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The problem of transporting patients or elderly people has been widely studied in literature and is

usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem

arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the

largest organization performing patient transportation in Austria. The aim is to design vehicle routes to

serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires

transportation from a patient’s home location to a hospital (outbound request) or back home from the

hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic

in the sense that they appear during the day without any prior information. Finally, some inbound

requests are stochastic. More precisely, with a certain probability each outbound request causes a

corresponding inbound request on the same day. Some stochastic information about these return

transports is available from historical data. The purpose of this study is to investigate, whether using

this information in designing the routes has a significant positive effect on the solution quality. The

problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We

propose four different modifications of metaheuristic solution approaches for this problem. In detail,

we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as

modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA).

Tests are performed using 12 sets of test instances based on a real road network. Various demand

scenarios are generated based on the available real data. Results show that using the stochastic

information on return transports leads to average improvements of around 15%. Moreover, improve-

ments of up to 41% can be achieved for some test instances.

& 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

This paper was motivated by the problem the Austrian Red
Cross (ARC) faces in its daily operation. This nongovernmental
organization is responsible for performing most of the patient
transportation tasks arising in Austria. Patients can call the ARC to
arrange so called ‘‘taxi transports’’. Such transports start at the
patient’s home location and end at a specific hospital (outbound
requests). For each request, a time window for arrival at the
hospital is specified by the patient. Subsequently, the ARC
determines a time window for departure from the patient’s origin
location. This is communicated to the patient to be prepared for
departure. In addition, hospitals may arrange transports for
patients that need to be transported back home after treatment
. Schilde),
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(inbound request). Some of the requests are known in advance
(i.e., the patient or hospital arranged the transport the previous
day or earlier), whereas others arise as the day progresses.

All these transportation requests have to be served by a fixed
vehicle fleet. All vehicles are based at a common depot location.
No vehicle can transport more than three patients at the same
time. In this paper we consider only homogenous transportation
requests. This means that patients are assumed to occupy exactly
one seat in a vehicle and we do not distinguish between different
modes of transportation (e.g., patient seat, stretcher, wheelchair).
As customer satisfaction is very important for the ARC, the
rejection of transportation requests is not allowed. Additionally,
no detour of more than 30 min can be planned while a patient is
aboard (e.g., for picking up or dropping another patient). For the
same reason, violating time windows shall be avoided whenever
possible. However, time windows are soft and can be violated if
absolutely necessary. The ARC explains this as follows. If a patient
is delivered to the hospital after the specified time window, the
patient’s assignment to specialized equipment (e.g., a dialysis
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machine) may become obsolete. This forces the patient and
hospital to re-schedule the treatment which decreases customer
satisfaction. Economic aspects like the number of vehicles used or
the total distance traveled are only regarded as secondary
objectives. The ARC aims at designing vehicle routes that optimize
these objectives.

A similar problem also arises in everyday business of many
other organizations in the field of passenger transportation like,
for example, cab companies. However, our problem includes an
additional aspect. Stochastic information about expected return
transports is available from historic data. Each patient that is
transported to a hospital might, at a later point in time, require
transportation back to his home location. These return transports
can be caused by both static and dynamic outbound requests.
Return transports themselves are always dynamic. Even if the
patient knows about the return transport in advance (e.g., in case
of a dialysis treatment), this information is not available to the
ARC. Nevertheless, this information can be estimated quite well
using the available historical data.

Imagine a person is regularly transported from home to a
hospital for dialysis and back home afterwards. Such a treatment
normally consumes a predictable amount of time. This is inde-
pendent of who the person is or when the treatment takes place.
Thus, it is possible to determine the parameters for the statistical
distribution of such return transports. This information can then
be used when designing the vehicle routes. More precisely, the
stochastic information can be generated from historical data
about treatment durations. The same procedure would of course
make sense for every type of return transport if the required
information is available. What makes this problem unique is that
for possible return transports, such information can be used for
planning. Note that we also studied the case in which information
about the dynamic transportation requests from a patients’ home
location to the hospital is assumed to be available, but including
this additional information brings only limited benefit (see
Section 5.3 for details).

The problem of point-to-point passenger transportation is
commonly modeled as a dial-a-ride problem (DARP) in the
literature (see, e.g., [1,2] for recent surveys). Healy and Moll [3]
showed that the DARP is NP-hard. Thus, much effort has been
spent in finding efficient and effective solution methods for this
problem class. The static deterministic variants of the DARP are
well studied and very sophisticated solution approaches were
presented within the last years (see, e.g., [4,5] for state-of-the-art
metaheuristics). Also, dynamic variants of this problem have
lately received some attention (see, e.g., [6]). Xiang et al. [7]
recently studied a dynamic stochastic variant of the DARP. They
proposed a simple local search heuristic that uses a secondary
objective function to escape from local optima.

Several studies incorporate some kind of stochastic informa-
tion in the context of other problems. Laporte and Louveaux [8]
proposed an integer L-shaped method for stochastic integer
problems with complete recourse. Gutjahr et al. [9] developed a
stochastic branch-and-bound method for optimal single-machine
tardiness scheduling. Gutjahr [10] also proposed an ant-based
approach to combinatorial optimization problems under uncer-
tainty. Jaillet [11], Bertsimas [12], Bertsimas et al. [13] and
Laporte et al. [14] studied probabilistic versions of the traveling
salesman problem and other combinatorial optimization pro-
blems. Teodorović and Pavković [15], Gendreau et al. [16], and
Golden and Stewart [17] published several solution methods for
stochastic variants of the vehicle routing problem. Secomandi and
Margot [18] proposed re-optimization approaches for the vehicle
routing problem with stochastic demands. Tillmann [19] pro-
posed a modification of the well known Clarke and Wright [20]
savings algorithm for the multiple terminal delivery problem
with probabilistic demands. Kleywegt et al. [21] published a
method based on Markov decision processes for the stochastic
inventory routing problem with direct deliveries. A solution
approach to the dynamic stochastic vehicle routing problem
based on a sample scenario hedging heuristic was published by
Hvattum et al. [22]. Gutjahr et al. [23] recently introduced a
stochastic variant of the well known variable neighborhood
search (VNS, [24]) for project portfolio analysis under uncertainty.
This S-VNS method is mainly based on the idea of taking possible
scenarios of the future into account when comparing two solu-
tions. This leads to very robust results. Bent and Van Henten-
ryck [25] proposed a multiple plan approach (MPA) and a
multiple scenario approach (MSA) for the dynamic vehicle routing
problem with time windows and stochastic customers. These
approaches are based on the idea of maintaining a pool of
solutions during execution. MSA additionally takes into account
scenarios of the future while planning.

There is much literature available on stochastic methods for
different applications. However, to the best of our knowledge,
using stochastic information about future transportation requests
for solving the dynamic stochastic DARP (DSDARP) was not
studied so far. The contribution of our paper is thus threefold:
�
 We adapt four different metaheuristic methods to the special
requirements of the DSDARP (VNS, S-VNS, MPA, and MSA) and
identify problem characteristics for which one or the other
method works better.

�
 We determine influence factors for the successful use of

stochastic information to improve solution quality.

�
 We study how far ahead information about the future should

be integrated into the solution process.

The remainder of this paper is structured as follows. Section 2
gives a more formal verbal description of the problem at hand.
A detailed description of the used solution approaches is given
in Section 3, followed by an overview and description of the used
test instances in Section 4. A discussion of the parameter settings
and obtained results is given in Section 5. The paper concludes with
a short summary and an outlook on future research in Section 6.
2. Problem description

We modeled the problem at hand as a DSDARP on a (directed)
real world road network. Each transportation request r consists of
two separate nodes (pr, dr) representing the pickup and delivery
location, respectively. Each node n is assigned a quantity of qn ¼ 1
for pickup locations and qn ¼�1 for delivery locations, indicating
that one patient is boarding or leaving the vehicle. The depot node
0 is assigned a quantity of q0 ¼ 0. Every vehicle has a limited
capacity of Q¼3. This means that vehicle fleet and customers are
assumed to be homogenous in our model. Variants of the static
DARP with heterogeneous patients and heterogeneous fleet were
studied in the past by Parragh et al. [26,27].

Each node n (pickup or delivery) has a time window [en, ln].
The depot node 0 has the time window [0, Tmax]. Vehicles can
leave the depot at time e0 ¼ 0 and should not return later than
time l0 ¼ Tmax. Here, Tmax is the duration of the working shift of the
vehicle crew. Arriving at the depot later than l0 causes overtime
payments and should therefore be avoided. Service at a location
must not start before the corresponding time window. Early
arrivals would lead to waiting times. The end of each time
window is modeled as being soft. If service starts after the end
of the time window this difference is denoted as tardiness and is
penalized in the objective function. A late return to the depot is
penalized in the same way. This way we make sure that every
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request can be inserted feasibly into any solution at any time.
Therefore, we never have to reject incoming requests.

A DARP usually considers user inconvenience in the objective
or as constraints. In our case, following the requirement specified
by the Austrian Red Cross, we imposed a maximum detour
constraint of 30 min in the following sense. Let the time required
to go directly from pr to dr be tdirect. Let the time between the
planned end of service at pr and the planned start of service at dr

be treal. Then, the equation trealrtdirectþ30 must not be violated.
We assumed that transportation request r arises at time ar.

This information represents the moment in time at which the ARC
is informed about the transportation request (usually by phone).
Some of the requests (static requests) are known in advance, i.e.,
they arise at time ar ¼ 0. Some requests are dynamic in the sense
that they appear during the day, ar 40. Both static and dynamic
outbound requests can cause return (inbound) transports, which
are stochastic. More precisely, with a certain probability each
outbound request causes a corresponding inbound request on the
same day. Some stochastic information about the occurrence and
timing of these return transports is available from historical data.
See Section 4.1 for more details.

We used a lexicographic objective function. The primary objec-
tive is to minimize the total tardiness over all routes. The
secondary objective is the number of routes (vehicles used). The
third objective is the total route duration. In general, solutions are
compared according to the primary objective. In case two solutions
have the same total tardiness, the secondary objective is used for
comparison. Only if both, primary and secondary objective, are
equal for two solutions, comparison is based on the third objective.
3. Solution methods

The primary aim of this paper was to study whether using
stochastic information about future return transports has a
beneficial effect on solution quality of the DSDARP. We investi-
gated four different approaches that are all based on metaheur-
istic methods for the static variant. We based our analysis on
metaheuristic approaches which are as similar as possible in
design. The reason is that we wanted to guarantee that differ-
ences in solution quality are caused by the fact whether or not
and how the additional information was used in the optimization
and not by conceptual differences between the underlying opti-
mization methods. Parragh et al. [4] developed an efficient VNS
approach for the static DARP. The neighborhood operators used
were well tested and documented. Therefore, we decided to use
this VNS concept as the basis for our modifications.

First, we adapted this VNS to the requirements of the dynamic
stochastic DARP, resulting in a dynamic VNS approach. In this
basic variant, the stochastic information is ignored and the
stochastic requests are simply treated as dynamic ones. Second,
we extended this dynamic VNS to a dynamic S-VNS method
by incorporating available stochastic information along the lines
of the S-VNS concept reported in the literature [23]. Third, we
applied the MPA and MSA described by Bent and Van Henten-
ryck [25] and developed some modifications that worked better.
Therefore, using two different basic approaches (VNS, S-VNS) and
(MPA, MSA) we could investigate the potential benefits of using
stochastic information while planning (S-VNS, MSA) compared to
ignoring this information (VNS, MPA).

The following subsections present detailed information about
the implementation of the simulation framework as well as the
solution approaches. All design decisions presented in the follow-
ing subsections are the result of extensive (pre-)testing. What is
presented here is the most successful setting for each of the
methods according to these tests.
3.1. Simulation framework

As the problem at hand is dynamic, a simulation framework was
required to handle the management of transportation requests during
execution. This framework was designed to run in the background,
handling the problem specific information (test instance, distance
matrix, vehicle fleet, etc.) and keeping the solver modules informed
about arising transportation requests during execution. Also, this
framework is in charge of managing simulation time.

After loading the problem data, the simulator starts the solver
module and initializes simulation time to 0. Whenever a solution
approach reaches a point in execution at which it could possibly
handle new transportation requests, it sends an update request to
the simulator. The simulator then updates simulation time
proportional to the actual CPU time elapsed since starting the
solver module. After that, it delivers a list of transportation
requests that arose since the last update request to the solver
module. Proportional hereby means that simulation time does not
necessarily equal run time. Nevertheless, all of our test runs were
performed in real time.

3.2. Dynamic VNS

In Algorithm 1 we briefly summarize the traditional structure of
a VNS as developed for static optimization problems in [24]. This
structure requires some adaptation if used to solve dynamic
problems. An outline of this modification, the dynamic VNS algo-
rithm, is given in Algorithm 2. The main difference to the static
version of VNS can be seen on line 4. Here, the dynamic nature of
the problem requires the algorithm to periodically check whether
new transportation requests have occurred during execution.

The shaking operators used (see below) already implicitly
include some kind of local search behavior. We tested whether
an additional local search step as in the traditional VNS is beneficial
for solution quality. As the results did not show a significant
(positive) effect on solution quality, we decided to use a reduced
VNS (without local search) to keep computation time short. Thus,
line 5 of the static version was omitted in our dynamic version.

As our test instances each represent one working day at the
ARC, the run time of our solution methods is the only stopping
criterion. If the end of the simulated day (which equals 10 h of run
time) was reached, dynamic VNS was stopped and the resulting
solution details were saved.

Algorithm 1. Structure of traditional VNS [24].
1:
 x’ InitialSolution()

2:
 N ðkÞ’ SelectFirstNeighborhood()

3:
 while StoppingCriterionNotMet() do

4:
 x0’ ShakeSolution(x,N ðkÞ)

5:
 x00’ LocalSearch(x00)

6:
 x’ MoveOrNot(x,x00)

7:
 N ðkÞ’ SelectNextNeighborhood(k)

8:
 end while

9:
 return x as best found solution
Algorithm 2. Structure of dynamic VNS.
1:
 x’ InitialSolution()

2:
 N ðkÞ’ SelectFirstNeighborhood()

3:
 while StoppingCriterionNotMet() do

4:
 x’ InsertNewRequests(x)

5:
 x0’ ShakeSolution(x,N ðkÞ)

6:
 x’ MoveOrNot(x,x0)

7:
 N ðkÞ’ SelectNextNeighborhood(k)

8:
 end while

9:
 return x as best found solution
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3.2.1. Initial solution

The initial solution used in our algorithm was generated using
a modified version of the cheapest insertion heuristic reported by
Rosenkrantz et al. [28] for the traveling salesman problem. The
outline of this modified method is given in Algorithm 3. In the
pseudocode, we use the relation xby to indicate that x is better
than y. The method starts by obtaining a list of static transporta-
tion requests from the simulator and initializes the (partial)
solution with only one empty route. The algorithm then itera-
tively inserts the requests from this list into the solution one after
the other. When inserting a request, the algorithm checks all
feasible combinations of insertion positions for the pickup and
delivery service in every route. Out of these positions, the
algorithm selects the one that leads to the lowest deterioration
in solution quality. The method also considers inserting the
current request into a new empty route, if not all vehicles are
already in use. This option is selected only if the increase in
tardiness caused by an insertion into an existing route would
exceed a threshold level t which is an input parameter to the
method.

The feasibility of any pair of insertion positions for pickup and
delivery service is checked using a modified version of the
scheduling algorithm reported by Hunsaker and Savelsbergh [29]
with a reported algorithmic complexity of OðnÞ. This method had
to be adapted such that time windows are treated as soft
(including the one for the depot at the end of day). Additionally,
all services that have already been performed and services to
which a vehicle has already departed are frozen and must not be
altered by the algorithm. If the sequence of services in a route is
feasible with respect to vehicle capacity and maximum ride times
of the patients, the method returns an efficient scheduling for
this route.

Algorithm 3. Modified cheapest insertion heuristic.
1:
 R’ ListOfKnownRequests()

2:
 x’ AddEmptyRoute()

3:
 for rAR do

4:
 x0’ InsertRequestAtBestPosition(x, r)

5:
 x00’ InsertRequestIntoNewRoute(x, r)

6:
 if x0bx00 then

7:
 x’x0
8:
 else

9:
 x’x00
10:
 end if

11:
 end for

12:
 return x as best found solution
3.2.2. Insert new requests

During execution, dynamic VNS periodically checks for new
transportation requests. If such requests occurred since the last
check, they need to be inserted into the current (partial) solution,
as requests must never be rejected in our problem setting. This
insertion is performed using the same cheapest insertion method
as for the initial solution. The only difference is that only insertion
positions after the last service to which a vehicle has already
departed are feasible.

3.2.3. Shake solution

Since Parragh et al. [4] proposed a set of highly efficient and
effective neighborhood structures for the static DARP we decided
to use the same. However, because of the dynamic nature of our
problem, these operators required some slight modifications. As
with the insertion of new requests, already (partly) serviced
transportation requests and requests to which a vehicle had
already departed must not be re-scheduled by any operation.
The neighborhood structure we used consists of four neighbor-
hood operators: move, swap, chain, and zero split. Each of these
operators was applied using five intensity levels k¼ f1 . . .5g.

The move operator randomly selects one route and removes k
randomly selected transportation requests from it. Always both
services (pickup and delivery) have to be removed. These requests
are then iteratively re-inserted into the solution in the route and
at the position where they fit best, using the same insertion
procedure as described before.

The swap operator randomly selects two routes and removes a
randomly selected sequence of up to k consecutive requests from
each of them. These removed requests are then iteratively re-
inserted into the other route where they fit best.

The chain operator randomly selects one route as origin route
and another one as destination route. It then removes a sequence
of up to k consecutive request from the origin route and
iteratively re-inserts them into the destination route at the best
position, respectively. This is repeated k times using the preced-
ing step’s destination route as new origin route and another
randomly selected destination route.

The zero split operator randomly selects one route and determines
all positions in the sequence of services at which no person is
currently on board of this vehicle (‘‘zero split points’’). The operator
then randomly selects two of these points, whereby up to k�1 other
zero split points may be in between them. These two zero split points
delimit a sequence of services that is removed from the route.
Afterwards, these requests are iteratively re-inserted into the solution
in the route and at the position where they fit best.
3.2.4. Time complexity of neighborhood operators

Let x ¼ fx1,x2,x3, . . . ,xvg be a solution consisting of v vehicle
routes. Furthermore, let Z¼ jxj be the number of stops (pickup and
delivery) along any of these routes. For a specific neighborhood size k,
we can then determine the worst case time complexity of each
neighborhood operator. Note that the approximate complexity of all
used neighborhood operators reduces to the complexity of re-insert-
ing the removed requests into the solution as this is the most
complex part.

For the move operator, re-insertion in the worst case requires to
check each of the Z2=2 insertion positions for both, the pickup and
delivery part of each removed request in each of the v routes in the
solution. Additionally, we need to re-schedule each route after the
insertion to check for feasibility and to determine the solution quality
(which has a complexity of OðZÞ). Therefore, the computational effort
is kvZ3=2 and time complexity is OðZ3Þ. In the case of the swap

operator, we do not need to check the insertion positions in each
route, but only in the two affected routes. Therefore, the computa-
tional effort is 2kZ3=2 and time complexity is OðZ3Þ. The time
complexity of the chain operator is very similar to the one of the
swap operator. One difference is that the sequence of requests is only
moved to the destination route and not vice versa. Another difference
is that up to k sequences are moved from one route to another.
Therefore, the computational effort is k2Z3=2 and time complexity is
OðZ3Þ, again. For the zero split neighborhood operator, the actual
complexity depends on the sequence length determined by two zero
split points. In the worst case, this sequence includes all requests in a
route, so k does not make any difference. As re-inserting the removed
requests requires testing all Z2=2 insertion positions in every route,
the computational effort is vZ4=2 and time complexity is OðZ4Þ.
However, an efficient implementation can avoid checking a large
number of insertion positions without re-scheduling the correspond-
ing route (e.g., by storing the actual load of each vehicle at each stop)
and therefore the actual average case time complexity of our
neighborhood operators is by far lower than the worst case time
complexity.
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3.2.5. Move or not and select next neighborhood

In the move or not step, we do accept a candidate solution as new
current incumbent solution if and only if it is better than the current
incumbent. Infeasible solutions (violating capacities or patient ride
times) are never accepted. If a candidate solution was not accepted as
new current incumbent solution, the function SelectNextNeighborhood

increases the intensity level k for the currently used neighborhood
operator by 1. If the new level exceeds the maximum intensity of 5, it
selects the next neighborhood operator with the lowest intensity
k¼ 1. If the last neighborhood operator was already used, the first
neighborhood operator is selected again. The sequence in which
neighborhood operators are selected is as follows: move - swap -

chain - zero split.
3.3. Dynamic S-VNS

The outline of the traditional S-VNS method (without dynamic
requests) is shown in Algorithm 4. As in traditional VNS, the
algorithm starts by constructing an initial solution. After that, it
iteratively searches for better solutions and ends if some stopping
criterion is met. The main difference between traditional VNS and
S-VNS is found in the comparison of solutions to each other.
Traditional VNS ignores any possible information about the future,
taking only certain information into account. In contrast to that,
S-VNS uses available stochastic information in this comparison
process. This difference can be seen in lines 11, 19, and 23 of
Algorithm 4. Whenever a comparison needs to be performed, the
algorithm samples a set of s0 scenarios of possible future return
transports. More precisely, each of these s0 scenarios consists of a
certain number of return transports that are generated according to
the stochastic information. Then these return transports are inserted
into the candidate solution one after another using the insertion
algorithm described before. The sample average estimator (SAE) for
the expected objective function value is simply the average over all s0

scenarios. All solutions are compared to each other based on this SAE
value. This way, the solution providing the better average perfor-
mance with respect to the used set of sampled return transports is
preferred. Note that the SAE is also used in determining the ‘‘best’’
neighbor in line 10 of Algorithm 4.

In addition to the current incumbent solution x, S-VNS also
keeps track of the best solution found so far x̂. This solution is
evaluated against the current incumbent solution using a set of sm

scenarios in a Tournament step at each iteration (line 23
in Algorithm 4). This means that the scenarios used to compare
the current incumbent solution to the best so far solution are
different from the ones used to compare the current incumbent
solution to a candidate solution. By continuously increasing the
size sm of this set, the algorithm tends to prefer more robust
solutions toward the end of the search process.

A straight forward modification of this algorithm to the require-
ments of dynamic stochastic DARP is given in Algorithm 5 using a
more compact notation. For instance, the (stochastic) local search of
lines 7–17 in Algorithm 4 is condensed to line 9 here. To cope with
the dynamic nature of the problem, new requests are inserted in the
current incumbent and best so far solution in steps 6 and 7 similar to
dynamic VNS (line 4 in Algorithm 2).

Unfortunately, evaluating a solution with regard to a set of
sampled future return transports is very time consuming in the
context of the DSDARP. As the required number of such evalua-
tions is very high in the straight forward modification of S-VNS
(Algorithm 5), this version cannot be used to efficiently solve the
problem at hand. For this reason and to keep the conceptual
difference between dynamic VNS and our dynamic version of
S-VNS as small as possible, we integrated further modifications
into the concept of S-VNS. The resulting condensed version, which
we call dynamic S-VNS, is presented in Algorithm 6. This method
uses only the current incumbent solution, thus omitting the best
so far solution used in traditional S-VNS. This way, also the
Tournament step including all its required comparisons is avoided.
Furthermore, the method always uses only one sample of future
return transports when comparing two solutions in the Move-

OrNotSAE step (s0¼1). As already observed with our dynamic VNS
method, the LocalSearch step does not lead to significantly better
solution quality and is therefore omitted as well.

In addition to the modifications already mentioned, we observed
that the time horizon, for which samples of the future are taken into
account, does also play an important role. The parameter Smax in line
6 of Algorithm 6 defines this sampling horizon. This means that
possible future return transports are only taken into account in the
sample if their pickup time window will start not more than Smax

minutes in the future. This way, the number of sampled transporta-
tion requests can be reduced drastically, thus leading to less time
consumption when comparing solutions. Using a smaller value for
Smax, the algorithm will be able to perform more evaluations in the
same amount of time which might lead to better results. However, a
small value for Smax bears the risk of ignoring too much information
about possible future transportation requests, thus leading to
inferior results. Therefore, tuning this parameter should be per-
formed carefully. A summary of tested values and resulting changes
in solution quality is given in Section 5.

Note that setting Smax to a value of 0 does not reduce dynamic
S-VNS to dynamic VNS as one would think at first glance. This is
caused by the fact that dynamic S-VNS samples return transports for
all known requests if their return transport did not yet arise. This
way, using a value of Smax ¼ 0 may still bring up possible return
transports (with pickup time window starting now) that, according
to the underlying distribution, could have already arisen in the past,
but might still arise. Tests showed that even using only this stoc-
hastic information about the past may be beneficial in some cases.

Algorithm 4. Traditional S-VNS [23].
1:
 x’ InitialSolution()

2:
 x̂’x
2:
 m’1

4:
 N ðkÞ’ SelectFirstNeighborhood()

5:
 while StoppingCriterionNotMet() do

6:
 x0’ ShakeSolution(x,N ðkÞ)

7:
 r’1

8:
 repeat

9:
 Z’ SampleFutureRequests(s0)

10:
 x00’ BestNeighbor(x0,Z)

11:
 if SAE(x00,Z) b SAE(x0,Z) then

12:
 x0’x00
13:
 r’rþ1

14:
 else

15:
 r’rmaxþ1
16:
 end if

17:
 until r4rmax
18:
 Z0’ SampleFutureRequests(s0)

19:
 if SAE(x0,Z0) b SAE(x,Z0) then

20:
 x’x0
21:
 end if

22:
 Z00’ SampleFutureRequests(sm)

23:
 if SAE(x,Z00) b SAE(x̂,Z00) then

24:
 x̂’x
25:
 end if

26:
 N ðkÞ’ SelectNextNeighborhood(k)

27:
 m’ SelectNextTournamentSampleSize(m)

28:
 end while

29:
 return x̂ as best found solution
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Algorithm 5. Modified S-VNS.
1:
 x’ InitialSolution()

2:
 x̂’x
3:
 m’1

4:
 N ðkÞ’ SelectFirstNeighborhood()

5:
 while StoppingCriterionNotMet() do

6:
 x’ InsertNewRequests(x)

7:
 x̂’ InsertNewRequests(x̂)

8:
 x0’ ShakeSolution(x,N ðkÞ)

9:
 x00’ LocalSearchSAE(x0,s0)

10:
 x’ MoveOrNotSAE(x,x00,s0)

11:
 x̂’ Tournament(x̂,x,sm)

12:
 N ðkÞ’ SelectNextNeighborhood(k)

13:
 m’ SelectNextTournamentSampleSize(m)

14:
 end while

15:
 return x̂ as best found solution
Algorithm 6. Dynamic S-VNS.
1:
 x’ InitialSolution()

2:
 N ðkÞ’ SelectFirstNeighborhood()

3:
 while StoppingCriterionNotMet() do

4:
 x’ InsertNewRequests(x)

5:
 x0’ ShakeSolution(x,N ðkÞ)

6:
 Z’ SampleFutureRequests(1,Smax)

7:
 x’ MoveOrNotSAE(x,x0,Z)

8:
 N ðkÞ’ SelectNextNeighborhood(k)

9:
 end while

10:
 return x as best found solution
3.4. MPA and MSA

In addition to dynamic VNS and dynamic S-VNS, we tested the
multiple plan approach (MPA) and multiple scenario approach (MSA)
proposed by Bent and Van Hentenryck [25]. These two methods were
already designed for the dynamic vehicle routing problem with time
windows (VRPTW) and therefore we expected that not as much
adaptation would be required as for the dynamic S-VNS. According to
Bent and Van Hentenryck, the two frameworks are designed to work
not only with large neighborhood search, which is the local search
component originally used, but also with any other local search
method as well. We therefore decided to use our dynamic VNS imple-
mentation as search component to keep the differences between the
four methods as small as possible and therefore obtain comparable
results.

The main component of MPA is a pool of solutions which
serves as long term memory storing all previously found solutions
to the problem. This means that whenever the local search
component (which is continuously searching for new solutions)
encounters a solution that was not found before, it stores this
solution in the pool regardless of solution quality. This idea is
based on the fact that a solution that seems to be of high quality
at the moment might, in the future, turn out to be a very bad
solution because of additional transportation requests that arise
dynamically. At any point in time the algorithm needs to select
one of the solutions out of this pool as a current incumbent
solution that is actually executed by the vehicle fleet. According
to Bent and Van Hentenryck [25], this selection should be
performed using a consensus function to select the solution that
is most similar to all other solutions. Additionally, the pool needs
to be updated repeatedly to ensure compatibility between all
solutions up to the current point in time. These updates are
triggered by four event types. A ‘‘timeout event’’ occurs whenever
a vehicle should depart in some solution but should still wait
according to the current incumbent solution. A ‘‘departure event’’
occurs whenever a vehicle should depart according to the current
incumbent solution but still waits in some other solution. A ‘‘new
request event’’ is caused by the arrival of a new transportation
request. A ‘‘new solution event’’ occurs whenever the local search
component finds a new solution.

An outline of the MPA structure is shown in Algorithm 7. During
each iteration, the algorithm selects one solution out of the pool as a
current incumbent solution (line 4). It then removes all solutions
from the pool that are incompatible with the decisions made so far
(line 6/7). This happens if a vehicle should have departed according to
the current incumbent solution, but did not in another solution
(timeout) or vice versa (departure). If a solution is compatible with
the current incumbent solution, newly available requests are inserted
into it (line 9). Note that we are always able to insert any new request
into any solution because of the soft time windows. Next, the shaking
and local search procedures are applied to the current solution x

(lines 12 and 13). Finally, the resulting solution is stored in the pool if
it was not found before (line 15) and the neighborhood operator for
the next iteration is selected accordingly (line 17). The selection of
neighborhoods is based on the same order as used for the dynamic
VNS described before (move - swap - chain - zero split).

Algorithm 7. Structure of MPA [25].
1:
 P’ InitialSolution()

2:
 N ðkÞ’ SelectFirstNeighborhood()

3:
 while StoppingCriterionNotMet() do

4:
 x’ SelectCurrentIncumbent(P)

5:
 for xAP
6:
 if ðxaxÞ 4 (Timeout ðx,xÞ 3 Departure ðx,xÞ)
then
7:
 P’P\fxg
8:
 else

9:
 InsertNewRequests(x)
10:
 end if

11:
 end for

12:
 x0’ ShakeSolution(x,N ðkÞ)

13:
 x00’ LocalSearch(x0)

14:
 if x00=2P then

15:
 P’P [ fx00g
16:
 end if

17:
 N ðkÞ’ SelectNextNeighborhood(k)

18:
 end while
Similar to traditional VNS, MPA ignores any possible informa-

tion about the future, taking only certain information into
account. Therefore, MSA is a logical extension to the MPA concept,
introducing the use of stochastic information in the solution
process. Other than (dynamic) S-VNS, this is not done by evaluat-
ing solutions based on sampled future requests when comparing
two solutions. Instead, the starting solution used within the local
search component is extended by including sampled future
requests. The local search component then continuously tries to
find better solutions to this scenario of the future. Then, the
sampled requests are discarded from the found solution again. By
doing so, the algorithm tries to produce gaps in the schedule of
requests to ensure easy integration of arising future transporta-
tion request. An outline of the MSA is given in Algorithm 8.

Algorithm 8. Structure of MSA [25].
1:
 P’ InitialSolution()

2:
 N ðkÞ’ SelectFirstNeighborhood()

3:
 while StoppingCriterionNotMet() do

4:
 x’ SelectCurrentIncumbent(P)

5:
 for xAP do
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6:
 if ðxaxÞ4 (Timeout(x,x) 3 Departure(x,xÞ)
then
7:
 P’P\fxg
8:
 else

9:
 InsertNewRequests(x)
10:
 end if

11:
 end for

12:
 x0’ AddSampledRequestsToSolution(x)

13:
 x00’ ShakeSolution(x0,N ðkÞ)

14:
 x000’ LocalSearch(x00)

15:
 x0000’ RemoveSampledRequestsFromSolution(x000)

16:
 if x0000=2P then

17:
 P’P [ fx0000g
18:
 end if

19:
 N ðkÞ’ SelectNextNeighborhood(k)

20:
 end while
Surprisingly, our results showed that, with respect to our specific
problem, MPA and MSA can perform better when altering the
originally proposed design [25]. Both methods lead to slightly better
results when using the best solution in the pool as current incumbent
solution instead of the one selected by the proposed consensus
function. Additionally, always using this current incumbent solution
as starting point for the local search component was preferable.
Furthermore, we found out that the method showed a random search
like behavior when using our dynamic VNS as local search compo-
nent. This seems to be caused by over diversification in the search
process. We assume that this was induced by combining the pool of
solutions with our strong neighborhood operators. Therefore, we used
only the move neighborhood with kAf1 . . .5g instead of all four
neighborhood operators. Also, for these two methods, using an
additional local search step for intensification showed a positive
effect on solution quality. Using these modifications, both methods
were able to come up with competitive results when compared to the
dynamic VNS. We were able to verify the expected effect that MSA
returns significantly better results than MPA. However, the improve-
ment obtained is not as large as the one dynamic S-VNS can obtain
compared to dynamic VNS. This shows that the effect of incorporating
stochastic information while planning indeed is depending on the
used solution approach. Detailed results are given in Section 5.
4. Computational experiments

For the computational experiments performed, we generated a
set of test instances based on real world assumptions. The
Austrian Red Cross provided us with data containing information
about daily operations within the period of one year in the
Austrian city Graz. Out of this real world data, a set of distribution
parameters was extracted. The details of this data analysis
process performed by Kritzinger [30] in her master thesis are
summarized in Section 4.1. Using the obtained information, we
created our sets of test instances as described in Section 4.2.

4.1. Data generation

As mentioned, the ARC provided us with a log file of the daily
operations performed during the year 2004 in the Austrian city
Graz. This sample contained information about a total of 125,035
anonymized transportation requests. The remainder of this
section is a brief summary of the work performed by Kritzinger.

The first observation of the analysis was that approximately
50% of all transportation requests are already known in the
morning (static). The other 50% arises during the day dynamically.
To obtain information about these dynamic requests, the inter-
arrival times of the sample were calculated and filtered. Then, the
day was split into segments of 1 h. For each segment, the number
of interarrival times that fall into a specific interval (e.g.,
0–10 min, 10–20 min, etc.) was counted. The analysis indicated
an exponential distribution. This assumption was tested using w2

tests. The null hypothesis was that data is exponentially distrib-
uted with a continuous density f ðxÞ ¼ le�lx for l40 and an
expected value of EðXÞ ¼ 1=l. The parameter l was determined
using the maximum likelihood estimation of the reciprocal of the
sample’s average value. The w2 tests returned positive results for
approximately 70% of all cases (i.e., do not reject the null
hypothesis). For the time between the occurrence of a transporta-
tion request and the corresponding latest arrival time at the
hospital, results suggest a gamma distribution with a continuous
density f ðxÞ ¼ l=GðaÞðlxÞa�1e�lx, whereby a,l40, the expected
value is EðXÞ ¼ a=l, and the variance is Var ðXÞ ¼ a=l2. The values
for a and l were estimated using the generalized method of
moments, which proved to be a good estimation.

The analysis continued by taking a look at intervals of 15 min.
For each of these intervals, the number of working days showing
0, 1, 2, 3, y return transports was counted. This counting process
showed the characteristics of a Poisson process within each of the
15 min intervals. To verify if the underlying data really follows a
Poisson distribution, again w2 tests were used. The null hypothesis
was that the distribution follows a Poisson distribution with a
discrete distribution density of PðX ¼ kÞ ¼ lke�l=k! with kAN0

and an expected value of EðXÞ ¼ l. Maximum likelihood estima-
tion of the sample’s average value was used to determine the
parameter l. The w2 tests returned positive results for about 80%
of the intervals.

The same procedure was used to determine the distribution of
the time between a transportation request’s latest arrival time at
the hospital and the arrival time of the corresponding return
transport. The null hypothesis was that the underlying distribu-
tion is a gamma distribution with a continuous density function.
The values for parameters a and l were determined using the
generalized method of moments. As the w2 test rejected the null
hypothesis for the determined parameters, they were iteratively
modified to fit the underlying data more precisely. Finally,
analysis showed that data suggests that approximately 50% of
all transports toward a hospital cause a corresponding return
transport in the opposite direction on the same day.

Knowing the statistical distribution parameters, all informa-
tion required for sampling artificial transportation requests was
available. By sampling a set of such transportation requests, a real
world inspired test instance could be generated. Also, modifying
the distribution parameters allowed for simulating different
scenarios of reality (e.g., larger cities). Additionally, the data set
reported customer locations as often as they occurred during the
observation period. This means that if the same patient was
transported to the hospital 10 times during this period there
existed 10 entries. Using this information enabled us to map the
real world geographical distribution of patient locations and the
corresponding frequencies to our test instances. This was done by
assigning customer locations using a uniform random selection to
each artificial request.
4.2. Test instances

To test a great range of possible scenarios, we varied two
parameters to come up with different sets of test instances. First,
we modified the total number of transportation requests that
require service during one working day of 10 h. This was achieved
by modifying the distribution of the interarrival times of



Table 2
Average number of requests per type depending on return transport probability

(R—return transport probability).

R (%) Average number of requests

Static Dynamic Return Total

30 135.98 127.33 76.68 340.00

50 137.68 127.08 130.88 395.65

80 135.62 128.50 206.55 470.67
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incoming requests. The number of requests N was altered in the
range of 100–400% of the real world size in steps of 100%. Second,
we altered the probability of return transports, R. Real world data
suggests that 50% of all transportation requests toward a hospital
cause a return transport on the same day. We modified this
parameter R to 30%, 50%, and 80%, respectively. This was used to
study the sensitivity of the tested methods with respect to this
factor of uncertainty. Note that our test instances do not include
inbound requests that are not caused by an outbound request
on the same day. We are primarily interested in the effect of
stochastic information on solution quality and we do not have any
stochastic information about such request. This type of requests
would therefore have no effect on solution quality as it would be
treated the same way as static and dynamic outbound requests.

For each of the 12 possible combinations (of one setting for the
instance size and one setting for the return transport probability)
we used a set of 15 test instances. These instances were created
by sampling the previously found distributions with modified
parameters. Starting at time t¼ 0, the arrival time a1 of the first
request was determined according to the corresponding distribu-
tion of the interarrival time. Iteratively, the occurrence time of the
follow-up request ai was determined based on the arrival time
of the previous request ai�1. We stopped when ai exceeded the
considered period of 10 h. For each of these transportation
requests, the end of the delivery time window was determined
by again sampling the corresponding distribution. The length of
the delivery time windows was set to 30 min. The end of the
30 min pickup time window was determined as the starting time
of the delivery time window minus the time required to travel
directly from pickup to delivery. The same procedure was used to
generate the static transportation requests. The only difference
was that, after creation, ai was set to a value of 0 for each of the
static requests.

Based on the resulting set of static and dynamic transportation
requests, a set of return transports was generated. For each
request, no matter whether static or dynamic, a return transport
was generated with probability R. In this case, the arrival time ar

was sampled using the distribution for the time between the
request’s latest arrival time at the hospital and the beginning of
the return transport’s pickup time window. The time window for
pickup at the hospital starts at ar and was set to 60 min. The start
of the time window for arrival at the patient’s home location was
calculated using the time required to travel directly from the
hospital to the patient’s home location. This time window has a
length of 90 min, which is 60 min plus the maximum ride time
allowed for the patient (30 min). Table 1 shows the average
number of transportation requests that have to be serviced in
each set of test instances (including static, dynamic, and return
transports).

Finally, we created a greedy solution for each of the test
instances using the modified cheapest insertion procedure
described in Section 3.2 under the assumption that all requests
are known a priori. The number of vehicles used in this solution
Table 1
Average number of transportation requests per instance class (R—return transport

probability, N—relative size of the instance set).

N (%) R

30% 50% 80%

100 149.93 168.73 208.13

200 281.87 325.07 389.27

300 404.80 474.33 566.53

400 523.40 614.47 718.73
was increased by 10% and used as the maximum number of
vehicles for all other algorithms.

4.3. Parameter settings

Recent publications supply many well tested state-of-the-art
solution approaches for different variants of vehicle routing
problems and especially the DARP. We decided to re-use the
basic design decisions and parameter settings presented by
Parragh et al. [4], Gutjahr et al. [23], and Bent and Van
Hentenryck [25]. Our main focus was to determine factors that
influence the effect of using stochastic information while plan-
ning. Also, we wanted to present a guideline for the successful
exploitation of stochastic information in the context of the
DSDARP.

Still, some parameters needed to be set for our solution
approaches. First, we analyzed the threshold level t which defines
when to open a new route when inserting requests into a
solution. Extensive testing showed that values in the range
between 20 and 30 min increase in tardiness lead to the best
solution quality. As any influence on solution quality caused by
varying this parameter would affect all our solution approaches
equally, we decided to fix it to a value of t¼ 25. Second, we set
the maximum intensity level used for our shaking operators to
kmax ¼ 5.

Finally, we analyzed which influence the parameter Smax

has on solution quality. Here, Smax represents the period of time
for which possible scenarios of the future are taken into account.
This indeed was a crucial factor for the success of using stochastic
information in the planning process. Therefore, we determined if
there exist preferable values for this factor. To find out which
values are better than others, we fixed Smax to a certain value and
evaluated the resulting solution quality for all 12 sets of test
instances. Comparing the average solution quality achieved with
different settings for Smax over all 180 test instances, we were able
to determine if some values are better than others. A comparison
of these results is given in the next section.

We also performed extensive tests using a speed up factor of
10 for the simulation time. This means that simulating one
instance of 10 h is run within 1 h of CPU time. We found out that
results using such a speed up factor are not representative for
the results obtained when using real time. In fact, the benefit
of additional runtime is much larger for dynamic S-VNS and
dynamic VNS than for MPA and MSA. We found that these results
would lead to completely different conclusions and thus should
not be used for parameter tuning and similar activities.
5. Results

Computational testing was performed using non-parallel C++
implementations of the described algorithms. Compilation was
done using the GNU C++ compiler in its version 4.1.2 on CentOS
5.5. All calculations were performed using double precision with
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no rounding using one core of a SUN Fire X2270 server with
2 quad-core Intel Xeon X5550 processors (2.66 GHz) and 24 GB of
shared memory.
5.1. Look ahead period

As explained in Section 4.3, the effect of taking stochastic
information into account while planning the vehicle routes strongly
depends on the selected value for Smax. We tested values of 3, 5, 10
Table 3
Average gap in solution quality compared to dynamic VNS obtained with different

settings for Smax. Positive (negative) values indicate that this method performed

better (worse) than dynamic VNS (T—tardiness, V—number of vehicles, D—total

route duration).

Smax gapðTÞ in % gapðVÞ in % gapðDÞ in %

MSA S-VNS MSA S-VNS MSA S-VNS

3 �0.11 15.50 �4.43 �7.45 �5.24 �35.42

5 1.61 7.63 �4.42 �7.42 �5.21 �36.03

10 1.40 12.22 �3.99 �7.73 �5.44 �36.23

20 2.72 10.95 �4.26 �8.55 �2.72 �10.95
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Fig. 1. Average relative gaps depending on Smax.

Table 4
Summary of results obtained with Smax ¼ 3 (R—return transport probability, N—relativ

R N gapðTÞ in % gapðVÞ in

MPA MSA S-VNS MPA

30 100 �1.98 3.81 13.57 0.00

30 200 �0.96 �0.91 22.75 �4.83

30 300 �2.48 �1.19 40.31 �6.87

30 400 �5.32 �3.17 29.03 �7.05

50 100 10.69 �4.12 11.89 �0.60

50 200 �5.90 �0.50 36.33 �7.14

50 300 �7.33 �3.30 �5.23 �5.06

50 400 1.57 3.79 10.27 �7.24

80 100 �2.82 5.41 14.79 1.14

80 200 �4.77 �1.59 20.76 �2.30

80 300 �4.21 9.57 5.70 �1.15

80 400 �9.22 �6.99 4.11 �5.12

Avg. �2.73 0.07 17.02 �3.85
and 20 min. As it turned out, lower values tend to lead to a better
solution quality than high values. A summary of the solution quality
achieved with each setting on average over all 12 sets of test
instances is given in Table 3. The table reports the relative gaps in
solution quality compared to dynamic VNS. A negative value
indicates superior solution quality obtained by dynamic VNS; a
positive value indicates a superior result obtained by the other
method. Note that we used a lexicographic objective function so
that essentially only the first block referring to the primary
objective (tardiness, T) is relevant. The blocks referring to the other
objectives (number of vehicles, V, and total route duration, D) are
reported for the sake of completeness. A graphical representation of
these results is given in Fig. 1, in which a peak at the value of 3 min
can be observed for S-VNS whereas for MSA slightly larger values
for Smax seem to be more beneficial although MSA does not appear
to be as sensitive to changes in Smax as dynamic S-VNS. From this
we conclude that incorporating only the very near future in the
planning process is most beneficial to solution quality. This might
be caused by the fact that a sample based estimation of a solution’s
quality will most likely change very quickly as new requests arise.
A summary of all solutions obtained using Smax ¼ 3 and 20 is given
in Tables 4 and 5, respectively.

The results presented in Table 3 show that, on average over all
our test instances, dynamic S-VNS can improve solution quality
by 15.50% when using a sampling period of Smax ¼ 3 min. Also,
MSA can improve the average solution quality by 2.72% when
using Smax ¼ 20 min. This means that we were able to verify the
hypothesis that taking into account stochastic information about
future return transports while planning vehicle routes for the
Austrian Red Cross is beneficial to solution quality. Also, we
observed the design of the used methods does have a strong
impact on the obtained advantages of using stochastic informa-
tion. Knowing that we wanted to determine additional factors
that influence the amount of improvement that can be achieved.
Therefore, we needed to examine solution quality in more detail.
In what follows, if not explicitly mentioned otherwise, we will
refer to solutions obtained using a value of Smax ¼ 20 for MSA and
Smax ¼ 3 for S-VNS. Note that MPA, which is not influenced by
Smax, achieved an average gap in tardiness of 0:08% over all runs
included in Table 3. This indicates that the used long term
memory concept does not lead to significant improvements over
dynamic VNS.

5.2. Discussion of findings

Average results depending on relative test instance size N

are reported in Table 7. These results show that the relative
e instance size, T—tardiness, V—number of vehicles, D—total route duration).

% gapðDÞ in %

MSA S-VNS MPA MSA S-VNS

�3.03 �3.03 �0.55 �3.53 �36.40

�6.55 �1.38 �2.00 �1.04 �38.39

�6.36 �1.78 0.55 �3.36 �35.21

�5.71 �0.19 0.31 �5.89 �29.62

�3.61 �9.04 �0.74 �4.53 �35.58

�5.00 �12.50 1.11 �4.83 �40.39

�4.10 �3.37 0.65 �6.12 �33.84

�7.05 �7.05 �0.53 �5.53 �30.18

0.57 �13.14 0.26 �4.12 �36.23

�3.62 �12.83 �0.17 �5.71 �38.97

�2.75 �11.24 0.40 �7.56 �35.78

�6.40 �12.80 0.15 �8.94 �33.70

�4.47 �7.36 �0.05 �5.10 �35.36



Table 5
Summary of results obtained with Smax ¼ 20 (R—return transport probability, N—relative instance size, T—tardiness, V—number of vehicles, D—total route duration).

R N gapðTÞ in % gapðVÞ in % gapðDÞ in %

MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS

30 100 1.60 6.83 13.23 �1.20 �1.20 0.00 �1.99 �2.89 �36.30

30 200 �6.16 �7.79 15.83 �3.39 �3.39 �1.02 0.47 �4.72 �40.79

30 300 5.29 0.25 41.95 �4.57 �5.08 �1.78 �1.40 �5.47 �34.83

30 400 �2.52 8.59 29.12 �6.10 �5.90 �0.38 �1.66 �6.41 �31.18

50 100 7.61 4.55 4.66 �1.80 �1.80 �8.38 �0.84 �4.01 �38.67

50 200 4.51 10.56 30.39 �6.09 �5.02 �12.54 �0.89 �5.37 �39.99

50 300 3.92 �0.06 �15.01 �5.83 �6.07 �6.80 0.13 �7.23 �34.17

50 400 �4.93 1.46 �0.60 �7.24 �7.24 �5.14 �0.04 �5.21 �28.93

80 100 3.32 15.90 19.83 �3.43 �1.14 �15.43 �0.76 �5.94 �36.89

80 200 �5.48 �6.31 �4.34 �2.27 �2.92 �15.26 1.66 �5.32 �40.78

80 300 �3.40 2.96 8.93 �3.00 �6.22 �16.13 1.40 �8.79 �35.13

80 400 0.10 �2.67 5.94 �3.78 �5.22 �17.99 0.79 �9.34 �32.75

Avg. 0.32 2.86 12.49 �4.06 �4.27 �8.40 �0.26 �5.89 �35.87

Table 6
Summary of results obtained with Smax ¼ 3 in the unbiased test case (R—return

transport probability, N—relative instance size, T—tardiness, V—number of

vehicles, D—total route duration).

R N gapðTÞ in % gapðVÞ in % gapðDÞ in %

MSA S-VNS MSA S-VNS MSA S-VNS

30 100 5.08 17.63 �4.27 �1.83 �1.95 �33.20

30 200 7.62 24.31 �3.40 �0.68 �1.86 �32.91

30 300 �2.11 27.46 �6.84 �1.01 �1.61 �31.19

30 400 �1.38 28.87 �6.83 �0.76 �1.33 �28.17

50 100 �1.78 8.18 �4.29 �9.20 �1.00 �28.89

50 200 9.46 12.82 �6.50 �7.58 �1.06 �32.38

50 300 �9.63 �17.65 �4.55 �3.35 �4.16 �29.31

50 400 �3.86 6.16 �6.62 �4.35 �1.90 �27.24

80 100 13.18 32.54 0.00 �10.06 �2.66 �26.37

80 200 �1.58 9.33 �3.93 �8.52 �1.60 �25.98

80 300 �6.37 �12.49 �3.42 �11.19 �1.74 �24.88

80 400 �3.96 �1.41 �5.80 �13.41 �2.28 �23.20

Avg. 0.39 11.31 �4.70 �5.99 �1.93 �28.64

1 We are grateful to one of the reviewers for pointing this issue out.

M. Schilde et al. / Computers & Operations Research 38 (2011) 1719–17301728
advantage of dynamic S-VNS over dynamic VNS is slightly lower
for larger instances. More precisely, dynamic S-VNS achieves
average improvements of 11.12–25.86%. For our instance sets,
MSA provides average improvements in the range from �1.35% to
9.98%. Note that we also tested the originally proposed design of
S-VNS which uses more than one sample for comparing two
solutions and additionally stores a best so far solution that is
compared to the current solution using a different set of samples
with an increasing number of elements. This version yields
average improvements of 4.72–20.61% when compared to
dynamic VNS and thus performs significantly worse than our
modified dynamic S-VNS approach which yields average improve-
ments of 11.12–25.86%.

An important finding is the effect that return transport prob-
ability R has on the solution quality obtained by dynamic S-VNS.
This effect can be observed when looking at the average results
over all test instances using the same value for R reported
in Table 8. The effect can also be seen in Fig. 3. It shows the
average relative gaps for dynamic S-VNS with respect to Smax and
R. If return transports are less likely to happen, dynamic S-VNS
performs clearly better than in situations with a higher probability
for return transports. MSA, however, does not seem to be affected
as strongly by changes in R (see Fig. 2). At first glance one would
expect the opposite result: If return transports are more likely to
occur, forecasts of future requests should be more important and
should lead to better results. However, with a higher probability
for return transports (R¼80%), the number of return transports
(and therefore the total number of dynamic requests) is relatively
large compared to the instance size. This can also be seen
in Table 2. Since a larger number of return transports implies a
higher total degree of dynamism, the myopic approach (dynamic
VNS) seems to perform better and the advantage of dynamic
S-VNS gets smaller as the situation changes too frequently.

Yet another observation can be seen in Table 7. Dynamic
S-VNS leads to solutions that on average use 7.45% more vehicles
and have 35.42% longer total route durations compared to the
solutions found by dynamic VNS. MSA on average achieves 4.26%
and 6.01% higher values than dynamic VNS, respectively. This is
not only true for scenarios in which the main objective (i.e.,
tardiness) is improved compared to dynamic VNS, but also for
most other scenarios as well. This tradeoff between tardiness and
number of used vehicles (which to some extent induces the
higher total duration) was not unexpected. However, the magni-
tude of this effect is remarkable. We assume it is caused by the
relatively small number of iterations performed by dynamic
S-VNS and MSA. It seems that dynamic VNS spends much more
time locally optimizing known solutions with respect to the
secondary and tertiary objectives (i.e., number of vehicles used
and total route duration) than dynamic S-VNS and MSA.

5.3. Testing for bias

The fact that our stochastic solution approaches only use
samples of future inbound requests (from hospital back to a
patient’s home location) and do not sample future outbound
requests (from a patient’s home location to a hospital) induces a
specific bias. As the algorithms try to accommodate the sampled
inbound requests, they might end up forcing vehicles to stay close
to hospitals where such requests are expected to occur. This,
however, can have contra-productive effects on the ability to
react on future outbound requests, thus leading to poorer solution
qualities. Note that this bias could also be a possible explanation
for the fact that the original concept of using a consensus function
to determine the current incumbent solution does not have the
same effect in our case as in the case studied by Bent and Van
Hentenryck [25]. The consensus over several biased solutions
might strengthen the bias even more, thus leading to lower
solution quality.1

To verify if this effect might be the reason for the observed
deterioration of solution quality of dynamic S-VNS in cases with a



Table 7
Average solution quality depending on relative test instance size with Smax ¼ 20 MSA and Smax ¼ 3 for dynamic S-VNS (N—relative instance size, T—tardiness, V—number of

vehicles, D—total route duration).

N(%) gapðTÞ in % gapðVÞ in % gapðDÞ in % Iterations

MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS VNS MPA MSA S-VNS

100 3.53 9.98 13.31 0.20 �1.38 �8.50 �0.30 �4.43 �36.07 275,531,013 197,609,100 1,388,240 1,716,533

200 �4.30 �1.35 25.86 �4.69 �3.74 �8.92 �0.30 �5.16 �39.26 77,475,788 56,088,319 490,501 577,590

300 �4.61 1.43 11.72 �4.26 �5.81 �5.63 �0.53 �7.32 �34.98 40,055,460 27,533,506 267,885 318,721

400 �5.59 0.83 11.12 �6.45 �6.10 �6.76 �0.03 �7.15 �31.37 24,391,153 18,007,290 181,636 221,579

Avg. �2.74 2.72 15.50 �3.80 �4.26 �7.45 �0.02 �6.01 �35.42 104,363,353 74,809,554 582,065 708,606
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Fig. 2. Average relative gaps depending on Smax and R for MSA.
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higher return transport probability R, we tested a variant of the
stochastic algorithms that also samples outbound requests. To do
so, we provided the methods with a list of all patient locations
included in our real world data set including the occurrence
frequencies. Based on this information, the sampling of future
outbound requests is performed in the same way as the test
instances were created (see Section 4.2).

The results for these unbiased tests are presented in Table 6.
They show that dynamic S-VNS does perform significantly worse
in this unbiased case and MSA performs almost equally in both
cases. This result may have two reasons. Either the assumed bias
does not cause the effect that R has on the solution quality
achieved by dynamic S-VNS or the quality of the sampled out-
bound requests is poor and therefore further misleads the search
process. The latter could be the case as these samples do not only
incorporate uncertainty regarding the time of occurrence (as do
the samples of inbound request) but also regarding the geogra-
phical location of upcoming requests and therefore each of the
sampled requests has a very low probability to coincide with a real
request. Therefore, the estimation of a solution’s quality by
dynamic S-VNS might be too far off the truth, thus leading to
worse results in the end. The reason why MSA does not seem to be
affected by this in the same extent may be that (other than
dynamic S-VNS) it does not discard a solution based on the solu-
tion quality regarding the used sample but stores it in the pool
anyway. Therefore, MSA has a better chance to correct for the bad
sampling at a later point in time, which dynamic S-VNS has not.

Summing up, we can say that we were able to prove that
integrating stochastic information about a relatively small portion of
future requests (only return transports) into the process of planning
vehicle routes for the DSDARP can be beneficial to solution quality. In
our opinion, S-VNS clearly is the method of choice for this problem
type. However, it seems that MSA is the more robust method with
respect to R and N, which in some cases might be favorable.
6. Summary and outlook

In this paper we compared four different metaheuristic solu-
tion approaches for the dynamic stochastic dial-a-ride problem.
The main objective of our work was to verify whether taking
stochastic information about future return transports into
account is beneficial to solution quality. We were able to show
that this was the case if certain conditions were met. Especially if
the number of return transports is relatively low compared to the
total number of transportation requests, dynamic S-VNS strongly
outperforms the myopic methods (dynamic VNS and MPA).

We also found out that the sampling period Smax for possible
future return transports is an important influence factor for the
performance of dynamic S-VNS and MSA. More precisely, the
period of time for which stochastic information about the future
should be taken into account should be quite short. In our case
values of up to 20 min have proven to be most effective for
dynamic S-VNS and MSA, respectively. The achieved average gaps
to solutions obtained by dynamic VNS reach up to 15.90% for MSA
and up to 41.95% for dynamic S-VNS. However, in the worst case,
average gaps can drop to �7.79% for MSA and �15.01% for
dynamic S-VNS. For nearly all tested cases, dynamic S-VNS out-
performs MSA and therefore seems to be the method of choice.

Another interesting finding was the fact that one of the main
components proposed in the original design of MPA and MSA [25]
does not seem to be as important for the DSDARP as for the
VRPTW. Indeed, determining the current incumbent solution
based on its objective function leads to slightly better results
than using the proposed consensus function for this task. This
finding may be due to the different objective functions used for
the VRPTW (minimization of the number of rejected requests).
It could be an interesting topic for further research to study the
possible relation between the used objective function and the
method used to determine the current incumbent solution.

Additionally, the used search component does in fact have a
strong influence on solution quality. More precisely, the used long
term memory component induces an additional source of diver-
sification when compared to our single solution based VNS
approach. In combination with a strong set of shaking operators,
this seems to drive the search process toward a random search
like behavior, thus reducing solution quality. Nevertheless, the
multiple scenario approach can be a powerful and robust sto-
chastic solution method if the right design decisions are made.

In future work we plan to answer the question if taking
stochastic information about future stochastic time-dependent



Table 8
Average solution quality depending on return transport probability with Smax ¼ 20 MSA and Smax ¼ 3 for dynamic S-VNS (R—return transport probability, T—tardiness,

V—number of vehicles, D—total route duration).

R(%) gapðTÞ in % gapðVÞ in % gapðDÞ in % Iterations

MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS VNS MPA MSA S-VNS

30 �2.68 1.97 26.42 �4.69 �3.89 �1.60 �0.42 �4.87 �34.90 139,609,711 99,770,945 702,520 735,365

50 �0.24 4.13 13.31 �5.01 �5.03 �7.99 0.12 �5.45 �35.00 102,378,472 74,239,400 551,509 720,376

80 �5.25 2.47 11.34 �1.86 �3.88 �12.50 0.16 �7.35 �36.17 71,101,879 50,418,317 492,169 670,076

Avg. �2.72 2.86 17.02 �3.85 �4.27 �7.36 �0.05 �5.89 �35.36 104,363,354 74,809,554 582,066 708,606
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Fig. 3. Average relative gaps depending on Smax and R for dynamic S-VNS.
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travel times can also improve solution quality and which condi-
tions are advantageous in that case.
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