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Abstract

The response of a correlated nuclear system to an external field is discussed. The Bethe–Salpeter equation for t
vertex is solved. The kernel of the integral equation for the vertex is chosen consistently with the approximation for
energy. This guarantees the fulfillment of the f-sum rule for the response function.
 2003 Elsevier B.V.
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Processes occurring in dense nuclear matter are modified by the effects of the medium. This happens fo
rates in neutron stars [1–7] and for particle or photon emission in hot nuclear matter [8–12]. In particular, th
of the off-shell propagation of nucleons in the medium is important for the subthreshold particle produc
heavy ion collisions. The role of correlations for the neutrino emission could be especially important for pro
in hot stars. Soft particle emission is influenced by the multiple scattering in the medium, which is equiva
including vertex correction modifying the coupling of the external current to the dressed nucleons [13]. In-m
modifications of the vertex cannot be described only as modification of the coupling constant. The thre
function describing the modified coupling of the external current to the fermions in medium has a comp
analytical structure and depends on the incoming momenta and energies [14,15].

For the case of weak coupling of the external current or of the produced particles to the nucleo
problem is equivalent to the calculation of the response function in the correlated medium. For the Hartre
approximation the response function can be calculated from the random-phase approximation, which, h
is usually taken at the ring diagrams level only. The use of advanced approximations for the descriptio
many-particle system with in-medium propagators dressed by the interaction and scattering, raises the qu
the correct treatment of the vertex corrections [16]. It is known that the density response function for the e
gas in the self-consistent GW approximation [17] violates the f-sum rule [18,19]. For a given approximat
the self-energy the corresponding vertex corrections can be obtained by solving the Bethe–Salpeter equa
a specific particle–hole irreducible kernel [16,20]. The actual solution of the integral equation for the in-m
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Fig. 1. The Bethe–Salpeter equation for the dressed vertex. The particle–hole irreducible kernelK is denoted by the box and the fat and t
small dots denote the dressed and the bare vertices, respectively.

Fig. 2. The self-energy in the Born approximation.

vertex is quite complex, a complete solution for dressed propagators was given by Kwong and Bonitz [2
the solution of nonequilibrium Kadanoff–Baym equations in an external field. This procedure is numericall
involved. The initial state is given by a nonequilibrium evolution of the quantum transport equations and is n
to tune. For a quantum well the equations for the dressed vertex were solved using equilibrium Green’s
technique taking the most important part of the particle–hole irreducible kernel [22]. Below we present t
solution of the Bethe–Salpeter equation for the dressed vertex in a nuclear system for a general mome
energy of the external field coupled to the density using the real-time Green’s function formalism.

Self-consistent approximations for nuclear systems include iterated second Born approximation u
effective interaction [9,10,23] and in medium T-matrix calculations using free nucleon–nucleon interaction
26]. These schemes use dressed nucleons with nontrivial spectral functions and the response function
obtained simply by calculating the particle–hole polarization loop. The dressed vertex describing the cou
the external current to the in-medium nucleons is given by a Bethe–Salpeter equation (Fig. 1), whereK denotes
the particle–hole irreducible kernel. For a self-consistent approximation to the self-energy one should
the kernelK the functional derivative of the self-energy with respect to the dressed Green’s function [
K = δΣ/δG.

In the following we use the self-consistent second Born approximation with the effective interaction
from [23] (Fig. 2). The solution of the self-consistent equations for the self-energy and dressed propag
equilibrium is standard [9,10,27] and numerical easy to implement. In the real time formalism the nucleon r
(advanced) Green’s function is expressed by the retarded (advanced) self-energyΣr(a) through the Dyson equatio

(1)Gr(a)(p,ω)= 1

ω− p2/2m−Σr(a)(p,ω)
.

The self-energy is taken in the second direct Born approximation

Σ>(<)(p,ω)= 4i
∫
d3p1dω1 d

3p2dω2

(2π)8
V 2(p − p1)G

>(<)(p1,ω1)G
<(>)(p2,ω2)

(2)×G>(<)(p − p1 + p2,ω−ω1 +ω2),

where the Green’s functions

(3)G>(p,ω)= −i(1− f (ω)
)
A(p,ω), G<(p,ω)= if (ω)A(p,ω)

are written using the Fermi distributionf (ω) and the spectral function

(4)A(p,ω)= −2 ImGr(p,ω),
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(5)Σr(a)(p,ω)=
∫
dω1

2π

Σ<(p,ω1)−Σ>(p,ω1)

ω−ω1 ± iε
.

Eqs. (1), (2) and (4) are solved by iteration with a constraint on the total density of the system. In the follow
present results for the densityρ = 0.32 fm−3 and the temperature of 5 MeV. The single-particle width is of ab
20–30 MeV. The polarization bubble without vertex corrections is given by

(6)Π<(>)(q,Ω)= −4i
∫
d3pdω
(2π)4

G<(>)(q + p,ω+Ω)G>(<)(p,ω).

The retarded and advanced polarizationΠr(a) can be obtained using a dispersion relation from its imaginary
2 ImΠr =Π> −Π<.

Let us define the Green’s function in a weak external field of momentumq and energyΩ coupled to the density
which in the time representation is

(7)GI(x1, t1;x2, t2; q,Ω)= −
∫
d3x dt exp(−iqx + iΩt)

〈
T Ψ (x1, t1)ρ(x, t)Ψ

†(x2, t2)
〉
,

whereΨ †,Ψ are the field creation and annihilation operators,ρ(x, t)= Ψ †(x, t)Ψ (x, t), andT is the time ordering
on the real time contour [28]. Depending on the ordering of the times of the fermion operators one can de
smaller (larger) Green’s functionsG<(>)

I (x1, t1;x2, t2; q,Ω) and also the retarded or advanced ones. Switchin
a three times representation for the three point Green’s functionsGI one can relate them to the three point functio
in the real time discussed in the literature [15,29], e.g.,

G<
I (x1, t1;x2, t2;x, t)= −Θ(t1 − t)

〈
Ψ †(x2, t2)

[
Ψ (x1, t1), ρ(x, t)

]〉
(8)+Θ(t2 − t)

〈[
Ψ †(x2, t2), ρ(x, t)

]
Ψ (x1, t1)

〉
.

In a homogeneous system, for the incoming nucleon momentump and the energyω the outgoing momentum i
q+p and the energyω+Ω . We write using momentum and energy variables the smaller (larger) Green’s fun

(9)G
<(>)
I (q + p,ω+Ω; p,ω)

and the retarded (advanced) Green’s functions

(10)G
r(a)
I (q + p,ω+Ω; p,ω),

skipping the explicit reference to the momentumq and energyΩ of the external field coupled to the density, whi
is anyway defined by the momentum and energy conservation. The Green’s functions fulfill the relation

(11)Gr
I −Ga

I =G>
I −G<

I

but there is no simple spectral representation for them, like the one for the two-point Green’s function (3), (
Bethe–Salpeter equations for three functionsG

<(>)
I andGr

I must be solved numerically.
The Green’s functionsGI are given by the truncated vertexΓ

(12)G
r(a)
I (q + p,ω+Ω; p,ω)=Gr(a)(q + p,ω+Ω)Γ r(a)(q + p,ω+Ω; p,ω)Gr(a)(p,ω)

and

G
<(>)
I (q + p,ω+Ω; p,ω)=Gr(q + p,ω+Ω)Γ r(q + p,ω+Ω; p,ω)G<(>)(p,ω)

+Gr(q + p,ω+Ω)Γ <(>)(q + p,ω+Ω; p,ω)Ga(p,ω)

(13)+G<(>)(q + p,ω+Ω)Γ a(q + p,ω+Ω; p,ω)Ga(p,ω).
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Fig. 3. The particle–hole irreducible vertex corresponding to the self-energy in Fig. 2.

The dressed vertexΓ for the coupling of the external field to the nucleon is the solution of the Bethe–Sa
equation. The particle–hole irreducible kernel for the self-energy given by Eq. (2) is shown in Fig. 3.

Defining the polarization bubble coupled to the external field

Π
<(>)
I (q + p,ω+Ω; p,ω)

= −4i
∫

d3p1 dω1

(2π)4
(
G
<(>)
I (q + p + p1,ω+Ω +ω1; p + p1,ω+ω1)G

>(<)(p1,ω1)

(14)+G<(>)(p + p1,ω+ω1)G
>(<)
I (p1,ω1; p1 − q,ω1 −Ω)

)
and

Π
r(a)
I (q + p,ω+Ω; p,ω)

= −4i
∫

d3p1 dω1

(2π)4
(
G
r(a)
I (q + p + p1,ω+Ω +ω1; p + p1,ω+ω1)G

<(>)(p1,ω1)

+Gr(a)(p + p1,ω+ω1)G
<(>)
I (p1,ω1; p1 − q,ω1 −Ω)

+G
<(>)
I (q + p + p1,ω+Ω +ω1; p + p1,ω+ω1)G

r(a)(p1,ω1)

(15)+G<(>)(p + p1,ω+ω1)G
r(a)
I (p1,ω1; p1 − q,ω1 −Ω)

)
we can write the Bethe–Salpeter equations for the dressed vertex as

Γ <(>)(p + q,ω+Ω; p,ω)

= i

∫
d3p1dω1

(2π)4
(
V 2(p − p1)Π

<(>)(p − p1,ω−ω1)G
<(>)
I (p1 + q,ω1 +Ω; p1,ω1)

(16)+ V (p1)V (p1 + q)Π<(>)
I (p1 + q,ω1 +Ω; p1,ω1)G

<(>)(p − p1,ω−ω1)
)

and

Γ r(a)(p + q,ω+Ω; p,ω)

= 1+ i

∫
d3p1 dω1

(2π)4
(
V 2(p − p1)Π

<(p − p1,ω−ω1)G
r(a)
I (p1 + q,ω1 +Ω; p1,ω1)

+ V (p1)V (p1 + q)Π<
I (p1 + q,ω1 +Ω; p1,ω1)G

r(a)(p − p1,ω−ω1)

+ V 2(p − p1)Π
r(a)(p − p1,ω−ω1)G

>
I (p1 + q,ω1 +Ω; p1,ω1)

(17)+ V (p1)V (p1 + q)Πr(a)
I (p1 + q,ω1 +Ω; p1,ω1)G

>(p − p1,ω−ω1)
)
.

The equations for the dressed vertex (16), (17) and for Green’s function in the external field (12), (13) are
for each givenq andΩ , using the Green’s functionsG obtained for the correlated system in equilibrium. T
irreducible polarization bubble including vertex corrections for the density response is calculated from the
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Fig. 4. The imaginary part of the irreducible polarization as function of the energy forq = 220 MeV. The solid line denotes the result wi
vertex corrections, the dotted line is the one-loop calculation with dressed propagators Eq. (6), and the dashed line is the polarizat
noninteracting system. The dashed-dotted line denotes the polarization with vertex corrections restricted only to the first diagram in

functionG<
I

(18)Πr
irr(q,Ω)= −4i

∫
d3pdω
(2π)4

G<
I (p + q,ω+Ω; p,ω).

In Fig. 4 is shown the polarization bubble with vertex correctionsΠirr for q = 220 MeV. The result is very differen
from the naive one-loop polarization (6), the vertex corrections are very important. The response fun
closer to the response of a noninteracting system, but not exactly the same. We have made a calculati
polarization function neglecting the contributions of the terms withΠI in the Bethe–Salpeter equations (16), (1
This corresponds to neglecting the last two diagrams in the particle–hole kernel (Fig. 3). The result is d
which shows that the full kernel of the Bethe–Salpeter equation must be taken and not only the first term i

Unlike for the functionGI , the real and imaginary parts of the polarization bubbleΠr
irr fulfill a dispersion

relation

(19)ReΠr
irr(q,ω)= −

∫
dω1

π

ImΠr
irr(q,ω1)

ω−ω1 + iε
.

The dispersion relations between the independently obtained real and imaginary parts of the response
constitutes a useful check of the consistency of the approach and of the numerics. Another important con
of the response functions is given by the f-sum rule

(20)−
∫
ωdω

2π
ImΠr

irr(q,ω)= ρ
q2

2m
.

The above sum rule is well satisfied for the free response and for the response function including vertex cor
it is severely violated for the naive polarization loop with dressed propagators (6). Please note that the s
is satisfied also by the solution using a simplified kernel in the Bethe–Salpeter equation, although the pola
itself is quite different. Our numerical method is quite accurate forq > 100 MeV, where both the f-sum ru
and the dispersion relation (19) are satisfied. Note that in the region where the calculations are perfor
vertex corrections are still very important, essential in guaranteeing the fulfillment of the sum rule. For exam
q = 220 MeV the naive polarization loop with dressed propagators violates the sum rule by a factor 4.9.
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Fig. 5. The ratio of the f-sum rule to the expected value as function of the momentum in the response function. The lines are the s
Fig. 4.

Adding the Hartree–Fock terms in the self-energy modifies the kernel of the equation for the dressed ver
Fock term generates an additional interaction line in Fig. 3, the exchange term in the random-phase appro
The Hartree term generates the ring series which is summed to give the polarization

(21)
Πr

irr(q,Ω)

1− V (q)Πr
irr(q,Ω)

.

We have checked that adding at the same time a Hartree–Fock term to the self-energy (2) and an e
interaction ladder in the kernel of the Bethe–Salpeter equation conserves the sum rule forΠr

irr . This sum rule
is then conserved after performing the ring summation (21), although the shape of the response function
strongly modified by the transformation (21). The irreducible response function with vertex correction is c
the noninteracting one, however after the ring summation the results are different due to a different tail inΠirr
at large energies (Fig. 5). The study of the full response with a realistic effective Hartree–Fock self-energy
presented elsewhere.

We present a solution of the Bethe–Salpeter equation for the vertex of the external field coupled to the d
a correlated medium. The approximation chosen for the particle–hole interaction is consistent with thenontrivial
self-energy used in the Dyson equation. It guarantees the fulfillment of the f-sum rule for the response f
To our knowledge it is the first solution of the Bethe–Salpeter equation for a general momentum and
using equilibrium Green’s function formalism and the full kernel of the integral equation for the dressed
The irreducible polarization with vertex corrections is much closer to the Lindhard function than the naiv
loop polarization with dressed propagators. It is a manifestation of the expected cancellation of the sel
and vertex corrections. The methods here presented can be used to calculate realistic response func
different vertices or to test approximations for the dressed vertices or for the particle–hole interaction for th
complicated T-matrix self-energies in nuclear matter.
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