Physiological production of singlet molecular oxygen in the myeloperoxidase-H$_2$O$_2$-chloride system

Chika Kiryua,b, Masao Makiuchia, Junji Miyazakia, Toru Fujinagab, Katsuko Kakinumaa,*

aBiophotonics Information Laboratories, Yamagata Advanced Technology Research Center, Matsuei 2-2-1, Yamagata 990-2473, Japan
bDepartment of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N-18, W-9, Kita-ku, Sapporo 060-0818, Japan

Received 16 November 1998; received in revised form 15 December 1998

Abstract The putative role of singlet oxygen (1O_2) in the respiratory burst of neutrophils has remained elusive due to the lack of reliable means to study its quantitative production. To measure 1O_2 directly from biological or chemical reactions in the near infrared region, we have developed a highly sensitive detection system which employs two InGaAs/InP pin photodiodes incorporated with a dual charge integrating amplifier circuit. Using this detection system, we detected light emission derived from a myeloperoxidase (MPO)-mediated reaction in physiological conditions: pH 7.4, 1–30 nM MPO, 10–100 μM H$_2$O$_2$ and 100–130 mM Cl$^-$ in place of Br$^-$ without the use of deuterium oxide. The MPO-H$_2$O$_2$–Cl$^-$ system exhibited a single emission peak at 1.27 μm with a spectral distribution identical to that of delta singlet oxygen. Our results suggest physiological production of 1O_2 in the MPO-H$_2$O$_2$–Cl$^-$ system at an intravacuolar neutral pH. The MPO-mediated generation of 1O_2, which may have an important role in host defense mechanisms, is discussed in connection with previous results.

© 1999 Federation of European Biochemical Societies.

Key words: Singlet oxygen; Myeloperoxidase; Near infrared light emission

1. Introduction

The primary function of neutrophils is phagocytosis, killing and destruction of invading microorganisms. The cytoplasm of neutrophils contains numerous granules such as azurophilic, specific and tertiary granules [1–4]. Myeloperoxidase (MPO) is present in azurophilic granules in an exceptionally high concentration. Following phagocytosis, the membranes of granules fuse with the membrane of the phagocytic vacuole, which phagolysosomes release MPO into the vacuole containing the ingested microorganisms. Early studies on intravacuolar pH reported that appreciable acidification occurred after phagocytosis. However, Segal et al. showed for an apparent rise of intravacuolar pH to 7.75 within the first 2 min, thereafter followed by mild acidification to a neutral pH after 15 min [5]. Other groups also confirmed the initial alkalinization and then mild acidification to maintain a neutral pH in phagosomal vacuoles [6,7]. During phagocytosis, neutrophils exhibit a respiratory burst due to activation of a plasma membrane-bound NADPH oxidase that generates superoxide into phagocytic vacuoles and its dismutation product, hydrogen peroxide, to kill bacteria with a concomitant release of MPO [1–4]. Therefore, the MPO-catalyzing bactericidal reaction may occur at neutral pH for the first 15 min after phagocytosis.

The heme enzyme MPO has the capacity to generate an array of oxidizing species with considerable cytotoxic potential such as hypochlorous acid as a major oxidant [1–4,8]. Electronic excited state oxygen, singlet oxygen (1O_2), was originally proposed as the source of chemiluminescence from neutrophils during the respiratory burst through the MPO-catalyzing reaction [9]. However, no evidence for the production of 1O_2 was found in the visible light emission produced by activated neutrophils with various kinds of stimulators and 1O_2 inhibitors [10,11]. The chemiluminescence emitted from activated neutrophils was confirmed to be derived from tyrosine and bitryosine in excited states but not from 1O_2 [12]. Instead of the visible region, the most convincing evidence for 1O_2 formation is to detect the near infrared light emission at 1268 nm, which is a characteristic wavelength derived from the 1Δ_2O$_2$ to 3Σ_+O$_2$ transition [13]. With this near infrared spectrometry, Kanofsky et al. demonstrated that 1O_2 generation mediated by MPO occurred only at very acidic pH with a high H$_2$O$_2$ concentration or at a high bromide ion (Br$^-$) concentration [14]. Based on these results, they concluded that physiological production of 1O_2 by an MPO-mediated reaction appeared unlikely [14]. However, considering the sensitivity of the germanium detector used in their measurement and the low quantum yield of light emission at 1268 nm, detection of 1O_2 in physiological conditions may not have been achieved. Recently, we have developed a novel detection system consisting of InGaAs/InP pin photodiodes [15,16] for the study of 1O_2 produced from enzymatic reactions. In this paper, we show evidence for the physiological production of 1O_2 from the MPO-catalyzing reaction at neutral pH by means of our sensitive detecting system. Our results are in contrast to previous results [4,14].

2. Materials and methods

2.1 Materials

Ficoll-Paque and CM Sepharose CL-6B were obtained from Pharmacia LKB Biotech (Uppsala, Sweden); H$_2$O$_2$, o-methoxyphenol (guaiacol) was from Wako Pure Chemicals (Osaka, Japan); phenylmethylsulfonyl fluoride (PMSF) was from Nakarai Co. (Kyoto, Japan). All other chemicals were of analytical grade.

2.2 Preparation of myeloperoxidase

Granulocytes (more than 90% neutrophils) were obtained from pig blood and destroyed by sonication as reported previously [17,18]. The sonicated cells were fractionated by centrifugation to obtain an azurophil granule-rich pellet, which was then treated with 1 M NaCl at 0°C, and centrifuged to obtain an MPO-rich supernatant [18]. Ion exchange chromatography was performed with CM Sepharose CL-
6B equilibrated with 50 mM sodium phosphate buffer, pH 7.4. Salting out proteins was accomplished with NaCl in concentrations from 0.2 to 1.0 M in 50 mM sodium phosphate buffer, pH 7.4. Fractions of MPO and eosinophil peroxidase (EPO) were determined by spectrophotometric analysis as described later. Through the chromatographic procedures, the MPO fraction was completely separated from EPO and then dialyzed four times for 2 h with 50 mM sodium phosphate buffer (pH 7.4) for desalting. All procedures were carried out at 4°C.

2.3. Spectrophotometric measurements

Absorption spectra of the samples were measured in amicrocuvette (10 mm light path, 3 mm width) using a Unisoku single-beam spectrophotometer (model USP-530, Unisoku Co. Ltd., Osaka, Japan) interfaced to a personal computer (NEC-PC9801). Peroxidase concentration was determined spectrophotometrically using the absorbance coefficients of the absolute Soret bands: 89 mM⁻¹ cm⁻¹ at 428 nm for MPO [19] and 110 mM⁻¹ cm⁻¹ at 412 nm for EPO [20]. Protein concentration in the samples was measured by the Pierce BCA protein assay reagent (Pierce, Rockford, IL, USA). The purity index (\(A_{430}/A_{280}\)) of the MPO was also measured. MPO activity was assayed with the guaiacol test described by Chance and Maehly [21]. All spectrophotometric measurements were performed at room temperature (24°C).

2.4. Detection of near infrared emission derived from singlet oxygen

2.4.1. The singlet oxygen detection system. Near infrared light emission derived from \(^1\Delta O_2\) was measured using our sensitive detection system, the details of which have been reported previously [15,16]. To remove background emission from the total emission, so that a net signal derived from \(^1\Delta O_2\) can be obtained, our system takes full advantage of a dual charge integrating amplifier (dual-CIA) circuit that employs two InGaAs/InP pin photodiodes [15] (Fig. 1). The mixing unit had a pair of three tube lines for liquid transfer, linking a pair of three reservoirs to both the sample and reference cells [16]. For the detection of light emission from the MPO-mediated reaction, solutions of MPO, \(H_2O_2\) and halide (Cl⁻ or Br⁻) were poured into the \(^1\Delta O_2\) channel reservoirs 1, 2 and 3, respectively. The reference channel reservoirs 4, 5 and 6 contained \(H_2O_2\), the same buffer and the same halide as in the signal channels, as the sources of background radiation. These solutions were synchronously mixed into the sample and reference cells, by using an actuator driving rapidly with nitrogen gas pressure (Fig. 1). After amplification and filtering, the signal output voltage proportional to the intensity of near infrared light emission was integrated and displayed on a digital oscilloscope. Spectral analysis of the signal light was carried out with a set of 13 bandpass filters, centered at wavelengths of 962, 1009, 1070, 1121, 1184, 1225, 1278, 1313, 1354, 1412, 1455, 1521 and 1566 nm, respectively. To quantify the initial rate of signal output power per integration time (mV/s) in units of photons/s, we calibrated the detection system by measuring a signal light at 1.3 W/m, transmitted through a single mode optical fiber that was coupled to a power-stabilized semiconductor laser. The laser power was varied to the appropriate level by means of an optical attenuator.

2.4.2. MPO-catalyzed light emission. The reaction mixture consisted of various concentrations of MPO and \(H_2O_2\) in Krebs-Ringer phosphate buffer (KRP: 122 mM NaCl, 4.9 mM KCl, 1.2 mM MgCl₂, 17 mM sodium phosphate buffer, pH 7.4). For the examination of halide effects, the reaction mixture consisted of 10 nM MPO,

![Fig. 1. The \(^1\Delta O_2\) detection system. The sample mixing unit (upper part) consists of signal and reference channels for light emission from \(^1\Delta O_2\) in chemical or biological reactions (left) and from the background emission (right). The detection system (lower part) consists of a dual charge integrating amplifier circuit that employs two InGaAs/InP pin photodiodes to detect ultra-weak, near infrared light. For details, see text.](image)
100 μM H₂O₂ and various concentrations of halide ion (Cl⁻ or Br⁻) in 50 mM sodium phosphate buffer (pH 7.4), unless otherwise stated. Prior to the experiment, a fresh H₂O₂ solution was prepared by diluting a commercial 30% solution with H₂O, and the concentration was determined by measuring its absorbance at 240 nm and from the extinction coefficient of 39.4 mM⁻¹ cm⁻¹ [22]. All MPO-mediated and unmediated reactions were carried out at 25°C in the two rapid mixing cells in the jacketed holder (Fig. 1) connected to a constant temperature water bath.

3. Results and discussion

The ¹⁰² detecting system (Fig. 1) is so sensitive that a minimal amount of MPO is sufficient to detect the weak, near infrared light emission from MPO-H₂O₂-halide reactions without the use of deuterium oxide. Fig. 2 shows the traces of light emission generated by an MPO-mediated reaction, measured as integrated signal output versus integration time. The signal output depended on the concentration of MPO in the nanomolar range (Fig. 2a–c) under physiological conditions: pH 7.4 and isotonic Cl⁻ in place of Br⁻. Addition of 1 mM histidine as an ¹⁰₂ quencher completely inhibited the light emission (Fig. 2d).

Fig. 3A shows the signal output per integration time as a function of MPO concentration in the presence of 100 μM H₂O₂ under the same conditions as in Fig. 2. The light intensity followed a linear function of MPO concentration in the low concentration range of 1.0–30 nM. Next, the signal output per integration time was measured by mixing various concentrations of H₂O₂ with 10 nM MPO under the same physiological conditions as in Fig. 3A (Fig. 3B). The signal output was progressively higher at increasing H₂O₂ concentration, reaching its maximum at 100 μM H₂O₂, before it started to decrease as the H₂O₂ concentration was increased to over 150 μM due to its oxidative inhibition of MPO.

Since the relaxation of ¹⁰Δ₂O₂ to the ground state (¹⁰¹Δ₂O₂) emits light peaking at 1268 nm, possible formation of ¹⁰₂ in the MPO-H₂O₂-CI⁻ system was examined through spectroscopy measurement in a range of 1000–1500 nm, using bandpass filters. In a parallel experiment, we also analyzed the emission spectrum of ¹⁰Δ₂O₂ generated from a chemical model reaction between H₂O₂ and NaOCl [13] (Fig. 4B) to compare with the MPO-mediated reaction. The spectral peaks provide evidence for production of ¹⁰Δ₂O₂ from the MPO-H₂O₂-CI⁻ system at physiological pH (Fig. 4A).

It has been shown that MPO uses H₂O₂ to oxidize chloride, bromide, iodide and thiocyanate to their respective hypohalous acids [1–4,8]. Therefore, the effects of halide and pseudohalide ions, Cl⁻, Br⁻, SCN⁻, were examined on the light emission from the MPO-H₂O₂-halide system (Table 1). An equivalent light emission (photons/s) occurred in the presence of either 100 mM NaCl or KCl. Br⁻ is present in plasma at a very low concentration (20–80 μM) [23], in contrast to Cl⁻, which is present at a high concentration (100–140 mM) [1]. Therefore, the MPO-H₂O₂-Br⁻ system was examined in the presence of 100 μM Br⁻, a concentration slightly higher than in plasma, which showed no production of ¹⁰₂ under physiological conditions. When added at an unphysiological con-
The reaction mixtures consisted of 10 nM MPO, 100 μM H₂O₂, and various concentrations of halide or pseudohalide ions in 50 mM sodium phosphate buffer, pH 7.4. Data are presented as mean ± S.D. of four measurements. neg., negligible.

Table 1

<table>
<thead>
<tr>
<th>Halide or pseudohalide ion</th>
<th>Concentration</th>
<th>Signal output/integration time (mV/s)</th>
<th>Photons/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl⁻</td>
<td>100 mM</td>
<td>48 ± 3</td>
<td>1.8 × 10⁶</td>
</tr>
<tr>
<td>Br⁻</td>
<td>100 μM</td>
<td>neg.</td>
<td>neg.</td>
</tr>
<tr>
<td>SCN⁻</td>
<td>100 mM</td>
<td>1203 ± 162</td>
<td>3.9 × 10⁷</td>
</tr>
<tr>
<td>SCN⁻</td>
<td>100 μM</td>
<td>neg.</td>
<td>neg.</td>
</tr>
<tr>
<td>SCN⁻</td>
<td>100 mM</td>
<td>neg.</td>
<td>neg.</td>
</tr>
</tbody>
</table>

The reaction system can produce OCl⁻/HOCl which reacts with H₂O₂ to form ¹O₂ under physiological conditions.

Phagocytosing neutrophils consume oxygen about 20–40 nmol/10⁶ cells per min and release O₂⁻ exclusively into phagosomal vacuoles to form H₂O₂ [26]. The H₂O₂ concentration in a vacuole may be more than 100 μM from the space volume of a phagocytic vacuole (10–20 particles per cell in the first 30 s) [26]. Electron micrographs of phagocytosing neutrophils stained for peroxidase showed evidence that ingested bacteria were tightly surrounded by the electron-dense product of MPO on account of the cationic charge of the protein and the anionic charge of the bacterial surface [27]. Therefore in the initial stage of phagocytosis, the MPO-H₂O₂-Cl⁻ reaction may produce ¹O₂ extensively at the surface of ingested bacteria to kill them effectively at intravacuolar neutral pH (pH 7.8–7.4). Recently, Nakano’s group showed evidence that pure ¹O₂ has a high ability to kill bacteria despite its very short life time of 3.3 μs, probably due to its direct inhibitory effect on the bacterial electron transport enzyme(s) located in the cell membrane [28,29]. Steinbeck et al. demonstrated intracellular production of ¹O₂ by phagocytosing neutrophils by using particles coated with a specific chemical trap for ¹O₂ [30]. Taken together with their reports, the MPO-H₂O₂-Cl⁻ reaction is probably a source of the ¹O₂ produced during the process of phagocytosis for a potent bactericidal agent. The consensus has been that if ¹O₂ is produced in neutrophils, it is only in a very small amount and it may not have the ability to kill bacteria due to its short life time [4,11]. However, from the present results, the role of ¹O₂ in either neutrophil-mediated host defense mechanism or inflammatory events should be further considered.

Acknowledgements: We are grateful to Dr. M. Nakano of the Japan Immunoresearch Laboratory for personal communications and Dr. K.P. Chan of our institute for the preparation of the manuscript.

References