the circuitC or there exist two adjacent verticag andwj1 in C suchthat
wj < r/n < wjg1. Thecasewj < r/n < wj41 is impossible byCorollary 4. If r/n

is a vertex in the circuiC, then he inegera must lie between two adjacent vertices of
C, which isimpossble by Corollay 4. Now assume thak/n < r/n. Then éher x/n

is a vertex in the circuiC* or there exist two adjacent verticeg andwj1 in C such
thatp(wj) < x/n < ¢(wj+1). By Corollary 4, we getanother contradiction. Therefore
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r/n=x/n,i.e., p(wk—1) = wg. Now assume thacpi (wk—i) = wk forl <i <s, andthen
we show thaipStl(wk_s_1) = wk. Sincewk_s_1 S wk_s andpS(wk_s) = wk, we have
o3t (wk_s) = @(wk) = co. By applying¢ to the circuitC, s + 1times, we get the circuit
00 — Uu/N — gu/n) = @2u/n) S - S Sk s 1) S oo,

A similar argumen shows thatp>ti(wk_s_1) = wk. Thus we getpk(co) = oo,
¢k(u/n) = u/n, andeX(wk) = wk. Therdore, ¢¥ is the identity mapping and thus
is an elliptic mapping of ordek. Sincey is an elliptic mappingko = 1 andq < 3.
Moreover, it can be seen thatwy_i_1) = wk_i andwj = ¢'~1(c0). Therdore, we see
that our cicuit C is in the form

00— U/N— w3z —> -+ = Wk—1 —> Wk —> 0.
Thus the circuiC is of the form

00 = 9(00) = ¢?(00) = ¢(00) —> -+ > ¢ Ho0) > o0
for theelliptic mappingy of orderk where

—-u,/qz+ (quu+1) +1)/n,/q
(=ng//@)z+ (u+1),/q
glm, g < 3, andmiqgn. Then it follows that the first circuit

0(2) =

11> 1SS - SiSsSn
is equal to the circuit
vy = T(v1) — T2(v1) - o Tk_l(vl) — V1

whereT = SpS~1 andT is an elliptic mapping i, (m) of orderk.
Now assume that/n > w3z > --- > wk_1 > wk. Then here elsts a circuit

o—->N—-uw/nsl-wss - --Sl-ww1S1l—wkS o

in G(oo, N —uw/n)withn—uy/n<1—w3 < -+ <1—wk_1 < 1— wk. Butthis
circuit must be of the form

00 = 9(00) = ¢?(00) = ¢(00) > -+ > ¢ Ho0) > o0
for theelliptic mappingy of orderk where
_(-w/az+ @ -wh-u+D+1/n/q
(—(n—uwag//Dz+M-u+1)./Q
glm, g < 3, andm|gn. Thenour circuit must be in the form

©(2)

’

o0 — YopV¥U(oo) —> W(pzlp(oo) — W(p?’W(oo) - o !P(pk*llp(oo) — 0
where¥(z) = 1 — z. Moreover, it can beseen that
-u,/qz+ (quu -1 +1)/n./q
(=ng//@)z+ (u-1)/4
and that@¢ ¥ is an elliptic element of ordé¢. Then it follows that our first circuit

V1> S mus---SwsSn
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is equal to the circuit
v1 = T() = T?(v1) > -+ — Tk_l(vl) — v
whereT = SW¢ ¥S~! andT is an elliptic mapping i1 (m) of orderk. O

Corollary 6. Let (m,n) > 1. Then Goo, u/n) contains a circuit if and only if q&
gu+ 1 = 0(mod n) for some divisor g of m with gn, g < 3.

Proof. The first part of the theorem is obvious. gt F qu + 1 = 0(modn) for some
divisor g of m with m|gn, g < 3. Then the mapping

-u,/qz+ (quu=F1 +1/n/q
(=na/y/@z+uF1D/q
is in I'1(m) andg(oo) = u/n. Moreover, it can beeen easily thap is of finite order and

that the order op is equal to 3, 4, and 6 wheqis 1, 2, and 3 respectively. The proof then
follows. O

(2 =

Corollary 7. Let(m, n) > 1. If G(co, u/n) contains a circuit of the length k, then (m)
contains an elliptic element of order k.

At this point, it is reasonable to conjecture that

Conjecturel. Let n > 1 and letI'1(m) act transitively onQ U {oo}. Thenany circuit of
the length k in the suborbital graph Go, u/n) is of the form

v—> T — Tz(v) — T3(v) — kal(v) -

for a unique elliptic element T i1 (m) of order k and for some € Q U {oo}.
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