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Abstract

It is known that the fragmentability of a topological spaceX by a metric whose topology contains
the topology ofX is equivalent to the existence of a winning strategy for one of the players in a special
two players “fragmenting game”. In this paper we show that the absence of a winning strategy for
the other player is equivalent to each of the following two properties of the spaceX:

for every quasi-continuous mappingf :Z→X, whereZ is a complete metric space, there exists
a pointz0 ∈ Z at whichf is continuous;

for every quasi-continuous mappingf :Z→ X, whereZ is anα-favorable space, there exists a
dense subset ofZ at the points of whichf is continuous.

In fact, we show that the set of points of continuity off is of the second Baire category in
every non-empty open subset ofZ. Using this we derive some results concerning joint continuity
of separately continuous functions. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction.

In the paper [21] Kempisty introduced a notion similar to continuity for real-valued
functions defined inR. For general topological spaces this notion can be given the
following equivalent formulation.
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Definition 1. The mappingg :Z→ X between the topological spacesZ andX is said
to bequasi-continuousat z0 ∈ Z if for every open subsetU ⊂ X, g(z0) ∈ U , there exists
some open setV ⊂Z such that

(a) z0 ∈ V (the closure ofV in Z), and
(b) g(V )⊂ U .

The mappingg is called quasi-continuous if it is quasi-continuous at each point ofZ.

The roots of this notion can be traced back to Volterra (see [2, p. 95]). Since then
quasi-continuity penetrated a variety of mathematical problems. The properties of quasi-
continuous mappings have been studied intensively (see, for instance, [3,29,33,34]).Quasi-
continuity of real-valued separately continuous functions of two variables was studied
very frequently in connection with the existence of points of joint continuity for such
functions (see [30,28,36–39,46]). The notion of quasi-continuity recently turned out to
be instrumental in the proof that some semitopological groups are actually topological
ones (see [5,6]) and in the proof of some generalizations of Michael’s selection theorem
(see [12]).

There are simple examples of quasi-continuous mappings which are nowhere contin-
uous. TakeZ = [0,1) with the usual topology,X = [0,1) with the Sorgenfrey topology
and the identity mappingg :Z→X. The mapg is quasi-continuous but nowhere contin-
uous. Nevertheless, under some mild requirements imposed on the spacesZ andX, each
quasi-continuous map becomes continuous at many points of the spaceZ. Levine [27] has
shown that, ifX has countable base, then every quasi-continuous mapg :Z→ X could
be discontinuous only at the points of some first Baire category subset ofZ. Bledsoe [4]
proved similar result for the case whenX is a metric space. Results of this kind could be
found in many articles (see, for instance, the survey papers [37,38] of Piotrowski). In [40,
p. 114] Piotrowski asked for which large classes of spacesX every quasi-continuous map-
pingf :Y →X defined in a Baire spaceY has at least one point of continuity. In this paper
we characterize the spacesX for which every quasi-continuous mappingf :Z→ X, de-
fined in a complete metric spaceZ, has a point of continuity. Very good approximation to
this characterization (and to the answer of the question of Piotrowski) provides the notion
fragmentability of a given topological spaceX. We recall here the definition of this notion
(see [19]).

Definition 2. LetX be a topological space andρ some metric defined onX×X. The space
X is said to befragmented by the metricρ, if for everyε > 0 and every subsetA⊂X there
exists a non-empty relatively open subsetB ⊂ A with ρ-diameter(B)6 ε. In such a case
the spaceX is calledfragmentable.

The proof of the next simple result shows some of the techniques associated with quasi-
continuity of mappings and fragmentability of spaces.

Theorem 1. LetZ be a Baire space andf :Z→X a quasi-continuous map fromZ into
the topological spaceX which is fragmented by some metricρ. Then there exists a dense
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Gδ-subsetC ⊂ Z at the points of whichf :Z→ (X,ρ) is continuous. In particular, if the
topology generated by the metricρ contains the topology of the spaceX, thenf :Z→X

is continuous at every point of the setC.

Proof. Consider, for everyn = 1,2, . . . , the set Vn := ⋃{V : V open inZ andρ-
diameter(f (V ))6 n−1}. The setVn is open inZ. It is also dense inZ. Indeed, supposeW
is a non-empty open subset ofZ. Consider the setA := f (W)⊂X. By fragmentability of
X there is some relatively open subsetB =A∩U = f (W)∩U , whereU is open inX, such
that ρ-diameter(B) 6 n−1. Quasi-continuity off implies that there is some non-empty
openV ⊂W with f (V )⊂U ∩ f (W)= B. This shows that∅ 6= V ⊂ Vn ∩W . Hence,Vn
is dense inZ. Obviously, at each point ofC :=⋂n>1Vn the mapf is ρ-continuous. 2

Note that, according to a result of Ribarska [41,42], if the spaceX is compact and
fragmentable, then it is also fragmentable by some metric thatmajorizes the topology of
X. I.e., the metric topology generated by the new fragmenting metric contains the topology
of the compact spaceX. Therefore, the following result has place for compact spacesX.

Corollary 1. LetZ be a Baire space andf :Z→X a quasi-continuous map fromZ into
the fragmentable compact spaceX. Then there exists a denseGδ-subsetC ⊂ Z at the
points of whichf :Z→X is continuous.

Later in this paper (Section 3) we use a topological game to describe a large class
GD of “game determined” spacesX for which the existence of a fragmenting metric
implies fragmentability by a metric that majorizes the topology ofX. All p-spaces and
all Moore spaces belong to the class GD. It contains as a subclass the class of “spaces with
countable separation” which was introduced in [25]. The latter subclass of GD contains
all Borel subsets of any compact space. Moreover, any set that can be obtained from
Borel subsets of a given compact space by means of the Souslin operation has countable
separation. Therefore any̌Cech-analytic spaceX is also in GD. For any spaceX from
GD fragmentability implies that the setC(f ) of points of continuity of a given quasi-
continuous mappingf :Z → X is residual inZ (its complement is of the first Baire
category).

For nonfragmentable spacesX one could not expect that the setC(f ) is always residual
in Z. However density of this set (and slightly more than density!) can have place even
without fragmentability ofX. In Section 2 of this paper we use a topological game to
characterize the spacesX such that, for every quasi-continuous mapf :Z→ X from a
complete metric space (or anα-favorable space)Z, the setC(f ) is dense inZ. As a matter
of fact, the setC(f ) turns out to be of the second Baire category in every non-empty open
subset ofZ. Similar results are formulated for minimal set-valued mappings as well.

In Section 4 we study the enlargement of a minimal set-valued mappingsF :Z→ X

obtained by taking the closureGr(F ) of the graphGr(F ) of F in Z×bXwherebX is some
compactifications ofX. This closure determines a new set-valued mappingF̃ :Z→ bX

for whichF(z)⊂ F̃ (z)⊂ bX wheneverz ∈ Z. We characterize the situations when the set
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C(F) := {z ∈ Z: F̃ (z) ⊂ X} is dense inZ. The class of spaces GD plays an important
role in this characterization. For instance, ifX ∈ GD, thenC(F) is residual inZ. As
immediate corollaries from these results we get in Section 5 conditions for dense or residual
subcontinuity of quasi-continuous mappings.

The last Section 6 is devoted to some examples which outline the validity of the main
statements as well as to some applications concerning the existence of points of (joint)
continuity of separately continuous mappings.

If not stated otherwise, all topological spaces appearing in this paper are assumed to
have enough separation properties. For instance, points are assumed to be closed sets and
whenever a pointx does not belong to some closed setH there exist disjoint open setsU
andV such thatx ∈ U andH ⊂ V .

2. Dense continuity of quasi-continuous mappings

To formulate our main results we need to recast fragmentability ofX in terms of a
topologicalfragmenting gameG(X) in the spaceX (see [23–25]). This game involves
two playersΣ andΩ . The players select, one after the other,non-emptysubsets ofX. Ω
starts the game by selecting the whole spaceX. Σ answers by choosing any subsetA1

of X andΩ goes on by taking a subsetB1 ⊂ A1 which is relatively openin A1. After
that, on thenth stage of development of the game,Σ takes any subsetAn of the last move
Bn−1 of Ω and the latter answers by taking again arelatively opensubsetBn of the set
An just chosen byΣ . Acting this way, the players produce a sequence of non-empty sets
A1 ⊃ B1 ⊃ A2 ⊃ · · · ⊃ An ⊃ Bn ⊃ · · ·, which is called aplay and will be denoted by
p = (Ai,Bi)i>1 (there is no need to include in this notation the spaceX which is the first
(and obligatory) move ofΩ). The playerΩ is said tohave wonthis play if the set

⋂
n>1An

contains at most one point. Otherwise the playerΣ is said to have won the play.
A partial play is a finite sequence which consists of the first several movesA1⊃ B1 ⊃

A2 ⊃ · · · ⊃ An (or A1 ⊃ B1 ⊃ A2 ⊃ · · · ⊃ Bn) of a play. Astrategyω for the playerΩ
is a mapping which assigns to each partial playA1 ⊃ B1 ⊃ A2 ⊃ · · · ⊃ An some setBn
such thatA1 ⊃ B1 ⊃ A2 ⊃ · · · ⊃ An ⊃ Bn is again a partial play. A strategyσ for Σ is
defined in a symmetric way. Sometimes we will denote the first choiceA1 under a strategy
σ by σ(X). A σ -play (ω-play) is a play in whichΣ (Ω) selects his/her moves according
to σ (ω). The strategyω (σ ) is said to be awinningone if everyω-play (σ -play) is won
byΩ (Σ). The gameG(X) or the spaceX is calledΩ-favorable(Σ-favorable), if there
is a winning strategy for the playerΩ (Σ). The gameG(X) (or the spaceX) is called
Σ-unfavorable, if there does not exist winning strategy for the playerΣ . Examples show
(see the last section, Example 1) that there are compact spacesX which are unfavorable
for both players.

It was proved in [23] that the fragmentability of a given topological spaceX is equivalent
to the existence of a winning strategy for the playerΩ in the gameG(X). I.e., X is
fragmentable if, and only if, the gameG(X) is Ω-favorable. By a change of the rule for
winning a play in the gameG(X) (but keeping intact the rules for the moves of the players)
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one can express in a similar way the existence of a fragmenting metric which majorizes
the topology of the spaceX. We will denote byG′(X) the game in which the plays are
the same as inG(X) but the rule for winning a play is the following one. The playerΩ is
said to have won the playp= (Ai,Bi)i>1 in the gameG′(X), if the set

⋂
n>1An is either

empty or consists of exactly one pointx such that for every open neighborhoodU of x
there is some positive integern with An ⊂U . Otherwise the playerΣ is said to have won
the play(Ai,Bi)i>1. As shown in [24,25], the topological spaceX is fragmentable by a
metric which majorizes its topology if, and only if, the playerΩ has a winning strategy in
the gameG′(X).

The next result shows what one could expect from spacesX in which the other player,
Σ , does not have a winning strategy inG′(X). As already mentioned the absence of a
winning strategy forΣ does not necessarily imply thatΩ has a winning strategy inG′(X).
I.e., the condition “the gameG′(X) isΣ-unfavorable (or the spaceX isΣ-unfavorable)”
is weaker than the condition “X is fragmentable by a metric which majorizes its topology”.
Correspondingly, the conclusion is also weaker. The set of points of continuityC(f ) is not
necessarily residual inZ. It is however of the second Baire category in every non-empty
open subset ofZ. I.e., for every non-empty open subsetV ⊂Z the setC(f )∩ V is not of
the first Baire category (equivalently, the setC(f ) ∩ V cannot be covered by a countable
union of subsets whose closures inZ have no interior points).

Theorem 2. For the topological spaceX the following conditions are equivalent:
(i) G′(X) isΣ-unfavorable;
(ii) every quasi-continuous mappingf :Z→X from the complete metric spaceZ into

X is continuous at at least one point ofZ;
(iii) every quasi-continuous mappingf :Z→X from the complete metric spaceZ into

X is continuous at the points of some subset which is of the second Baire category
in every non-empty open subset ofZ;

(iv) every quasi-continuous mappingf :Z→ X from anα-favorable spaceZ into X
is continuous at the points of some subset which is of the second Baire category in
every non-empty open subset ofZ.

To recall the concept ofα-favorability we need the well known Banach–Mazur game.
LetZ be a topological space. The Banach–Mazur gameBM(Z) is played by two players

α and β , who select alternatively non-empty open subsets ofZ. α starts the game by
selectingW0= Z. β answers by taking some non-empty open subsetV0 of Z. On thenth
move,n > 1, the playerα takes a non-empty open subsetWn ⊂ Vn−1 andβ answers by
taking a non-empty open subsetVn of Wn. Using this way of selection, the players get a
sequence(Wn,Vn)

∞
n=0 which is called aplay. The playerβ is said tohave wonthis play if⋂

n>1Wn = ∅; otherwise this play is won byα. A partial play is a finite sequence which
consists of the first several consecutive moves in the game. Astrategyζ for the playerα is
a mapping which assigns to each partial play(V0,W1,V1,W2,V2, . . . ,Wn−1,Vn−1) some
non-empty open subsetWn of Vn−1. A ζ -play is a play in whichα selects his/her moves
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according toζ . The strategyζ is said to be awinningone if everyζ -play is won byα. The
spaceZ is calledα-favorableif there exists a winning strategy forα in BM(Z).

Let us remind that the spaceZ is calledČech complete, if it is a Gδ-subset of some
compact space.Z is said to bealmostČech complete, if it contains densěCech complete
subset. It is known that complete metric spaces areČech complete and that every almost
Čech complete space isα-favorable. Below we will also use the simple observation that,
for anyα-favorable spaceZ and any subsetH which is of the first Baire category inZ,
there exists a strategyζ for playerα such that

⋂
i>0Wi 6= ∅ andH ∩ (⋂i>0Wi) = ∅

whenever(Vi,Wi)i>0 is aζ -play.

Proof of Theorem 2. We show that(i)⇒ (iv) and (ii)⇒ (i). The implications(iv)⇒
(iii )⇒ (ii) are obvious.
(i)⇒ (iv) SupposeX isΣ-unfavorable forG′(X) andf :Z→X is a quasi-continuous

mapping from theα-favorable spaceZ. Let H be a first Baire category subset ofZ.
There is some winning strategyζ for the playerα in BM(Z) which “avoids” the set
H . I.e.,

⋂
i>0Wi 6= ∅ andH ∩ (⋂i>0Wi) = ∅ whenever(Vi,Wi)i>0 is a ζ -play. Take

an openV0 6= ∅, V0 ⊂ Z. We will show thatf is continuous at some point ofV0 \ H .
To do this we first construct a strategyσ for the playerΣ in G′(X) and then use the
fact thatΣ does not win someσ -play. Put the first move ofβ in BM(Z) to beV0 and
let W1 = ζ(V0) be the answer ofα. AssignA1 := f (W1) to be the first move in the
strategyσ . Suppose that the answer ofΩ in G′(X) is B1, a non-empty relatively open
subset ofA1. Quasi-continuity off implies there exists some non-empty open subsetV1

of W1, such thatf (V1) ⊂ B1. Suppose the setV1 is the next move of the playerβ in
the gameBM(Z). The playerα, of course, uses the strategyζ to answer this move and
selects the setW2= ζ(V0,W1,V1). Then we define the second move ofΣ in G′(X) to be
A2= σ(A1,B1) := f (W2). Proceeding like this, we construct inductively the strategyσ .
Together with eachσ -play (Ai,Bi)i>1 in G′(X) we construct also aζ -play(Wi,Vi)i>1 in
BM(Z) with An = f (Wn) andWn = ζ(V0,W1,V1, . . . ,Wn−1,Vn−1) for n= 1,2, . . . .

As ζ is a winning strategy forα, we have
⋂
i>1Wi 6= ∅. Therefore

∅ 6= f
(⋂
i>1

Wi

)
⊂
⋂
i>1

f (Wi)=
⋂
i>1

Ai.

SinceX is Σ-unfavorable, there is someσ -play (Ai,Bi)i>1 that is won byΩ ; hence the
non-empty set

⋂
i>1Ai has just one pointx and, for every open setU 3 x, there is some

n with An = f (Wn)⊂ U . All this means thatf (z)= x for everyz ∈⋂i>1Wi ⊂ V0 \H
and thatf is continuous at suchz.
(ii)⇒ (i) Let σ be an arbitrary strategy for the playerΣ in G′(X). We will show that

it is not a winning one. Consider the spaceP of all σ -playsp = (Ai,Bi)i>1 endowed
with the Baire metricd ; that is, if p = (Ai,Bi)i>1 ∈ P andp′ = (A′i ,B ′i )i>1 ∈ P , then
d(p,p′) = 0 if p = p′ and otherwised(p,p′) = 1/n wheren =min{k: Bk 6= B ′k}. Note
that all the plays inP start with the same setA1= σ(X), the first choice of the strategyσ .
Also, if Ai =A′i andBi = B ′i for all i 6 n, then

An+1= σ(A1,B1, . . . ,An,Bn)= σ(A′1,B ′1, . . . ,A′n,B ′n)=A′n+1.
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In other words, ifp 6= p′, then there is somen, such thatBn 6= B ′n, Ai = A′i for i 6 n and
Bi = B ′i for i < n. It is easy to verify that(P, d) is a complete metric space.

Consider the (set-valued) mappingF :P → X defined byF((Ai,Bi)i>1) =⋂i>1Ai .
If, for someσ -playp we haveF(p)= ∅, then the playp is won byΩ and there is nothing
to prove. Therefore, without loss of generality, we may (and do) assume thatF is non-
empty-valued at every point ofP . Let f :P → X be an arbitrary selection of the non-
empty-valued mapF :P → X (i.e., f (p) ∈ F(p) for everyp ∈ P ). Next we will show
thatf is quasi-continuous (see Corollary 2 below). Then, by property(ii), f will turn out
to be continuous at some pointp0 ∈ P . Finally we will show (see Proposition 1 below) that
the playp0 is won byΩ . This will show thatσ is not a winning strategy and will complete
the proof. 2

Having in mind this and our needs in the next sections we recall here a notion of
minimality (see Definition 1.1 in [26]) for set-valued mappings.

Definition 3. The set-valued mapG :Z→X between the topological spacesZ andX is
said to be minimal atz0 ∈ Z if for every openU ⊂ X with U ∩ G(z0) 6= ∅ there exists
some openV in Z such that

(a) z0 ∈ V , and
(b) G(V )=⋃{G(z): z ∈ V } ⊂U .

The mappingG is said to be minimal, if it is minimal at each point ofZ.

This definition is a direct generalization of quasi-continuity. It is shaped after the
characterizing property of minimal upper semicontinuous compact-valued mappings
(see [7]) which are, of course, minimal in the above sense. IfX is a completely regular
space andC(X) is the space of all bounded continuous functions inX with the sup-
norm, then the mappingM :C(X)→X which puts into correspondence to each function
h ∈ C(X) the (possibly empty) setM(h) of all maximizers ofh in X, is also minimal
(see [8,9]). Below we will show that the above mappingF :P →X is minimal as well.

Corollary 2. Every single-valued selection of a non-empty-valued minimal mapping is
quasi-continuous. Every quasi-continuous mapping is minimal.

The next simple lemma which is similar to Proposition 2.3 of [26] is important for our
considerations.

Lemma 1. Let the playp0 = (Ai,Bi)i>1 be an element of the spaceP andU an open
subset ofX withU ∩An 6= ∅ for everyn= 1,2,3, . . . . Then there exists an open subsetV

in P such that
(a) p0 ∈ V , and
(b) F(V )=⋃{F(p): p ∈ V } ⊂U .

Proof. Let p0= (Ai,Bi)i>1 andU be as required in the formulation of the lemma. Given
a positive integern, consider the non-empty setB ′n :=An ∩U (which is relatively open in
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An and is a possible move of the playerΩ). Denote byA′n+1 the setσ(A1, . . . ,B
′
n) which

is the answer of playerΣ by means of the strategyσ . Let p′ ∈ P be some play inG′(X)
which starts with the partial play(A1, . . . ,A

′
n+1). Clearly, d(p0,p

′) 6 n−1. Moreover,
the closedd-ball D(p0, n

−1) := {p: d(p0,p) 6 n−1} contains the ballD(p′, (n+ 1)−1)

and for every playp′′ in the latter ball we haveF(p′′) ⊂ B ′n ⊂ U . Put Vn to be the
interior of D(p′, (n + 1)−1). Thus, for every integern > 0, we found an open subset
Vn ⊂D(p0, n

−1) such thatF(Vn)⊂ U . The setV :=⋃n>1Vn satisfies the requirements
of (a) and(b). 2

This lemma immediately yields:

Corollary 3. The(set-valued) mappingF :P →X defined above is minimal.

To formulate the next result we need one more definition.

Definition 4. A set-valued mappingG :Z→ X is said to be upper semicontinuous at
z0 ∈Z if for every openU ⊃G(z0) there exists an openV 3 z0 such that

G(V ) :=
⋃{

G(z): z ∈ V }⊂U.
G is said to be upper semicontinuous (usc), if it is usc at everyz ∈Z.

We will use the abbreviationuscofor mappingsG which are usc and, in addition,G(z)
is compact for everyz ∈ Z.

Proposition 1. Letf be an arbitrary selection of the minimal mappingF :P →X. If f is
continuous at some pointp0 ∈ P , then the playp0= (Ai,Bi)i>1 is won by the playerΩ in
the gameG′(X) and the mappingF :P →X is single-valued and upper semicontinuous
at p0.

Proof. Let W be an open subset ofX with f (p0) ∈ W . Since f is continuous at
p0 = (Ai,Bi)i>1 there exists some openV ′, p0 ∈ V ′, with f (V ′) ⊂ W . We will show
that there is some integern > 0 for whichAn ⊂ W . Suppose this is not the case. Then
the open setU := X \W intersects all setsAn, n = 1,2, . . . . By the above lemma, there
is some open setV ⊂ P such thatp0 ∈ V andf (V ) ⊂ F(V ) ⊂ U . Then there is a point
p′ ∈ V ∩ V ′ 6= ∅. For p′ we have the contradiction:f (p′) ∈ U ∩ W = ∅. This shows
that, for somen > 0, An ⊂ W . In other words,F(D(p0, n

−1)) ⊂ W . SinceW was an
arbitrary open neighborhood off (p0), we derive thatF(p0) = f (p0), thatF is upper
semicontinuous atp0 and that the playp0 is won by the playerΩ in the gameG′(X). This
completes the proofs of both Proposition 1 and Theorem 2.2

It is easy to provide the set-valued versions of Theorems 1 and 2.
The proof of the next statement is almost identical with the proof of Theorem 1 and is

omitted.
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Theorem 3. Let Z be a Baire space andF :Z→ X a minimal non-empty-valued map
from Z into the topological spaceX which is fragmented by some metricρ. Then there
exists a denseGδ-subsetC ⊂ Z at the points of whichF is single-valued and usc with
respect to the metricρ. In particular, if the topology generated by the metricρ contains
the topology of the spaceX, thenF :Z→X is single-valued and usc at every point of the
setC.

The game approach we used above answers also the following question. What are the
properties of the spaceX which ensure that every minimal (non-empty-valued) mapping
F :Z→X, whereZ is a complete metric space (or, more generally, anα-favorable space)
is single-valued at the points of some dense subset ofZ? Or when is such a mappingF
single-valued and upper semicontinuous at the points of a dense subset ofZ? The answers
are given by the following statements. The proofs are very similar to the proof of Theorem 2
and are omitted.

Theorem 4. For the topological spaceX the following conditions are equivalent:
(i) The gameG(X) isΣ-unfavorable;
(ii) For every minimal non-empty-valued mappingF :Z→ X whereZ is a complete

metric space there exists a pointz0 ∈Z such thatF(z0) is a singleton;
(iii) For every minimal non-empty-valued mappingF :Z → X where Z is an α-

favorable space, the set of points ofZ at whichF is single-valued is of the second
Baire category in every open subset ofZ.

Theorem 5. For the topological spaceX the following conditions are equivalent:
(i) The gameG′(X) isΣ-unfavorable;
(ii) For every minimal non-empty-valued mappingF :Z→ X whereZ is a complete

metric space there exists a pointz0 ∈ Z such thatF(z0) is a singleton andF is
upper semicontinuous atz0;

(iii) For every minimal non-empty-valued mappingF :Z → X where Z is an α-
favorable space, the set of points ofZ at which F is single-valued and upper
semicontinuous is of the second Baire category in every non-empty open subset
ofZ.

There is a large class of spaces (containing all compact spacesX) for which condition(i)
in the above Theorems 2 and 5 is equivalent to the (formally less restrictive) requirement
that the gameG(X) is Σ-unfavorable (condition(i) from Theorem 4). This class will be
introduced and investigated in the next section.

3. Game determined spaces

We consider inX one more game which we call “Determination game” and denote by
DG(X). The reason for this terminology will become clear later. The gameDG(X) is a
generalization of of the gameG′(X). The same playersΩ andΣ are involved inDG(X)
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and the playsp = (Ai,Bi)i>1 are the same as inG′(X) andG(X). The only difference is
with the winning rule. The playerΩ is said to have won the playp = (Ai,Bi)i>1, if the set
K(p) :=⋂Ai is either empty or is such a compact set inX that for every openU ⊃K(p)
there exists some integern > 0 withAi ⊂U . Otherwise the playerΣ wins the playp. We
will call the spaceX game determinedif Ω has a winning strategy inDG(X). The class of
all game determined spaces will be denoted by GD.

Note first that, ifω is a winning strategy forΩ in G′(X), then it is winning inDG(X)
too. Therefore every spaceX that is fragmentable by a metric majorizing its topology
belongs to GD. In particular, all metric spaces are in this class.

Thep-spaces which were introduced by Arhangel’skii in [1] are game determined as
are all Moore spaces. Every spaceX which is “(p − σ)-fragmentable” (Bouziad [5]) is
game determined.

There is another large class of spaces which are game determined.

Definition 5. Let X be a subset of some spaceY . We say that the setX has countable
separation inY (see [24,25]), if inY there exists a countable family of open sets(Ui)i>1

such that for every pair of pointsx ∈X andy ∈ Y \X someUi from the family contains
exactly one of the two pointsx andy.

Note that in the above definition it is not specified which of the two pointsx or y is
in Ui . Further, ifX has countable separation inY then the setY \X also has countable
separation inY . Every open subset ofY as well as every closed subset ofY has countable
separation inY (the separating family consists of only one element in this case). It is easy
to see that, for a givenY , the family of subsets with countable separation is closed under
taking countable unions and countable intersections. This implies that all Borel subsets of
the spaceY have a countable separation in it. Moreover, every set obtained by applying the
Souslin operation to a family of sets with countable separation in someY has countable
separation inY as well.

Also,X has countable separation inY if, and only if, it has countable separation inXY ,
the closure ofX in Y .

It was shown in [25] that, ifX has countable separation in some compact spaceY , then
it has countable separation in any other compactification ofX. This is why we will say that
the completely regular spaceX has countable separation, if it has countable separation in
some (and then in all) of its compactifications.

Proposition 2. Every spaceX with countable separation is game determined(belongs
to GD).

Proof. Denote byY some compact space in whichX has countable separation and let
(Ui)i>1 be a family of open subsets ofY which “separates” the points ofX from the points
of Y \X. We will define a strategyω for the playerΩ which is winning inDG(X). Suppose
A1 6= ∅ is a first choice ofΣ . There are two possibilities:A1 ∩ U1 = ∅ or A1 ∩ U1 6= ∅.
In the first case we putB1 = ω(A1) := A1. In the second case we take asB1 = ω(A1)
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some subset ofA1 which is relatively open inA1 andB1
Y ⊂ U1. In both cases the set

B1
Y is defined in such a way that it either does not intersectU1 or is entirely contained

in it. Proceeding inductively (on the length of the partial plays) we construct the strategy
ω in such a way that, for everyω-play p = (Ai,Bi)i>1 and everyi > 1 just one of the
two options hold:BiY ∩Ui = ∅ or BiY ⊂ Ui . The countable separation ofX implies that
the compact set∅ 6= K(p) =⋂i>1Ai

Y is entirely contained either inX or in Y \ X. If

K(p)⊂ Y \X, then
⋂
i>1Ai

X ⊂ K(p) ∩X = ∅. If K(p) ⊂ X, thenK(p) =⋂i>1Ai
X

and, by the compactness ofY , we have that for every openU ⊃K(p) there is some integer
n > 0 withAnX ⊂U . 2

By the above mentioned result of Ribarska [41,42] the gamesG′(X) andG(X) are
simultaneously favorable (and, therefore, simultaneously unfavorable) for the playerΩ

providedX is a compact space. In [25] this result was generalized and shown to have
place for spacesX with countable separation. The next result goes in the same direction
and establishes that, for game determined spacesX, the gamesG(X) andG′(X) are
simultaneously favorable (or unfavorable) for any of the two players. In such cases we
will say thatthe two games are equivalent.

Proposition 3. If X is a game determined space, thenG(X) andG′(X) are equivalent
games.

Proof. Let ω∗ be a strategy forΩ which is winning inDG(X).
(G(X) is Ω-favorable)⇔ (G′(X) is Ω-favorable). It suffices to show that, ifω is a

winning strategy forΩ in G(X), then there is a winning strategyω′ for the same player in
the gameG′(X). This will be done by “blending” (or “merging”) the strategiesω andω∗.
LetA′1 6= ∅ be an arbitrary first move ofΣ in G′(X). PutA1 :=A′1 andB1 := ω(A1) 6= ∅.
SinceA1 is closed andB1 is relatively open inA1, there exists some setH ∗1 6= ∅ which is
relatively open inB1 (and hence inA1) with H ∗1 ⊂ B1. The setH ∗1 can be considered as a
first move ofΣ in the gameDG(X). The setB∗1 := ω∗(H ∗1 ) 6= ∅ is relatively open inH ∗1
and, therefore, inA1. Then the setB∗1 ∩A′1 is non-empty and relatively open inA′1. Define
B ′1= ω′(A′1) := B∗1 ∩A′1. Proceeding inductively we define the strategyω′ in such a way
that everyω′-playp′ = (A′i ,B ′i )i>1 is accompanied by someω-playp = (Ai,Bi)i>1 and
someω∗-playp∗ = (H ∗i ,B∗i )i>1 so that, for everyi > 1,

(a) Ai =A′i ;
(b) H ∗i is relatively open inBi andH ∗i ⊂ Bi ;
(c) B ′i = B∗i ∩A′i .
The setB ′i is non-empty becauseB∗i is non-empty and relatively open inAi = A′i . We

will see now thatω′ is a winning strategy in the gameG′(X). Note that
⋂
A′i ⊂

⋂
Ai =⋂

H ∗i . Suppose that
⋂
A′i 6= ∅. Sincep = (Ai,Bi)i>1 is anω-play, the set

⋂
Ai contains

just one point. Hence
⋂
A′i =

⋂
Ai =⋂H ∗i . Sincep∗ = (H ∗i ,B∗i )i>1 is anω∗-play, the

playp′ is won byΩ (in the gameG′(X)).
(G(X) is Σ-favorable)⇔ (G′(X) is Σ-favorable). It suffices to establish that the

existence of a winning strategyσ ′ for Σ in G′(X) implies the existence of a winning
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strategy for the same player inG(X). In order to constructσ we will “merge” the strategies
σ ′ andω∗. This will be done in such a way that everyσ -play will be accompanied by some
ω∗-play and someσ ′-play which will help establish the claim.

Let A′1 = σ(X) be the first choice ofΣ under the strategyσ ′. PutA∗1 := A′1, B∗1 :=
ω∗(A∗1) andA1 = σ(X) := B∗1 . This is the first choice ofΣ in the strategyσ . Suppose
all partial σ -plays of lengthn have already been defined in such a way that every
partial σ -play (A1 ⊃ B1 ⊃ · · · ⊃ Bn−1 ⊃ An) is accompanied by some partialω∗-play
(A∗1⊃ B∗1 ⊃ · · · ⊃An ⊃ Bn) and some partialσ ′-play (A′1⊃ B ′1⊃ · · · ⊃ B ′n−1⊃A′n) with
the following properties fulfilled for everyi = 1,2, . . . , n:

(d) A∗i =A′i ;
(e) Ai = B∗i .
To make the next step in the definition ofσ let thenth move ofΩ in G(X) be the non-

empty relatively open subsetBn of An. Clearly,Bn = An ∩U whereU is an open subset
ofX. Find some openV with V ⊂U andV ∩An 6= ∅. By property (e),B ′n := V ∩B∗n 6= ∅.
The setB ′n is relatively open inB∗n which is relatively open inA∗n =A′n. Therefore the set

A′n+1= σ ′(A′1, . . . ,A′n,B ′n)
is well defined. Note thatA′n+1 ⊂ B ′n ⊂ B∗n . PutA∗n+1 = A′n+1, B∗n+1 = ω∗(A∗1, . . . ,B∗n,
A∗n+1) and

An+1= ω(A1, . . . ,An,Bn) :=B∗n+1.

This completes the induction step in the definition of the strategyσ .
Let p = (Ai,Bi) be aσ -play accompanied by theω∗-play p∗ = (A∗i ,B∗i ) and theσ ′-

play p′ = (A′i ,B ′i ) so that the properties (d) and (e) have place. Sinceσ ′ is a winning
strategy inG′(X),

⋂
A′i 6= ∅. By (d) we have

⋂
A∗i =

⋂
B∗i =

⋂
A′i 6= ∅. Then (e) implies

that the setK(p∗) :=⋂Ai =⋂B∗i ⊃
⋂
B∗i 6= ∅. To prove thatσ is a winning strategy in

the gameG(X) it suffices to prove that the setK(p∗) has more than one point. Suppose that
K(p∗) is a singleton. ThenK(p∗)=⋂A′i . Sincep∗ is anω∗-play andω∗ is winning for
Ω in DG(X), for every openU ⊃K(p∗) there is some integern > 0 withA∗n = A′n ⊂ U .
This means thatΩ wins theσ ′-play p′ = (A′i ,B ′i ) in the gameG′(X) which contradicts
the assumption thatσ ′ is a winning strategy inG′(X). 2
Corollary 4. If X is game determined, then the chain of equivalent conditions(i)–(iv) in
Theorems2 and5 can be extended by one more equivalent condition:

(v) G(X) isΣ-unfavorable.

Corollary 5. The game determined spaceX is fragmentable by a metric that majorizes its
topology if, and only if it is fragmentable.

Corollary 6. The spaceX = [0,1) with the Sorgenfrey topology is not game determined.

Proof. Denote byZ the set[0,1) with the usual metric inR. X is fragmented by the
metric ofZ. Letg be the identity mapping ofZ ontoX. As mentioned in the Introduction,
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g is quasi-continuous but nowhere continuous. The previous corollary says that, ifX were
game determined, it would be fragmentable by a metric which majorizes the topology ofX.
Then, by Theorem 1, there would exist points of continuity ofg which is not the case.2
Remark 1. For the Banach spaceE the following statements are equivalent.

(i) The space(E,weak) is game determined;
(ii) The space(E,weak) is fragmented by a metric which majorizes the weak topology.

I.e., the gameG′((E,weak)) isΩ-favorable;
(iii) The space(E,weak) is fragmented by a metric which majorizes the norm topology;
(iv) The space(E,weak) is sigma-fragmented (see [13–18] for the definition) by the

norm.
This follows from Theorems 1.3 and 2.1 of [25]. Similar statements hold for the

space(C(T ), τp) of all continuous functions in the compact spaceT with the pointwise
convergence topology.

The characterization of Banach spacesE for which the gameG′((E,weak)) is Σ-
unfavorable is given in [22]. It turns out that this is the case if, and only if, the game
DG((E,weak)) isΣ-unfavorable. I.e., in the class of Banach spaces the gamesDG andG′
are equivalent.

As shown in Proposition 5.1 of [25] the playerΣ has a strategy which is winning for
the gameG′((l∞,weak)). This shows that the Banach spacel∞ with the weak topology
is not game determined. Moreover, it does not belong to the class of spaces which are
Σ-unfavorable forDG.

Remark 2. A generalization of the notion “game determined space” can be obtained if in
the definition of this notion one requires thatΩ has a strategy which wins plays(Ai,Bi)i>1

where allAi (and therefore allBi ) are open subsets ofX. We call such spaces “Banach–
Mazur determined”. They turned out to be useful in the study of the question when is a
given semitopological group a topological one.

4. Game determined spaces and extension of minimal mappings

In this section we first give an equivalent definition of game determined spaces. This
definition explains the terminology. Then we show that any closed graph minimal mapping
F :Z→X must be upper semicontinuous and compact-valued at many points providedX

is a game determined space andZ is a complete metric space (orα-favorable space).
SupposebX is some compactification of the completely regular spaceX. Consider in

bX a game (of the two playersΣ andΩ) in which the plays are as in the gameG(bX) but
the winning rule is the following: the playerΩ is said to have won the playp = (Ai,Bi)
if the setK(p) :=⋂Ai

bX either does not intersectX or lies entirely inX. OtherwiseΣ
wins the playp. We will not give this game a separate name and will not introduce a new
notation for it because, as the next statement asserts, it is equivalent to the gameDG(X).
Whenever needed, we will refer to this game as “the game inbX”. The words “the game
in X” will be used forDG(X).
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Proposition 4. LetX be a completely regular space andbX some compactification ofX.
The above defined game inbX is equivalent to the game DG(X) in X. In particular, if any
of the playersΩ orΣ has a winning strategy in one compactificationbX ofX, then he/she
has winning strategy in any other compactification ofX.

Proof. In this proof we will denote byCb the closure inbX of the setC ⊂ bX. The closure
of C ⊂X in X will be denoted byC. For the sake of clarity we will denote byωb (σb) any
strategy ofΩ (Σ) for the game inbX. For the game inX we use, as above, the notations
ω (σ ).

The proof rests on the following simple observation.

Lemma 2. Let A∗1 ⊃ · · · ⊃ B∗k−1 ⊃ A∗k be any partial play for the game inbX. If there

is some open subsetU ⊂ bX such thatA∗k ∩ U 6= ∅ and U ∩ (A∗kb ∩ X) = ∅, then
there exists some relatively open setB∗k ⊂ A∗k for which every play inbX starting with
A∗1⊃ · · · ⊃A∗k ⊃ B∗k is won byΩ .

Proof. Find some setV which is open inbX and has the properties:V b ⊂ U and
B∗k :=A∗k ∩ V 6= ∅. Clearly,B∗k is relatively open inA∗k . We also have

X ∩B∗k b ⊂X ∩A∗kb ∩ V b ⊂X ∩A∗kb ∩U = ∅.
This means that, for the game inbX, every playp∗ = (A∗i ,B∗i ) which starts withA∗1 ⊃
· · · ⊃A∗k ⊃ B∗k will be won byΩ because(∩A∗i b)∩X = ∅. The lemma is proved.2

(The game inX is Σ-favorable)⇔ (The game inbX is Σ-favorable). Supposeσ is a
winning strategy ofΣ for the game inX. This means that for everyσ -playp = (Ai,Bi)
the non-empty set

⋂
Ai is either not compact or it is compact but there is some open set

U ⊃⋂Ai such thatAi ∩ (X \U) 6= ∅ for everyi > 1. In both cases the compact set
⋂
Ai
b

intersects not onlyX butbX \X as well. Thusσ is winning for the game inbX as well.
Let nowσb be a winning strategy forΣ in bX. We will define a winning strategyσ for

the game inX. Let A∗1 = σb(bX) be the first choice ofΣ in bX under the strategyσb.
Lemma 2 implies that

A∗1⊂X ∩A1
∗bb.

Then the setA1 :=X∩A∗1b is not empty. We defineσ(X)=A1. If B1 is a relatively open
subset ofA1, then there exists some openU ⊂ bX such thatB1 = U ∩A1. In particular,
U ∩A∗1b 6= ∅. Then the setU ∩A∗1 is not empty and relatively open inA∗1. LetV be some
open subset ofbX such thatV b ⊂ U andB∗1 := V ∩ A∗1 is not empty. Apply strategyσb
to get the setA∗2 := σb(A∗1,B∗1) and defineA2 = σ(A1,B1) := X ∩ A∗2b (which is again
non-empty). Note that

A2⊂X ∩B∗1b ⊂X ∩A∗1b ∩ V b ⊂X ∩A∗1b ∩U =A1 ∩U = B1.

Proceeding inductively (and using Lemma 2 many times), we define the strategyσ so
that eachσ -playp = (Ai,Bi) is accompanied by someσb-playp∗ = (A∗i ,B∗i ) with Ai =
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A∗i b∩X. We prove now that eachσ -playp= (Ai,Bi) is won byΣ inX. First note that, by
Lemma 2,A∗i b = Aib for i > 1 and therefore the setK(p∗) :=⋂A∗i b =

⋂
Ai
b intersects

bothX andbX \X (becauseσb is winning inbX). Take somey0 ∈K(p∗)∩ (bX \X) and
defineK(p) :=⋂Ai ; it is a subset ofX which contains the setK(p∗)∩X 6= ∅. If K(p) is
not compact, the playp is won byΣ in X and there is nothing to prove. SupposeK(p) is
compact. Take some open setU in bX such thatK(p)⊂ U andy0 /∈ Ub. Sincey0 ∈Aib,
i > 1, none of the setsAi is contained inU . This means that the playp is won byΣ in X.

(The game inX is Ω-favorable)⇔ (The game inbX is Ω-favorable). Ifωb is an
arbitrary strategy forΩ in bX, then the restriction ofωb to plays with sets fromX is
some strategyσ forΩ in X. If ωb is winning inbX, then its restriction to the subsets ofX
is a winning strategy inX. Suppose now there exists a strategyω in X which is winning
for Ω . We define a strategyωb which will turn out to be winning inbX. Let A∗1 6= ∅ be

any first move ofΣ in bX. If A∗1 \A∗1b ∩Xb 6= ∅, then Lemma 2 implies that there is an
obvious winning strategy forΩ in bX. Hence, without loss of generality, we can assume

thatA∗1 ⊂ A∗1b ∩Xb. Moreover, for the same reason we will assume thatA∗i ⊂ A∗i b ∩Xb
for all setsA∗i that appear in the course of defining the strategyωb . In particular, the set
A1 :=A∗1b ∩X is not empty and is a possible move forΣ in X. We can apply the strategy
ω to get the non-empty setB1 = ω(A1) which is relatively open inA1. I.e., there is some
open setU1 in bX with B1= A1 ∩U1. Find some openV1 in bX such thatV1

b ⊂ U1 and
V1∩A1 6= ∅. SinceV1 ∩A∗1b 6= ∅, the setA∗1 ∩ V1 is not empty and relatively open inA∗1.
We defineB∗1 = ωb(A∗1) :=A∗1 ∩ V1. Note that

B∗1
b ∩X ⊂A∗1b ∩ V1

b ∩X ⊂A1 ∩U1= B1.

Hence, for every next moveA∗2⊂ B∗2 ofΣ in bX the setA2 :=A∗2b∩X ⊂ B1 and we can
apply the strategyω to the partial playA1⊃ B1⊃A2 to get the setB2= ω(A1,B1,A2)=
A2∩U2 whereU2 is some open subset ofbX. Then, as above, we find some openV2 with
V2
b ⊂U2 andV2 ∩A2 6= ∅. Finally, we define

B∗2 = ωb(A∗1,B∗1 ,A∗2) := V2∩A∗2.
Proceeding by induction we construct the strategyωb in such a way that everyωb-play
p∗ = (A∗i ,B∗i ) is accompanied by someω-playp = (Ai,Bi) so that

Ai =A∗i b ∩X and A∗i ⊂A∗i b ∩Xb =Aib.
It follows that A∗i b = Aib. We show now thatΩ wins everyωb-play p∗ = (A∗i ,B∗i ).
Suppose that(

⋂
A∗i b) ∩ X 6= ∅. Then the set

⋂
Ai =⋂(A∗i b ∩ X) is not empty. Since

ω is winning inX, the setK(p) :=⋂Ai is compact. We will show thatK(p∗) :=⋂A∗i b
coincides withK(p). Suppose the contrary and take some pointy0 ∈K(p∗) \K(p). Since
K(p) is compact, there is some open subsetU of bX, U ⊃K(p), such thaty0 /∈ Ub. On
the other hand,ω is a winning strategy and there exists some integern > 0 with An ⊂ U .
Then we have the contradiction:

y0 ∈K(p∗)⊂A∗i b =Aib ⊂Ub. 2
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Remark 3. In connection with Remark 2 we want to mention here that the completely
regular spaceX is Banach–Mazur determined if, and only if, the playerΩ has a strategy for
the game inbX which wins all plays(Ai,Bi)i>1 whereAi , i > 1, are open subsets ofbX.

We turn now to the extension of minimal mappings. Let us consider a non-empty-
valued mappingF :Z→ X from a topological spaceZ into a completely regular space
X. SupposebX is a compactification ofX. The closure of the graph ofF in Z × bX is a
graph of some usc compact-valued mappingF̃ :Z→ bX. Such mappings are called usco
mappings. It is easy to check that, ifF is minimal, theñF is minimal as well. Moreover, the
graph ofF̃ does not contain as a proper subset the graph of any other usco mapping with
the same domainZ. ThusF̃ is a minimal usco mapping in the sense of Christensen [7].

Theorem 6. LetF :Z→X be a minimal non-empty-valued mapping from the Baire space
Z into the game determined spaceX. SupposẽF :Z→ bX is the set-valued mapping
whose graph coincides with the closure inZ × bX of the graph ofF . Then the set
C := {z ∈Z: F̃ (z)⊂X} contains a denseGδ-subset ofZ.

Proof. Denote byω some winning strategy forΩ in the gameDG(X). We consider the
Banach–Mazur game inZ and construct a strategyζ for the playerα such that for every
ζ -play (Wi,Vi)i>0 the (possibly empty) set

⋂
i>1Wi is contained inC. According to a

known theorem of Oxtoby [35] this would suffice to derive thatC is residual inZ.
Let V0 6= ∅ be an open subset ofZ. Consider the setsA1 := F(V0) andB1 = ω(A1).

SinceB1 is relatively open inA1 andF is minimal, there is some openW1 6= ∅,W1⊂ V0,
such thatF(W1) ⊂ B1. Put ζ(V0) := W1. Proceeding inductively we can construct the
strategyζ in such a way that anyζ -play (Wi,Vi)i>1 be accompanied by someω-play
p = (Ai,Bi)i>1 so that, for everyi > 1,

(a) Ai = F(Vi−1), and
(b) F(Wi)⊂ Bi .
Let z0 ∈⋂Vi . Then∅ 6= F(z0) ⊂⋂Ai . Sinceω is a winning strategy inDG(X), the

setK :=⋂Ai is compact inX and, for every openU ⊂ bX, U ⊃K, there is some integer
n > 0 with An ⊂ U . We will show thatF̃ (z0) ⊂ K. Take somey0 ∈ bX \K and find an
open setU ⊃K such thaty0 /∈ Ub. Let the integern > 0 be such thatAn+1= F(Vn)⊂U .
The setVn× (bX \Ub) is open inZ×bX, contains the point(z0, y0) but does not intersect
the graph ofF . This shows thaty0 /∈ F̃ (z0). 2
Theorem 7. Let X be a topological space andbX some compactification ofX. The
following conditions are equivalent:

(i) The game DG(X) isΣ-unfavorable;
(ii) For every minimal non-empty-valued mappingF :Z→ X whereZ is a complete

metric space there exists a pointz0 ∈Z for whichF̃ (z0)⊂X;
(iii) For every minimal non-empty-valued mappingF :Z → X where Z is an α-

favorable space the set{z ∈ Z: F̃ (z)⊂ X} is of the second Baire category in any
open subset ofZ.
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Proof. The proof is very similar to the proof of Theorem 2. We will only briefly outline
the essential steps.
(i)⇒ (iii ) Let V0 6= ∅ be an open subset ofZ andH a first Baire category subset ofZ.

We will show thatV0 \H contains a pointz0 for which F̃ (z0)⊂ X. To do this we define
a strategyσ for the playerΣ basing on a strategyζ for the playerα in BM(Z) which
“avoids” the setH (see the proof of Theorem 2). LetW1= ζ(V0). Take the setA1= F(W1)

to be the first choice of the strategyσ . For the relatively open subsetB1 of A1 there is some
open subsetV1 ⊂W1 such thatF(V1) ⊂ B1. Consider the setsW2 = ω(V0,W1,V1) and
A2= F(W2). Defineσ(A1,B1)= A2. Proceeding inductively, one constructs the strategy
σ in such a way that everyσ -playp = (Ai,Bi) is accompanied by someα-play (Wi,Vi)

so that, for everyi > 1, we have
(a) Ai = F(Wi);
(b) F(Vi)⊂ Bi .
Sinceα is a winning strategy for the Banach–Mazur game inZ,

⋂
Ai =⋂F(Wi) ⊃

F(
⋂
Wi) 6= ∅ for every σ -play (Ai,Bi)i>1. Condition (i) implies that someσ -play

(Ai,Bi)i>1 is won byΩ in the gameDG(X). PutK :=⋂Ai . As in the proof of the
previous theorem one shows that, for everyz0 ∈⋂Wi , F̃ (z0)⊂K.

The implication(iii )⇒ (ii) is trivial.
(ii)⇒ (i) Let σ be any strategy forΣ in the gameDG(X). As in the proof of Theorem 2

consider the spaceP of all σ -playsp = (Ai,Bi)i>1 endowed with the Baire metricd ;
d(p,p′)= 0 if p = p′ and, otherwise,d(p,p′)= 1/n wheren=min{k: Bk 6= B ′k}. (P, d)
is a complete metric space. Consider the (set-valued) mappingF :P →X defined by

F
(
(Ai,Bi)i>1

)=⋂
i>1

Ai.

Using Lemma 1 it is not difficult to show thatF :P → X is minimal. If for somep ∈ P
we haveF(p) = ∅, thenΩ wins the playp and there is nothing to prove. Therefore,
without loss of generality, we may assume thatF(p) 6= ∅ for everyp ∈ P . By property
(ii) there is some pointp0 ∈ P , p0 = (A0

i ,B
0
i )i>1, such thatF̃ (p0) ⊂ X. We will see

first thatF(p0) = F̃ (p0). The rest will follow from the upper semicontinuity of̃F . Let
x0 ∈ F̃ (p0) ⊂ X. Suppose that there is some integern > 0 for whichx0 /∈ A0

n
b. Then for

every playp = (Ai,Bi)i>1 from the setL := {p ∈ P : d(p,p0) < n
−1} we haveAn =A0

n

and hencex0 /∈ Anb = A0
n
b. This means that the setL × (bX \ A0

n
b) (which is open on

Z × bX) contains(p0, x0) and does not intersect the graph ofF . This contradicts the
construction of̃F . Hencex0 ∈Anb ∩X =An for n> 1. Thusx0 ∈ F(p0). 2
Remark 4. Let Z andX be completely regular spaces,F :Z→ X a non-empty-valued
minimal mapping andbZ, bX some compactifications ofZ andX correspondingly. The
closure of the graphG(F) in bZ × bX determines a mappingF ∗ :bZ→ bX which is
minimal and usco. As analogue of Theorem 6 one can prove that the set

C(F ∗) := {z ∈ bZ: F ∗(z)⊂X orF ∗(z)⊂ bX \X}
contains denseGδ-subset ofbZ provided the spaceX is game determined. Similarly to
Theorem 7 one has: ifZ is α-favorable andX is Σ-unfavorable forDG(X), thenC(F ∗)
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is of the second Baire category in every non-empty open subset ofbZ (and, therefore, in
every non-empty open subset ofZ).

5. Dense subcontinuity of quasi-continuous mappings

The following notion was introduced by Fuller [11].

Definition 6. The mappingF :Z→X between the topological spacesZ andX is said to
besubcontinuousatz0 ∈ Z, if for every net(zα, xα)α∈Λ ∈Gr(F ) with (zα)α∈Λ converging
to z0 the net(xα)α∈Λ has a cluster point inX. The mapF is said to be subcontinuous if it
is subcontinuous at every point of the spaceZ.

This notion attracted some attention. Recently its single-valued version was used (see [5,
6]) to establish that some semi-topological groups are topological.

It is easy to see thatF :Z→ X ⊂ bX is subcontinuous at some pointz0 ∈ Z if, and
only if, F̃ (z0) ⊂ X. To derive the next two statements from Theorems 6 and 7 we only
need recall Corollary 2 and observe that, iff is a single-valued selection of the minimal
(non-empty-valued) mappingF , then the closures inZ × bX of the graphs ofF andf
coincide.

Theorem 8. Letf :Z→X be a quasi-continuous mapping from the Baire spaceZ to the
game determined spaceX. Then there exists a denseGδ-setZ′ ⊂Z at the points of which
f is subcontinuous.

Theorem 9. For the topological spaceX the following conditions are equivalent:
(i) DG(X) isΣ-unfavorable;
(ii) every quasi-continuous mappingf :Z→X from the complete metric spaceZ into

X is subcontinuous at at least one point ofZ;
(iii) every quasi-continuous mappingf :Z→X from the complete metric spaceZ into

X is subcontinuous at the points of some subset ofZ which is of the second Baire
category in every non-empty open subset ofZ;

(iv) every quasi-continuous mappingf :Z→ X from anα-favorable spaceZ into X
is subcontinuous at the points of some subset ofZ which is of the second Baire
category in every non-empty open subset ofZ.

6. Some examples and applications

In view of what we intend to do in this section it makes sense to consider one more
gameG(X) for the same playersΩ andΣ in the topological spaceX. The difference
between the new game andG(X) being thatΣ selects only closed subsets ofX. All the
other components of the game (the moves ofΩ and the rule for winning a play) are as
in G(X). It is not difficult to see that the two games are equivalent. What was said above
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implies that, for game determined spacesX, all the three gamesG(X), G′(X) andG(X)
are equivalent.

Example 1. There exists a compact spaceX which is unfavorable for both playersΣ and
Ω in the gameG(X).

In [20, Proposition 7(d)], Kalenda constructs a nonfragmentable compact spaceX for
which every minimal usco mappingF :Z→X, whereZ is aČech complete space, must
be single-valued at many points. His proof is based on an idea from the paper of Namioka
and Pol [32]. We show that the conclusion holds for arbitrary minimal mappingsF acting
in anα-favorable spaceZ. Our proof uses the game approach.

Construction of the example. It is based on a generalization of the famous “Double
Arrow Space”.

Let M be a Bernstein subset of the open intervalI = {x: 0 < x < 1}. I.e., every
continuum cardinality compact subset ofI must intersect bothM andI \M. Note that
M is dense inI . Consider the sets

X0 : =
{
(x,0) ∈R2: 06 x 6 1

}
,

X1 : =
{
(x,1) ∈R2: x ∈M}, X :=X0 ∪X1.

EquipX with the topology generated by the lexicographical order inX. This turnsX
into a compact space. The latter could be derived directly or using the compactness of the
Double Arrow space. Note that bothX0 andX1 (with the topology inherited fromX) are
fragmented by the Euclidean metric inR2.

Denote byπ the the projection ofX on R: π((x, i)) = x for x ∈ [0,1] and i = 0,1.
π is a continuous map. We will show first thatX is unfavorable forΣ . Suppose this is
not so and denote byσ some winning strategy forΣ . Let A1 = σ(X) be the first closed
set selected byΣ . π(A1) is a compact subset ofR without isolated points as otherwise
there would exist a relatively open subsetB ⊂ A1 containing not more than two points
andΩ would easily win any continuation of the partial playA1⊃ B. In particular,π(A1)

is infinite. We will use the Cantor set construction to produce a compactC of continuum
cardinality and this will help us reach contradiction.

PutC1 := A1 and construct two disjoint infinite relatively open subsetsC2,C3 of A1

that are open intervals in the order inherited byA1 from X. Moreover, we can assume
thatπ(C2) ∩ π(C3) = ∅. DenoteA2 = σ(A1,C2) andA3 = σ(A1,C3). The setsπ(A2)

andπ(A3) are compact subsets ofR without isolated points. Therefore in each of the sets
A2,A3 we can find a pair of infinite relatively open subsets (of interval type with respect
to the order inX) which are disjoint. Proceeding inductively we construct a sequence of
setsAi,Ci, i = 1,2,3, . . . , so that

(a) Ai is a closed subset ofX andπ(Ai) does not have isolated points;
(b) C2i ,C2i+1 are infinite open intervals inAi such thatπ(C2i )∩ π(C2i+1)= ∅;
(c) C2i ∪C2i+1⊂ Ci ;
(d) A2i = σ(A1, . . . ,Ai,C2i ) andA2i+1= σ(A1, . . . ,Ai,C2i+1);
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(e) for every integerp ∈ [2i,2i+1) the diameter of the setπ(Cp) is less or equal to 2−i .
Sinceσ is a winning strategy, the intersection of everyσ -play appearing in the above

construction contains exactly two points which have the same projection onR (this
follows from property (e)). The unionC of all such intersections is a compact subset
of X which has continuum cardinality. This follows from properties (a)–(d). However
π(C)⊂ [0,1] is compact of continuum cardinality as well. Hence there exists some point
t ∈ π(C) ∩ (R \M). We see that the setπ−1(t) ∩C has only one point which belongs to
C. This contradiction shows thatX isΣ-unfavorable.

One can use the Cantor set construction to establish (as above) thatX isΩ-unfavorable
as well. This is equivalent to proving thatX is not fragmentable. Alternatively, one can use
Proposition 3 from [20] where it is shown that the spaceX (defined as above by means of
an arbitrary subsetM ⊂ I ) is fragmentable if, and only if,M is countable. We prefer to
establish this in another way which gives us slightly more.

Example 2. There exist a Baire spaceM which is a subset of the real lineR, a Σ-
unfavorable compact spaceX and a minimal usco mappingF :M→X which is nowhere
single-valued. In particular,X is not fragmentable.

Proof. Let X andM be the spaces from the previous example. It is known thatM is
a Baire space. Consider the mappingF :M → X which assigns to everyt ∈ M the set
F(t) := {(t,0)} ∪ {(t,1)}. It is easy to check thatF is a minimal usco mapping. Theorem 1
from the Introduction implies that the spaceX is not fragmentable.2
Remark 5. Example 2 shows that the spaceX from Example 1 does not belong to the
class of spaces defined by Stegall in [43].

We outline now how the notions and results from this paper could be used in the study
of continuity properties of separately continuous mappings. Our goal is not to give an
exhaustive list of all possible (and most general) corollaries but just to present a sample
of results in this direction. Letf :Z × Y → X be a mapping defined in the product
of the spacesZ and Y . For every fixedz ∈ Z (y ∈ Y ) one denotes byfz (fy ) the
mappingfz :Y → X (fy :Z→ X) defined byfz(y) = f (z, y) (fy(z) = f (z, y)). f is
said to beseparately continuous iny if, for every z ∈ Z, fz is continuous. Similarly one
defines the notion “separately continuous inz”. f is calledseparately continuous, if it is
separately continuous both inz and iny. It is known that a separately continuous mapping
f :Z×Y →X need not be continuous. However, under some relatively mild requirements
imposed on the spacesZ,Y,X, it is possible to prove that there exist points of continuity
of f . The problem is known as “joint continuity of separately continuous functions”
and received a lot of attention in the last century (after the famous paper of Baire [2]
appeared). Detailed information can be found in the survey papers of Piotrowski [37,38].
Very interesting results are contained also in the papers of Namioka [31], Talagrand [44,
45], Debs [10] and many others. The standard approach to this problem consists in first
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proving thatf is quasi-continuous (by using the properties of the spacesZ and Y )
and then establishing thatf is continuous at some points of the productZ × Y (by
using metrizability or metrizability-like properties ofX). We follow the same scheme of
reasoning. Basing upon known results we give some sufficient conditions (in terms of
topological games) for the mappingf to be quasi-continuous and then apply Theorem 1
or Theorem 2 to show that there exist points of continuity off even in cases whenX is far
from being metrizable. For instance,X could be fragmentable by an appropriate metric or,
even less,Σ-unfavorable forG′(X). We formulate also some results concerning points of
subcontinuity of separately continuous mappings.

We start with a known fact concerning quasi-continuity of separately continuous
mappings. Later we will give another result of the same type.

Proposition 5 (Piotrowski [36]).LetZ be a Baire space. Suppose the completely regular
spaceY contains a dense subset of points of countable character, i.e., points with countable
base of neighborhoods. Then every separately continuous mappingf :Z×Y →X into the
completely regular spaceX is quasi-continuous.

Here are some cases when the assumptions of Proposition 5 are satisfied.

Proposition 6. Let the spaceY be either
(a) Baire andΩ-favorable for the gameG′(Y ) (i.e., Baire and fragmentable by a metric

which majorizes its topology);
or

(b) α-favorable for the game BM(Y ) andΣ-unfavorable for the gameG′(Y ).
ThenY contains dense subset of points of countable character.

Proof. (a) Letω be the winning strategy forΩ in G′(Y ) andW0 6= ∅ an open subset of
Y . We define a strategys for β in BM(Y ). ConsiderW0 as a first move ofΣ in G′(Y )
and putV1 := ω(W0), s(Y ) := V1. If the open setW1 satisfies∅ 6= W1 ⊂ V1, we put
V2= s(V1,W1) := ω(W0,V1,W1). Proceeding inductively, we construct the strategys in
such a way that for everys-play (Vi,Wi)i>1 in BM(Y ) the sequence(Wi−1,Vi)i>1 is an
ω-play inG′(Y ). SinceY is a Baire space, there is somes-play (Vi,Wi)i>1 for which the
setK :=⋂Vi ⊂W0 is non-empty. Since the play(Wi−1,Vi)i>1 is won byΩ , the setK is
a singleton with(Vi)i>1 as countable base of neighborhoods. The first part of Proposition 6
is proved.

(b) Let ζ be a winning strategy forα in BM(Y ) andV1 an open subset ofY . We define
a strategyσ for the playerΣ in G′(Y ). Consider the open setW1 = ζ(V1) as a first move
of Σ . I.e.,σ(Y ) :=W1. For the non-empty open setV2⊂W1 putW2= ζ(V1,W1,V2) and
σ(W1,V2) :=W2. Proceeding inductively, we define the strategyσ in such a way that, for
everyσ -play (Wi,Vi+1)i>1 in G′(Y ), the sequence(Vi,Wi)i>1 is aζ -play in BM(Y ). In
particular, the setK =⋂Vi ⊂ V1 is non-empty for every play. By the assumptions there
exists someσ -play (Wi,Vi+1)i>1 which is won byΩ in G′(Y ). For such a play the setK
is a singleton and(Vi)i>1 is a base of neighborhoods ofK. 2
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Theorem 10. Letf :Z× Y →X be a separately continuous mapping whereZ, Y , X are
completely regular spaces such that

(i) Z, Y areα-favorable for the game BM and
(ii) Y , X areΣ-unfavorable for the gameG′.
Then the set of points inZ× Y at whichf is continuous is of the second Baire category

in every open subset ofZ× Y .

Proof. Proposition 5 and the second half of Proposition 6 imply thatf is quasi-continuous.
SinceZ× Y is α-favorable, we can apply Theorem 2 and this completes the proof.2

Applying the first half of Proposition 6 and Theorem 1 instead of Theorem 2 in the last
proof we get:

Theorem 11. Letf :Z× Y →X be a separately continuous mapping whereZ, Y , X are
completely regular spaces such that

(i) Z× Y is a Baire space and
(ii) Y , X areΩ-favorable for the gameG′, i.e., each of these spaces is fragmentable by

a metric that majorizes the corresponding topology.
Then there exists a denseGδ-subset ofZ× Y at the points of whichf is continuous.

Proposition 7. Let the spaceY be either
(a) Baire andΩ-favorable for the game DG(Y ) (i.e.,Y is Baire and game determined);

or
(b) α-favorable for the game BM(Y ) andΣ-unfavorable for the game DG(Y ).
Then every non-empty open setV ⊂ Y contains a non-empty compactK of countable

outer base. I.e., there exists a countable family of open sets(Oi)i>1 such thatK =⋂
i>1Oi is a non-empty compact subset ofV and for every openU ⊃ K there exists

some integern withOn ⊂U .

The proof is omitted because it is very similar to the proof of Proposition 6.
In the next assertion we follow very closely the proof of Theorem 1 from [6] and

Lemma 2.6 from [5].

Proposition 8. Let Z, Y and X be completely regular spaces andf :Z × Y → X a
separately continuous mapping. Suppose that every non-empty open subset ofY contains
a non-empty compactK with countable outer base and the spaceZ is either

(a) Baire andΩ-favorable for the game DG(i.e., Baire and game determined);
or

(b) α-favorable for BM andΣ-unfavorable for DG.
Thenf is quasi-continuous.

Proof. SinceX is completely regular, it suffices to prove the proposition for the case when
X is the real lineR. Let ε > 0 and(z0, y0) ∈ V × U , whereV ⊂ Z andU ⊂ Y are open
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sets. It suffices to show that there are non-empty open setsV ′ ⊂ V , U ′ ⊂ U such that
|f (V ′ × U ′)− f (z0, y0)|6 3ε. For the sake of reaching a contradiction we will suppose
that in every such setV ′ ×U ′ there is a point(z′, y ′) with |f (z′, y ′)− f (z0, y0)|> 3ε.

Since f is separately continuous, there are some open setsV0 and U0 such that
z0 ∈ V0⊂ V , y0 ∈ U0⊂U and∣∣f (V0, y0)− f (z0, y0)

∣∣< ε, ∣∣f (z0,U0)− f (z0, y0)
∣∣< ε.

There exists a non-empty compactK ⊂ U0 with countable outer base of open sets
(Oi)i>1. It is enough to prove the proposition for the case wheny0 ∈ K. We begin with
the proof of the case (a).

(a) Denote byω some winning strategy forΩ in DG(Z). We determine a strategy
s for the playerβ in BM(Z) and then use the fact that it is not a winning one. Put
W ′0 = Z and considerV0 as a first move ofβ . I.e., s(Z) = V0. SupposeW ′1 ⊂ V0 is a
possible move ofα. ConsiderW ′1 as a first move ofΣ in DG(Z). PutW1 := ω(W ′1).
Further, consider the setU1 := {y ∈ O1: |f (z0, y) − f (z0, y0)| < 1} which is an open
neighbourhood ofy0. By the assumption, there exists a point(z1, y1) ∈ W1 × U1 such
that |f (z1, y1)− f (z0, y0)|> 3ε. Defines(V0,W

′
1)= V1 to be some non-empty open set

such thatV1⊂ {z ∈W1: |f (z, y1)− f (z1, y1)|< ε}. The first step in the definition of the
strategys is completed. Proceeding inductively, we define the strategys in such a way that
everys-play (W ′i , Vi)i>0 is accompanied by: anω-play (W ′i ,Wi)i>1, a sequence of open
sets(Ui)i>1 and sequences of points(zi)i>0, (yi)i>0 so that, forn= 1,2,3, . . . we have:

(i) Un = {y ∈On: |f (zk, y)− f (zk, y0)|< n−1 for k 6 n};
(ii) (zn, yn) ∈Wn ×Un;
(iii) |f (z, yn)− f (zn, yn)|< ε for z ∈ Vn;
(iv) |f (zn, yn)− f (z0, y0)|> 3ε.
SinceZ is a Baire space there is somes-play(W ′i , Vi)i>0 which is won byα:

⋂
W ′i 6= ∅.

The correspondingω-play (W ′i ,Wi)i>1 is won by playerΩ in DG(Z). Hence there
is a cluster pointz∗ ∈ ⋂Vi for the sequence(zi)i>0. As yn ∈ On, there is a cluster
point y∗ of the sequence(yi)i>0. From (ii) and (i) we derive thatf (zk, y∗) = f (zk, y0)

for every k > 1. This impliesf (z∗, y∗) = f (z∗, y0). Sincez∗ ∈ Vn, from (iii) we get
|f (z∗, yn)−f (zn, yn)|< ε for everyn> 1. Then, by (iv), we get|f (z∗, yn)−f (z0, y0)|>
2ε for everyn> 1. This leads however to the contradiction:

2ε 6
∣∣f (z∗, y∗)− f (z0, y0)

∣∣= ∣∣f (z∗, y0)− f (z0, y0)
∣∣< ε.

(b) The proof is very similar to the one in case (a). We even use the same notations.
Let ζ be a winning strategy forα in BM(Z). We will construct a strategyσ for the

playerΣ in DG(Z) and use the fact that it is not winning. PutW ′0 = Z and letV0

(from the beginning of the proof) be the first move ofβ in BM(Z). DefineW ′1 := ζ(V0)

to be the first choice ofΣ in DG(Z). I.e., σ(Z) := W ′0. If W1 is any open subset of
W ′1 we find a point(z1, y1) ∈ W ′1 × U1 with |f (z1, y1) − f (z0, y0)| > 3ε and select a
non-empty open subsetV1 such thatV1 ⊂ {z ∈ W1: |f (z, y1) − f (z1, y1)| < ε}. Define
W ′2= σ(W ′1,W1) := ζ(V0,W

′
1,V1). Proceeding inductively we construct the strategyσ in

such a way that everyσ -play(W ′i ,Wi)i>1 is accompanied by someζ -play(W ′i , Vi)i>1 and
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by the sequences(Ui)i>1, (zi)i>1, (yi)i>1 so that the properties (i)–(iv) from the proof of
case (a) are fulfilled forn = 1,2,3, . . . . SinceZ is Σ-unfavorable, there is someσ -play
(W ′i ,Wi)i>1 which is won byΩ . As the correspondingζ -play (Wi,Vi)i>1 is won byα,
the sequence(zi)i>1 has a cluster pointz∗ ∈⋂Vi . The rest of the proof coincides with the
one from the case (a).2

This allows one to formulate results concerning joint continuity of separately continuous
functions defined in spaces more general than those containing dense subsets of points of
countable character.

Corollary 7. Let Z,Y,X be completely regular spaces which areΣ-unfavorable for
DG(Z), DG(Y ), G′(X) correspondingly. SupposeZ andY are α-favorable andf :Z ×
Y → X is a separately continuous function. Thenf is continuous at the points of some
subset ofZ × Y which is of the second Baire category in every non-empty open subset of
Z× Y .

A related problem which appears here is to find conditions onZ, Y , X under which
every separately continuous mappingF :Z × Y → X is subcontinuous at some points of
Z× Y . Here is a statement of this kind.

Theorem 12. Letf :Z× Y →X be separately continuous whereZ, Y , X are completely
regular andΣ-unfavorable spaces(for the game DG). SupposeZ andY areα-favorable
(for BM). Thenf is subcontinuous at the points of a subset which is of the second Baire
category in every non-empty open subsetZ× Y .

Proof. In view of Theorem 9 it suffices to show thatf is quasi-continuous. This follows
from Proposition 8. 2
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