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Abstract

It is known that the fragmentability of a topological spacdy a metric whose topology contains
the topology ofX is equivalent to the existence of a winning strategy for one of the players in a special
two players “fragmenting game”. In this paper we show that the absence of a winning strategy for
the other player is equivalent to each of the following two properties of the space

for every quasi-continuous mappiny Z — X, whereZ is a complete metric space, there exists
a pointzg € Z at which f is continuous

for every quasi-continuous mappint: Z — X, whereZ is an«-favorable space, there exists a
dense subset ¢f at the points of whicly is continuous.

In fact, we show that the set of points of continuity gfis of the second Baire category in
every non-empty open subset Bf Using this we derive some results concerning joint continuity
of separately continuous functions.2001 Elsevier Science B.V. All rights reserved.
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1. Introduction.

In the paper [21] Kempisty introduced a notion similar to continuity for real-valued
functions defined inR. For general topological spaces this notion can be given the
following equivalent formulation.
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Definition 1. The mappingg: Z — X between the topological spac&sand X is said
to bequasi-continuousat zg € Z if for every open subsell C X, g(z0) € U, there exists
some open set C Z such that

(@) zo € V (the closure o in Z), and

(b) g(V)CU.
The mapping; is called quasi-continuous if it is quasi-continuous at each poift. of

The roots of this notion can be traced back to Volterra (see [2, p. 95]). Since then
quasi-continuity penetrated a variety of mathematical problems. The properties of quasi-
continuous mappings have been studied intensively (see, for instance, [3,29,33,34]). Quasi-
continuity of real-valued separately continuous functions of two variables was studied
very frequently in connection with the existence of points of joint continuity for such
functions (see [30,28,36—39,46]). The notion of quasi-continuity recently turned out to
be instrumental in the proof that some semitopological groups are actually topological
ones (see [5,6]) and in the proof of some generalizations of Michael's selection theorem
(see [12]).

There are simple examples of quasi-continuous mappings which are nowhere contin-
uous. TakeZ = [0, 1) with the usual topologyX = [0, 1) with the Sorgenfrey topology
and the identity mapping: Z — X. The mapg is quasi-continuous but nowhere contin-
uous. Nevertheless, under some mild requirements imposed on the gpands(, each
guasi-continuous map becomes continuous at many points of the Bphegine [27] has
shown that, ifX has countable base, then every quasi-continuousgn&p— X could
be discontinuous only at the points of some first Baire category subsetBledsoe [4]
proved similar result for the case whéhis a metric space. Results of this kind could be
found in many articles (see, for instance, the survey papers [37,38] of Piotrowski). In [40,
p. 114] Piotrowski asked for which large classes of spacesery quasi-continuous map-
ping f : Y — X defined in a Baire spadéhas at least one point of continuity. In this paper
we characterize the spac#&sfor which every quasi-continuous mappifg Z — X, de-
fined in a complete metric spaée has a point of continuity. Very good approximation to
this characterization (and to the answer of the question of Piotrowski) provides the notion
fragmentability of a given topological spa&e We recall here the definition of this notion
(see [19]).

Definition 2. Let X be a topological space apdsome metric defined ok x X. The space
X is said to bdragmented by the metrje, if for everye > 0 and every subset C X there
exists a non-empty relatively open subsetC A with p-diamete(B) < ¢. In such a case
the spaceX is calledfragmentable

The proof of the next simple result shows some of the techniques associated with quasi-
continuity of mappings and fragmentability of spaces.

Theorem 1. Let Z be a Baire space and : Z — X a quasi-continuous map fro@ into
the topological spac& which is fragmented by some metricThen there exists a dense
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Gs-subsetC c Z at the points of whicly : Z — (X, p) is continuous. In particular, if the
topology generated by the metriccontains the topology of the spa&e thenf:Z — X
is continuous at every point of the &t

Proof. Consider, for everyn = 1,2,..., the setV, := |J{V: V openinZ andp-
diamete(f(V)) < n~1}. The setV, is openinZ. Itis also dense i&Z. Indeed, suppos#&

is a non-empty open subset Bf Consider the set := f(W) C X. By fragmentability of

X there is some relatively open subget ANU = f(W)NU, whereU is openinX, such
that p-diamete¢B) < n~1. Quasi-continuity off implies that there is some non-empty
openV C W with (V) cU N f(W) = B. This shows thay AV c V,, " W. Hence,V,

is dense inZ. Obviously, at each point af := ﬂ@l V. the mapf is p-continuous. O

Note that, according to a result of Ribarska [41,42], if the sp&cis compact and
fragmentable, then it is also fragmentable by some metricritaorizes the topology of
X. l.e., the metric topology generated by the new fragmenting metric contains the topology
of the compact spack. Therefore, the following result has place for compact spaces

Corollary 1. LetZ be a Baire space and : Z — X a quasi-continuous map frota into
the fragmentable compact spa&e Then there exists a dengg-subsetC c Z at the
points of whichf : Z — X is continuous.

Later in this paper (Section 3) we use a topological game to describe a large class
GD of “game determined” spaces for which the existence of a fragmenting metric
implies fragmentability by a metric that majorizes the topologyXofAll p-spaces and
all Moore spaces belong to the class GD. It contains as a subclass the class of “spaces with
countable separation” which was introduced in [25]. The latter subclass of GD contains
all Borel subsets of any compact space. Moreover, any set that can be obtained from
Borel subsets of a given compact space by means of the Souslin operation has countable
separation. Therefore arf)‘/ech-analytic spacg is also in GD. For any spack from
GD fragmentability implies that the s&t(f) of points of continuity of a given quasi-
continuous mappingf: Z — X is residual inZ (its complement is of the first Baire
category).

For nonfragmentable spac&sone could not expect that the <& /) is always residual
in Z. However density of this set (and slightly more than density!) can have place even
without fragmentability ofX. In Section 2 of this paper we use a topological game to
characterize the spacés such that, for every quasi-continuous mapZ — X from a
complete metric space (or anfavorable spacey, the setC(f) is dense irnZ. As a matter
of fact, the setC (f) turns out to be of the second Baire category in every non-empty open
subset ofZ. Similar results are formulated for minimal set-valued mappings as well.

In Section 4 we study the enlargement of a minimal set-valued mappgings— X
obtained by taking the closuf&r (F) of the graphGr(F) of F in Z x bX whereb X is some
compactifications off. This closure determines a new set-valued mapging — bX
for which F(z) C F(z) C bX whenevet € Z. We characterize the situations when the set
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C(F)={z€Z: F(z) C X} is dense inZ. The class of spaces GD plays an important
role in this characterization. For instance,Xfe GD, thenC(F) is residual inZ. As
immediate corollaries from these results we get in Section 5 conditions for dense or residual
subcontinuity of quasi-continuous mappings.

The last Section 6 is devoted to some examples which outline the validity of the main
statements as well as to some applications concerning the existence of points of (joint)
continuity of separately continuous mappings.

If not stated otherwise, all topological spaces appearing in this paper are assumed to
have enough separation properties. For instance, points are assumed to be closed sets and
whenever a point does not belong to some closed &tthere exist disjoint open sets
andV suchthatt e U andH C V.

2. Dense continuity of quasi-continuous mappings

To formulate our main results we need to recast fragmentabilitY af terms of a
topologicalfragmenting game5 (X) in the spaceX (see [23-25]). This game involves
two playersX and$2. The players select, one after the othrem-emptysubsets ofX. 2
starts the game by selecting the whole sp&ceX answers by choosing any subset
of X and 2 goes on by taking a subs&y C A1 which isrelatively openin A;. After
that, on the:th stage of development of the ganie takes any subset,, of the last move
B,_1 of £2 and the latter answers by taking agairetatively opensubsetB, of the set
A, just chosen by, Acting this way, the players produce a sequence of non-empty sets
A1 D B1DA2D---D A, DB, D---, which is called aplay and will be denoted by
p = (A;, B));>1 (there is no need to include in this notation the spsioghich is the first
(and obligatory) move of2). The playen? is said tohave worthis play if the seﬂn21 Ay
contains at most one point. Otherwise the pla¥eis said to have won the play.

A partial playis a finite sequence which consists of the first several mayes B1 D
A2 D---D A, (or A1 D B1 D A2 D --- D By,) of a play. Astrategyw for the players2
is a mapping which assigns to each partial pfay> B1 D A2 D --- D A, some seB,
such thatA1 D B1 D A2 D --- D A, D B, is again a partial play. A strategy for X is
defined in a symmetric way. Sometimes we will denote the first chéicender a strategy
o by o(X). A o-play (w-play) is a play in whichX (£2) selects his/her moves according
to o (w). The strategy» (o) is said to be avinningone if everyw-play (o -play) is won
by £2 (X). The gameG (X) or the spaceX is calleds2-favorable(X'-favorablg, if there
is a winning strategy for the playe® (X). The gameG(X) (or the spaceX) is called
X -unfavorableif there does not exist winning strategy for the playgrExamples show
(see the last section, Example 1) that there are compact sgasédch are unfavorable
for both players.

Itwas proved in [23] that the fragmentability of a given topological spaégequivalent
to the existence of a winning strategy for the play2rin the gameG(X). l.e., X is
fragmentable if, and only if, the gam@&(X) is 2-favorable. By a change of the rule for
winning a play in the gamé& (X) (but keeping intact the rules for the moves of the players)
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one can express in a similar way the existence of a fragmenting metric which majorizes
the topology of the spac&. We will denote byG'(X) the game in which the plays are
the same as 6 (X) but the rule for winning a play is the following one. The playeiis
said to have won the play = (A;, B;);>1 in the gameG’(X), if the setﬂ@l A, is either
empty or consists of exactly one pointsuch that for every open neighborhotidof x
there is some positive integerwith A, C U. Otherwise the playeF is said to have won
the play(A;, B;)i>1. As shown in [24,25], the topological spa&eis fragmentable by a
metric which majorizes its topology if, and only if, the playerhas a winning strategy in
the gameG’(X).

The next result shows what one could expect from spacaswhich the other player,
X, does not have a winning strategy @ (X). As already mentioned the absence of a
winning strategy foX does not necessarily imply th&t has a winning strategy 6’ (X).
l.e., the condition “the gamé’(X) is X-unfavorable (or the spac€ is X-unfavorable)”
is weaker than the conditiorX*is fragmentable by a metric which majorizes its topology”.
Correspondingly, the conclusion is also weaker. The set of points of contifigjtyis not
necessarily residual iZ. It is however of the second Baire category in every non-empty
open subset of. |.e., for every non-empty open subsdétc Z the setC(f) NV is not of
the first Baire category (equivalently, the €&tf) N V cannot be covered by a countable
union of subsets whose closuresArhave no interior points).

Theorem 2. For the topological spac& the following conditions are equivalent
(i) G'(X)is X-unfavorable

(ii) every quasi-continuous mappirfg Z — X from the complete metric spageinto
X is continuous at at least one point @f

(iii) every quasi-continuous mappirfg Z — X from the complete metric spaeinto
X is continuous at the points of some subset which is of the second Baire category
in every non-empty open subsetgf

(iv) every quasi-continuous mapping Z — X from ana-favorable space into X
is continuous at the points of some subset which is of the second Baire category in
every non-empty open subsetaof

To recall the concept af-favorability we need the well known Banach—Mazur game.

Let Z be a topological space. The Banach—Mazur gBiéZ) is played by two players
«a and 8, who select alternatively non-empty open subset¥ ofr starts the game by
selectingWp = Z. 8 answers by taking some non-empty open subgeif Z. On thenth
move,n > 1, the playewrr takes a non-empty open sub3gt c V,_1 and 8 answers by
taking a non-empty open subsét of W,. Using this way of selection, the players get a
sequenceW,, V)2, which is called glay. The playerg is said tohave worthis play if
My>1 Wa = ¥; otherwise this play is won by. A partial play s a finite sequence which
consists of the first several consecutive moves in the gams&ategy¢ for the playe is
a mapping which assigns to each partial pi&y, W1, V1, Wo, Vo, ..., W,_1, V,,_1) some
non-empty open subsét, of V,,_1. A ¢-playis a play in whiche selects his/her moves
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according ta;. The strategy is said to be avinningone if everyz -play is won byx. The
spaceZ is calleda-favorableif there exists a winning strategy farin BM(Z).

Let us remind that the space is calledCech completgif it is a Gs-subset of some
compact space is said to bealmostCech completdf it contains dens€ech complete
subset. It is known that complete metric spacesGeeh complete and that every almost
Cech complete space dsfavorable. Below we will also use the simple observation that,
for any «-favorable space& and any subsell which is of the first Baire category i#,
there exists a strategy for playera such that"),5oW: # @ and H N ((; 5o Wi) =¥
wheneverV;, W;);>o is az-play.

Proof of Theorem 2. We show that(i) = (iv) and (ii) = (i). The implications(iv) =
(iii) = (ii) are obvious.

(i) = (iv) SupposeX is X-unfavorable foilG'(X) and f : Z — X is a quasi-continuous
mapping from thex-favorable spaceZ. Let H be a first Baire category subset @f
There is some winning strategy for the playere in BM(Z) which “avoids” the set
H. le., ﬂi;() W; 40 andH N (ﬂi>o W;) =0 whenever(V;, W;);>o is a¢-play. Take
an openVp # ¥, Vo C Z. We will show thatf is continuous at some point 6f \ H.
To do this we first construct a strategyfor the playerX in G’(X) and then use the
fact that > does not win some -play. Put the first move o in BM(Z) to be Vp and
let W1 = ¢(Vp) be the answer ofr. Assign A1 := f(W1) to be the first move in the
strategyo. Suppose that the answer of in G'(X) is B1, a non-empty relatively open
subset ofA1. Quasi-continuity off implies there exists some non-empty open sulyset
of W1, such thatf (V1) C B1. Suppose the séf; is the next move of the playet in
the gameBM(Z). The playerx, of course, uses the strategyto answer this move and
selects the sé, = ¢ (Vo, W1, V1). Then we define the second moveXfin G'(X) to be
Ao =0(A1, B1) := f(W>). Proceeding like this, we construct inductively the strategy
Together with each-play (A;, B;);>1 in G'(X) we construct also a-play (W;, V;);>1in
BM(Z) with A, = f(W,) andW,, =¢(Vo, W1, V1, ..., Wy_1, V1) forn=1,2, ...

As ¢ is a winning strategy fos, we haveﬂ,.>1 W; # (. Therefore

0 f(ﬂ Wi) c () fwy=[)A:.
i>1 i>1 i>1

SinceX is X-unfavorable, there is some-play (A;, B;);>1 that is won bys2; hence the
non-empty seﬂi>1Ai has just one point and, for every open séf > x, there is some
n with A, = f(W,) C U. All this means thatf (z) = x for everyz e ﬂi>l Wi c Vo\ H
and thatf is continuous at such

(i) = (i) Let o be an arbitrary strategy for the play&rin G’(X). We will show that
it is not a winning one. Consider the spafeof all o-plays p = (4;, B;);>1 endowed
with the Baire metriaZ; that is, if p = (A;, B;);>1 € P andp’ = (A}, B));>1 € P, then
d(p,p') =0if p = p’ and otherwisel(p, p') = 1/n wheren = min{k: By # B;}. Note
that all the plays inP start with the same set; = o (X), the first choice of the strategy.
Also, if A; = A] andB; = B; for all i <n, then

An+1 :U(Al9 Bla R An, B}’l) :U(A/ ’ Bia R Al/’l’ B;{l) = A11+l'
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In other words, ifp # p’, then there is some, such thatB, # B, A; = A] fori <n and
B; = B} fori < n. Itis easy to verify that P, d) is a complete metric space.

Consider the (set-valued) mappig P — X defined byF((A;, B))i>1) = ﬂi>1Ai.
If, for someo -play p we haveF (p) = @, then the play is won by$2 and there is nothing
to prove. Therefore, without loss of generality, we may (and do) assume-tignon-
empty-valued at every point a?. Let f: P — X be an arbitrary selection of the non-
empty-valued magF: P — X (i.e., f(p) € F(p) for every p € P). Next we will show
that f is quasi-continuous (see Corollary 2 below). Then, by prop@ty f will turn out
to be continuous at some poipg € P. Finally we will show (see Proposition 1 below) that
the playpo is won bys2. This will show thatr is not a winning strategy and will complete
the proof. O

Having in mind this and our needs in the next sections we recall here a notion of
minimality (see Definition 1.1 in [26]) for set-valued mappings.

Definition 3. The set-valued ma@ : Z — X between the topological spacgsand X is
said to be minimal atg € Z if for every openU C X with U N G(zp) # ¥ there exists
some operV in Z such that

(@) zoe V, and

(b) G(V)=U{G(): zeV}CU.
The mappingG is said to be minimal, if it is minimal at each point @f

This definition is a direct generalization of quasi-continuity. It is shaped after the
characterizing property of minimal upper semicontinuous compact-valued mappings
(see [7]) which are, of course, minimal in the above sens&. i§ a completely regular
space and”(X) is the space of all bounded continuous functionsXirwith the sup
norm, then the mapping/ : C(X) — X which puts into correspondence to each function
h € C(X) the (possibly empty) se¥ (h) of all maximizers ofs in X, is also minimal
(see [8,9]). Below we will show that the above mappingP — X is minimal as well.

Corollary 2. Every single-valued selection of a non-empty-valued minimal mapping is
quasi-continuous. Every quasi-continuous mapping is minimal.

The next simple lemma which is similar to Proposition 2.3 of [26] is important for our
considerations.

Lemma 1. Let the playpo = (A;, B;)i>1 be an element of the spadeand U an open
subset ofX with U N A,, £ @ foreveryn =1, 2, 3, .... Then there exists an open subget
in P such that

(@) poeV,and

(b) F(V)=U{F(p): peV}CU.

Proof. Let po = (A;, Bi)i>1 andU be as required in the formulation of the lemma. Given
a positive integen, consider the non-empty sBf := A, N U (which is relatively open in
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A, and is a possible move of the playe)). Denote byA] , the seto (A1, ..., B,) which

is the answer of playeE by means of the strategy. Let p’ € P be some play irG’(X)
which starts with the partial playAs, ..., A, ;). Clearly,d(po, p) < n~—1. Moreover,
the closedi-ball D(po, n~1) := {p: d(po, p) < n~1} contains the balD(p’, (n + 1)~ 1)
and for every playp” in the latter ball we have”(p”) C B, C U. PutV, to be the
interior of D(p’, (n + 1)~1). Thus, for every integen > 0, we found an open subset
V, C D(po,n~1) such thatF(V,)) c U. The setV := Un>1 V, satisfies the requirements

of (@ and(b). O
This lemma immediately yields:

Corollary 3. The(set-valuelimappingF : P — X defined above is minimal.
To formulate the next result we need one more definition.

Definition 4. A set-valued mapping; : Z — X is said to be upper semicontinuous at
z0 € Z if for every openU O G(zo) there exists an ope¥i > zg such that

G(v)=J{Gr):zev}cu.

G is said to be upper semicontinuous (usc), if it is usc at eyery’.

We will use the abbreviationscofor mappingsG which are usc and, in additiot;(z)
is compact for every € Z.

Proposition 1. Let f be an arbitrary selection of the minimal mappifg P — X. If fis
continuous at some poipp € P, then the playo = (4;, B;);>1 is won by the playef2 in

the gameG’(X) and the mapping”: P — X is single-valued and upper semicontinuous
at po.

Proof. Let W be an open subset of with f(po) € W. Since f is continuous at
po = (A, Bi)i>1 there exists some opeW, po € V', with f(V') C W. We will show
that there is some integer> 0 for which A,, ¢ W. Suppose this is not the case. Then
the open set := X \ W intersects all setd,,, n =1, 2, .... By the above lemma, there
is some open set C P such thatpg € V and f(V) c F(V) c U. Then there is a point
p e VNV #£@. For p’ we have the contradictionf(p’) € U N W = . This shows
that, for somen > 0, A, C W. In other words,F(D(po,n~1)) Cc W. SinceW was an
arbitrary open neighborhood of(po), we derive thatF'(po) = f(po), that F is upper
semicontinuous gbp and that the playg is won by the playes? in the gameG’(X). This
completes the proofs of both Proposition 1 and Theorent2.

It is easy to provide the set-valued versions of Theorems 1 and 2.
The proof of the next statement is almost identical with the proof of Theorem 1 and is
omitted.
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Theorem 3. Let Z be a Baire space and': Z — X a minimal non-empty-valued map
from Z into the topological spac& which is fragmented by some metyic Then there
exists a densé&s-subsetC C Z at the points of whichF is single-valued and usc with
respect to the metrip. In particular, if the topology generated by the metriccontains
the topology of the spack, thenF : Z — X is single-valued and usc at every point of the
setC.

The game approach we used above answers also the following question. What are the
properties of the spack which ensure that every minimal (non-empty-valued) mapping
F:Z — X,whereZ is a complete metric space (or, more generallyygavorable space)
is single-valued at the points of some dense subset?00r when is such a mapping
single-valued and upper semicontinuous at the points of a dense sulzseTbe answers
are given by the following statements. The proofs are very similar to the proof of Theorem 2
and are omitted.

Theorem 4. For the topological spac& the following conditions are equivalent
(i) The game&5(X) is X'-unfavorable
(ii)y For every minimal non-empty-valued mappifigZ — X whereZ is a complete
metric space there exists a poitte Z such thatF (zo) is a singleton
(iif) For every minimal non-empty-valued mappifg Z — X where Z is an «a-
favorable space, the set of pointsfat which F is single-valued is of the second
Baire category in every open subsetf

Theorem 5. For the topological spac& the following conditions are equivalent
(i) The game&5’(X) is X-unfavorable

(i) For every minimal non-empty-valued mappiRgZ — X whereZ is a complete
metric space there exists a poiff € Z such thatF (zo) is a singleton andr is
upper semicontinuous ap;

(iii) For every minimal non-empty-valued mappihg Z — X where Z is an «-
favorable space, the set of points Bfat which F is single-valued and upper
semicontinuous is of the second Baire category in every non-empty open subset
of Z.

There is a large class of spaces (containing all compact spgdeswhich condition(i)
in the above Theorems 2 and 5 is equivalent to the (formally less restrictive) requirement
that the gamé5 (X) is X -unfavorable (conditiorii) from Theorem 4). This class will be
introduced and investigated in the next section.

3. Game determined spaces

We consider inX one more game which we calDetermination gameand denote by
DG(X). The reason for this terminology will become clear later. The g@@€X) is a
generalization of of the gam@’(X). The same player® and X are involved inDG(X)
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and the playp = (A;, B;);>1 are the same as ii’(X) andG(X). The only difference is
with the winning rule. The playe® is said to have won the play= (A4;, B;);>1, if the set
K (p):=()A; is either empty or is such a compact seKinthat for every opeit/ O K (p)
there exists some integer> 0 with A; C U. Otherwise the playeE wins the playp. We
will call the spaceX game determine £2 has a winning strategy iBG(X). The class of
all game determined spaces will be denoted by GD.

Note first that, ifw is a winning strategy fof2 in G’(X), then it is winning inDG(X)
too. Therefore every spacg that is fragmentable by a metric majorizing its topology
belongs to GD. In particular, all metric spaces are in this class.

The p-spaces which were introduced by Arhangel'skii in [1] are game determined as
are all Moore spaces. Every spakewhich is “(p — o)-fragmentable” (Bouziad [5]) is
game determined.

There is another large class of spaces which are game determined.

Definition 5. Let X be a subset of some spake We say that the seX has countable
separation inY (see [24,25]), if inY there exists a countable family of open s@i%);>1
such that for every pair of pointse X andy € Y \ X someU; from the family contains
exactly one of the two points andy.

Note that in the above definition it is not specified which of the two points y is
in U;. Further, if X has countable separation fhthen the set’ \ X also has countable
separation irY. Every open subset df as well as every closed subsetibhas countable
separation irt’ (the separating family consists of only one element in this case). Itis easy
to see that, for a giveir, the family of subsets with countable separation is closed under
taking countable unions and countable intersections. This implies that all Borel subsets of
the spac&’” have a countable separation in it. Moreover, every set obtained by applying the
Souslin operation to a family of sets with countable separation in S6rhas countable
separation iry’ as well.

Also, X has countable separationinif, and only if, it has countable separationXi’,
the closure ofX in Y.

It was shown in [25] that, if has countable separation in some compact spatieen
it has countable separation in any other compactification.dfhis is why we will say that
the completely regular spacé has countable separatioif it has countable separation in
some (and then in all) of its compactifications.

Proposition 2. Every spaceX with countable separation is game determir(eélongs
to GD).

Proof. Denote byY some compact space in which has countable separation and let
(U;)i>1 be afamily of open subsets Bfwhich “separates” the points &f from the points
of Y\ X. We will define a strategy for the player2 which is winning inDG(X). Suppose
A1 # ¢ is a first choice ofX. There are two possibilitiesi1 N U1 =@ or A1 N Uy # @.

In the first case we puB1 = w(A1) := A1. In the second case we take Bs = w (A1)
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some subset ofi; which is relatively open imMd; and B;¥ c Us. In both cases the set
B1Y is defined in such a way that it either does not interggcbr is entirely contained

in it. Proceeding inductively (on the length of the partial plays) we construct the strategy
w in such a way that, for every-play p = (A;, B;);>1 and everyi > 1 just one of the

two options hold:B;Y N U; =@ or B;Y c U;. The countable separation &fimplies that

the compact sefi # K (p) = ﬂi>lA_iY is entirely contained either iX orin Y \ X. If
K(p)CY\X, thenﬂi>1A_,~X CK(p)NnX=0.1f K(p) C X, thenK (p) = m,.>1A_iX

and, by the compactness bf we have that for every opdih O K (p) there is some integer
n>0withA,XcU. O

By the above mentioned result of Ribarska [41,42] the gaGi€X) and G(X) are
simultaneously favorable (and, therefore, simultaneously unfavorable) for the pkayer
provided X is a compact space. In [25] this result was generalized and shown to have
place for spaceX with countable separation. The next result goes in the same direction
and establishes that, for game determined spacethe gamesG(X) and G'(X) are
simultaneously favorable (or unfavorable) for any of the two players. In such cases we
will say thatthe two games are equivalent

Proposition 3. If X is a game determined space, thé1X) and G'(X) are equivalent
games.

Proof. Let w* be a strategy fof2 which is winning inDG(X).

(G(X) is f2-favorable)s (G'(X) is 2-favorable). It suffices to show that, é is a
winning strategy for2 in G(X), then there is a winning strategy for the same player in
the gameG'(X). This will be done by “blending” (or “merging”) the strategiesandw*.
Let A} # ¢ be an arbitrary first move af in G'(X). PutAy := A_’l andBi := w (A1) # 0.
SinceA1 is closed andB; is relatively open inA1, there exists some sék;" # ¢ which is
relatively open inB1 (and hence im1) with Hy C B1. The setH; can be considered as a
first move of X' in the gameDG(X). The setB] := w*(HJ) # # is relatively open inH
and, therefore, im;. Then the seB; N A’ is non-empty and relatively open i,. Define
B} = ' (A}) := B} N A}. Proceeding inductively we define the strategyin such a way
that everyw'-play p’ = (A}, B));>1 is accompanied by some-play p = (4;, B;);>1 and
somew*-play p* = (H;, B]);>1 so that, for every > 1,

(@) A; = A;

(b) H; is relatively open inB; andH;* C B;;

(c) Bi=BNA].

The setB] is non-empty becausg’ is non-empty and relatively open ify; = A_; We
will see now that' is a winning strategy in the gan@'(X). Note that A} C (" A; =
(" H;". Suppose thgf) A] # @. Sincep = (A;, B;);>1is anw-play, the sef) A; contains
just one point. Henc@) A! = (| A; = H;". Sincep* = (H, B});>1 is anw*-play, the
play p” is won bys2 (in the gameG’(X)).

(G(X) is X-favorable) & (G'(X) is X-favorable). It suffices to establish that the
existence of a winning strategy for ¥ in G'(X) implies the existence of a winning
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strategy for the same player@(X). In order to construet we will “merge” the strategies
o’ andw*. This will be done in such a way that everyplay will be accompanied by some
w*-play and some’-play which will help establish the claim.

Let A] = o(X) be the first choice o under the strategy’. Put A} := A}, B} :=
w*(A}]) and A1 = o (X) := B_i*. This is the first choice of in the strategy. Suppose
all partial o-plays of lengthn have already been defined in such a way that every
partial o-play (A1 D B1 D --- D B,—1 D A,) is accompanied by some partiaf-play
(A7 D Bf D---D A, D B,) and some partiat’-play (A1 D By D ---D B, _; D A;) with
the following properties fulfilled for every=1, 2, ..., n:

(d) A*=A];

(e) A; = BY.

To make the next step in the definition®flet thenth move of$2 in G(X) be the non-
empty relatively open subsé, of A,. Clearly, B, = A, N U whereU is an open subset
of X. Find some opeY with V. c U andV N A, # . By property (€)B, := V N B} # 0.
The setB, is relatively open inB* which is relatively open im* = A/,. Therefore the set

Al =0'(Ay,..., AL B)

is well defined. Note thatt) , C B, C B;. PutAy , =A) , By | = 0*(A],..., B,
AZ+1) and

Apri=w(Ay, ..., Ay, By) = B;lk-‘rl'

This completes the induction step in the definition of the strasegy

Let p = (A;, B;) be ao-play accompanied by the*-play p* = (A}, B}) and theo’-
play p" = (A}, B) so that the properties (d) and (e) have place. Sirces a winning
strategy inG’(X), () A, # ¢. By (d) we havg | AY = B =[] A; # #. Then (e) implies
that the sek (p*) := (" Ai = ﬂB_l.* D B # . To prove thaw is a winning strategy in
the gameG (X) it suffices to prove that the s&t(p*) has more than one point. Suppose that
K (p*) is a singleton. Thelk (p*) = (") A}. Sincep* is anw™*-play andw* is winning for
£2 in DG(X), for every operU O K (p*) there is some integer> 0 with A* = A C U.
This means thaf2 wins thes’-play p’ = (A}, B/) in the gameG’(X) which contradicts
the assumption that’ is a winning strategy iG’(X). O

Corollary 4. If X is game determined, then the chain of equivalent conditiprsiv) in
Theorem® and5 can be extended by one more equivalent condition
(V) G(X) is X-unfavorable.

Corollary 5. The game determined spaXeds fragmentable by a metric that majorizes its
topology if, and only if it is fragmentable.

Corollary 6. The spaceX = [0, 1) with the Sorgenfrey topology is not game determined.

Proof. Denote byZ the set[0, 1) with the usual metric ifR. X is fragmented by the
metric of Z. Let g be the identity mapping df onto X. As mentioned in the Introduction,
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g is quasi-continuous but nowhere continuous. The previous corollary says tkatgfe
game determined, it would be fragmentable by a metric which majorizes the topol&gy of
Then, by Theorem 1, there would exist points of continuity efhich is not the case. O

Remark 1. For the Banach spade the following statements are equivalent.
(i) The space&E, weak is game determined;
(i) The spacgE, weak is fragmented by a metric which majorizes the weak topology.
l.e., the games’((E, weak) is §2-favorable;

(i) The space E, weak is fragmented by a metric which majorizes the norm topology;

(iv) The space(E,weak is sigma-fragmented (see [13—18] for the definition) by the

norm.

This follows from Theorems 1.3 and 2.1 of [25]. Similar statements hold for the
space(C(T), t,) of all continuous functions in the compact sp&cevith the pointwise
convergence topology.

The characterization of Banach spadésor which the gameG'((E, weak) is X-
unfavorable is given in [22]. It turns out that this is the case if, and only if, the game
DG((E,weak) is X-unfavorable. l.e., in the class of Banach spaces the g@endG’
are equivalent.

As shown in Proposition 5.1 of [25] the playér has a strategy which is winning for
the gameG'((I1°°, weak). This shows that the Banach spd€e with the weak topology
is not game determined. Moreover, it does not belong to the class of spaces which are
X -unfavorable foDG.

Remark 2. A generalization of the notion “game determined space” can be obtained if in
the definition of this notion one requires thathas a strategy which wins playa;, B;);>1

where allA; (and therefore alB;) are open subsets &f. We call such spaces “Banach—
Mazur determined”. They turned out to be useful in the study of the question when is a
given semitopological group a topological one.

4. Game determined spaces and extension of minimal mappings

In this section we first give an equivalent definition of game determined spaces. This
definition explains the terminology. Then we show that any closed graph minimal mapping
F:Z — X must be upper semicontinuous and compact-valued at many points pravided
is a game determined space ahdis a complete metric space (@ffavorable space).

Supposé X is some compactification of the completely regular spiEc€onsider in
bX a game (of the two playetS ands?) in which the plays are as in the gariéb X) but
the winning rule is the following: the playe® is said to have won the play = (A;, B;)
if the setK (p) := ﬂA_ibX either does not intersedt or lies entirely inX. OtherwiseX
wins the playp. We will not give this game a separate name and will not introduce a new
notation for it because, as the next statement asserts, it is equivalent to th®game
Whenever needed, we will refer to this game as “the ganteXih The words “the game
in X” will be used forDG(X).
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Proposition 4. Let X be a completely regular space ahd some compactification of.
The above defined game#X is equivalent to the game O®) in X. In particular, if any
of the players2 or X' has a winning strategy in one compactificatioX of X, then he/she
has winning strategy in any other compactificationsof

Proof. In this proof we will denote by the closure irb X of the seiC c bX. The closure
of C ¢ X in X will be denoted byC. For the sake of clarity we will denote lay, (o) any
strategy of©2 () for the game irb X. For the game ik we use, as above, the notations
w (o).

The proof rests on the following simple observation.

Lemma 2. Let A7 D --- D By _; D A} be any partial play for the game ibX. If there
is some open subséf C X such thatA N U # ¢ and U N (Af* N X) = ¢, then
there exists some relatively open gt C A} for which every play ibX starting with
Al D---D A} D By iswon bys2.

Proof. Find some setV which is open inbX and has the propertied” c U and
Bj == A; NV #¢. Clearly, B} is relatively open inA;. We also have

XNB cxnAP NV cxnAanu=y.

This means that, for the game X, every playp* = (A7, B") which starts withA] >
-+- D A} D B} will be won by £2 becausénA*?) N X = @. The lemma is proved. O

(The game inX is X-favorable)< (The game inb X is X'-favorable). Suppose is a
winning strategy of> for the game inX. This means that for evewy-play p = (A;, B;)
the non-empty sef) A; is either not compact or it is compact but there is some open set
U > () A; suchthatd; N (X \ U) # @ for everyi > 1. In both cases the compact §a4,”
intersects not onlk butb X \ X as well. Thusr is winning for the game ib X as well.

Let nowo), be a winning strategy foE in bX. We will define a winning strategy for
the game inX. Let A7 = 0,(bX) be the first choice o in bX under the strategy,.
Lemma 2 implies that

TcXxn A—l*bb.

Thenthe sef; .= XﬂA_’{b is notempty. We define(X) = Aj. If By is arelatively open
subset ofd1, then there exists some op&hc b X such thatB; = U N A1. In particular,
un A_jb # . Then the seU N A7 is not empty and relatively open i} Let V be some
open subset 06X such thatv? c U andB: :=V N A7 is not empty. Apply strategy;,
to get the sett} := 0,,(A%, BY) and defined, = o (A1, By) := X N A3? (which is again
non-empty). Note that

A2CXNBPcXNA?NVPcXNAPNU=A1NU =B

Proceeding inductively (and using Lemma 2 many times), we define the strategy
that eachv-play p = (A;, B;) is accompanied by somg-play p* = (A?, Bf) with A; =
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A_;*” N X . We prove now that each-play p = (A;, B;) iswon by X in X. First note that, by
Lemma 2,A¥* ="A;” for i > 1 and therefore the sét (p*) := (| AF* = (N A;” intersects
bothX andb X \ X (because; is winning inb X). Take somei € K(p*) N (bX \ X) and
definek (p) := () A;; itis a subset ok which contains the sek (p*) N X #@. If K(p) is
not compact, the play is won by X' in X and there is nothing to prove. Suppdsép) is
compact. Take some open $étin »X such thatk (p) c U andyg ¢ U?. Sinceyg € 4,7,
i > 1, none of the setd; is contained inJ. This means that the plgyis won by X in X.
(The game inX is $2-favorable)< (The game inbX is §2-favorable). Ifw, is an
arbitrary strategy for2 in X, then the restriction ofy, to plays with sets fromX is
some strategy for £2 in X. If wp is winning inb X, then its restriction to the subsetsXf
is a winning strategy irX. Suppose now there exists a strategin X which is winning
for £2. We define a strategy, which will turn out to be winning inbX. Let A7 # ¢ be

any first move of¥ in bX. If A7 \A_Ib N X? = ¢, then Lemma 2 implies that there is an
obvious winning strategy faf2 in X . Hence, without loss of generality, we can assume
that A7 C A_jb N X?. Moreover, for the same reason we will assume thatt A_;"b nx°b

for all setsA’* that appear in the course of defining the strategyIn particular, the set
Aq:= A_’{b N X is not empty and is a possible move fbrin X. We can apply the strategy
o to get the non-empty sét; = w(A1) which is relatively open im. l.e., there is some
open set/; in bX with By = A1 N U;. Find some opelyy in bX such thatv1? c U, and
ViN A1 #¢. SinceViN A_jb # ¢, the setA] N V1 is not empty and relatively open i].

We defineB; = w,(A]) := A] N V1. Note that

Bi’NXCc ANV’ NX CA1NUL =B

Hence, for every nextmow&; C B; of X in bX the setA; := A_gb NX C By andwe can
apply the strategy to the partial playd1 D B1 D Az to getthe seBs = w(A1, B1, A2) =
Ao N Uz whereUs is some open subset bX . Then, as above, we find some opénwith
Vo c Uz andVz N Az + . Finally, we define

B; =wp (A%, BI, A;) =VoN A;.

Proceeding by induction we construct the strategyin such a way that every,-play
p* = (A%, B}) is accompanied by some-play p = (A;, B;) so that

A,’:A_;kme and A?CA_?mebZA_ib~

It follows that A* = A;*. We show now that2 wins everyw-play p* = (A¥, B).
Suppose thaf A¥?) N X # @. Then the sef)A; = (A}* N X) is not empty. Since
w is winning in X, the setk (p) := () A; is compact. We will show thak (p*) := ﬂA_jb
coincides withK (p). Suppose the contrary and take some pairt K (p*) \ K(p). Since
K (p) is compact, there is some open sutigedf bX, U > K (p), such thatyg ¢ U?. On
the other handy is a winning strategy and there exists some integerO with A, C U.
Then we have the contradiction:

yoeK(p*)CA_szA_ibCUb. O
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Remark 3. In connection with Remark 2 we want to mention here that the completely
regular spacg is Banach—Mazur determined if, and only if, the plagzhas a strategy for
the game irbX which wins all plays(A;, B;);>1 whereA;, i > 1, are open subsets bX.

We turn now to the extension of minimal mappings. Let us consider a non-empty-
valued mappingF: Z — X from a topological spac& into a completely regular space
X. Supposeé X is a compactification ok. The closure of the graph & in Z x bX is a
graph of some usc compact-valued mappiigZ — bX. Such mappings are called usco
mappings. Itis easy to check that/ifis minimal, thenF is minimal as well. Moreover, the
graph of ¥ does not contain as a proper subset the graph of any other usco mapping with
the same domaif. ThusF is a minimal usco mapping in the sense of Christensen [7].

Theorem 6. Let F : Z — X be a minimal non-empty-valued mapping from the Baire space
Z into the game determined spade Supposeg: Z — bX is the set-valued mapping
whose graph coincides with the closure fhx bX of the graph of F. Then the set
C:={zeZ: F(z) C X} contains a dens€&s-subset ofZ.

Proof. Denote byw some winning strategy fa®2 in the gameDG(X). We consider the
Banach—Mazur game i@ and construct a strategyfor the playerx such that for every
¢-play (W;, Vi)i>o the (possibly empty) se{ﬂi>1 W; is contained inC. According to a
known theorem of Oxtoby [35] this would suffice to derive tlaais residual inZ.

Let Vo # ¥ be an open subset of. Consider the setd; := F(Vp) and B = w(A1).
SinceB; is relatively open ind1 and F is minimal, there is some opé#y # @, W1 C Vo,
such thatF(Wy) C By. Put¢ (Vo) := W1. Proceeding inductively we can construct the
strategy¢ in such a way that any-play (W;, V;);>1 be accompanied by some-play
p = (A;, B)i>1 so that, for every > 1,

(@) Aj =F(V;_1), and

(b) F(W;) C B;.

Letzo € [ Vi. Then@ # F(zo) C () Ai. Sincew is a winning strategy ilG(X), the
setK :=(") A; is compactinX and, for every ope® C bX, U D K, there is some integer
n > 0 with A, c U. We will show thatf(zO) C K. Take somep € bX \ K and find an
open selU/ D K such thatyg ¢ UY. Letthe integer > 0 be such tha#i, 1 = F(V,) C U.
The setV, x (bX \ U?) is openinZ x bX, contains the pointzo, yo) but does not intersect
the graph ofF. This shows thayg ¢ F(zo). O

Theorem 7. Let X be a topological space antlX some compactification ak. The
following conditions are equivalent
(i) The game D@X) is X'-unfavorable
(i) For every minimal non-empty-valued mappiRgZ — X whereZ is a complete
metric space there exists a potite Z for which F(zg) C X;
(iif) For every minimal non-empty-valued mappify Z — X where Z is an «a-
favorable space the sé¢t € Z: F(z) C X} is of the second Baire category in any
open subset af.



P.S. Kenderov et al. / Topology and its Applications 109 (2001) 321-346 337

Proof. The proof is very similar to the proof of Theorem 2. We will only briefly outline
the essential steps.

(i) = (iii) Let Vo # ¥ be an open subset @f and H a first Baire category subset &f.
We will show thatVp \ H contains a pointg for which f(zo) C X. To do this we define
a strategyo for the playerX basing on a strategy for the playere in BM(Z) which
“avoids” the setH (see the proof of Theorem 2). L8t = ¢(Vp). Take the sefi; = F(Wy)
to be the first choice of the strategy For the relatively open subsBi of A; there is some
open subseV; ¢ W1 such thatF' (V1) C By. Consider the set¥> = w(Vp, W1, V1) and
Ao = F(W>). Defineo (A1, B1) = A». Proceeding inductively, one constructs the strategy
o in such a way that every-play p = (A;, B;) is accompanied by someplay (W;, V;)
so that, for every > 1, we have

(@) Aj=F(W));

(b) F(Vi) C Bi.

Sincew is a winning strategy for the Banach—-Mazur game&Zin N A; = (| F(W;) D
F((\W;) # ¢ for every o-play (A;, B;);>1. Condition (i) implies that somes-play
(Ai, Bi)i>1 is won by £2 in the gameDG(X). PutK := N A;. As in the proof of the
previous theorem one shows that, for evesy (| W;, F(zg) C K.

The implication(iii ) = (ii) is trivial.

(i) = (i) Leto be any strategy foE' in the gameéDG(X). As in the proof of Theorem 2
consider the spac® of all o-plays p = (A;, B;);>1 endowed with the Baire metri¢;
d(p,p") =01if p=p"and, otherwisef(p, p’) = 1/n wheren = min{k: By # B;}. (P, d)
is a complete metric space. Consider the (set-valued) mapgpify— X defined by

F((Ai, B)iz1) = ﬂA_z

i>1

Using Lemma 1 it is not difficult to show tha: P — X is minimal. If for somep € P
we haveF(p) = ¥, then £2 wins the playp and there is nothing to prove. Therefore,
without loss of generality, we may assume tligip) # ¢ for everyp € P. By property
(i) there is some pomfpo e P, po= (Al , B )i>1, such thatF(po) C X. We will see
first thatF(po) F(po) The rest will foIIow from the upper semicontinuity @f. Let
X0 € F(po) C X. Suppose that there is some integer O for WhIChxo ¢ Aob Then for
every playp = (A;, B;);>1 fromthe setL :={p e P: d(p, po) <n~ 1}y we haved,, = A0
and hencerg ¢ A,” = A0, This means that the sét x (bX \ A%) (which is open on
Z x bX) contains(po, xo) and does not intersect the graph ®f This contradicts the
construction ofF. Hencexp € A4,° N X = A, forn > 1. Thusxg € F(po). O

Remark 4. Let Z and X be completely regular spaceB, Z — X a non-empty-valued
minimal mapping andZ, bX some compactifications &f and X correspondingly. The
closure of the grapltz(F) in bZ x bX determines a mapping™*:bZ — bX which is
minimal and usco. As analogue of Theorem 6 one can prove that the set

C(F*):={zebZ: F*(z) C X or F*(z) CbX \ X}

contains densé s-subset ofbZ provided the spac& is game determined. Similarly to
Theorem 7 one has: i is a-favorable andX is X-unfavorable foDG(X), thenC(F*)
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is of the second Baire category in every non-empty open subget ¢and, therefore, in
every non-empty open subsetso}.

5. Dense subcontinuity of quasi-continuous mappings
The following notion was introduced by Fuller [11].

Definition 6. The mappingF : Z — X between the topological spacésand X is said to
besubcontinuouatzg € Z, if for every net(zy, x¢)aca € Gr(F) with (z4)yec 4 CONverging
to zp the net(xy)yca has a cluster point iX. The mapF is said to be subcontinuous if it
is subcontinuous at every point of the spate

This notion attracted some attention. Recently its single-valued version was used (see [5,
6]) to establish that some semi-topological groups are topological.

It is easy to see thak: Z — X C bX is subcontinuous at some poirg € Z if, and
only if, F(z0) C X. To derive the next two statements from Theorems 6 and 7 we only
need recall Corollary 2 and observe thatfiis a single-valued selection of the minimal
(non-empty-valued) mapping, then the closures i@ x bX of the graphs ofF and f
coincide.

Theorem 8. Let f: Z — X be a quasi-continuous mapping from the Baire spZde the
game determined spacé Then there exists a denég-setZ’ C Z at the points of which
f is subcontinuous.

Theorem 9. For the topological spac& the following conditions are equivalent
(i) DG(X) is X-unfavorable

(i) every quasi-continuous mappirfg Z — X from the complete metric spa@einto
X is subcontinuous at at least one point&f

(i) every quasi-continuous mappirfg Z — X from the complete metric spaeinto
X is subcontinuous at the points of some subset wfich is of the second Baire
category in every non-empty open subset pf

(iv) every quasi-continuous mappint Z — X from an«-favorable space into X
is subcontinuous at the points of some subset ofhich is of the second Baire
category in every non-empty open subset of

6. Some examples and applications

In view of what we intend to do in this section it makes sense to consider one more
gameG (X) for the same player® and X in the topological spac&. The difference
between the new game adt{ X) being thaty selects only closed subsets ¥f All the
other components of the game (the moves2ofnd the rule for winning a play) are as
in G(X). It is not difficult to see that the two games are equivalent. What was said above
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implies that, for game determined spacdésall the three game& (X), G'(X) andG(X)
are equivalent.

Example 1. There exists a compact spakenhich is unfavorable for both playeis and
£ in the gameG (X).

In [20, Proposition 7(d)], Kalenda constructs a nonfragmentable compact Xptare
which every minimal usco mapping: Z — X, whereZ is aCech complete space, must
be single-valued at many points. His proof is based on an idea from the paper of Namioka
and Pol [32]. We show that the conclusion holds for arbitrary minimal mappihgsting
in ana-favorable spac. Our proof uses the game approach.

Construction of the example. It is based on a generalization of the famous “Double
Arrow Space”.

Let M be a Bernstein subset of the open intervak {x: 0 < x < 1}. l.e., every
continuum cardinality compact subset bimust intersect botti and \ M. Note that
M is dense in/. Consider the sets

Xo: = {(x,0) e R% 0< x < 1},
X1: =[x, D) eR% xeM}, X:=XoUX1.

Equip X with the topology generated by the lexicographical ordeXinThis turnsX
into a compact space. The latter could be derived directly or using the compactness of the
Double Arrow space. Note that bo#fy and X1 (with the topology inherited fronX) are
fragmented by the Euclidean metricli?.

Denote byr the the projection ofX onR: 7 ((x,i)) = x for x € [0,1] andi =0, 1.
7 is a continuous map. We will show first that is unfavorable forY'. Suppose this is
not so and denote hy some winning strategy foE. Let A1 = o (X) be the first closed
set selected by. 7(A1) is a compact subset @t without isolated points as otherwise
there would exist a relatively open subggic A1 containing not more than two points
and$2 would easily win any continuation of the partial pldy > B. In particular,z (A1)
is infinite. We will use the Cantor set construction to produce a compaxftcontinuum
cardinality and this will help us reach contradiction.

Put C1 := A1 and construct two disjoint infinite relatively open subsétsC3 of A1
that are open intervals in the order inherited &y from X. Moreover, we can assume
that 7 (C2) N 7(C3) = @. DenoteAs = (A1, C2) and Az = o (A1, C3). The setsr(A»)
andr (A3) are compact subsets Bfwithout isolated points. Therefore in each of the sets
Ao, Az we can find a pair of infinite relatively open subsets (of interval type with respect
to the order inX) which are disjoint. Proceeding inductively we construct a sequence of
setsA;,C;,i=1,2,3,...,s0 that

(a) A; is aclosed subset of andz(A;) does not have isolated points;

(b) Ca, C2i41 are infinite open intervals iA; such thatr (Cz;) N7 (Cai 1) = ;

() C2iUC2i11CCi;

(d) Agi =0 (A1,...,A;,C) andAgip1=0(Aq1, ..., Ai, Coi41);
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(e) forevery integep € [2', 2/+1) the diameter of the set(C)) is less or equal to 2 .

Sinceos is a winning strategy, the intersection of everyplay appearing in the above
construction contains exactly two points which have the same projectioR ¢this
follows from property (e)). The uniod of all such intersections is a compact subset
of X which has continuum cardinality. This follows from properties (a)-(d). However
7(C) C [0, 1] is compact of continuum cardinality as well. Hence there exists some point
temx(C)N(R\ M). We see that the set~1(r) N C has only one point which belongs to
C. This contradiction shows that is X' -unfavorable.

One can use the Cantor set construction to establish (as abov#) ih&-unfavorable
as well. This is equivalent to proving th&tis not fragmentable. Alternatively, one can use
Proposition 3 from [20] where it is shown that the spacéefined as above by means of
an arbitrary subse c I) is fragmentable if, and only ifM is countable. We prefer to
establish this in another way which gives us slightly more.

Example 2. There exist a Baire spac® which is a subset of the real ling, a X-
unfavorable compact spaéeand a minimal usco mapping: M — X which is nowhere
single-valued. In particulag is not fragmentable.

Proof. Let X and M be the spaces from the previous example. It is known Mias

a Baire space. Consider the mappiAigM — X which assigns to everye M the set
F@):={(t,00}U{(z,1)}. Itis easy to check thaf is a minimal usco mapping. Theorem 1
from the Introduction implies that the spakes not fragmentable. O

Remark 5. Example 2 shows that the spakefrom Example 1 does not belong to the
class of spaces defined by Stegall in [43].

We outline now how the notions and results from this paper could be used in the study
of continuity properties of separately continuous mappings. Our goal is not to give an
exhaustive list of all possible (and most general) corollaries but just to present a sample
of results in this direction. Letf:Z x ¥ — X be a mapping defined in the product
of the spacesZ and Y. For every fixedz € Z (y € Y) one denotes byf; (f,) the
mapping f-:Y — X (fy:Z — X) defined by f-(y) = f(z.y) (fy(2) = f(z.7)). [ is
said to beseparately continuous in if, for everyz € Z, f. is continuous. Similarly one
defines the notion “separately continuougin f is calledseparately continuoysf it is
separately continuous bothirand iny. It is known that a separately continuous mapping
f:Z xY — X need not be continuous. However, under some relatively mild requirements
imposed on the spaces Y, X, it is possible to prove that there exist points of continuity
of f. The problem is known asjdint continuity of separately continuous functidns
and received a lot of attention in the last century (after the famous paper of Baire [2]
appeared). Detailed information can be found in the survey papers of Piotrowski [37,38].
Very interesting results are contained also in the papers of Namioka [31], Talagrand [44,
45], Debs [10] and many others. The standard approach to this problem consists in first
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proving that f is quasi-continuous (by using the properties of the spateand Y)
and then establishing that is continuous at some points of the produttx Y (by
using metrizability or metrizability-like properties of). We follow the same scheme of
reasoning. Basing upon known results we give some sufficient conditions (in terms of
topological games) for the mappingto be quasi-continuous and then apply Theorem 1
or Theorem 2 to show that there exist points of continuity aven in cases whex is far
from being metrizable. For instanck,could be fragmentable by an appropriate metric or,
even less X' -unfavorable forG’(X). We formulate also some results concerning points of
subcontinuity of separately continuous mappings.

We start with a known fact concerning quasi-continuity of separately continuous
mappings. Later we will give another result of the same type.

Proposition 5 (Piotrowski [36]).Let Z be a Baire space. Suppose the completely regular
spaceY contains a dense subset of points of countable character, i.e., points with countable
base of neighborhoods. Then every separately continuous mappifigc Y — X into the
completely regular spac¥ is quasi-continuous.

Here are some cases when the assumptions of Proposition 5 are satisfied.

Proposition 6. Let the space&” be either
(a) Baire ands2-favorable for the gam&’(Y) (i.e., Baire and fragmentable by a metric
which majorizes its topology
or
(b) a-favorable for the game BiY) and X'-unfavorable for the gamé&’(Y).
ThenY contains dense subset of points of countable character.

Proof. (a) Letw be the winning strategy fa®2 in G'(Y) and Wy # @ an open subset of
Y. We define a strategy for 8 in BM(Y). ConsiderWy as a first move o in G'(Y)
and putVi := w(Wp), s(Y) := Vi. If the open setW; satisfiesy = Wy C V1, we put
Vo = s(V1, W1) := w(Wo, V1, W1). Proceeding inductively, we construct the stratedy
such a way that for every-play (V;, W;);>1 in BM(Y) the sequenceéW;_1, V;);>1 is an
w-play inG'(Y). SinceY is a Baire space, there is som@lay (V;, W;);>1 for which the
setK := () V; C Wois non-empty. Since the play;_1, V;);>1 is won by$2, the setk is
asingleton with(V;);>1 as countable base of neighborhoods. The first part of Proposition 6
is proved.

(b) Let¢ be a winning strategy fax in BM(Y) and V1 an open subset df. We define
a strategy for the playerX in G’(Y). Consider the open sé&f1 = ¢ (V1) as a first move
of X. l.e.,o(Y) := W1. For the non-empty open s& c W1 put Wo = ¢(V1, W1, V2) and
o (W1, Vo) := W». Proceeding inductively, we define the strategiyn such a way that, for
everyo-play (W;, Vi+1)i>1 in G'(Y), the sequencéV;, W;);>1 is a¢-play in BM(Y). In
particular, the seK = (| V; C Vi is non-empty for every play. By the assumptions there
exists some -play (W;, Vi41)i>1 Which is won bys2 in G’(Y). For such a play the sé&t
is a singleton andV;);>1 is a base of neighborhoods &f. O
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Theorem 10. Let f: Z x Y — X be a separately continuous mapping wh&reY', X are
completely regular spaces such that

(i) Z,Y are«a-favorable for the game BM and

(i) Y, X are X-unfavorable for the gamé’.

Then the set of points id x Y at which f is continuous is of the second Baire category
in every open subset af x Y.

Proof. Proposition 5 and the second half of Proposition 6 imply thatquasi-continuous.
SinceZ x Y is a-favorable, we can apply Theorem 2 and this completes the praof.

Applying the first half of Proposition 6 and Theorem 1 instead of Theorem 2 in the last
proof we get:

Theorem 11. Let f: Z x Y — X be a separately continuous mapping wh&ieY', X are
completely regular spaces such that
(i) Z x Y is a Baire space and
(i) Y, X are 2-favorable for the gam€&’, i.e., each of these spaces is fragmentable by
a metric that majorizes the corresponding topology.
Then there exists a denég-subset ofZ x Y at the points of whicly is continuous.

Proposition 7. Let the space&’ be either

(a) Baire ands2-favorable for the game D@) (i.e.,Y is Baire and game determingd
or

(b) «-favorable for the game BiY) and X'-unfavorable for the game D@).

Then every non-empty open $&tC Y contains a non-empty compakt of countable
outer base. l.e., there exists a countable family of open @f$>1 such thatk =
ﬂi>1 O, is a non-empty compact subsetWwfand for every operV O K there exists
some integen with O, C U.

The proof is omitted because it is very similar to the proof of Proposition 6.
In the next assertion we follow very closely the proof of Theorem 1 from [6] and
Lemma 2.6 from [5].

Proposition 8. Let Z, Y and X be completely regular spaces antt Z x ¥ — X a
separately continuous mapping. Suppose that every non-empty open subsetrvéins
a non-empty compad with countable outer base and the spatés either

(a) Baire ands2-favorable for the game D@.e., Baire and game determingd
or

(b) «a-favorable for BM andX-unfavorable for DG.

Theny is quasi-continuous.

Proof. SinceX is completely regular, it suffices to prove the proposition for the case when
X is the real lineR. Lete > 0 and(zo, yo) € V x U, whereV C Z andU C Y are open
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sets. It suffices to show that there are non-empty openisets V, U’ c U such that

|f (V' x U — f(z0, yo)| < 3e. For the sake of reaching a contradiction we will suppose

that in every such sét’ x U’ there is a pointz’, y') with | £(z/, y") — f(zo, yo0)| > 3¢.
Since f is separately continuous, there are some open Egtand Up such that

z20€VoCV,yeUgcCU and

| f(Vo, y0) — f(z0, yo)| <&, | f(z0. Uo) — f(z0, y0)| <e.

There exists a non-empty compaktC Up with countable outer base of open sets
(0i)i>1. Itis enough to prove the proposition for the case wher K. We begin with
the proof of the case (a).

(a) Denote byw some winning strategy fof2 in DG(Z). We determine a strategy
s for the playerg in BM(Z) and then use the fact that it is not a winning one. Put
Wy = Z and consideiVp as a first move of. l.e., s(Z) = Vo. SupposeW; C Vo is a
possible move otr. ConsiderW; as a first move ofY’ in DG(Z). Put W1 := w(W)).
Further, consider the séf; := {y € O1: | f(z0,y) — f(z0, yo0)| < 1} which is an open
neighbourhood ofyg. By the assumption, there exists a poipt, y1) € W1 x Uz such
that| f (z1, y1) — f (20, yo)| > 3¢. Defines(Vo, W) = V1 to be some non-empty open set
such thatVy C {z € Wi | f(z, y1) — f(z1, y1| < &}. The first step in the definition of the
strategys is completed. Proceeding inductively, we define the stratégysuch a way that
everys-play (W/, Vi);>o is accompanied by: an-play (W/, W;);>1, a sequence of open
sets(U;);>1 and sequences of points);>o, (yi)i>o0 so that, fom =1, 2,3, ... we have:

() Un=1{y € O0u: |f(zk,y) = [k, yo)| <n~tfork <n};
(i) (zn» yn) € Wy x Uy, L

(ii)) 1f(z,yn) = f(zn, yu)l <eforzeVy;

(V) [ f(zn, yn) — f(z0, yo)| > 3e.

SinceZ is a Baire space there is som@lay (W, V;);>0 which is won byw: () W/ # 0.
The correspondingy-play (W/, W;);>1 is won by players2 in DG(Z). Hence there
is a cluster point* € (V; for the sequencez;);>o- As y, € O,, there is a cluster
point y* of the sequenceéy;);>o. From (ii) and (i) we derive thay (zx, y*) = f(z«, yo0)
for everyk > 1. This implies f (z*, y*) = f(z*, yo). Sincez* € V,, from (iii) we get
| f (2", yn) = f(zn, yn)| < € foreveryn > 1. Then, by (iv), we geltf (z*, y») — f (z0, yo)| >
2¢ for everyn > 1. This leads however to the contradiction:

2e <|f(* ") — f(zo.yo)| = | £ (2", yo) — f(z0, y0)| <e&.

(b) The proof is very similar to the one in case (a). We even use the same notations.

Let ¢ be a winning strategy foi in BM(Z). We will construct a strategy for the
player X in DG(Z) and use the fact that it is not winning. Pufy = Z and let Vo
(from the beginning of the proof) be the first moveoin BM(Z). Define W; := ¢ (Vo)
to be the first choice o in DG(Z). l.e., 0(Z) := W,. If Wy is any open subset of
W1 we find a point(z1, y1) € Wy x Ur with | f(z1, y1) — f(z0, yo)| > 3¢ and select a
non-empty open subséy such thatVi C {z € Wi: |f(z, y1) — f(z1, y1)| < ¢}. Define
W, =0 (W7, W) := ¢ (Vo, W1, V1). Proceeding inductively we construct the strategin
such a way that every-play (W/, W;);>1 is accompanied by songeplay (W/, V;);>1 and
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by the sequencea®;);>1, (zi)i>1, (yi)i>1 SO that the properties (i)—(iv) from the proof of
case (a) are fulfilled fon = 1,2, 3, .... SinceZ is X-unfavorable, there is some-play
(W/, Wi)i>1 which is won bys2. As the corresponding-play (W;, V;);>1 is won bya,
the sequencé;);>1 has a cluster point* € (N V;. The rest of the proof coincides with the
one from the case (a).0

This allows one to formulate results concerning joint continuity of separately continuous
functions defined in spaces more general than those containing dense subsets of points of
countable character.

Corollary 7. Let Z,Y, X be completely regular spaces which ake-unfavorable for
DG(Z), DG(Y), G'(X) correspondingly. Supposé andY are a-favorable andf : Z x

Y — X is a separately continuous function. Th¢nis continuous at the points of some
subset ofZ x Y which is of the second Baire category in every non-empty open subset of
ZxY.

A related problem which appears here is to find conditionsZory', X under which
every separately continuous mappifgZ x Y — X is subcontinuous at some points of
Z x Y. Here is a statement of this kind.

Theorem 12. Let f: Z x Y — X be separately continuous whexe Y, X are completely
regular and X' -unfavorable space@or the game DG Suppos& andY are «-favorable

(for BM). Thenf is subcontinuous at the points of a subset which is of the second Baire
category in every non-empty open suhget Y.

Proof. In view of Theorem 9 it suffices to show thgtis quasi-continuous. This follows
from Proposition 8. O
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