Suborbital graphs for the normalizer of $\Gamma_{0}(m)$

Refik Keskin
Department of Mathematics, Faculty of Science and Arts, Sakarya University, Sakarya, Turkey

Received 12 August 2003; accepted 30 September 2004
Available online 4 January 2005

Abstract

In this study, we characterize all circuits in the suborbital graph for the normalizer of $\Gamma_{0}(m)$ when m is a square-free positive integer. We propose a conjecture concerning the suborbital graphs. © 2004 Elsevier Ltd. All rights reserved. MSC: 46A40; 05C05; 20H10

1. Introduction

Let m be a positive integer and let $\Gamma_{1}(m)$ be the normalizer of the congruence subgroup $\Gamma_{0}(m)$ of the modular group in $\operatorname{PSL}(2, \mathbb{R})$. The normalizer $\Gamma_{1}(m)$ was studied by various authors (see $[6,7]$ and the references there). A necessary and sufficient condition for $\Gamma_{1}(\mathrm{~m})$ to act transitively on $\widehat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$ is given in [6]. In [1], the authors investigated the suborbital graph for the modular group on $\widehat{\mathbb{Q}}$ and so conjectured that the suborbital graph $G(\infty, u / n)$ is a forest if and only if $G(\infty, u / n)$ contains no triangles where $n>1$. Then, in [3], the author proved that the conjecture is true. In [4], we investigated the suborbital graph for the Hecke group $H(\sqrt{m})$ on the set of cusps of $H(\sqrt{m})$ where $H(\sqrt{m})$ is the Hecke group generated by the mappings

$$
z \rightarrow z+\sqrt{m}, z \rightarrow-1 / z, \quad m=1,2,3 .
$$

[^0]We showed that the length of a circuit in $G\left(\infty, \frac{u}{n} \sqrt{m}\right)$ is no larger than the orders of the elliptic elements of $H(\sqrt{m})$ when $n>1$. In this study, we are interested in $\Gamma_{1}(m)$ when m is a square-free positive integer and we investigate the circuits in the suborbital graph for the normalizer $\Gamma_{1}(m)$ on $\widehat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$. We characterize all the circuits in the suborbital graph $G(\infty, u / n)$ when $n>1$ (see Section 3 for the definition of the suborbital graph $G(\infty, u / n)$). When $n>1$, we showed that any circuit in $G(\infty, u / n)$ is in the form

$$
v \rightarrow T(v) \rightarrow T^{2}(v) \rightarrow T^{3}(v) \rightarrow \cdots \rightarrow T^{k-1}(v) \rightarrow v
$$

for a unique elliptic element T in $\Gamma_{1}(m)$ of order k and for some $v \in \mathbb{Q} \cup\{\infty\}$. Then we propose a conjecture concerning the suborbital graphs.

2. The action of $\Gamma_{1}(m)$ on $\hat{\mathbb{Q}}$

A complete description of the elements of $\Gamma_{1}(m)$ is given in [10]. If we represent the elements of $\Gamma_{1}(m)$ by the associated matrices, then the normalizer consists exactly of the matrices

$$
\left(\begin{array}{cc}
a e & b / h \\
c m / h & d e
\end{array}\right)
$$

where $e \mid\left(m / h^{2}\right)$ and h is the largest divisor of 24 for which $h^{2} \mid m$ with the understanding that the determinant of the matrix is $e>0$, and that $\left(e, m / h^{2} e\right)=1$. The following theorem is proved in [6].

Theorem 2.1. Let m have prime power decomposition $2^{\alpha_{1}} 3^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}$. Then $\Gamma_{1}(m)$ acts transitively on $\hat{\mathbb{Q}}$ if and only if $\alpha_{1} \leq 7, \alpha_{2} \leq 3, \alpha_{i} \leq 1, i=3,4, \ldots, r$.

If m is a square-free positive integer, then $h=1$. Therefore we give the following (see also [7]).

Theorem 2.2. Let m be a square-free positive integer. Then we have

$$
\Gamma_{1}(m)=\left\{\left(\begin{array}{cc}
a \sqrt{q} & b / \sqrt{q} \\
c m / \sqrt{q} & d \sqrt{q}
\end{array}\right): 1 \leq q, q \mid m ; a, b, c, d \in \mathbb{Z} ; a d q-b c m / q=1\right\} .
$$

Let m be a square-free positive integer. Then, in view of the above theorem, the following theorem holds. (Here, for the sake of completeness, we give a simple proof.)

Theorem 2.3. Let m be a square-free positive integer. Then $\Gamma_{1}(m)$ acts transitively on the set $\widehat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$ of the cusps of $\Gamma_{1}(m)$ where we represent ∞ as $\frac{1}{0}=\frac{-1}{0}$.
Proof. Let $k / s \in \hat{\mathbb{Q}}$ with $(k, s)=1$. Let $q_{1}=(s, m)$. Then $s=s^{*} q_{1}$ for some integer s^{*}. Since m is square-free, $\left(s, m / q_{1}\right)=1$. Thus we have $\left(s, k m / q_{1}\right)=1$. Therefore there exist two integers x and y such that $\left(m / q_{1}\right) k y-s x=1$. Let $q_{2}=m / q_{1}$ and let

$$
T(z)=\frac{k \sqrt{q_{2}} z+x / \sqrt{q_{2}}}{s \sqrt{q_{2}} z+y \sqrt{q_{2}}}
$$

Then it is easily seen that $T \in \Gamma_{1}(m)$ and $T(\infty)=k / s$. Thus the proof follows.

Let $(m, n)=1$ and let $\Gamma_{0}^{*}(n)$ be defined by

$$
\Gamma_{0}^{*}(n)=\left\{\left(\begin{array}{cc}
a \sqrt{q} & b / \sqrt{q} \\
c m / \sqrt{q} & d \sqrt{q}
\end{array}\right) \in \Gamma_{1}(m): c \equiv 0(\bmod n)\right\} .
$$

Then $\Gamma_{0}^{*}(n)$ is a subgroup of $\Gamma_{1}(m)$ and $\Gamma_{0}(m n) \subset \Gamma_{0}^{*}(n) \subset \Gamma_{1}(m)$.
Let (G, X) be a transitive permutation group, and suppose that R is an equivalence relation on $X . R$ is said to be G-invariant if $(x, y) \in R$ implies $(g(x), g(y)) \in R$ for all $g \in G$. The equivalence classes of a G-invariant relation are called blocks.

We now give a lemma from [2].
Lemma 1. Suppose that (G, X) is a transitive permutation group, and H is a subgroup of G such that, for some $x \in X, G_{x} \subset H$. Then

$$
R=\{(g(x), g h(x)): g \in G, h \in H\}
$$

is an equivalence relation. Furthermore, $R=\Delta$, the diagonal of $X \times X \Leftrightarrow H=G_{x}$, and $R=X \times X \Leftrightarrow H=G$.

Lemma 2. Let (G, X) be a transitive permutation group, and \approx the G-invariant equivalence relation defined in Lemma 1 ; then $g_{1}(\alpha) \approx g_{2}(\alpha)$ if and only if $g_{1} \in g_{2} H$. Furthermore, the number of blocks is $|G: H|$.

Let $G=\Gamma_{1}(m)$ and $X=\widehat{\mathbb{Q}}$. In this case $G_{\infty}=\langle T\rangle$ where $T(z)=z+1$. It is clear that $G_{\infty} \subset \Gamma_{0}^{*}(n) \subset G$. Let \approx be the relation defined in Lemma 1, and assume that $r / s, x / y \in \hat{\mathbb{Q}}$. Then according to Theorem 2.3, there exist $T, S \in \Gamma_{1}(m)$ such that $T(\infty)=r / s, S(\infty)=x / y$ where

$$
T(z)=\frac{r \sqrt{q_{1}} z+*}{\left(s \sqrt{q_{1}}\right) z+*}, \quad S(z)=\frac{x \sqrt{q_{2}} z+*}{\left(y \sqrt{q_{2}}\right) z+*}
$$

for some divisors q_{1} and q_{2} of m. Therefore, $r / s \approx x / y$ if and only if $T(\infty) \approx S(\infty)$ if and only if $T^{-1} S \in \Gamma_{0}^{*}(n)$. We then see that $T^{-1} S \in \Gamma_{0}^{*}(n)$ if and only if $r / s \approx x / y$ if and only if $r y-s x \equiv 0(\bmod n)$. The number of equivalence classes under \approx is $\left|\Gamma_{1}(m): \Gamma_{0}^{*}(n)\right|$. We give the following from [11].

Theorem 2.4. Let $(m, n)=1$. Then the index $\left|\Gamma_{1}(m): \Gamma_{0}^{*}(n)\right|$ of $\Gamma_{0}^{*}(n)$ in $\Gamma_{1}(m)$ is

$$
\left|\Gamma: \Gamma_{0}(n)\right|=n \prod_{p \mid n}\left(1+\frac{1}{p}\right) .
$$

3. The suborbital graph for $\Gamma_{1}(m)$ on $\hat{\mathbb{Q}}$

Let (G, X) be a transitive permutation group. Then G acts on $X \times X$ by

$$
g(\alpha, \beta)=(g(\alpha), g(\beta)) \quad(g \in G, \alpha, \beta \in X)
$$

The orbits of this action are called suborbitals of G. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of X, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$.

A directed edge from γ to δ is denoted by $\gamma \rightarrow \delta$ or $\delta \leftarrow \gamma$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $\gamma \rightarrow \delta$ in $G(\alpha, \beta)$.

Clearly $O(\beta, \alpha)$ is also a suborbital, and it is either equal to or disjoint from $O(\alpha, \beta)$. In the former case, $G(\alpha, \beta)=G(\beta, \alpha)$ and the graph consists of pairs of oppositely directed edges. It is convenient to replace each such pair by a single undirected edge, so that we have an undirected graph which we call self-paired. In the latter case, $G(\beta, \alpha)$ is just $G(\alpha, \beta)$ with the arrows reversed, and we call $G(\alpha, \beta)$ and $G(\beta, \alpha)$ paired suborbital graphs.

The above ideas were first introduced by Sims [8], and are also described in a paper by Neuman [5] and in the books by Tsuzuku [9] and by Bigg and White [2], the emphasis being on applications to finite groups.

If $\alpha=\beta$, then $O(\alpha, \alpha)$ is the diagonal of $X \times X$. The corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is self-paired: it consists of a loop based at each vertex $x \in X$. We will be mainly interested in the remaining non-trivial suborbital graphs.

We now investigate the suborbital graphs for the action of $\Gamma_{1}(m)$ on $\widehat{\mathbb{Q}}$. Since $\Gamma_{1}(m)$ acts transitively on $\widehat{\mathbb{Q}}$, each non-trivial suborbital graph contains a pair $(\infty, u / n)$ for some $u / n \in \mathbb{Q}$. Furthermore, it can be easily shown that $O(\infty, u / n)=O(\infty, v / n)$ if and only if $u \equiv v(\bmod n)$. Therefore, we may suppose that $u \leq n$ where $(u, n)=1$.

Theorem 3.1. There is an isomorphism $G(\infty, u / n) \longrightarrow G(\infty,(n-u) / n)$ given by $v \rightarrow 1-v$.

Proof. It is clear that $v \rightarrow 1-v$ is one-to-one and onto. Suppose that there exists an edge $r / s \rightarrow x / y$ in $G(\infty, u / n)$. Then $(r / s, x / y) \in O(\infty, u / n)$ and therefore there exists an element S in $\Gamma_{1}(m)$ such that $S(\infty)=r / s$ and $S(u / n)=x / y$. Let $\Psi(z)=1-z$. Then $\Psi S \Psi \in \Gamma_{1}(m)$. Moreover, we get

$$
\Psi S \Psi(\infty)=\Psi S(\infty)=\Psi(r / s)=1-r / s
$$

and

$$
\Psi S \Psi((n-u) / n)=\Psi S(u / n)=\Psi(x / y)=1-x / y .
$$

Then $(1-r / s, 1-x / y) \in O(\infty,(n-u) / n)$. This shows that there exists an edge $1-r / s \rightarrow 1-x / y$ in $G(\infty,(n-u) / n)$.
Theorem 3.2. Suppose $(m, n)=1$. Then there exists an edge $r / s \rightarrow x / y$ in $G(\infty, u / n)$ if and only if

$$
\frac{m}{q}|s, q| y, r y-s x=\mp n, \text { and } x \equiv \mp q u r(\bmod n), y \equiv \mp q u s(\bmod n)
$$

for some divisor q of m.
Proof. Suppose that there exists an edge $r / s \rightarrow x / y$ in $G(\infty, u / n)$. Then $(r / s, x / y) \in$ $O(\infty, u / n)$, and therefore, there exists $T \in \Gamma_{1}(m)$ such that $T(\infty)=r / s$ and $T(u / n)=$ x / y. Suppose that

$$
T(z)=\frac{a \sqrt{q} z+b / \sqrt{q}}{(c m / \sqrt{q}) z+d \sqrt{q}}, a d q-b c m / q=1
$$

for some $q \mid m$. Then we have $a /(c m / q)=r / s$ and $(a u q+b n) /(c m u+d q n)=x / y$. Since $(a, c m / q)=1$, there exists $i \in\{0,1\}$ such that $a=(-1)^{i} r, c m / q=(-1)^{i} s$. On the other
hand, since $(m, n)=1$, we see that $(q, a u q+b n)=1$. Moreover, since

$$
d(a u q+b n)-b(u c m / q+d n)=u,
$$

and

$$
a q(u c m / q+d n)-c m / q(a u q+b n)=n,
$$

it follows that $(a u q+b n, c m u+d q n)=1$. Thus there exists $j \in\{0,1\}$ such that $(-1)^{j} x=a u q+b n,(-1)^{j} y=c m u+d q n$. Hence we obtain the matrix equation

$$
\left(\begin{array}{cc}
a & b \tag{3.1}\\
c m / q & d q
\end{array}\right)\left(\begin{array}{cc}
1 & u q \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
(-1)^{i} r & (-1)^{j} x \\
(-1)^{i} s & (-1)^{j} y
\end{array}\right) .
$$

Taking determinants in (3.1) we see that $n=(-1)^{i+j}(r y-s x)$. Furthermore, we have $x \equiv(-1)^{i+j} q u r(\bmod n)$ and $y \equiv(-1)^{i+j} q u s(\bmod n)$. So, $r y-s x=\mp n$, and $x \equiv \mp q u r(\bmod n), y \equiv \mp q u s(\bmod n)$. In addition, since $c m / q=(-1)^{i} s$ and $(-1)^{j} y=q(u c m / q+d n)$, we have $\left.\frac{m}{q} \right\rvert\, s$ and $q \mid y$.

Now suppose that for some divisors q of $m, q\left|y, \frac{m}{q}\right| s, \varepsilon(r y-s x)=n$, and $x \equiv$ $\varepsilon q u r(\bmod n), y \equiv \varepsilon q u s(\bmod n)$ where $\varepsilon=\mp 1$. Then, we have $\varepsilon x=q u r+b n$, $\varepsilon y=q u s+k n$ for some integers k and b. Since $m \mid s q, s q=c m$ for some integer c. On the other hand, since $q \mid y$ and $(q, n)=1$, we see that $q \mid k$. This shows that $\varepsilon y=q u s+q d n$ for some integer d. Thus we obtain the matrix equation

$$
\left(\begin{array}{cc}
r & b \tag{3.2}\\
s & d q
\end{array}\right)\left(\begin{array}{cc}
1 & u q \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
r & \varepsilon x \\
s & \varepsilon y
\end{array}\right) .
$$

Taking determinants in (3.2) we get $(r d q-s b) n=\varepsilon(r y-s x)=n$. Thus $r d q-s b=1$. By using $s=c m / q$, we obtain $r d q-b c m / q=1$. If we take

$$
T(z)=\frac{r \sqrt{q} z+b / \sqrt{q}}{(c m / \sqrt{q}) z+d \sqrt{q}},
$$

then we have $T(\infty)=r / s$ and $T(u / n)=(r q u+b n) /(m c u+d q n)=x / y$. So, we see that $(r / s, x / y) \in O(\infty, u / n)$. Therefore there is an edge $r / s \rightarrow x / y$ in $G(\infty, u / n)$.

From now on, unless otherwise stated, we will assume that $(m, n)=1$.
Corollary 1. There exists an edge $r / s \rightarrow x / y$ in $G(\infty, 1)$ if and only if $r y-s x=\mp 1$, and $q\left|s, \frac{m}{q}\right| y$ for some $q \mid m$. In particular, if k is an integer, then there is an edge $k \rightarrow \infty=\frac{1}{0}$ in $G(\infty, 1)$.

Now let us represent the edges of $G(\infty, u / n)$ as hyperbolic geodesics in the upper halfplane $\mathcal{U}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, that is, as Euclidean semi-circles or half-lines perpendicular to the real line. Then we have

Lemma 3. No edges of $G(\infty, 1)$ cross in \mathcal{U}.
Proof. Let $r_{1} / s_{1} \rightarrow x_{1} / y_{1}$ be an edge in $G(\infty, 1)$. Then $T(\infty)=r_{1} / s_{1}$ and $T(1)=x_{1} / y_{1}$ for some $T \in \Gamma_{1}(m)$. Let $S(z)=z+1$. Then $T S(\infty)=r_{1} / s_{1}$ and $T S(0)=x_{1} / y_{1}$. Since any element of $\Gamma_{1}(m)$ preserves the geodesics, we may suppose that the edges $0 \rightarrow \infty$ and $r / s \rightarrow x / y$ cross in \mathcal{U}. But this is impossible, since $r y-s x= \pm 1$.

In Section 2, we introduced for each integer n, an $\Gamma_{1}(m)$-invariant equivalence relation \approx on $\hat{\mathbb{Q}}$ with $r / s \approx x / y$ if and only if $r y-s x \equiv 0(\bmod n)$. If there is an edge $r / s \rightarrow x / y$ in $G(\infty, u / n)$, then this implies that $r y-s x=\mp n$. So, $r / s \approx x / y$. Thus each connected component of $G(\infty, u / n)$ lies in a single block for \approx.

Let $F(\infty, u / n)$ denote the subgraph of $G(\infty, u / n)$ whose vertices form the block $[\infty]=\{x / y: y \equiv 0(\bmod n)\}$.

Since $\Gamma_{1}(m)$ acts transitively on $\widehat{\mathbb{Q}}$, it permutes the blocks transitively. It can be easily seen that the subgraphs whose vertices form the blocks are all isomorphic.
Theorem 3.3. There is an edge $r / s \rightarrow x / y$ in $F(\infty, u / n)$ if and only if

$$
\frac{m}{q}|s, q| y, r y-s x=\mp n \text { and } x \equiv \mp q u r(\bmod n)
$$

for some divisor q of m.
Lemma 4. There is an isomorphism $F(\infty, u / n) \longrightarrow F(\infty,(n-u) / n)$ given by $v \rightarrow$ $1-v$.

Proof. Let Ψ be as in Theorem 3.1. If $r / s \in[\infty]$, then $1-r / s=(s-r) / s \in[\infty]$. The proof then follows.

Let us represent the edges of $F(\infty, u / n)$ as hyperbolic geodesics in the upper half-plane $\mathcal{U}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Then we have

Lemma 5. No edges of $F(\infty, u / n)$ cross in \mathcal{U}.
Proof. Suppose that the edges $r / s n \rightarrow x / y n$ and $r^{\prime} / s^{\prime} n \rightarrow x^{\prime} / y^{\prime} n$ cross in \mathcal{U}. Then $r y-s x=\mp 1$, and $\frac{m}{q}|s n, q| y n$ for some $q \mid m$. Also, $r^{\prime} y^{\prime}-s^{\prime} x^{\prime}=\mp 1$, and $\left.\frac{m}{q^{\prime}} \right\rvert\, s^{\prime} n$, $q^{\prime} \mid y^{\prime} n$. Since $(m, n)=1, \frac{m}{q}|s, q| y$, and $\frac{m}{q^{\prime}}\left|s^{\prime}, q^{\prime}\right| y^{\prime}$. Therefore, the edges $r / s \rightarrow x / y$ and $r^{\prime} / s^{\prime} \rightarrow x^{\prime} / y^{\prime}$ in $G(\infty, 1)$ cross in \mathcal{U}. This is impossible by Lemma 3.

Lemma 6. There does not exist any integer between two adjacent vertices in $F(\infty, u / n)$.
Proof. Suppose that there exists an edge $r / s n \rightarrow x / y n$ in $F(\infty, u / n)$ and assume that k lies between the vertices. Then $k n$ lies between the adjacent vertices r / s and x / y in $G(\infty, 1)$. There is also an edge $k n \rightarrow \infty$ in $G(\infty, 1)$. But, this is impossible by Lemma 3.

Theorem 3.4. Let $(m, n)>1$. Then there exists an edge $r / s \rightarrow x / y$ in $G(\infty, u / n)$ if and only if

$$
r y-s x=\mp \frac{n}{q_{1}}, \frac{q}{q_{1}}|y, m| s q
$$

and

$$
x \equiv \mp \frac{q}{q_{1}} r u\left(\bmod \frac{n}{q_{1}}\right), \quad y \equiv \mp \frac{q}{q_{1}} s u\left(\bmod n \frac{q}{q_{1}}\right)
$$

for some divisor q of m with $q_{1}=(q, n)$.
Proof. The proof is similar.

4. Circuits in $\boldsymbol{G}(\infty, u / n)$

Let (G, X) be a transitive permutation group and let $G(\alpha, \beta)$ be a suborbital graph. If $v \rightarrow w$ or $w \rightarrow v$ in $G(\alpha, \beta)$ we represent this as $v \leftrightarrows w$. By a circuit of length n we will mean n vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that $v_{i} \neq v_{j}$ for $i \neq j$, and $v_{1} \rightarrow v_{2} \leftrightarrows \cdots \leftrightarrows v_{n} \leftrightarrows v_{1}$ where $n \geq 3$. A circuit of length 3 is called a triangle. A graph which contains no circuit is called a forest. If G has an element of finite order n, then it is easy to construct a circuit of length n. Assume that T is of finite order n and $\alpha \in X$ for which $T(\alpha) \neq \alpha$. Then $G(\alpha, \beta)$ is a non-trivial suborbital graph where $\beta=T(\alpha)$. We can construct a circuit of length n as follows. It is obvious that there exists an edge $\alpha \rightarrow \beta$ in $G(\alpha, \beta)$. On the other hand, it is easy to see that if $w \rightarrow v$ is an edge in $G(\alpha, \beta)$, then $T(w) \rightarrow T(v)$ is an edge in $G(\alpha, \beta)$. Thus we obtain the circuit $\alpha \rightarrow T(\alpha) \rightarrow T^{2}(\alpha) \rightarrow \cdots \rightarrow T^{n-1}(\alpha) \rightarrow \alpha$ in $G(\alpha, \beta)$.

It is easy to see that $G(\infty, 1)$ contains many circuits. For instance, if n is odd, then $\infty \rightarrow 1 \rightarrow 1 / 2 \rightarrow 1 / 3 \rightarrow \cdots \rightarrow 1 /(n-1) \rightarrow 0 \rightarrow \infty$ is a circuit of length n in $G(\infty, 1)$ where $G(\infty, 1)$ is the suborbital graph for the action of $\Gamma_{1}(2)$ on $\widehat{\mathbb{Q}}$. Moreover, $\infty \rightarrow 1 \rightarrow 2 / 3 \rightarrow 1 / 2 \rightarrow 1 / 3 \rightarrow 0 \rightarrow \infty$ is a circuit of length 6 in $G(\infty, 1)$ where $G(\infty, 1)$ is the suborbital graph for the action of $\Gamma_{1}(3)$ on $\widehat{\mathbb{Q}}$.

We describe some circuits in $G(\infty, u / n)$ when $n>1$. We know that any element of finite order of $\operatorname{PSL}(2, \mathbb{C})$ is an elliptic element and that any elliptic element of any discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ is of finite order. To construct a circuit in $G(\infty, u / n)$ for some u / n, we may consider elliptic elements of $\Gamma_{1}(m)$. Moreover, we know from [6] (see also [7]) that the orders of the elliptic elements of $\Gamma_{1}(m)$ may be $2,3,4$, or 6 . Let

$$
T(z)=\frac{2 z-1}{3 z-1}, \quad S(z)=\frac{-3 \sqrt{2} z+5 / \sqrt{2}}{-5 \sqrt{2} z+4 \sqrt{2}}, \quad U(z)=\frac{-2 \sqrt{3} z+1 / \sqrt{3}}{-7 \sqrt{3} z+\sqrt{3}} .
$$

Then $T \in \Gamma_{1}(3), S \in \Gamma_{1}(2), U \in \Gamma_{1}(3)$, and $T^{3}=S^{4}=U^{6}=I$. Therefore

$$
\infty \rightarrow T(\infty) \rightarrow T^{2}(\infty) \rightarrow \infty
$$

is a triangle in $G(\infty, T(\infty))$,

$$
\infty \rightarrow S(\infty) \rightarrow S^{2}(\infty) \rightarrow S^{3}(\infty) \rightarrow \infty
$$

is a circuit of length 4 in $G(\infty, S(\infty)$), and

$$
\infty \rightarrow U(\infty) \rightarrow U^{2}(\infty) \rightarrow U^{3}(\infty) \rightarrow U^{4}(\infty) \rightarrow U^{5}(\infty) \rightarrow \infty
$$

is a circuit of length 6 in $G(\infty, U(\infty))$. That is,

$$
\infty \rightarrow 2 / 3 \rightarrow 1 / 3 \rightarrow \infty
$$

is a triangle in $G(\infty, 2 / 3)$,

$$
\infty \rightarrow 3 / 5 \rightarrow 7 / 10 \rightarrow 4 / 5 \rightarrow \infty
$$

is a circuit of length 4 in $G(\infty, 3 / 5)$, and

$$
\infty \rightarrow 2 / 7 \rightarrow 5 / 21 \rightarrow 13 / 14 \rightarrow 4 / 21 \rightarrow 1 / 7 \rightarrow \infty
$$

is a circuit of length 6 in $G(\infty, 2 / 7)$. In the following we prove our main theorems.

Theorem 4.1. Suppose that $(m, n)=1$ and $n>1$. Then any circuit in $G(\infty, u / n)$ is in the form

$$
v \rightarrow T(v) \rightarrow T^{2}(v) \rightarrow T^{3}(v) \rightarrow \cdots \rightarrow T^{k-1}(v) \rightarrow v
$$

for a unique elliptic mapping T of order k and for some $v \in \hat{\mathbb{Q}}$.
Proof. Assume that $G(\infty, u / n)$ contains a circuit. Let this circuit be in the form $v_{1} \rightarrow$ $v_{2} \leftrightarrows v_{3} \leftrightarrows \cdots \leftrightarrows v_{k} \leftrightarrows v_{1}$ where each v_{j} is different from the others. Since $\left(v_{1}, v_{2}\right) \in$ $O(\infty, u / n)$, there exists some $S \in \Gamma_{1}(m)$ such that $S(\infty)=v_{1}$, and $S(u / n)=v_{2}$. By applying S^{-1} to the above circuit and taking $w_{i}=S^{-1}\left(v_{i}\right)$, we obtain a circuit C in the form

$$
\infty \rightarrow u / n \leftrightarrows w_{3} \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_{k} \leftrightarrows \infty
$$

where $w_{1}=\infty, w_{2}=u / n$. Since $\infty \in[\infty]$, we see that the edges of the above circuit lie in $[\infty]$. Since no edges of $F(\infty, u / n)$ cross in \mathcal{U}, either $u / n<w_{3}<\cdots<w_{k-1}<w_{k}$ or $u / n>w_{3}>\cdots>w_{k-1}>w_{k}$.

Suppose that $u / n<w_{3}<\cdots<w_{k-1}<w_{k}$. Let $w_{k}=x / y n>u / n$ and suppose that $\infty \rightarrow x / y n$ in $F(\infty, u / n)$. Then $1 / 0 \rightarrow x / y n$, so $y n-0 r=n$. That is, $y=1$. Since $1 / 0 \rightarrow x / n$, we see that $(m / q) \mid 0$ and $q \mid n$ for some $q \mid m$. Thus $q=1$ and therefore $x \equiv u(\bmod n)$. Then $x=u+b n$ for some integer $b>0$. This shows that $x / n=u / n+b$, which implies that there exists an integer a in the interval $(u / n, x / n)$. Therefore, a must lie between two adjacent vertices of the above circuit C. But this is impossible by Lemma 6 . Therefore, $w_{k} \leftarrow \infty$ is impossible and thus we have $w_{k} \rightarrow \infty$. Let $r / s n \rightarrow \infty$ be an edge in $F(\infty, u / n)$, then it is seen that $s=1$. Since $r / n \rightarrow 1 / 0,(m / q) \mid n$ and $q \mid 0$ for some $q \mid m$. Thus we see that $q=m$. Therefore $1 \equiv-r m u(\bmod n)$. Since $w_{k}=x / y n \rightarrow \infty$, we have $y=1$ and $1+x m u \equiv 0(\bmod n)$. Let $w_{k}=x / n=\left(u+k_{0}\right) / n, k_{0} \geq 1$. Then, we have $1+m u\left(u+k_{0}\right) \equiv 0(\bmod n)$. Thus the mapping

$$
\varphi(z)=\frac{-u \sqrt{m} z+\left(m u\left(u+k_{0}\right)+1\right) / n \sqrt{m}}{-n \sqrt{m} z+\left(u+k_{0}\right) \sqrt{m}}
$$

is in $\Gamma_{0}^{*}(n)$ and $\varphi(\infty)=u / n, \varphi\left(\left(u+k_{0}\right) / n\right)=\varphi\left(w_{k}\right)=\infty$. Moreover, it can be seen that

$$
\varphi\left(\frac{u+\frac{x}{y}}{n}\right)=\frac{u+\frac{y}{m\left(k_{0} y-x\right)}}{n} .
$$

Since φ is increasing and $u / n<\varphi(u / n)$, we see that

$$
u / n<\varphi\left(w_{3}\right)<\cdots<\varphi\left(w_{k-1}\right)
$$

By applying the mapping φ to the circuit C,

$$
\infty \rightarrow u / n \leftrightarrows w_{3} \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_{k} \rightarrow \infty
$$

we obtain another circuit C^{*} in the form

$$
\infty \rightarrow u / n \rightarrow \varphi(u / n) \leftrightarrows \varphi\left(w_{3}\right) \leftrightarrows \cdots \leftrightarrows \varphi\left(w_{k-1}\right) \rightarrow \infty
$$

of the same length. Let $\varphi\left(w_{k-1}\right)=r / n$. Then since $r / n \rightarrow \infty$, we have $1 \equiv-r m u$ $(\bmod n)$. Since $1 \equiv-x m u(\bmod n)$, we get $m x u \equiv m r u(\bmod n)$. Since $(m u, n)=1$,
we obtain $x \equiv r(\bmod n)$. Thus $x / n=r / n+b$ for some integer b. If r / n is different from x / n, then $b \neq 0$, so there exists an integer a between r / n and x / n. Firstly, assume that $r / n<x / n$. Then either r / n is a vertex in the circuit C or there exist two adjacent vertices w_{j} and w_{j+1} in C such that $w_{j}<r / n<w_{j+1}$. Assume that $w_{j}<r / n<w_{j+1}$. Then the edges $r / n \rightarrow \infty$ and $w_{j} \leftrightarrows w_{j+1}$ cross in \mathcal{U}, which is impossible by Lemma 5 . If r / n is a vertex in the circuit C, then the integer a must lie between two adjacent vertices of the circuit C. But this is impossible by Lemma 6 . Now assume that $x / n<r / n$. Then either x / n is an vertex in the circuit C^{*}, or there exist two adjacent vertices w_{j} and w_{j+1} in C such that $\varphi\left(w_{j}\right)<x / n<\varphi\left(w_{j+1}\right)$. The same argument gives a contradiction. Therefore $r / n=x / n$, i.e., $\varphi\left(w_{k-1}\right)=w_{k}$. Now assume that $\varphi^{i}\left(w_{k-i}\right)=w_{k}$ for $1 \leq i \leq s$, and then we show that $\varphi^{s+1}\left(w_{k-s-1}\right)=w_{k}$. Since $w_{k-s-1} \leftrightarrows w_{k-s}$ and $\varphi^{s}\left(w_{k-s}\right)=w_{k}$, we have $\varphi^{s+1}\left(w_{k-s}\right)=\varphi\left(w_{k}\right)=\infty$. By applying φ to the circuit $C, s+1$ times, we get the circuit

$$
\infty \rightarrow u / n \rightarrow \varphi(u / n) \rightarrow \varphi^{2}(u / n) \rightarrow \cdots \rightarrow \cdots \leftrightarrows \varphi^{s+1}\left(w_{k-s-1}\right) \leftrightarrows \infty
$$

A similar argument shows that $\varphi^{s+1}\left(w_{k-s-1}\right) \rightarrow \infty$ and $\varphi^{s+1}\left(w_{k-s-1}\right)=w_{k}$. Now we show that

$$
\varphi^{k}(\infty)=\infty, \varphi^{k}(u / n)=u / n, \text { and } \varphi^{k}\left(w_{k}\right)=w_{k}
$$

Taking $i=k-1$, we obtain $w_{k}=\varphi^{k-1}\left(w_{1}\right)=\varphi^{k-1}(\infty)$. Thus $\varphi^{k}(\infty)=\varphi\left(w_{k}\right)=\infty$. Moreover, $\varphi^{k}(u / n)=\varphi^{k}(\varphi(\infty))=\varphi\left(\varphi^{k}(\infty)\right)=\varphi(\infty)=u / n$ and $\varphi^{k}\left(w_{k}\right)=$ $\varphi^{k-1}\left(\varphi\left(w_{k}\right)\right)=\varphi^{k-1}(\infty)=\varphi^{-1}(\infty)=w_{k}$. Therefore φ^{k} has three different fixed points and this implies that φ^{k} is the identity mapping. So φ is an elliptic element of the order k. Since φ is elliptic, $k_{0}=1$ and $m \leq 3$. On the other hand, since φ is injective and $\varphi^{i}\left(w_{k-i}\right)=w_{k}=\varphi^{i+1}\left(w_{k-i-1}\right)$, we see that $\varphi\left(w_{k-i-1}\right)=w_{k-i}$. Thus it can be seen that $w_{i}=\varphi^{i-1}(\infty)$. Moreover, we see that our circuit is in the form

$$
\infty \rightarrow u / n \rightarrow w_{3} \rightarrow \cdots \rightarrow w_{k-1} \rightarrow w_{k} \rightarrow \infty
$$

Therefore the circuit C is of the form

$$
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^{2}(\infty) \rightarrow \varphi^{3}(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
$$

for the elliptic mapping φ of order k where

$$
\varphi(z)=\frac{-u \sqrt{m} z+(m u(u+1)+1) / n \sqrt{m}}{-n \sqrt{m} z+(u+1) \sqrt{m}} .
$$

Then it follows that the first circuit

$$
v_{1} \rightarrow v_{2} \leftrightarrows v_{3} \leftrightarrows \cdots \leftrightarrows v_{k} \leftrightarrows v_{1}
$$

is equal to the circuit

$$
v_{1} \rightarrow T\left(v_{1}\right) \rightarrow T^{2}\left(v_{1}\right) \rightarrow \cdots \rightarrow T^{k-1}\left(v_{1}\right) \rightarrow v_{1}
$$

where $T=S \varphi S^{-1}$ and T is an elliptic mapping in $\Gamma_{1}(m)$ of order k.
Now suppose that $u / n>w_{3}>\cdots>w_{k-1}>w_{k}$. Then there exists a circuit in $F(\infty,(n-u) / n)$ in the form

$$
\infty \rightarrow(n-u) / n \leftrightarrows 1-w_{3} \leftrightarrows \cdots \leftrightarrows 1-w_{k-1} \leftrightarrows 1-w_{k} \leftrightarrows \infty
$$

But the above circuit must be of the form

$$
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^{2}(\infty) \rightarrow \varphi^{3}(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
$$

for some elliptic element φ of order k and

$$
\varphi(z)=\frac{-(n-u) \sqrt{m} z+(m(n-u)(n-u+1)+1) / n \sqrt{m}}{-n \sqrt{m} z+(n-u+1) \sqrt{m}}
$$

Then, one can easily see that our circuit in $F(\infty, u / n)$ must be in the form

$$
\infty \rightarrow \Psi \varphi \Psi(\infty) \rightarrow \Psi \varphi^{2} \Psi(\infty) \rightarrow \Psi \varphi^{3} \Psi(\infty) \rightarrow \cdots \rightarrow \Psi \varphi^{k-1} \Psi(\infty) \rightarrow \infty
$$

where $\Psi(z)=1-z$. Moreover, it can be seen that

$$
\Psi \varphi \Psi(z)=\frac{-u \sqrt{m} z+(m u(u-1)+1) / n \sqrt{m}}{-n \sqrt{m} z+(u-1) \sqrt{m}}
$$

and that $\Psi \varphi \Psi$ is an elliptic element of order k. Thus it follows that the first circuit

$$
v_{1} \rightarrow v_{2} \leftrightarrows v_{3} \leftrightarrows \cdots \leftrightarrows v_{k} \leftrightarrows v_{1}
$$

is equal to the circuit

$$
v_{1} \rightarrow T\left(v_{1}\right) \rightarrow T^{2}\left(v_{1}\right) \rightarrow \cdots \rightarrow T^{k-1}\left(v_{1}\right) \rightarrow v_{1}
$$

where $T=S \Psi \varphi \Psi S^{-1}$ and T is an elliptic mapping of order k.
Corollary 2. $G(\infty, u / n)$ contains a circuit if and only if $m u^{2} \mp m u+1 \equiv 0(\bmod n)$ and $m \leq 3$.

Proof. The first part of the theorem is obvious. Let $m u^{2} \mp m u+1 \equiv 0(\bmod n)$ and $m \leq 3$. Then the mapping

$$
\varphi(z)=\frac{-u \sqrt{m} z+(m u(u \mp 1)+1) / n \sqrt{m}}{-n \sqrt{m} z+(u \mp 1) \sqrt{m}}
$$

is in $\Gamma_{0}^{*}(n)$ and $\varphi(\infty)=u / n$. Moreover, φ is of finite order and the order of φ is equal to 4 if m is 2 and 6 if $m=3$. The proof then follows.

Corollary 3. Let $m \leq 3$. If $G(\infty, u / n)$ contains a circuit of length k, then $\Gamma_{0}^{*}(n)$ contains an elliptic element of order k where $k \geq 3$.

We give some lemmas which will be useful in the proof of the next theorem. In what follows, we will assume that $(m, n)>1$.

Lemma 7. Let r / s and x / y be rational numbers such that $r y-s x=-1$, where $s \geq 1, y \geq 1$. Then there exist no integers between r / s and x / y.

Proof. Let k be an integer such that $r / s<k<x / y$. Then $r<s k$ and $x>k y$. Thus $1=s x-r y>s x-s k y=s(x-k y) \geq s$, which is a contradiction.

Lemma 8. Suppose that there is an edge $r / s n \leftrightarrows x / y$ in $G(\infty, u / n)$. Then we have $n \mid y$ and $r y-\operatorname{sn} x=\mp n$. In particular, if $\infty \leftrightarrows x / y$, then $y=n$.

Proof. Let $r / s n \rightarrow x / y$ be an edge in $G(\infty, u / n)$. Then by Theorem 3.4, there exists some divisor q of m such that $y \equiv \mp \frac{q}{q_{1}} \operatorname{snu}\left(\bmod n \frac{q}{q_{1}}\right)$ and $r y-\operatorname{snx}=\mp \frac{n}{q_{1}}$ where $q_{1}=(q, n)$. Then it follows that $n \mid y$ and therefore $q_{1}=1$. This shows that $r y-\operatorname{snx}=\mp n$. Now suppose that $x / y \rightarrow r / s n$ is an edge in $G(\infty, u / n)$. Then by Theorem 3.4, there exists some divisor q of m such that $\operatorname{snx}-r y=\mp \frac{n}{q_{1}}$ and $s n \equiv \mp y u \frac{q}{q_{1}}\left(\bmod n \frac{q}{q_{1}}\right)$ where $q_{1}=(q, n)$. Thus we see that $n \left\lvert\, \frac{q}{q_{1}} y u\right.$ and therefore $n \left\lvert\, \frac{q}{q_{1}} y\right.$, since $(u, n)=1$. Then

$$
\frac{q}{q_{1}} \operatorname{snx}-r y \frac{q}{q_{1}}=\mp \frac{n}{q_{1}} \frac{q}{q_{1}} .
$$

Thus it follows that $n \mid\left(n q / q_{1}^{2}\right)$, which implies that $q_{1}^{2} \mid q$. Since m is a square-free integer and $q \mid m$, we see that $q_{1}=1$. Therefore, $\operatorname{snx}-r y=\mp n$, which implies that $n \mid r y$. Thus, $n \mid y$, since $(n, r)=1$. If $\infty \leftrightarrows x / y$, then the proof is similar.

Corollary 4. Let C be a circuit in $G(\infty, u / n)$ in the form

$$
\infty \rightarrow u / n \leftrightarrows w_{3} \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_{k} \leftrightarrows \infty
$$

Then there exist no integers between adjacent vertices of C in \mathbb{Q} and any rational number of the form a/n does not lie between adjacent vertices of C in \mathbb{Q}.

Proof. By Lemma 8, any edge of C whose vertices in \mathbb{Q} is of the form $x / y n \leftrightarrows r / s n$ with $s n x-r y n=\mp n$. Suppose that the integer k lies between $x / y n$ and $r / s n$. Then $k n$ must lie between x / y and r / s, which is impossible by Lemma 7. Now suppose that $x / y n$ and $r / s n$ are adjacent vertices of C with $x / y n<a / n<r / s n$. Then $x / y<a<r / s$ and $s x-r y=-1$, which contradicts Lemma 7 .

Now let us represent the edges of $G(\infty, u / n)$ as hyperbolic geodesics in the upper half-plane $\mathcal{U}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Then we have

Corollary 5. Let C be any circuit in $G(\infty, u / n)$ in the form

$$
\infty \rightarrow u / n \leftrightarrows w_{3} \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_{k} \leftrightarrows \infty
$$

Then no edges of C cross in \mathcal{U}.
Proof. First of all, we note that the edge $\infty \leftrightarrows x / n$ and any other different edge in the form $x / y n \leftrightarrows r / s n$ with $s n x-r y n=\mp n$ do not cross in \mathcal{U} by Corollary 4 . Now suppose that the edges $w_{i} \rightarrow w_{i+1}$ and $w_{j} \leftrightarrows w_{j+1}$ cross in \mathcal{U}. Since $w_{i} \rightarrow w_{i+1}$, there exists $T \in \Gamma_{1}(m)$ such that $T(\infty)=w_{i}$ and $T(u / n)=w_{i+1}$. Applying the mapping T to the vertices of the above edges, we see that the edges $\infty \rightarrow u / n$ and $T^{-1}\left(w_{j}\right) \leftrightarrows T^{-1}\left(w_{j+1}\right)$ cross in \mathcal{U}. Since the edges $\infty \rightarrow u / n$ and $T^{-1}\left(w_{j}\right) \leftrightarrows T^{-1}\left(w_{j+1}\right)$ are in the circuit

$$
\begin{aligned}
& T^{-1}(\infty) \rightarrow T^{-1}(u / n) \leftrightarrows \cdots \infty \rightarrow u / n \leftrightarrows \cdots \leftrightarrows T^{-1}\left(w_{j}\right) \\
& \quad \leftrightarrows T^{-1}\left(w_{j+1}\right) \leftrightarrows \cdots \leftrightarrows T^{-1}(\infty)
\end{aligned}
$$

we have $x / y n=T^{-1}\left(w_{j}\right)$ and $r / s n=T^{-1}\left(w_{j+1}\right)$ with $r y n-s n x=\mp n$. Then the edges $\infty \rightarrow u / n$ and $x / y n \leftrightarrows r / s n$ cross in \mathcal{U}, which is impossible.

Theorem 4.2. Let $(m, n)>1$. Then any circuit in $G(\infty, u / n)$ is in the form

$$
v \rightarrow T(v) \rightarrow T^{2}(v) \rightarrow T^{3}(v) \rightarrow \cdots \rightarrow T^{k-1}(v) \rightarrow v
$$

for a unique elliptic mapping T of order k and for some $v \in \hat{\mathbb{Q}}$.
Proof. Let $G(\infty, u / n)$ contain a circuit in the form

$$
v_{1} \rightarrow v_{2} \leftrightarrows v_{3} \leftrightarrows \cdots \leftrightarrows v_{k} \leftrightarrows v_{1}
$$

where each v_{j} is different from the others. Then since $\left(v_{1}, v_{2}\right) \in O(\infty, u / n)$, there exists some $S \in \Gamma_{1}(m)$ such that $S(\infty)=v_{1}, S(u / n)=v_{2}$. Then $S^{-1}\left(v_{1}\right)=\infty, S^{-1}\left(v_{2}\right)=$ u / n. By applying S^{-1} to the circuit and taking $w_{i}=S^{-1}\left(v_{i}\right)$, we obtain the circuit C

$$
\infty \rightarrow u / n \leftrightarrows w_{3} \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_{k} \leftrightarrows \infty
$$

where $w_{1}=\infty, w_{2}=u / n$. Since no edges of C cross in \mathcal{U}, either $u / n<w_{3}<\cdots<$ $w_{k-1}<w_{k}$ or $u / n>w_{3}>\cdots>w_{k-1}>w_{k}$. Suppose that $u / n<w_{3}<\cdots<w_{k-1}<$ w_{k}. Let $w_{k}=x / n$ and suppose that $w_{k}=x / n \leftarrow \infty$. Then $\left(\infty, w_{k}\right) \in O(\infty, u / n)$. Thus there exists $T_{1} \in \Gamma_{1}(m)$ such that $T_{1}(\infty)=\infty$ and $T_{1}(u / n)=w_{k}=x / n$. Then it is seen that $T_{1}(z)=z+b$ for some integer b and so $x / n=(u / n)+b$. Therefore, there exists an integer a between u / n and x / n. Since a is not any vertex of the above circuit C, there exist two vertices w_{j} and w_{j+1} such that $w_{j}<a<w_{j+1}$. But this is impossible by Corollary 4. Therefore $w_{k} \rightarrow \infty$. Thus a simple calculation shows that there exists a divisor q of m such that $m \mid q n$ and $1+x u q \equiv 0(\bmod n)$. Let $w_{k}=\left(u+k_{0}\right) / n$. Then since $m \mid q n$ and $q u\left(u+k_{0}\right)+1 \equiv 0(\bmod n)$, the mapping

$$
\varphi(z)=\frac{-u \sqrt{q} z+\left(q u\left(u+k_{0}\right)+1\right) / n \sqrt{q}}{(-n q / \sqrt{q}) z+\left(u+k_{0}\right) \sqrt{q}}
$$

is in $\Gamma_{1}(m)$ and $\varphi(\infty)=u / n, \varphi\left(w_{k}\right)=\varphi\left(\left(u+k_{0}\right) / n\right)=\infty$. Moreover, it is easy to see that

$$
\varphi\left(\frac{u+\frac{x}{y}}{n}\right)=\frac{u+\frac{y}{q\left(k_{0} y-x\right)}}{n}
$$

for $0 \leq x / y \neq k_{0}$.
By applying φ to the above circuit C, we obtain another circuit C^{*}

$$
\infty \rightarrow u / n \rightarrow \varphi(u / n) \leftrightarrows \varphi\left(w_{3}\right) \leftrightarrows \cdots \leftrightarrows \varphi\left(w_{k-1}\right) \rightarrow \infty,
$$

which is of the same length. Since φ is increasing and $u / n<\varphi(u / n)$, we see that $u / n<\varphi\left(w_{3}\right)<\cdots<\varphi\left(w_{k-1}\right)$. Let $\varphi\left(w_{k-1}\right)=r / n$. Since $r / n \rightarrow \infty$ and $w_{k}=$ $x / n \rightarrow \infty$, there exist two mappings T_{1} and T_{2} such that $T_{1}(\infty)=x / n, T_{1}(u / n)=\infty$, $T_{2}(\infty)=r / n$, and $T_{2}(u / n)=\infty$. Thus we get $T_{2} T_{1}^{-1}(\infty)=T_{2}(u / n)=\infty$ and $T_{2} T_{1}^{-1}(x / n)=T_{2}(\infty)=r / n$. Thus we see that $T_{2} T_{1}^{-1}(z)=z+b$ for some integer b. This implies that $b+x / n=r / n$. Assume that $x / n \neq r / n$. Then there exists an integer a between x / n and r / n. Firstly, assume that $r / n<x / n$. Then either r / n is a vertex in the circuit C or there exist two adjacent vertices w_{j} and w_{j+1} in C such that $w_{j}<r / n<w_{j+1}$. The case $w_{j}<r / n<w_{j+1}$ is impossible by Corollary 4. If r / n is a vertex in the circuit C, then the integer a must lie between two adjacent vertices of C, which is impossible by Corollary 4. Now assume that $x / n<r / n$. Then either x / n is a vertex in the circuit C^{*} or there exist two adjacent vertices w_{j} and w_{j+1} in C such that $\varphi\left(w_{j}\right)<x / n<\varphi\left(w_{j+1}\right)$. By Corollary 4, we get another contradiction. Therefore
$r / n=x / n$, i.e., $\varphi\left(w_{k-1}\right)=w_{k}$. Now assume that $\varphi^{i}\left(w_{k-i}\right)=w_{k}$ for $1 \leq i \leq s$, and then we show that $\varphi^{s+1}\left(w_{k-s-1}\right)=w_{k}$. Since $w_{k-s-1} \leftrightarrows w_{k-s}$ and $\varphi^{s}\left(w_{k-s}\right)=w_{k}$, we have $\varphi^{s+1}\left(w_{k-s}\right)=\varphi\left(w_{k}\right)=\infty$. By applying φ to the circuit $C, s+1$ times, we get the circuit

$$
\infty \rightarrow u / n \rightarrow \varphi(u / n) \rightarrow \varphi^{2}(u / n) \leftrightarrows \cdots \leftrightarrows \varphi^{s+1}\left(w_{k-s-1}\right) \leftrightarrows \infty
$$

A similar argument shows that $\varphi^{s+1}\left(w_{k-s-1}\right)=w_{k}$. Thus we get $\varphi^{k}(\infty)=\infty$, $\varphi^{k}(u / n)=u / n$, and $\varphi^{k}\left(w_{k}\right)=w_{k}$. Therefore, φ^{k} is the identity mapping and thus φ is an elliptic mapping of order k. Since φ is an elliptic mapping, $k_{0}=1$ and $q \leq 3$. Moreover, it can be seen that $\varphi\left(w_{k-i-1}\right)=w_{k-i}$ and $w_{i}=\varphi^{i-1}(\infty)$. Therefore, we see that our circuit C is in the form

$$
\infty \rightarrow u / n \rightarrow w_{3} \rightarrow \cdots \rightarrow w_{k-1} \rightarrow w_{k} \rightarrow \infty
$$

Thus the circuit C is of the form

$$
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^{2}(\infty) \rightarrow \varphi^{3}(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
$$

for the elliptic mapping φ of order k where

$$
\varphi(z)=\frac{-u \sqrt{q} z+(q u(u+1)+1) / n \sqrt{q}}{(-n q / \sqrt{q}) z+(u+1) \sqrt{q}}
$$

$q \mid m, q \leq 3$, and $m \mid q n$. Then it follows that the first circuit

$$
v_{1} \rightarrow v_{2} \leftrightarrows v_{3} \leftrightarrows \cdots \leftrightarrows v_{k} \leftrightarrows v_{1}
$$

is equal to the circuit

$$
v_{1} \rightarrow T\left(v_{1}\right) \rightarrow T^{2}\left(v_{1}\right) \rightarrow \cdots \rightarrow T^{k-1}\left(v_{1}\right) \rightarrow v_{1}
$$

where $T=S \varphi S^{-1}$ and T is an elliptic mapping in $\Gamma_{1}(m)$ of order k.
Now assume that $u / n>w_{3}>\cdots>w_{k-1}>w_{k}$. Then there exists a circuit

$$
\infty \rightarrow(n-u) / n \leftrightarrows 1-w_{3} \leftrightarrows \cdots \leftrightarrows 1-w_{k-1} \leftrightarrows 1-w_{k} \leftrightarrows \infty
$$

in $G(\infty,(n-u) / n)$ with $(n-u) / n<1-w_{3}<\cdots<1-w_{k-1}<1-w_{k}$. But this circuit must be of the form

$$
\infty \rightarrow \varphi(\infty) \rightarrow \varphi^{2}(\infty) \rightarrow \varphi^{3}(\infty) \rightarrow \cdots \rightarrow \varphi^{k-1}(\infty) \rightarrow \infty
$$

for the elliptic mapping φ of order k where

$$
\varphi(z)=\frac{(n-u) \sqrt{q} z+(q(n-u)(n-u+1)+1) / n \sqrt{q}}{(-(n-u) q / \sqrt{q}) z+(n-u+1) \sqrt{q}},
$$

$q \mid m, q \leq 3$, and $m \mid q n$. Then our circuit must be in the form

$$
\infty \rightarrow \Psi \varphi \Psi(\infty) \rightarrow \Psi \varphi^{2} \Psi(\infty) \rightarrow \Psi \varphi^{3} \Psi(\infty) \rightarrow \cdots \rightarrow \Psi \varphi^{k-1} \Psi(\infty) \rightarrow \infty
$$

where $\Psi(z)=1-z$. Moreover, it can be seen that

$$
\Psi \varphi \Psi(z)=\frac{-u \sqrt{q} z+(q u(u-1)+1) / n \sqrt{q}}{(-n q / \sqrt{q}) z+(u-1) \sqrt{q}}
$$

and that $\Psi \varphi \Psi$ is an elliptic element of order k. Then it follows that our first circuit

$$
v_{1} \rightarrow v_{2} \leftrightarrows v_{3} \leftrightarrows \cdots \leftrightarrows v_{k} \leftrightarrows v_{1}
$$

is equal to the circuit

$$
v_{1} \rightarrow T\left(v_{1}\right) \rightarrow T^{2}\left(v_{1}\right) \rightarrow \cdots \rightarrow T^{k-1}\left(v_{1}\right) \rightarrow v_{1}
$$

where $T=S \Psi \varphi \Psi S^{-1}$ and T is an elliptic mapping in $\Gamma_{1}(m)$ of order k.
Corollary 6. Let $(m, n)>1$. Then $G(\infty, u / n)$ contains a circuit if and only if $q u^{2} \mp$ $q u+1 \equiv 0(\bmod n)$ for some divisor q of m with $m \mid q n, q \leq 3$.
Proof. The first part of the theorem is obvious. Let $q u^{2} \mp q u+1 \equiv 0(\bmod n)$ for some divisor q of m with $m \mid q n, q \leq 3$. Then the mapping

$$
\varphi(z)=\frac{-u \sqrt{q} z+(q u(u \mp 1)+1) / n \sqrt{q}}{(-n q / \sqrt{q}) z+(u \mp 1) \sqrt{q}}
$$

is in $\Gamma_{1}(m)$ and $\varphi(\infty)=u / n$. Moreover, it can be seen easily that φ is of finite order and that the order of φ is equal to 3,4 , and 6 when q is 1,2 , and 3 respectively. The proof then follows.

Corollary 7. Let $(m, n)>1$. If $G(\infty, u / n)$ contains a circuit of the length k, then $\Gamma_{1}(m)$ contains an elliptic element of order k.

At this point, it is reasonable to conjecture that
Conjecture 1. Let $n>1$ and let $\Gamma_{1}(m)$ act transitively on $\mathbb{Q} \cup\{\infty\}$. Then any circuit of the length k in the suborbital graph $G(\infty, u / n)$ is of the form

$$
v \rightarrow T(v) \rightarrow T^{2}(v) \rightarrow T^{3}(v) \rightarrow \cdots \rightarrow T^{k-1}(v) \rightarrow v
$$

for a unique elliptic element T in $\Gamma_{1}(m)$ of order k and for some $v \in \mathbb{Q} \cup\{\infty\}$.

References

[1] G.A. Jones, D. Singerman, K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Notes, vol. 160, Cambridge University Press, Cambridge, 1991, pp. 316-338.
[2] N.L. Bigg, A.T. White, Permutation group and combinatorial structures, London Math. Soc. Lecture Notes, vol. 33, Cambridge University Press, Cambridge, 1979.
[3] M. Akbas, On suborbital graphs for the modular group, Bull. London. Math. Soc. 33 (2001) 647-652.
[4] R. Keskin, On suborbital graphs for some Hecke groups, Discrete Math. 234 (2001) 53-64.
[5] P.M. Neuman, Finite permutation groups, edge coloured graphs and matrices, in: M.P.J. Curran (Ed.), Topic in Group Theory and Computation, Academic Press, London, New York, San Francisco, 1977.
[6] M. Akbas, D. Singerman, The signature of the normalizer of $\Gamma_{0}(N)$, London Math. Soc. Lecture Notes Series 165 (1992) 77-86.
[7] C. Maclachlan, Groups of units of zero ternary quadratic forms, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 141-157.
[8] C.C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967) 76-86.
[9] T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Press, Cambridge, 1982.
[10] J.H. Conway, S.P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979) 308-339.
[11] R. Keskin, Some subgroups of the normalizer of $\Gamma_{0}(m)$ (submitted for publication).

[^0]: E-mail address: rkeskin@sakarya.edu.tr.

 0195-6698/\$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

