

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 27 (2006) 193-206

www.elsevier.com/locate/ejc

Suborbital graphs for the normalizer of $\Gamma_0(m)$

Refik Keskin

Department of Mathematics, Faculty of Science and Arts, Sakarya University, Sakarya, Turkey

Received 12 August 2003; accepted 30 September 2004 Available online 4 January 2005

Abstract

In this study, we characterize all circuits in the suborbital graph for the normalizer of $\Gamma_0(m)$ when *m* is a square-free positive integer. We propose a conjecture concerning the suborbital graphs. © 2004 Elsevier Ltd. All rights reserved.

MSC: 46A40; 05C05; 20H10

1. Introduction

Let *m* be a positive integer and let $\Gamma_1(m)$ be the normalizer of the congruence subgroup $\Gamma_0(m)$ of the modular group in $PSL(2, \mathbb{R})$. The normalizer $\Gamma_1(m)$ was studied by various authors (see [6,7] and the references there). A necessary and sufficient condition for $\Gamma_1(m)$ to act transitively on $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ is given in [6]. In [1], the authors investigated the suborbital graph for the modular group on $\hat{\mathbb{Q}}$ and so conjectured that the suborbital graph $G(\infty, u/n)$ is a forest if and only if $G(\infty, u/n)$ contains no triangles where n > 1. Then, in [3], the author proved that the conjecture is true. In [4], we investigated the suborbital graph for the Hecke group $H(\sqrt{m})$ on the set of cusps of $H(\sqrt{m})$ where $H(\sqrt{m})$ is the Hecke group generated by the mappings

 $z \to z + \sqrt{m}, z \to -1/z, \qquad m = 1, 2, 3.$

E-mail address: rkeskin@sakarya.edu.tr.

We showed that the length of a circuit in $G(\infty, \frac{u}{n}\sqrt{m})$ is no larger than the orders of the elliptic elements of $H(\sqrt{m})$ when n > 1. In this study, we are interested in $\Gamma_1(m)$ when m is a square-free positive integer and we investigate the circuits in the suborbital graph for the normalizer $\Gamma_1(m)$ on $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$. We characterize all the circuits in the suborbital graph $G(\infty, u/n)$ when n > 1 (see Section 3 for the definition of the suborbital graph $G(\infty, u/n)$). When n > 1, we showed that any circuit in $G(\infty, u/n)$ is in the form

$$v \to T(v) \to T^2(v) \to T^3(v) \to \dots \to T^{k-1}(v) \to v$$

for a unique elliptic element T in $\Gamma_1(m)$ of order k and for some $v \in \mathbb{Q} \cup \{\infty\}$. Then we propose a conjecture concerning the suborbital graphs.

2. The action of $\Gamma_1(m)$ on $\hat{\mathbb{Q}}$

A complete description of the elements of $\Gamma_1(m)$ is given in [10]. If we represent the elements of $\Gamma_1(m)$ by the associated matrices, then the normalizer consists exactly of the matrices

$$\begin{pmatrix} ae & b/h \\ cm/h & de \end{pmatrix}$$

where $e|(m/h^2)$ and *h* is the largest divisor of 24 for which $h^2|m$ with the understanding that the determinant of the matrix is e > 0, and that $(e, m/h^2e) = 1$. The following theorem is proved in [6].

Theorem 2.1. Let *m* have prime power decomposition $2^{\alpha_1}3^{\alpha_2}p_3^{\alpha_3}\cdots p_r^{\alpha_r}$. Then $\Gamma_1(m)$ acts transitively on $\hat{\mathbb{Q}}$ if and only if $\alpha_1 \leq 7$, $\alpha_2 \leq 3$, $\alpha_i \leq 1$, $i = 3, 4, \ldots, r$.

If *m* is a square-free positive integer, then h = 1. Therefore we give the following (see also [7]).

Theorem 2.2. Let *m* be a square-free positive integer. Then we have

$$\Gamma_1(m) = \left\{ \begin{pmatrix} a\sqrt{q} & b/\sqrt{q} \\ cm/\sqrt{q} & d\sqrt{q} \end{pmatrix} : 1 \le q, q | m; a, b, c, d \in \mathbb{Z}; adq - bcm/q = 1 \right\}.$$

Let *m* be a square-free positive integer. Then, in view of the above theorem, the following theorem holds. (Here, for the sake of completeness, we give a simple proof.)

Theorem 2.3. Let *m* be a square-free positive integer. Then $\Gamma_1(m)$ acts transitively on the set $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ of the cusps of $\Gamma_1(m)$ where we represent ∞ as $\frac{1}{0} = \frac{-1}{0}$.

Proof. Let $k/s \in \hat{\mathbb{Q}}$ with (k, s) = 1. Let $q_1 = (s, m)$. Then $s = s^*q_1$ for some integer s^* . Since *m* is square-free, $(s, m/q_1) = 1$. Thus we have $(s, km/q_1) = 1$. Therefore there exist two integers *x* and *y* such that $(m/q_1)ky - sx = 1$. Let $q_2 = m/q_1$ and let

$$T(z) = \frac{k\sqrt{q_2}z + x/\sqrt{q_2}}{s\sqrt{q_2}z + y\sqrt{q_2}}$$

Then it is easily seen that $T \in \Gamma_1(m)$ and $T(\infty) = k/s$. Thus the proof follows. \Box

Let (m, n) = 1 and let $\Gamma_0^*(n)$ be defined by

$$\Gamma_0^*(n) = \left\{ \begin{pmatrix} a\sqrt{q} & b/\sqrt{q} \\ cm/\sqrt{q} & d\sqrt{q} \end{pmatrix} \in \Gamma_1(m) : c \equiv 0 \pmod{n} \right\}.$$

Then $\Gamma_0^*(n)$ is a subgroup of $\Gamma_1(m)$ and $\Gamma_0(mn) \subset \Gamma_0^*(n) \subset \Gamma_1(m)$.

Let (G, X) be a transitive permutation group, and suppose that R is an equivalence relation on X. R is said to be G-invariant if $(x, y) \in R$ implies $(g(x), g(y)) \in R$ for all $g \in G$. The equivalence classes of a G-invariant relation are called blocks.

We now give a lemma from [2].

Lemma 1. Suppose that (G, X) is a transitive permutation group, and H is a subgroup of G such that, for some $x \in X$, $G_x \subset H$. Then

$$R = \{(g(x), gh(x)) : g \in G, h \in H\}$$

is an equivalence relation. Furthermore, $R = \triangle$, the diagonal of $X \times X \Leftrightarrow H = G_x$, and $R = X \times X \Leftrightarrow H = G$.

Lemma 2. Let (G, X) be a transitive permutation group, and \approx the *G*-invariant equivalence relation defined in Lemma 1; then $g_1(\alpha) \approx g_2(\alpha)$ if and only if $g_1 \in g_2H$. Furthermore, the number of blocks is |G : H|.

Let $G = \Gamma_1(m)$ and $X = \hat{\mathbb{Q}}$. In this case $G_{\infty} = \langle T \rangle$ where T(z) = z + 1. It is clear that $G_{\infty} \subset \Gamma_0^*(n) \subset G$. Let \approx be the relation defined in Lemma 1, and assume that $r/s, x/y \in \hat{\mathbb{Q}}$. Then according to Theorem 2.3, there exist $T, S \in \Gamma_1(m)$ such that $T(\infty) = r/s, S(\infty) = x/y$ where

$$T(z) = \frac{r\sqrt{q_1}z + *}{(s\sqrt{q_1})z + *}, \qquad S(z) = \frac{x\sqrt{q_2}z + *}{(y\sqrt{q_2})z + *}$$

for some divisors q_1 and q_2 of m. Therefore, $r/s \approx x/y$ if and only if $T(\infty) \approx S(\infty)$ if and only if $T^{-1}S \in \Gamma_0^*(n)$. We then see that $T^{-1}S \in \Gamma_0^*(n)$ if and only if $r/s \approx x/y$ if and only if $ry - sx \equiv 0 \pmod{n}$. The number of equivalence classes under \approx is $|\Gamma_1(m) : \Gamma_0^*(n)|$. We give the following from [11].

Theorem 2.4. Let (m, n) = 1. Then the index $|\Gamma_1(m) : \Gamma_0^*(n)|$ of $\Gamma_0^*(n)$ in $\Gamma_1(m)$ is

$$|\Gamma:\Gamma_0(n)| = n \prod_{p|n} \left(1 + \frac{1}{p}\right).$$

3. The suborbital graph for $\Gamma_1(m)$ on $\hat{\mathbb{Q}}$

Let (G, X) be a transitive permutation group. Then G acts on $X \times X$ by

$$g(\alpha, \beta) = (g(\alpha), g(\beta))$$
 $(g \in G, \alpha, \beta \in X).$

The orbits of this action are called suborbitals of *G*. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of *X*, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$.

A directed edge from γ to δ is denoted by $\gamma \to \delta$ or $\delta \leftarrow \gamma$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $\gamma \to \delta$ in $G(\alpha, \beta)$.

Clearly $O(\beta, \alpha)$ is also a suborbital, and it is either equal to or disjoint from $O(\alpha, \beta)$. In the former case, $G(\alpha, \beta) = G(\beta, \alpha)$ and the graph consists of pairs of oppositely directed edges. It is convenient to replace each such pair by a single undirected edge, so that we have an undirected graph which we call self-paired. In the latter case, $G(\beta, \alpha)$ is just $G(\alpha, \beta)$ with the arrows reversed, and we call $G(\alpha, \beta)$ and $G(\beta, \alpha)$ paired suborbital graphs.

The above ideas were first introduced by Sims [8], and are also described in a paper by Neuman [5] and in the books by Tsuzuku [9] and by Bigg and White [2], the emphasis being on applications to finite groups.

If $\alpha = \beta$, then $O(\alpha, \alpha)$ is the diagonal of $X \times X$. The corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is self-paired: it consists of a loop based at each vertex $x \in X$. We will be mainly interested in the remaining non-trivial suborbital graphs.

We now investigate the suborbital graphs for the action of $\Gamma_1(m)$ on $\hat{\mathbb{Q}}$. Since $\Gamma_1(m)$ acts transitively on $\hat{\mathbb{Q}}$, each non-trivial suborbital graph contains a pair $(\infty, u/n)$ for some $u/n \in \mathbb{Q}$. Furthermore, it can be easily shown that $O(\infty, u/n) = O(\infty, v/n)$ if and only if $u \equiv v \pmod{n}$. Therefore, we may suppose that $u \leq n$ where (u, n) = 1.

Theorem 3.1. There is an isomorphism $G(\infty, u/n) \longrightarrow G(\infty, (n-u)/n)$ given by $v \rightarrow 1-v$.

Proof. It is clear that $v \to 1 - v$ is one-to-one and onto. Suppose that there exists an edge $r/s \to x/y$ in $G(\infty, u/n)$. Then $(r/s, x/y) \in O(\infty, u/n)$ and therefore there exists an element *S* in $\Gamma_1(m)$ such that $S(\infty) = r/s$ and S(u/n) = x/y. Let $\Psi(z) = 1 - z$. Then $\Psi S \Psi \in \Gamma_1(m)$. Moreover, we get

$$\Psi S \Psi(\infty) = \Psi S(\infty) = \Psi(r/s) = 1 - r/s$$

and

$$\Psi S \Psi((n-u)/n) = \Psi S(u/n) = \Psi(x/y) = 1 - x/y.$$

Then $(1 - r/s, 1 - x/y) \in O(\infty, (n - u)/n)$. This shows that there exists an edge $1 - r/s \rightarrow 1 - x/y$ in $G(\infty, (n - u)/n)$. \Box

Theorem 3.2. Suppose (m, n) = 1. Then there exists an edge $r/s \rightarrow x/y$ in $G(\infty, u/n)$ if and only if

$$\frac{m}{q}|s, q|y, ry - sx = \mp n, \text{ and } x \equiv \mp qur \pmod{n}, y \equiv \mp qus \pmod{n}$$

for some divisor q of m.

Proof. Suppose that there exists an edge $r/s \to x/y$ in $G(\infty, u/n)$. Then $(r/s, x/y) \in O(\infty, u/n)$, and therefore, there exists $T \in \Gamma_1(m)$ such that $T(\infty) = r/s$ and T(u/n) = x/y. Suppose that

$$T(z) = \frac{a\sqrt{q}z + b/\sqrt{q}}{(cm/\sqrt{q})z + d\sqrt{q}}, adq - bcm/q = 1$$

for some q|m. Then we have a/(cm/q) = r/s and (auq+bn)/(cmu+dqn) = x/y. Since (a, cm/q) = 1, there exists $i \in \{0, 1\}$ such that $a = (-1)^i r$, $cm/q = (-1)^i s$. On the other

hand, since (m, n) = 1, we see that (q, auq + bn) = 1. Moreover, since

d(auq + bn) - b(ucm/q + dn) = u,

and

$$aq(ucm/q + dn) - cm/q(auq + bn) = n,$$

it follows that (auq + bn, cmu + dqn) = 1. Thus there exists $j \in \{0, 1\}$ such that $(-1)^j x = auq + bn, (-1)^j y = cmu + dqn$. Hence we obtain the matrix equation

$$\begin{pmatrix} a & b \\ cm/q & dq \end{pmatrix} \begin{pmatrix} 1 & uq \\ 0 & n \end{pmatrix} = \begin{pmatrix} (-1)^{i}r & (-1)^{j}x \\ (-1)^{i}s & (-1)^{j}y \end{pmatrix}.$$
(3.1)

Taking determinants in (3.1) we see that $n = (-1)^{i+j}(ry - sx)$. Furthermore, we have $x \equiv (-1)^{i+j}qur \pmod{n}$ and $y \equiv (-1)^{i+j}qus \pmod{n}$. So, $ry - sx = \mp n$, and $x \equiv \mp qur \pmod{n}$, $y \equiv \mp qus \pmod{n}$. In addition, since $cm/q = (-1)^i s$ and $(-1)^j y = q(ucm/q + dn)$, we have $\frac{m}{q}|s$ and q|y.

Now suppose that for some divisors q of m, q|y, $\frac{m}{q}|s$, $\varepsilon(ry - sx) = n$, and $x \equiv \varepsilon qur(\text{mod } n)$, $y \equiv \varepsilon qus(\text{mod } n)$ where $\varepsilon = \mp 1$. Then, we have $\varepsilon x = qur + bn$, $\varepsilon y = qus + kn$ for some integers k and b. Since m|sq, sq = cm for some integer c. On the other hand, since q|y and (q, n) = 1, we see that q|k. This shows that $\varepsilon y = qus + qdn$ for some integer d. Thus we obtain the matrix equation

$$\begin{pmatrix} r & b \\ s & dq \end{pmatrix} \begin{pmatrix} 1 & uq \\ 0 & n \end{pmatrix} = \begin{pmatrix} r & \varepsilon x \\ s & \varepsilon y \end{pmatrix}.$$
(3.2)

Taking determinants in (3.2) we get $(rdq - sb)n = \varepsilon(ry - sx) = n$. Thus rdq - sb = 1. By using s = cm/q, we obtain rdq - bcm/q = 1. If we take

$$T(z) = \frac{r\sqrt{q}z + b/\sqrt{q}}{(cm/\sqrt{q})z + d\sqrt{q}}$$

then we have $T(\infty) = r/s$ and T(u/n) = (rqu + bn)/(mcu + dqn) = x/y. So, we see that $(r/s, x/y) \in O(\infty, u/n)$. Therefore there is an edge $r/s \to x/y$ in $G(\infty, u/n)$.

From now on, unless otherwise stated, we will assume that (m, n) = 1.

Corollary 1. There exists an edge $r/s \to x/y$ in $G(\infty, 1)$ if and only if $ry - sx = \mp 1$, and $q|s, \frac{m}{q}|y$ for some q|m. In particular, if k is an integer, then there is an edge $k \to \infty = \frac{1}{0}$ in $G(\infty, 1)$.

Now let us represent the edges of $G(\infty, u/n)$ as hyperbolic geodesics in the upper halfplane $\mathcal{U} = \{z \in \mathbb{C} : \text{Im } z > 0\}$, that is, as Euclidean semi-circles or half-lines perpendicular to the real line. Then we have

Lemma 3. No edges of $G(\infty, 1)$ cross in \mathcal{U} .

Proof. Let $r_1/s_1 \to x_1/y_1$ be an edge in $G(\infty, 1)$. Then $T(\infty) = r_1/s_1$ and $T(1) = x_1/y_1$ for some $T \in \Gamma_1(m)$. Let S(z) = z + 1. Then $TS(\infty) = r_1/s_1$ and $TS(0) = x_1/y_1$. Since any element of $\Gamma_1(m)$ preserves the geodesics, we may suppose that the edges $0 \to \infty$ and $r/s \to x/y$ cross in \mathcal{U} . But this is impossible, since $ry - sx = \pm 1$. \Box

In Section 2, we introduced for each integer *n*, an $\Gamma_1(m)$ -invariant equivalence relation \approx on $\hat{\mathbb{Q}}$ with $r/s \approx x/y$ if and only if $ry - sx \equiv 0 \pmod{n}$. If there is an edge $r/s \rightarrow x/y$ in $G(\infty, u/n)$, then this implies that $ry - sx \equiv \mp n$. So, $r/s \approx x/y$. Thus each connected component of $G(\infty, u/n)$ lies in a single block for \approx .

Let $F(\infty, u/n)$ denote the subgraph of $G(\infty, u/n)$ whose vertices form the block $[\infty] = \{x/y : y \equiv 0 \pmod{n}\}.$

Since $\Gamma_1(m)$ acts transitively on $\hat{\mathbb{Q}}$, it permutes the blocks transitively. It can be easily seen that the subgraphs whose vertices form the blocks are all isomorphic.

Theorem 3.3. There is an edge $r/s \rightarrow x/y$ in $F(\infty, u/n)$ if and only if

$$\frac{m}{q}|s, q|y, ry - sx = \mp n \text{ and } x \equiv \mp qur \pmod{n}$$

for some divisor q of m.

Lemma 4. There is an isomorphism $F(\infty, u/n) \longrightarrow F(\infty, (n-u)/n)$ given by $v \rightarrow 1-v$.

Proof. Let Ψ be as in Theorem 3.1. If $r/s \in [\infty]$, then $1 - r/s = (s - r)/s \in [\infty]$. The proof then follows. \Box

Let us represent the edges of $F(\infty, u/n)$ as hyperbolic geodesics in the upper half-plane $\mathcal{U} = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Then we have

Lemma 5. No edges of $F(\infty, u/n)$ cross in \mathcal{U} .

Proof. Suppose that the edges $r/sn \to x/yn$ and $r'/s'n \to x'/y'n$ cross in \mathcal{U} . Then $ry - sx = \mp 1$, and $\frac{m}{q}|sn$, q|yn for some q|m. Also, $r'y' - s'x' = \mp 1$, and $\frac{m}{q'}|s'n$, q'|y'n. Since (m, n) = 1, $\frac{m}{q}|s$, q|y, and $\frac{m}{q'}|s'$, q'|y'. Therefore, the edges $r/s \to x/y$ and $r'/s' \to x'/y'$ in $G(\infty, 1)$ cross in \mathcal{U} . This is impossible by Lemma 3. \Box

Lemma 6. There does not exist any integer between two adjacent vertices in $F(\infty, u/n)$.

Proof. Suppose that there exists an edge $r/sn \to x/yn$ in $F(\infty, u/n)$ and assume that k lies between the vertices. Then kn lies between the adjacent vertices r/s and x/y in $G(\infty, 1)$. There is also an edge $kn \to \infty$ in $G(\infty, 1)$. But, this is impossible by Lemma 3. \Box

Theorem 3.4. Let (m, n) > 1. Then there exists an edge $r/s \to x/y$ in $G(\infty, u/n)$ if and only if

$$ry - sx = \mp \frac{n}{q_1}, \frac{q}{q_1} | y, m | sq,$$

and

$$x \equiv \mp \frac{q}{q_1} ru\left(\mod \frac{n}{q_1} \right), \qquad y \equiv \mp \frac{q}{q_1} su\left(\mod n \frac{q}{q_1} \right)$$

for some divisor q of m with $q_1 = (q, n)$.

Proof. The proof is similar. \Box

4. Circuits in $G(\infty, u/n)$

Let (G, X) be a transitive permutation group and let $G(\alpha, \beta)$ be a suborbital graph. If $v \to w$ or $w \to v$ in $G(\alpha, \beta)$ we represent this as $v \leftrightarrows w$. By a circuit of length *n* we will mean *n* vertices v_1, v_2, \ldots, v_n such that $v_i \neq v_j$ for $i \neq j$, and $v_1 \to v_2 \sqsubseteq \cdots \sqsubseteq v_n \sqsubseteq v_1$ where $n \ge 3$. A circuit of length 3 is called a triangle. A graph which contains no circuit is called a forest. If *G* has an element of finite order *n*, then it is easy to construct a circuit of length *n* as follows. It is obvious that there exists an edge $\alpha \to \beta$ in $G(\alpha, \beta)$. On the other hand, it is easy to see that if $w \to v$ is an edge in $G(\alpha, \beta)$, then $T(w) \to T(v)$ is an edge in $G(\alpha, \beta)$. Thus we obtain the circuit $\alpha \to T(\alpha) \to T^2(\alpha) \to \cdots \to T^{n-1}(\alpha) \to \alpha$ in $G(\alpha, \beta)$.

It is easy to see that $G(\infty, 1)$ contains many circuits. For instance, if *n* is odd, then $\infty \to 1 \to 1/2 \to 1/3 \to \cdots \to 1/(n-1) \to 0 \to \infty$ is a circuit of length *n* in $G(\infty, 1)$ where $G(\infty, 1)$ is the suborbital graph for the action of $\Gamma_1(2)$ on $\hat{\mathbb{Q}}$. Moreover, $\infty \to 1 \to 2/3 \to 1/2 \to 1/3 \to 0 \to \infty$ is a circuit of length 6 in $G(\infty, 1)$ where $G(\infty, 1)$ is the suborbital graph for the action of $\Gamma_1(3)$ on $\hat{\mathbb{Q}}$.

We describe some circuits in $G(\infty, u/n)$ when n > 1. We know that any element of finite order of $PSL(2, \mathbb{C})$ is an elliptic element and that any elliptic element of any discrete subgroup of $PSL(2, \mathbb{R})$ is of finite order. To construct a circuit in $G(\infty, u/n)$ for some u/n, we may consider elliptic elements of $\Gamma_1(m)$. Moreover, we know from [6] (see also [7]) that the orders of the elliptic elements of $\Gamma_1(m)$ may be 2, 3, 4, or 6. Let

$$T(z) = \frac{2z - 1}{3z - 1}, \qquad S(z) = \frac{-3\sqrt{2}z + 5/\sqrt{2}}{-5\sqrt{2}z + 4\sqrt{2}}, \qquad U(z) = \frac{-2\sqrt{3}z + 1/\sqrt{3}}{-7\sqrt{3}z + \sqrt{3}}.$$

Then $T \in \Gamma_1(3)$, $S \in \Gamma_1(2)$, $U \in \Gamma_1(3)$, and $T^3 = S^4 = U^6 = I$. Therefore

 $\infty \to T(\infty) \to T^2(\infty) \to \infty$

is a triangle in $G(\infty, T(\infty))$,

$$\infty \to S(\infty) \to S^2(\infty) \to S^3(\infty) \to \infty$$

is a circuit of length 4 in $G(\infty, S(\infty))$, and

$$\infty \to U(\infty) \to U^2(\infty) \to U^3(\infty) \to U^4(\infty) \to U^5(\infty) \to \infty$$

is a circuit of length 6 in $G(\infty, U(\infty))$. That is,

 $\infty \rightarrow 2/3 \rightarrow 1/3 \rightarrow \infty$

is a triangle in $G(\infty, 2/3)$,

 $\infty \to 3/5 \to 7/10 \to 4/5 \to \infty$

is a circuit of length 4 in $G(\infty, 3/5)$, and

 $\infty \rightarrow 2/7 \rightarrow 5/21 \rightarrow 13/14 \rightarrow 4/21 \rightarrow 1/7 \rightarrow \infty$

is a circuit of length 6 in $G(\infty, 2/7)$. In the following we prove our main theorems.

Theorem 4.1. Suppose that (m, n) = 1 and n > 1. Then any circuit in $G(\infty, u/n)$ is in the form

$$v \to T(v) \to T^2(v) \to T^3(v) \to \dots \to T^{k-1}(v) \to v$$

for a unique elliptic mapping T of order k and for some $v \in \hat{\mathbb{Q}}$.

Proof. Assume that $G(\infty, u/n)$ contains a circuit. Let this circuit be in the form $v_1 \rightarrow v_2 \rightleftharpoons v_3 \leftrightarrows \cdots \leftrightarrows v_k \leftrightarrows v_1$ where each v_j is different from the others. Since $(v_1, v_2) \in O(\infty, u/n)$, there exists some $S \in \Gamma_1(m)$ such that $S(\infty) = v_1$, and $S(u/n) = v_2$. By applying S^{-1} to the above circuit and taking $w_i = S^{-1}(v_i)$, we obtain a circuit *C* in the form

$$\infty \to u/n \leftrightarrows w_3 \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_k \leftrightarrows \infty$$

where $w_1 = \infty$, $w_2 = u/n$. Since $\infty \in [\infty]$, we see that the edges of the above circuit lie in $[\infty]$. Since no edges of $F(\infty, u/n)$ cross in \mathcal{U} , either $u/n < w_3 < \cdots < w_{k-1} < w_k$ or $u/n > w_3 > \cdots > w_{k-1} > w_k$.

Suppose that $u/n < w_3 < \cdots < w_{k-1} < w_k$. Let $w_k = x/yn > u/n$ and suppose that $\infty \to x/yn$ in $F(\infty, u/n)$. Then $1/0 \to x/yn$, so yn - 0r = n. That is, y = 1. Since $1/0 \to x/n$, we see that (m/q)|0 and q|n for some q|m. Thus q = 1 and therefore $x \equiv u \pmod{n}$. Then x = u + bn for some integer b > 0. This shows that x/n = u/n + b, which implies that there exists an integer a in the interval (u/n, x/n). Therefore, a must lie between two adjacent vertices of the above circuit C. But this is impossible by Lemma 6. Therefore, $w_k \leftarrow \infty$ is impossible and thus we have $w_k \to \infty$. Let $r/sn \to \infty$ be an edge in $F(\infty, u/n)$, then it is seen that s = 1. Since $r/n \to 1/0$, (m/q)|n and q|0 for some q|m. Thus we see that q = m. Therefore $1 \equiv -rmu \pmod{n}$. Since $w_k = x/yn \to \infty$, we have y = 1 and $1 + xmu \equiv 0 \pmod{n}$. Let $w_k = x/n = (u + k_0)/n$, $k_0 \ge 1$. Then, we have $1 + mu(u + k_0) \equiv 0 \pmod{n}$. Thus the mapping

$$\varphi(z) = \frac{-u\sqrt{m}z + (mu(u+k_0)+1)/n\sqrt{n}}{-n\sqrt{m}z + (u+k_0)\sqrt{m}}$$

is in $\Gamma_0^*(n)$ and $\varphi(\infty) = u/n$, $\varphi((u+k_0)/n) = \varphi(w_k) = \infty$. Moreover, it can be seen that

$$\varphi\left(\frac{u+\frac{x}{y}}{n}\right) = \frac{u+\frac{y}{m(k_0y-x)}}{n}.$$

Since φ is increasing and $u/n < \varphi(u/n)$, we see that

$$u/n < \varphi(w_3) < \cdots < \varphi(w_{k-1}).$$

By applying the mapping φ to the circuit C,

 $\infty \to u/n \leftrightarrows w_3 \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_k \to \infty,$

we obtain another circuit C^* in the form

$$\infty \to u/n \to \varphi(u/n) \leftrightarrows \varphi(w_3) \leftrightarrows \cdots \leftrightarrows \varphi(w_{k-1}) \to \infty$$

of the same length. Let $\varphi(w_{k-1}) = r/n$. Then since $r/n \to \infty$, we have $1 \equiv -rmu \pmod{n}$. (mod n). Since $1 \equiv -xmu \pmod{n}$, we get $mxu \equiv mru \pmod{n}$. Since (mu, n) = 1,

we obtain $x \equiv r \pmod{n}$. Thus x/n = r/n + b for some integer *b*. If r/n is different from x/n, then $b \neq 0$, so there exists an integer *a* between r/n and x/n. Firstly, assume that r/n < x/n. Then either r/n is a vertex in the circuit *C* or there exist two adjacent vertices w_j and w_{j+1} in *C* such that $w_j < r/n < w_{j+1}$. Assume that $w_j < r/n < w_{j+1}$. Then the edges $r/n \to \infty$ and $w_j \leftrightarrows w_{j+1}$ cross in \mathcal{U} , which is impossible by Lemma 5. If r/n is a vertex in the circuit *C*, then the integer *a* must lie between two adjacent vertices of the circuit *C*. But this is impossible by Lemma 6. Now assume that x/n < r/n. Then either x/n is an vertex in the circuit C^* , or there exist two adjacent vertices w_j and w_{j+1} in *C* such that $\varphi(w_j) < x/n < \varphi(w_{j+1})$. The same argument gives a contradiction. Therefore r/n = x/n, i.e., $\varphi(w_{k-1}) = w_k$. Now assume that $\varphi^i(w_{k-i}) = w_k$ for $1 \le i \le s$, and then we show that $\varphi^{s+1}(w_{k-s-1}) = w_k$. Since $w_{k-s-1} \leftrightarrows w_{k-s}$ and $\varphi^s(w_{k-s}) = w_k$, we have $\varphi^{s+1}(w_{k-s}) = \varphi(w_k) = \infty$. By applying φ to the circuit *C*, s + 1 times, we get the circuit

$$\infty \to u/n \to \varphi(u/n) \to \varphi^2(u/n) \to \cdots \to \cdots \leftrightarrows \varphi^{s+1}(w_{k-s-1}) \leftrightarrows \infty.$$

A similar argument shows that $\varphi^{s+1}(w_{k-s-1}) \to \infty$ and $\varphi^{s+1}(w_{k-s-1}) = w_k$. Now we show that

$$\varphi^k(\infty) = \infty, \varphi^k(u/n) = u/n, \text{ and } \varphi^k(w_k) = w_k.$$

Taking i = k - 1, we obtain $w_k = \varphi^{k-1}(w_1) = \varphi^{k-1}(\infty)$. Thus $\varphi^k(\infty) = \varphi(w_k) = \infty$. Moreover, $\varphi^k(u/n) = \varphi^k(\varphi(\infty)) = \varphi(\varphi^k(\infty)) = \varphi(\infty) = u/n$ and $\varphi^k(w_k) = \varphi^{k-1}(\varphi(w_k)) = \varphi^{k-1}(\infty) = \varphi^{-1}(\infty) = w_k$. Therefore φ^k has three different fixed points and this implies that φ^k is the identity mapping. So φ is an elliptic element of the order k. Since φ is elliptic, $k_0 = 1$ and $m \leq 3$. On the other hand, since φ is injective and $\varphi^i(w_{k-i}) = w_k = \varphi^{i+1}(w_{k-i-1})$, we see that $\varphi(w_{k-i-1}) = w_{k-i}$. Thus it can be seen that $w_i = \varphi^{i-1}(\infty)$. Moreover, we see that our circuit is in the form

$$\infty \to u/n \to w_3 \to \cdots \to w_{k-1} \to w_k \to \infty.$$

Therefore the circuit C is of the form

$$\infty \to \varphi(\infty) \to \varphi^2(\infty) \to \varphi^3(\infty) \to \dots \to \varphi^{k-1}(\infty) \to \infty$$

for the elliptic mapping φ of order k where

$$\varphi(z) = \frac{-u\sqrt{mz} + (mu(u+1)+1)/n\sqrt{m}}{-n\sqrt{mz} + (u+1)\sqrt{m}}$$

Then it follows that the first circuit

 $v_1 \rightarrow v_2 \leftrightarrows v_3 \leftrightarrows \cdots \leftrightarrows v_k \leftrightarrows v_1$

is equal to the circuit

$$v_1 \to T(v_1) \to T^2(v_1) \to \cdots \to T^{k-1}(v_1) \to v_1$$

where $T = S\varphi S^{-1}$ and T is an elliptic mapping in $\Gamma_1(m)$ of order k.

Now suppose that $u/n > w_3 > \cdots > w_{k-1} > w_k$. Then there exists a circuit in $F(\infty, (n-u)/n)$ in the form

$$\infty \to (n-u)/n \leftrightarrows 1 - w_3 \leftrightarrows \cdots \leftrightarrows 1 - w_{k-1} \leftrightarrows 1 - w_k \leftrightarrows \infty.$$

But the above circuit must be of the form

$$\infty \to \varphi(\infty) \to \varphi^2(\infty) \to \varphi^3(\infty) \to \dots \to \varphi^{k-1}(\infty) \to \infty$$

for some elliptic element φ of order k and

$$\varphi(z) = \frac{-(n-u)\sqrt{m}z + (m(n-u)(n-u+1)+1)/n\sqrt{m}}{-n\sqrt{m}z + (n-u+1)\sqrt{m}}$$

Then, one can easily see that our circuit in $F(\infty, u/n)$ must be in the form

$$\infty \to \Psi \varphi \Psi(\infty) \to \Psi \varphi^2 \Psi(\infty) \to \Psi \varphi^3 \Psi(\infty) \to \dots \to \Psi \varphi^{k-1} \Psi(\infty) \to \infty$$

where $\Psi(z) = 1 - z$. Moreover, it can be seen that

$$\Psi \varphi \Psi(z) = \frac{-u\sqrt{mz} + (mu(u-1)+1)/n\sqrt{m}}{-n\sqrt{mz} + (u-1)\sqrt{m}}$$

and that $\Psi \varphi \Psi$ is an elliptic element of order k. Thus it follows that the first circuit

 $v_1 \rightarrow v_2 \leftrightarrows v_3 \leftrightarrows \cdots \leftrightarrows v_k \leftrightarrows v_1$

is equal to the circuit

$$v_1 \to T(v_1) \to T^2(v_1) \to \cdots \to T^{k-1}(v_1) \to v_1$$

where $T = S \Psi \varphi \Psi S^{-1}$ and T is an elliptic mapping of order k. \Box

Corollary 2. $G(\infty, u/n)$ contains a circuit if and only if $mu^2 \mp mu + 1 \equiv 0 \pmod{n}$ and $m \leq 3$.

Proof. The first part of the theorem is obvious. Let $mu^2 \mp mu + 1 \equiv 0 \pmod{n}$ and $m \leq 3$. Then the mapping

$$\varphi(z) = \frac{-u\sqrt{mz} + (mu(u \mp 1) + 1)/n\sqrt{m}}{-n\sqrt{mz} + (u \mp 1)\sqrt{m}}$$

is in $\Gamma_0^*(n)$ and $\varphi(\infty) = u/n$. Moreover, φ is of finite order and the order of φ is equal to 4 if *m* is 2 and 6 if m = 3. The proof then follows. \Box

Corollary 3. Let $m \le 3$. If $G(\infty, u/n)$ contains a circuit of length k, then $\Gamma_0^*(n)$ contains an elliptic element of order k where $k \ge 3$.

We give some lemmas which will be useful in the proof of the next theorem. In what follows, we will assume that (m, n) > 1.

Lemma 7. Let r/s and x/y be rational numbers such that ry - sx = -1, where $s \ge 1$, $y \ge 1$. Then there exist no integers between r/s and x/y.

Proof. Let k be an integer such that r/s < k < x/y. Then r < sk and x > ky. Thus $1 = sx - ry > sx - sky = s(x - ky) \ge s$, which is a contradiction. \Box

Lemma 8. Suppose that there is an edge r/sn = x/y in $G(\infty, u/n)$. Then we have n|y and $ry - snx = \mp n$. In particular, if $\infty = x/y$, then y = n.

Proof. Let $r/sn \to x/y$ be an edge in $G(\infty, u/n)$. Then by Theorem 3.4, there exists some divisor q of m such that $y \equiv \mp \frac{q}{q_1} snu(\mod n\frac{q}{q_1})$ and $ry - snx = \mp \frac{n}{q_1}$ where $q_1 = (q, n)$. Then it follows that n|y and therefore $q_1 = 1$. This shows that $ry - snx = \mp n$. Now suppose that $x/y \to r/sn$ is an edge in $G(\infty, u/n)$. Then by Theorem 3.4, there exists some divisor q of m such that $snx - ry = \mp \frac{n}{q_1}$ and $sn \equiv \mp yu\frac{q}{q_1} (\mod n\frac{q}{q_1})$ where $q_1 = (q, n)$. Thus we see that $n|\frac{q}{q_1}yu$ and therefore $n|\frac{q}{q_1}y$, since (u, n) = 1. Then

$$\frac{q}{q_1}snx - ry\frac{q}{q_1} = \mp \frac{n}{q_1}\frac{q}{q_1}.$$

Thus it follows that $n|(nq/q_1^2)$, which implies that $q_1^2|q$. Since *m* is a square-free integer and q|m, we see that $q_1 = 1$. Therefore, $snx - ry = \mp n$, which implies that n|ry. Thus, n|y, since (n, r) = 1. If $\infty \leftrightarrows x/y$, then the proof is similar. \Box

Corollary 4. Let C be a circuit in $G(\infty, u/n)$ in the form

$$\infty \to u/n \leftrightarrows w_3 \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_k \leftrightarrows \infty.$$

Then there exist no integers between adjacent vertices of C in \mathbb{Q} and any rational number of the form a/n does not lie between adjacent vertices of C in \mathbb{Q} .

Proof. By Lemma 8, any edge of *C* whose vertices in \mathbb{Q} is of the form x/yn = r/sn with $snx - ryn = \mp n$. Suppose that the integer *k* lies between x/yn and r/sn. Then *kn* must lie between x/y and r/s, which is impossible by Lemma 7. Now suppose that x/yn and r/sn are adjacent vertices of *C* with x/yn < a/n < r/sn. Then x/y < a < r/s and sx - ry = -1, which contradicts Lemma 7. \Box

Now let us represent the edges of $G(\infty, u/n)$ as hyperbolic geodesics in the upper half-plane $\mathcal{U} = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Then we have

Corollary 5. Let C be any circuit in $G(\infty, u/n)$ in the form

 $\infty \to u/n \leftrightarrows w_3 \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_k \leftrightarrows \infty.$

Then no edges of C cross in U.

Proof. First of all, we note that the edge $\infty \leftrightarrows x/n$ and any other different edge in the form $x/yn \sqsubseteq r/sn$ with $snx - ryn = \mp n$ do not cross in \mathcal{U} by Corollary 4. Now suppose that the edges $w_i \rightarrow w_{i+1}$ and $w_j \leftrightarrows w_{j+1}$ cross in \mathcal{U} . Since $w_i \rightarrow w_{i+1}$, there exists $T \in \Gamma_1(m)$ such that $T(\infty) = w_i$ and $T(u/n) = w_{i+1}$. Applying the mapping T to the vertices of the above edges, we see that the edges $\infty \rightarrow u/n$ and $T^{-1}(w_j) \leftrightarrows T^{-1}(w_{j+1})$ cross in \mathcal{U} . Since the edges $\infty \rightarrow u/n$ and $T^{-1}(w_j) \backsim T^{-1}(w_{j+1})$ are in the circuit

$$T^{-1}(\infty) \to T^{-1}(u/n) \leftrightarrows \cdots \infty \to u/n \leftrightarrows \cdots \leftrightarrows T^{-1}(w_j)$$
$$\leftrightarrows T^{-1}(w_{j+1}) \leftrightarrows \cdots \leftrightarrows T^{-1}(\infty),$$

we have $x/yn = T^{-1}(w_j)$ and $r/sn = T^{-1}(w_{j+1})$ with $ryn - snx = \mp n$. Then the edges $\infty \to u/n$ and $x/yn \leftrightarrows r/sn$ cross in \mathcal{U} , which is impossible. \Box

Theorem 4.2. Let (m, n) > 1. Then any circuit in $G(\infty, u/n)$ is in the form

$$v \to T(v) \to T^2(v) \to T^3(v) \to \cdots \to T^{k-1}(v) \to v$$

for a unique elliptic mapping T of order k and for some $v \in \mathbb{Q}$.

Proof. Let $G(\infty, u/n)$ contain a circuit in the form

$$v_1 \rightarrow v_2 \leftrightarrows v_3 \leftrightarrows \cdots \leftrightarrows v_k \leftrightarrows v_1$$

where each v_j is different from the others. Then since $(v_1, v_2) \in O(\infty, u/n)$, there exists some $S \in \Gamma_1(m)$ such that $S(\infty) = v_1$, $S(u/n) = v_2$. Then $S^{-1}(v_1) = \infty$, $S^{-1}(v_2) = u/n$. By applying S^{-1} to the circuit and taking $w_i = S^{-1}(v_i)$, we obtain the circuit *C*

$$\infty \to u/n \leftrightarrows w_3 \leftrightarrows \cdots \leftrightarrows w_{k-1} \leftrightarrows w_k \leftrightarrows \infty$$

where $w_1 = \infty$, $w_2 = u/n$. Since no edges of *C* cross in \mathcal{U} , either $u/n < w_3 < \cdots < w_{k-1} < w_k$ or $u/n > w_3 > \cdots > w_{k-1} > w_k$. Suppose that $u/n < w_3 < \cdots < w_{k-1} < w_k$. Let $w_k = x/n$ and suppose that $w_k = x/n \leftarrow \infty$. Then $(\infty, w_k) \in O(\infty, u/n)$. Thus there exists $T_1 \in \Gamma_1(m)$ such that $T_1(\infty) = \infty$ and $T_1(u/n) = w_k = x/n$. Then it is seen that $T_1(z) = z + b$ for some integer *b* and so x/n = (u/n) + b. Therefore, there exists an integer *a* between u/n and x/n. Since *a* is not any vertex of the above circuit *C*, there exist two vertices w_j and w_{j+1} such that $w_j < a < w_{j+1}$. But this is impossible by Corollary 4. Therefore $w_k \to \infty$. Thus a simple calculation shows that there exists a divisor *q* of *m* such that m|qn and $1 + xuq \equiv 0 \pmod{n}$. Let $w_k = (u+k_0)/n$. Then since m|qn and $qu(u+k_0) + 1 \equiv 0 \pmod{n}$, the mapping

$$\varphi(z) = \frac{-u\sqrt{q}z + (qu(u+k_0)+1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u+k_0)\sqrt{q}}$$

is in $\Gamma_1(m)$ and $\varphi(\infty) = u/n$, $\varphi(w_k) = \varphi((u+k_0)/n) = \infty$. Moreover, it is easy to see that

$$\varphi\left(\frac{u+\frac{x}{y}}{n}\right) = \frac{u+\frac{y}{q(k_0y-x)}}{n}$$

for $0 \le x/y \ne k_0$.

By applying φ to the above circuit C, we obtain another circuit C^*

$$\infty \to u/n \to \varphi(u/n) \leftrightarrows \varphi(w_3) \leftrightarrows \cdots \leftrightarrows \varphi(w_{k-1}) \to \infty,$$

which is of the same length. Since φ is increasing and $u/n < \varphi(u/n)$, we see that $u/n < \varphi(w_3) < \cdots < \varphi(w_{k-1})$. Let $\varphi(w_{k-1}) = r/n$. Since $r/n \to \infty$ and $w_k = x/n \to \infty$, there exist two mappings T_1 and T_2 such that $T_1(\infty) = x/n$, $T_1(u/n) = \infty$, $T_2(\infty) = r/n$, and $T_2(u/n) = \infty$. Thus we get $T_2T_1^{-1}(\infty) = T_2(u/n) = \infty$ and $T_2T_1^{-1}(x/n) = T_2(\infty) = r/n$. Thus we see that $T_2T_1^{-1}(z) = z + b$ for some integer b. This implies that b + x/n = r/n. Assume that $x/n \neq r/n$. Then there exists an integer a between x/n and r/n. Firstly, assume that r/n < x/n. Then either r/n is a vertex in the circuit C or there exist two adjacent vertices w_j and w_{j+1} in C such that $w_j < r/n < w_{j+1}$. The case $w_j < r/n < w_{j+1}$ is impossible by Corollary 4. If r/n is a vertex in the circuit C; then the integer a must lie between two adjacent vertices of C, which is impossible by Corollary 4. Now assume that x/n < r/n. Then either x/n is a vertex in the circuit C^* or there exist two adjacent vertices w_j and w_{j+1} in C such that $\varphi(w_j) < x/n < \varphi(w_{j+1})$. By Corollary 4, we get another contradiction. Therefore

r/n = x/n, i.e., $\varphi(w_{k-1}) = w_k$. Now assume that $\varphi^i(w_{k-i}) = w_k$ for $1 \le i \le s$, and then we show that $\varphi^{s+1}(w_{k-s-1}) = w_k$. Since $w_{k-s-1} \leftrightarrows w_{k-s}$ and $\varphi^s(w_{k-s}) = w_k$, we have $\varphi^{s+1}(w_{k-s}) = \varphi(w_k) = \infty$. By applying φ to the circuit C, s + 1 times, we get the circuit

$$\infty \to u/n \to \varphi(u/n) \to \varphi^2(u/n) \leftrightarrows \cdots \leftrightarrows \varphi^{s+1}(w_{k-s-1}) \leftrightarrows \infty.$$

A similar argument shows that $\varphi^{s+1}(w_{k-s-1}) = w_k$. Thus we get $\varphi^k(\infty) = \infty$, $\varphi^k(u/n) = u/n$, and $\varphi^k(w_k) = w_k$. Therefore, φ^k is the identity mapping and thus φ is an elliptic mapping of order k. Since φ is an elliptic mapping, $k_0 = 1$ and $q \leq 3$. Moreover, it can be seen that $\varphi(w_{k-i-1}) = w_{k-i}$ and $w_i = \varphi^{i-1}(\infty)$. Therefore, we see that our circuit C is in the form

 $\infty \to u/n \to w_3 \to \cdots \to w_{k-1} \to w_k \to \infty.$

Thus the circuit C is of the form

$$\infty \to \varphi(\infty) \to \varphi^2(\infty) \to \varphi^3(\infty) \to \dots \to \varphi^{k-1}(\infty) \to \infty$$

for the elliptic mapping φ of order k where

$$\varphi(z) = \frac{-u\sqrt{q}z + (qu(u+1)+1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u+1)\sqrt{q}}$$

 $q|m, q \leq 3$, and m|qn. Then it follows that the first circuit

 $v_1 \rightarrow v_2 \leftrightarrows v_3 \leftrightarrows \cdots \leftrightarrows v_k \leftrightarrows v_1$

is equal to the circuit

$$v_1 \to T(v_1) \to T^2(v_1) \to \cdots \to T^{k-1}(v_1) \to v_1$$

where $T = S\varphi S^{-1}$ and T is an elliptic mapping in $\Gamma_1(m)$ of order k.

Now assume that $u/n > w_3 > \cdots > w_{k-1} > w_k$. Then there exists a circuit

$$\infty \to (n-u)/n \leftrightarrows 1 - w_3 \leftrightarrows \cdots \leftrightarrows 1 - w_{k-1} \leftrightarrows 1 - w_k \leftrightarrows \infty$$

in $G(\infty, (n-u)/n)$ with $(n-u)/n < 1 - w_3 < \cdots < 1 - w_{k-1} < 1 - w_k$. But this circuit must be of the form

$$\infty \to \varphi(\infty) \to \varphi^2(\infty) \to \varphi^3(\infty) \to \dots \to \varphi^{k-1}(\infty) \to \infty$$

for the elliptic mapping φ of order k where

$$\varphi(z) = \frac{(n-u)\sqrt{q}z + (q(n-u)(n-u+1)+1)/n\sqrt{q}}{(-(n-u)q/\sqrt{q})z + (n-u+1)\sqrt{q}},$$

 $q|m, q \leq 3$, and m|qn. Then our circuit must be in the form

$$\infty \to \Psi \varphi \Psi(\infty) \to \Psi \varphi^2 \Psi(\infty) \to \Psi \varphi^3 \Psi(\infty) \to \dots \to \Psi \varphi^{k-1} \Psi(\infty) \to \infty$$

where $\Psi(z) = 1 - z$. Moreover, it can be seen that

$$\Psi \varphi \Psi(z) = \frac{-u\sqrt{q}z + (qu(u-1)+1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u-1)\sqrt{q}}$$

and that $\Psi \varphi \Psi$ is an elliptic element of order k. Then it follows that our first circuit

$$v_1 \rightarrow v_2 \leftrightarrows v_3 \leftrightarrows \cdots \leftrightarrows v_k \leftrightarrows v_1$$

is equal to the circuit

$$v_1 \to T(v_1) \to T^2(v_1) \to \cdots \to T^{k-1}(v_1) \to v_1$$

where $T = S \Psi \varphi \Psi S^{-1}$ and T is an elliptic mapping in $\Gamma_1(m)$ of order k. \Box

Corollary 6. Let (m, n) > 1. Then $G(\infty, u/n)$ contains a circuit if and only if $qu^2 \mp qu + 1 \equiv 0 \pmod{n}$ for some divisor q of m with $m|qn, q \leq 3$.

Proof. The first part of the theorem is obvious. Let $qu^2 \mp qu + 1 \equiv 0 \pmod{n}$ for some divisor q of m with $m|qn, q \leq 3$. Then the mapping

$$\varphi(z) = \frac{-u\sqrt{q}z + (qu(u \mp 1) + 1)/n\sqrt{q}}{(-nq/\sqrt{q})z + (u \mp 1)\sqrt{q}}$$

is in $\Gamma_1(m)$ and $\varphi(\infty) = u/n$. Moreover, it can be seen easily that φ is of finite order and that the order of φ is equal to 3, 4, and 6 when q is 1, 2, and 3 respectively. The proof then follows. \Box

Corollary 7. Let (m, n) > 1. If $G(\infty, u/n)$ contains a circuit of the length k, then $\Gamma_1(m)$ contains an elliptic element of order k.

At this point, it is reasonable to conjecture that

Conjecture 1. Let n > 1 and let $\Gamma_1(m)$ act transitively on $\mathbb{Q} \cup \{\infty\}$. Then any circuit of the length k in the suborbital graph $G(\infty, u/n)$ is of the form

 $v \to T(v) \to T^2(v) \to T^3(v) \to \dots \to T^{k-1}(v) \to v$

for a unique elliptic element T in $\Gamma_1(m)$ of order k and for some $v \in \mathbb{Q} \cup \{\infty\}$.

References

- G.A. Jones, D. Singerman, K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Notes, vol. 160, Cambridge University Press, Cambridge, 1991, pp. 316–338.
- [2] N.L. Bigg, A.T. White, Permutation group and combinatorial structures, London Math. Soc. Lecture Notes, vol. 33, Cambridge University Press, Cambridge, 1979.
- [3] M. Akbas, On suborbital graphs for the modular group, Bull. London. Math. Soc. 33 (2001) 647–652.
- [4] R. Keskin, On suborbital graphs for some Hecke groups, Discrete Math. 234 (2001) 53-64.
- [5] P.M. Neuman, Finite permutation groups, edge coloured graphs and matrices, in: M.P.J. Curran (Ed.), Topic in Group Theory and Computation, Academic Press, London, New York, San Francisco, 1977.
- [6] M. Akbas, D. Singerman, The signature of the normalizer of $\Gamma_0(N)$, London Math. Soc. Lecture Notes Series 165 (1992) 77–86.
- [7] C. Maclachlan, Groups of units of zero ternary quadratic forms, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 141–157.
- [8] C.C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967) 76-86.
- [9] T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Press, Cambridge, 1982.
- [10] J.H. Conway, S.P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979) 308–339.
- [11] R. Keskin, Some subgroups of the normalizer of $\Gamma_0(m)$ (submitted for publication).