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a b s t r a c t

A near perfect matching is a matching covering all but one vertex in a graph. Let G be a
connected graph and n ≤ (|V (G)| − 2)/2 be a positive integer. If any n independent edges
in G are contained in a near perfect matching, then G is said to be defect n-extendable.
In this paper, we first characterize defect n-extendable bipartite graph G with n = 1 or
κ(G) ≥ 2 respectively using M-alternating paths. Furthermore, we present a construction
characterization of defect n-extendable bipartite graph G with n ≥ 2 and κ(G) = 1. It is
also shown that these characterizations can be transformed to polynomial time algorithms
to determine if a given bipartite graph is defect n-extendable.

© 2011 Elsevier B.V. All rights reserved.

1. Terminology and introduction

We only consider bipartite graphs. All graphs considered in this paper are undirected, finite and simple.
Amatching covering all but d vertices in a graph G is a defect d matching in G. A defect 0matching is also called a perfect

matching and a defect 1matching is also called anear perfectmatching. LetG be a connected graph and n ≤ (|V (G)|−2)/2
be a positive integer. If any n independent edges in G are contained in a perfect matching of G, then G is n-extendable. If any
n independent edges in G are contained in a near perfect matching of G, then G is defect n-extendable. Particularly, if G has
a perfect matching, then G is 0-extendable and if G has a near perfect matching, then G is defect 0-extendable.

We use G = (U ,W ) to denote a bipartite graph G with bipartition U,W . Let A and B be two sets. Then A1B denotes
the symmetric difference of A and B. Let G be a graph and S ⊆ V (G). Then Γ G(S) denotes the neighbor set of S in G, and
the minimum degree and the connectivity of G are denoted by δ(G) and κ(G) respectively. Throughout this paper, p and q
denote the number of vertices and edges of the given graph respectively.

A path from vertex x to vertex y is called an xy-path. If a path P contains vertices u and v, then we use uPv to denote the
path from u to v in P . Let G be a graph and M be a matching of G. An M-alternating path (cycle) of G is a path (cycle) in G
where edges in M and edges in E(G) \ M appear on the path (cycle) alternately. In this paper, we only consider alternating
paths starting from an edge not in the given matching. In other words, when we say that P = a1a2 . . . ak is anM-alternating
a1ak-path in a graph G, it always means that aiai+1 ∈ E(G) \ M if i is odd and aiai+1 ∈ M if i is even.

For the other terminology and notations not defined in this paper, the reader is referred to [2].
The concept of defect n-extendable graph was introduced by Lou and Wen [10]. They showed that the connectivity of a

defect n-extendable graph can be any positive integer. While Plummer [7] proved that the connectivity of an n-extendable
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graph is not less than n+ 1, which implies that the results on defect n-extendable graphs may not be deduced trivially from
those of n-extendable graphs.

In fact, a few results on defect n-extendable graphs have been established until now.
In [3], Little et al. gave two characterizations of defect 1-extendable graphs which were called 1-covered graph in their

paper.
A graph is said to be k-critical if deleting any k of its vertices, the remaining subgraph has a perfectmatching. To combine

the concept of n-extendable graphs and k-critical graphs, Liu and Yu [4] introduced (k, n, d)-graphs. Let G be a graph. Let
k, n, and d be non-negative integers such that k + 2n + d ≤ |V (G)| − 2 and |V (G)| − k − d is even. Then G is called a
(k, n, d)-graph if deleting any k of its vertices, the subgraph contains a matching of size n and every matching of size n can
be extended to a defect dmatching. It is not difficult to see that (0, n, 1)-graphs are the same as defect n-extendable graphs.
They gave a Tutte style characterization and a property of (k, n, d)-graphs which can directly deduce a characterization of
defect n-extendable graphs.

Lou andWen found the path decomposition of defect 1-extendable bipartite graphs in [11] and gave the characterization
of defect n-extendable bipartite graphs with different connectivities in [10] (see Theorems 1.1 and 1.2).

Theorem 1.1 (Wen and Lou [10]). Let G = (U,W ) be a bipartite graph with κ(G) = 1 and |W | = |U| + 1, x be a cut vertex of
G and H = (X, Y ) be a component in G− x. Let n be a positive integer with n ≤ (|V (G)| − 2)/2. Then G is defect n-extendable if
and only if the following statements hold:
(1) ||X | − |Y || ≤ 1.
(2) Either there are exactly two odd components and no even component in G − x, or all components in G − x are even.
(3) If |X | = |Y | = m, then H is s-extendable and G[V (H) ∪ {x}] is defect t-extendable where s = min{n − 1,m − 1} and

t = min{n,m − 1}.
(4) If |X | = |Y | + 1 = m + 1, then

(4.1) x ∈ U, Y ⊆ U and X ⊆ W.
(4.2) if m ≥ 1, then H is defect s-extendable where s = min{n,m − 1}.
(4.3) for anyw ∈ V (H) such that xw ∈ E(G), each component H ′

= (X ′, Y ′) in H−w with |X ′
| = m′ is t-extendable where

t = min{n − 1,m′
− 1}.

(5) If G−x has odd components and |ΓG(x)∩V (H)| < |X | holds for each odd component H = (X, Y ) in G−xwith |X | = |Y |+1,
then dG(x) ≥ n + 1.

Theorem 1.2 (Wen and Lou [10]). Let G = (U,W ) be a bipartite graph with |W | = |U| + 1 and κ(G) ≥ 2. Then G is defect
n-extendable if and only if for any S ⊆ W and 2 ≤ |S| ≤ |W | − n, |ΓG(S)| ≥ |S| + n − 1.

In spite of the considerable amount of work on the characterizations of defect n-extendable graphs, the fundamental
problem: is there a polynomial time algorithm to determine if a graph G is a defect n-extendable graph (even bipartite
graph) is not solved yet. In this paper, we solve this problem for bipartite graphs by characterizing defect n-extendable
bipartite graph G usingM-alternating path theory when n = 1 or κ(G) ≥ 2 in Sections 3 and 4, and by giving a construction
characterization of Gwhen κ(G) = 1 and n ≥ 2 in Section 5.

2. Preliminary results

In this section, we introduce some known results which will be used in the proof of the main results of this paper.

Lemma 2.1 (Wen and Yang [12]). A bipartite graph G = (U,W ) with |W | = |U| + 1 and κ(G) ≥ 2 is defect n-extendable if
and only if for any S ⊆ U and 1 ≤ |S| ≤ |U| − n, |ΓG(S)| ≥ |S| + n.

Lemma 2.2 (Wen and Yang [12]). Let n be a positive integer and G = (U,W ) be a defect n-extendable bipartite graph with
|W | = |U| + 1 and κ(G) ≥ 2. Then for any S ⊆ U and |U| − n + 1 ≤ |S| ≤ |U|, |ΓG(S)| ≥ |W | − 1.

Lemma 2.3 (Lou et al. [5]). Let G = (U,W ) be a bipartite graph with |U| = |W |, which has a perfect matching. Let x ∈ U
and y ∈ W. Let M and M0 be perfect matchings of G. If G has k internally disjoint M0-alternating xy-paths, then G also has k
internally disjoint M-alternating xy-paths.

Lemma 2.4 (Liu and Yu [4]). A defect n-extendable graph is also defect (n − 1)-extendable.

Lemma 2.5 (Wenand Lou [10]). Let n be an integer andG = (U,W ) be a defect n-extendable bipartite graphwith |W | = |U|+1.
Then for any w ∈ W, each component in G − w is k-extendable where k = min{κ(G) − 1, n − 1}.

Lemma 2.6 (Aldred et al. [1]). Let G = (U,W ) be a bipartite graph which has a perfect matching. Then G is n-extendable if and
only if for any perfect matching M and for each pair of vertices x ∈ U and y ∈ W, there are n internally disjoint M-alternating
xy-paths.

Lemma 2.7 (Plummer [8]). Let G = (U,W ) be a bipartite graph with |W | = |U|. Then G is n-extendable if and only if for any
S ⊆ U and 1 ≤ |S| ≤ |U| − n, |ΓG(S)| ≥ |S| + n.

Lemma 2.8 (Plummer [7]). Let n be a positive integer. If G is n-extendable, then κ(G) ≥ n + 1.
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3. M-alternating paths in defect 1-extendable bipartite graphs

Theorem 3.1. Let G = (U,W ) be a bipartite graph with |W | = |U| + 1. Let M be a near perfect matching in G and w be the
M-unsaturated vertex. Then G is defect 1-extendable if and only if for any u ∈ U, there is an M-alternating wu-path in G.

Proof. Firstly, we prove the necessity. Assume x0, x1, . . . , xr are all the vertices inU that can be reached by anM-alternating
path beginning with w. Let A = {xi : 0 ≤ i ≤ r}. It suffices to prove that A = U .

Suppose to the contrary A ≠ U . Since M is a near perfect matching and w is the only M-unsaturated vertex, there is a
vertex yi such that xiyi ∈ M for any 0 ≤ i ≤ r . Let B = U \ A, C = {yi : 0 ≤ i ≤ r} and D = W \ (C ∪ {w}). Then |A| = |C |

and |B| = |D| ≠ 0 since A ≠ U .
Note that no vertex in B joins to any vertex in C . Otherwise, suppose there is a vertex v ∈ B that joins to a vertex

yk, 0 ≤ k ≤ r . Then xk ∈ A and hence there is an M-alternating wxk-path P in G. Suppose v ∈ V (P). Then wPv is an
M-alternating wv-path and hence v ∈ A, a contradiction to v ∈ B. So v ∉ V (P). Clearly, both end edges in P are in
E(G) \ M, xkyk ∈ M and ykv ∈ E(G) \ M . Thus wPxkykv is an M-alternating wv-path and hence v ∈ A, a contradiction
to v ∈ B.

Analogously, we can prove that no vertex in B joins to w. So vertices in B can only join to vertices inW \ (C ∪ {w}) = D.
Then there is at least an edge between D and U \ B = A as κ(G) ≥ 1. Assume uxj is such an edge where u ∈ D and
xj ∈ A, 0 ≤ j ≤ r . Since G is defect 1-extendable, uxj is contained in a near perfect matching of G which matches vertices in
B ∪ {xj} to vertices in D. Hence |D| ≥ |B ∪ {xj}| = |B| + 1, a contradiction to |D| = |B|. Hence A = U .

Now we prove sufficiency. Since G has a near perfect matchingM and there is anM-alternating wv-path for all v ∈ U,G
is connected. Choose any edge e in G. Assume e = xy where x ∈ U and y ∈ W . It is enough to prove that there is a near
perfect matching in G containing e.

SinceM is a near perfect matching and x ∈ U , there is a vertex y′ in G such that xy′
∈ M .

Suppose y = y′. Then e ∈ M andhenceM is a near perfectmatching inG containing e. Suppose y = w. Then (M∪{e})\{xy′
}

is a near perfect matching in G containing e. Suppose y ∈ W \ {y′, w}. Since w is the only M-unsaturated vertex, there is a
vertex x′ in U such that yx′

∈ M . Then there is anM-alternating wx′-path P ′ in G. Note that P ′ begins and ends with an edge
in E(G) \ M , thus y ∉ V (P ′).

If x ∈ V (P ′), then C = xP ′x′yx is an M-alternating cycle and henceM1E(C) is a near perfect matching in G containing e.
If x ∉ V (P ′), then y′

∉ V (P ′) and hence P = wP ′x′yxy′ is an M-alternating wy′-path beginning with w and ending with
an edge inM . Clearly,M1E(P) is a near perfect matching in G containing e. �

Remark 3.2. Given a bipartite graph G = (U,W ) where |W | = |U| + 1. If G has no near perfect matching, then G is not
defect 1-extendable. If G has a near perfect matching M where w is the M-unsaturated vertex, we can construct a directed
graph G⃗ from G by giving orientation to all edges in M from U to W and orientation to the other edges of G from W to U .
To identify if G is defect 1-extendable, Theorem 3.1 shows that we only need to check if for any vertex u ∈ U , there is an
M-alternating wu-path in G, which is equal to check if in G⃗, w can reach all the vertices in U and can be done by doing a BFS
(Breadth-First Search) of G⃗ beginning from vertex w. Since finding a near perfect matching in G needs O(p1/2q) time [6] and
doing a BFS on G⃗ costs O(p + q) time, verifying if G is defect 1-extendable can be done in O(p1/2q) time by Theorem 3.1.

4. M-alternating paths in defect n-extendable bipartite graph G with κ(G) ≥ 2

Let G = (U,W ) be a bipartite graph with |W | = |U| + 1 and M be a near perfect matching of G, u ∈ U and v ∈ W be a
pair of vertices.

The predecessor of a vertex in an M-alternating path orM-alternating cycle in G is defined as follows:
If P = a1a2 . . . ak is an M-alternating path in G such that a1 ∈ W , we define the predecessor of vertex ai (i ≠ q1) in P ,

denoted by a−P
i , to be a−P

i = ai−1;
If C is anM-alternating cycle inG, each vertex a has exactly two neighbors a′ and a′′ in C with aa′

∈ M and aa′′
∈ E(G)\M .

Then we define the predecessor of vertex a in C , denoted by a−C , to be a−C
= a′ if a ∈ W and a−C

= a′′ if a ∈ U .
Let k be a positive integer. If P1, P2, . . . , Pk−1, are k − 1 M-alternating vu-paths in G,Q is an M-alternating path

starting from v and ending at some vertex y ∈ W (possibly y = v) and Γ is a set of M-alternating cycles in G, then
S = (P1, P2, . . . , Pk−1,Q , Γ ) is said to be a k-system of G with respect to v and u if it satisfies:

(1) P1, P2, . . . , Pk−1 are internally disjoint;
(2) V (Pi) ∩ V (Q ) = {v} for each 1 ≤ i ≤ k − 1;
(3) the cycles in Γ are mutually vertex disjoint;
(4) (

k−1
i=1 V (Pi) ∪ V (Q )) ∩ V (Ci) ⊆ {v} for all Ci ∈ Γ .

Given a k-system S = (P1, P2, . . . , Pk−1,Q , Γ )with respect to v and u. We define V (S) and E(S) by V (S) =
k−1

i=1 V (Pi)∪
V (Q )∪


c∈Γ V (C) and E(S) =

k−1
i=1 E(Pi)∪E(Q )∪


c∈Γ E(C). And for each x ∈ U \{u}, the predecessor of xwith respect

to S , denoted by x−S , is defined as:
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(1) If x ∈ V (Pi), then x−S
= x−Pi ;

(2) If x ∈ V (Q ), then x−S
= x−Q ;

(3) If x ∈ V (C) for some C ∈ Γ , then x−S
= x−C ;

(4) If x ∉ V (S), then x−S
= y where xy ∈ M for some y ∈ W .

Furthermore, for any V ⊆ U \ {u}, we define V−S by V−S
= {x−S

|x ∈ V }.
The functions A(i, S) : {(i, S)|i is an integer and S is a k-system of G with respect to v and u} → W and B(i, S) : {(i, S)|i

is an integer and S is a k-system of Gwith respect to v and u} → U are inductively defined as follows:

B(i, S) =


φ if i = 0
ΓG−u(A(i − 1, S)) if i ≥ 1

A(i, S) =


v if i = 0
A(i − 1, S) ∪ (B(i, S))−S if i ≥ 1.

It is easily seen that A(i, S) ⊆ W , B(i, S) ⊆ U, B(i, S) ⊆ B(j, S) and A(i, S) ⊆ A(j, S) when i < j. Let S be a k-system in G,
we define A(S) and B(S) by A(S) =


∞

i=0 A(i, S) and B(S) =


∞

i=0 B(i, S). Moreover, for each z ∈ A(S) ∪ B(S), the height of
z with respect to S , denoted by h(z, S), is defined by

h(z, S) =


min{i|z ∈ A(i, S)} if z ∈ A(S)
min{i|z ∈ B(i, S)} if z ∈ B(S).

Lemma 4.1. Let G = (U,W ) be a defect n-extendable bipartite graph with |W | = |U| + 1 and κ(G) ≥ 2. Then for any S ⊆ W
and |S| ≥ 2, if ΓG(S) ≠ U, then |ΓG(S)| ≥ |S| + n − 1.

Proof. Let G be as defined in the statement, S ⊆ W , |S| ≥ 2 and ΓG(S) ≠ U .
Suppose |S| ≥ |W |−n+1. Then there is a set S ′

⊆ S and |S ′
| = |W |−n. Since G is a defect n-extendable bipartite graph

with κ(G) ≥ 2, Theorem 1.2 implies that |ΓG(S ′)| ≥ |S ′
| + n− 1 = |W | − n+ n− 1 = |U|. However ΓG(S ′) ⊆ U as S ′

⊆ W .
So ΓG(S ′) = U . Since S ′

⊆ S, we have U = ΓG(S ′) ⊆ ΓG(S). Note that ΓG(S) ⊆ U as S ⊆ W . Thus ΓG(S) = U , a contradiction
to the hypothesis of ΓG(S) ≠ U .

So |S| ≤ |W | − n and hence Theorem 1.2 implies that |ΓG(S)| ≥ |S| + n − 1. �

Lemma 4.2. Let n be a positive integer, G = (U,W ) be a bipartite graph with |W | = |U| + 1 and M be a near perfect matching
of G. Let u ∈ U and v ∈ W be a pair of vertices in G and S0 = (P0

1 , P
0
2 , . . . , P

0
n−1,Q

0, Γ 0) be an n-system of G with respect to
v and u such that Q 0

= v. Then for each x ∈ A(S0), there is an n-system S = (P1, P2, . . . , Pn−1,Q , Γ ) with respect to v and u
such that

(1) x is the end vertex of Q ; and
(2) for each y ∈ U \ {u}, if h(y, S0) > h(x, S0), then y−S

= y−S0 .

Proof. For simplicity, we use Ai, Bi, A, B and h(z) to denote A(i, S0), B(i, S0), A(S0), B(S0) and h(z, S0) respectively for any
integer i and vertex z ∈ A(S0) ∪ B(S0). We prove the lemma by induction on h(x).

If h(x) = 0, then x = v and S0 is the required n-system. Assume h(x) > 0 and the lemma holds for h(x) ≤ m− 1,m ≥ 1.
Now we consider the case of h(x) = m.

Note that x ∈ Am − Am−1 ⊆ B−S0
m . Thus x = y−S0

0 for some y0 ∈ Bm and hence h(y0) ≤ m. Suppose h(y0) = t < m,
then x ∈ B−S0

t ⊆ At , and hence h(x) ≤ t < m, a contradiction to h(x) = m. So h(y0) = m. Then there is a vertex x0 in Am−1
such that y0 ∈ ΓG−u(x0). Obviously, h(x0) ≤ m − 1. Suppose h(x0) = r < m − 1, then y0 ∈ ΓG−u(Ar) = Br+1, and hence
h(y0) ≤ r + 1 ≤ m − 1, a contradiction to h(y0) = m. Thus h(x0) = m − 1.

By the induction hypothesis, there is an n-system S ′
= (P ′

1, P
′

2, . . . , P
′

n−1,Q
′, Γ ′) with respect to v and u such that:

(1) x0 is the end vertex of Q ′; and
(2) for any y ∈ U \ {u}, if h(y) > h(x0), then y−S′

= y−S0 .

Since h(y0) = m > m − 1 = h(x0), y−S′

0 = y−S0
0 = x. We consider two cases:

Case 1. x0y0 ∉ M .

(1) If y0 ∈ V (P ′

i ), 1 ≤ i ≤ n−1, then x = y−S′

0 = y
−P ′

i
0 . Let Pi = vQ ′x0y0P ′

iu, Pj = P ′

j for all j ≠ i,Q = vP ′

i x and Γ = Γ ′. Note
that y0 ≠ qu as y0 ∈ ΓG−u(x0). So Pi ≠ vu and hence P1, P2, . . . , Pn−1 are n − 1 internally disjointM-alternating vu-paths.
(2) If y0 ∈ V (Q ′), then x = y−S′

0 = y−Q ′

0 . Since x0y0 ∉ M , we have y0 ≠ x−Q ′

0 , and hence C = x0y0Q ′x0 is an M-alternating
cycle. Let Pi = P ′

i for all 1 ≤ i ≤ n − 1,Q = vQ ′x and Γ = Γ ′
∪ {C}.

(3) If y0 ∈ V (C ′) for some C ′
∈ Γ ′, then x = y−S′

0 = y−C ′

0 . Let C ′
= a0a1 . . . ara0 where aiai+1 ∈ M and ai ∈ U if i is odd.

Without loss of generality, assume y0 = aj. Then 1≤ j ≤ r and x = aj−1.
(3.1) If v ∉ V (C ′), then let Pi = P ′

i for 1 ≤ i ≤ n − 1,Q = vQ ′x0y0aj+1aj+2 . . . x and Γ = Γ ′
\ {C ′

}.
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(3.2) If v ∈ V (C ′), without loss of generality, assume v = a0, then let Pi = P ′

i for 1 ≤ i ≤ n − 1, Q = va1a2 . . . x, C ′′
=

x0y0aj+1aj+2 . . . a0Q ′x0 and Γ = (Γ ′
\ {C ′

}) ∪ {C ′′
}.

(4) If y0 ∉ V (S ′), then y0x1 ∈ M for some x1 ∈ W . By the definition of predecessor, x = y−S′

0 = x1. Note that x ≠ v.
Otherwise, h(x) = h(v) = 0, a contradiction to the assumption hypothesis that h(x) > 0. Thus x ∉ V (S ′). Let Pi = P ′

i for
1 ≤ i ≤ n − 1,Q = vQ ′x0y0x and Γ = Γ ′.
Case 2. x0y0 ∈ M .

Suppose x0 = v. Then vy0 ∈ M and hence x = y−S0
0 = v. Therefore, h(x) = h(v) = 0, a contradiction to h(x) > 0. So

x0 ≠ v and hence x0y0 ∈ E(Q ′). Therefore, x = y−S0
0 = y−S′

0 = y−Q ′

0 . Let Pi = P ′

i for 1 ≤ i ≤ n − 1,Q = vQ ′x and Γ = Γ ′.
In both cases, let S = (P1, P2, . . . , Pn−1,Q , Γ ). Then S is an n-system in G with respect to v and u such that x is the end

vertex of Q . Select any y ∈ U \ {u}. Clearly, y−S
= y−S′

if y ≠ y0. If h(y) > h(x), since h(x) = h(y0), then y ≠ y0 and hence
y−S

= y−S′

. Moreover, h(y) > h(x) > h(x0), so by induction hypothesis, y−S
= y−S′

= y−S0 . Thus in both cases, S is the
required n-system and the lemma holds. �

Lemma 4.3. Let n be a positive integer, G = (U,W ) be a bipartite graph with |W | = |U| + 1 and M be a near perfect matching
in G. Let u ∈ U, v ∈ W and S0 be an n-system of G with respect to v and u. Then

(1) ΓG−u(A(S0)) = B(S0)
(2) (B(S0))−S0

⊆ A(S0).

Proof. For simplicity, we use Ai, Bi, A, B and h(x) to denote A(i, S0), B(i, S0), A(S0), B(S0) and h(x, S0) respectively for any
integer i and vertex x ∈ A(S0) ∪ B(S0).
(1) Choose any y ∈ ΓG−u(A). Then there is a vertex x ∈ A such that y ∈ ΓG−u(x). Let t = h(x). Then x ∈ At and hence
y ∈ ΓG−u(At) = Bt+1 ⊆ B. So ΓG−u(A) ⊆ B.

Suppose B = φ. Then ΓG−u(A) = φ = B as ΓG−u(A) ⊆ B.
Suppose B ≠ qφ. Select any y′

∈ B. Let m = h(y′). Note that m ≥ 1 as B0 = φ. Then y′
∈ Bm = ΓG−u(Am−1) ⊆ ΓG−u(A).

So B ⊆ ΓG−u(A) and hence ΓG−u(A) = B.
(2) Choose any x ∈ B−S0 . Then x = y−S0 for some y ∈ Bt where t ≥ 1 since B0 = φ. Therefore, x = y−S0

∈ B−S0
t ⊆ At ⊆ A.

Thus B−S0
⊆ A. �

Lemma 4.4. Let n be a positive integer, G = (U,W ) be a bipartite graph with |W | = |U| + 1 and M be a near perfect matching
of G. Let u ∈ U and v ∈ W be a pair of vertices in G and S0 = (P0

1 , P
0
2 , . . . , P

0
n−1,Q

0, Γ 0) be an n-system of G with respect to v

and u such that Q 0
= v. If there are not n internally disjoint M-alternating vu-paths in G, then

(1) u ∉ ΓG(A(S0) \ {v}) and
(2) ΓG(A(S0) \ {v}) ⊆ B(S0).

Proof. For simplicity, we use A and B to denote A(S0) and B(S0) respectively.
(1) Suppose to the contrary u ∈ ΓG(A \ {v}). Then there is a vertex x ∈ A \ {v} such that xu ∈ E(G). Lemma 4.2 implies
that there is an n-system S = (P1, P2, . . . , Pn−1,Q , Γ ) of Gwith respect to v and u such that x is the end vertex of Q . By the
definition of n-system with respect to v and u, u ∉ V (Q ). Thus xu ∉ M and hence P1, P2, . . . , Pn−1, vQxu are n internally
disjointM-alternating vu-paths, a contradiction to the hypothesis. Therefore, u ∉ ΓG(A \ {v}).
(2) By statement (1) and Lemma 4.3 (1), we have ΓG(A \ {v}) = ΓG−u(A \ {v}) ⊆ ΓG−u(A) = B. �

Lemma 4.5. Let n be a positive integer, G = (U,W ) be a defect n-extendable bipartite graph with |W | = |U|+1 and κ(G) ≥ 2
and M be a near perfect matching of G. Let u ∈ U and v ∈ W be a pair of vertices in G such that dG(v) ≥ n. Then the following
statements hold:

(1) if v = w, there is an n-system S0 = (P0
1 , P

0
2 , . . . , P

0
n−1,Q

0, φ) of G with respect to v and u such that Q 0
= v and there are

not n internally disjoint M-alternating vu-paths in G, then |A(S0)| ≥ 3.
(2) if v ≠ qw, there is an (n − 1)-system S0 = (P0

1 , P
0
2 , . . . , P

0
n−2,Q

0, φ) of G with respect to v and u such that Q 0
= v and

there are not n − 1 internally disjoint M-alternating vu-paths in G, then |A(S0)| ≥ 3.

Proof. For simplicity, we use Ai, Bi, A and B to denote A(i, S0), B(i, S0), A(S0) and B(S0) respectively for any integer i.
(1) Suppose v = w, there is an n-system S0 = (P0

1 , P
0
2 , . . . , P

0
n−1,Q

0, φ) with respect to v and u in G such that Q 0
= v and

there are not n internally disjointM-alternating vu-paths.
Assume vyi ∈ P0

i for all 1 ≤ i ≤ n − 1. Since dG(v) ≥ n, there is a vertex z1 ∉ {y1, y2, . . . , yn−1} such that vz1 ∈ E(G).
Note that z1 ≠ u, otherwise P0

1 , P
0
2 , . . . , P

0
n−1, vu are n internally disjoint M-alternating vu-paths, a contradiction to the

assumption hypothesis. So z1 ∈ ΓG−u({v}) = ΓG−u(A0) = B1. Let x1 = z−S0
1 . Then x1 ∈ B−S0

1 ⊆ A1 ⊆ A.
Since z1 ∉ {y1, y2, . . . , yn−1} ∪ {u} and v = w, we have x1 ≠ qv and hence |ΓG({v, x1})| ≥ 2 + n − 1 = n + 1 by

Theorem 1.2. So there is a vertex z2 ∈ ΓG({v, x1}) such that z2 ∉ {z1} ∪ {y1, y2, . . . , yn−1}. Then vz2 ∈ E(G) or x1z2 ∈ E(G).
Suppose z2 = u. Note that vz2 ∉ E(G). Otherwise, P0

1 , P
0
2 , . . . , P

0
n−1, vu are n internally disjoint M-alternating vu-paths,

a contradiction to the assumption hypothesis. Thus x1z2 ∈ E(G). Since x1 ∈ A, Lemma 4.2 implies that there is an n-system
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S = (P1, P2, . . . , Pn−1,Q , Γ ) with respect to v and u such that x1 is the end vertex of Q . Clearly, P1, P2, . . . , Pn−1, vQx1u are
n internally disjointM-alternating vu-paths as x1 ≠ qv, a contradiction to the assumption hypothesis.

So z2 ≠ u and hence z2 ∈ ΓG−u({v, x1}) ⊆ ΓG−u(A1) = B2. Let x2 = z−S0
2 . Then x2 ∈ B−S0

2 ⊆ A and hence {v, x1, x2} ⊆ A.
Moreover, since z2 ∉ {z1} ∪ {y1, y2, . . . , yn−1}, we have x2 ∉ {v, x1}. Therefore, |A| ≥ |{v, x1, x2}| ≥ 3 and statement (1)
holds.
(2) Suppose v ≠ qw. Then there is a vertex u0 in G such that vu0 ∈ M . The proof of statement (2) is similar with that of
statement (1) by replacing n and yn−1 with n − 1 and u0 respectively. �

Theorem 4.6. Let n be a positive integer and G = (U,W ) be a defect n-extendable bipartite graph with |W | = |U| + 1 and
κ(G) ≥ 2. Let M be a near perfect matching in G and w be the M-unsaturated vertex. Let u ∈ U and v ∈ W. Then the following
statements hold:
(1) If v = w, then there aremin{dG(u) − 1, dG(v), n} internally disjoint M-alternating vu-paths in G.
(2) If v ≠ w, then there aremin{dG(u) − 1, dG(v) − 1, n − 1} internally disjoint M-alternating vu-paths in G.

Proof. (1) Assume v = w. We prove statement (1) by induction on n.
Suppose n = 1. Since κ(G) ≥ 2, we have dG(u) ≥ 2 and dG(v) ≥ 2. Then min{dG(u) − 1, dG(v), n} = 1. Note that G

is a defect 1-extendable bipartite graph, thus Theorem 3.1 implies that there is an M-alternating vu-path in G. Therefore,
statement (1) holds when n = 1.

Assume statement (1) holds when G is defect k-extendable for any integer k ≤ n − 1. Now we consider the case when G
is defect n-extendable where n ≥ 2.

Suppose min{dG(u) − 1, dG(v)} ≤ n − 1, then min{dG(u) − 1, dG(v), n} = min{dG(u) − 1, dG(v), n − 1}. Since G is
defect (n− 1)-extendable, by induction hypothesis, there are min{dG(u)− 1, dG(v), n− 1} internally disjointM-alternating
vu-paths in G and hence statement (1) holds.

Assume min{dG(u) − 1, dG(v)} ≥ n, then min{dG(u) − 1, dG(v), n} = n. It suffices to prove that there are n internally
disjointM-alternating vu-paths in G. Suppose to the contrary, G has no such n vu-paths.

Since G is defect (n − 1)-extendable and min{dG(u) − 1, dG(v), n − 1} = n − 1 as min{dG(u) − 1, dG(v)} ≥ n, by
induction hypothesis, there are (n − 1) internally disjoint M-alternating vu-paths, say P0

1 , P
0
2 , . . . , P

0
n−1, in G. Let Q 0

= v.
Then S0 = (P0

1 , P
0
2 , . . . , P

0
n−1,Q

0, φ) is an n-system of G with respect to v and u. For simplicity, we use the abbreviation
A = A(S0), B = B(S0), y−

= y−S0 for any y ∈ U \ {u} and V−
= V−S0 for any V ⊆ U \ {u}.

Let vyi ∈ E(P0
i ), 1 ≤ i ≤ n − 1. We discuss two cases:

Case 1. Suppose u ∉ {y1, y2, . . . , yn−1}.
Suppose vu ∈ E(G). Then vu ∉ M as v is an M-unsaturated vertex. So P0

1 , P
0
2 , . . . , P

0
n−1, vu are n internally disjoint M-

alternating vu-paths, a contradiction to the assumption that such paths do not exist. So vu ∉ E(G). Since u ∉ ΓG(A \ {v})
by Lemma 4.4(1), we have u ∉ ΓG(A). Furthermore, Lemma 4.3(1) implies that ΓG(A) = ΓG−u(A) = B. Note that for distinct
vertex v1 and v2 in U \ {u}, v−

1 = v−

2 occurs only if {v1, v2} ⊆ {y1, y2, . . . , yn−1}. Clearly, {y1, y2, . . . , yn−1}
−

= {v},
then |B−

| ≥ |B| − (n − 1) + 1 and hence |B| ≤ |B−
| + n − 2. Therefore, by ΓG(A) = B and Lemma 4.3(2), we have

|ΓG(A)| = |B| ≤ |B−
| + n − 2 ≤ |A| + n − 2.

On the other hand, note that G is defect n-extendable with κ(G) ≥ 2, |A| ≥3 by Lemma 4.5 and u ∉ ΓG(A). Therefore,
Lemma 4.1 implies that |ΓG(A)| ≥ |A| + n − 1, a contradiction to |ΓG(A)| ≤ |A| + n − 2.
Case 2. Suppose u ∈ {y1, y2, . . . , yn−1}

Note that for distinct vertex v1 and v2 in U \ {u}, v−

1 = v−

2 occurs only if {v1, v2} ⊆ {y1, y2, . . . , yn−1} \ {u}. So
|B−

| ≥ |B| − (n − 2) + 1 and hence |B| ≤ |B−
| + n − 3. Moreover, by Lemmas 4.4(2) and 4.3(2), we have |ΓG(A \ {v})| ≤

|B| ≤ |B−
| + n − 3 ≤ |A| + n − 3.

On the other hand, note that |A \ {v}| ≥ 2 by Lemma 4.5(1) and u ∉ ΓG(A \ {v}) by Lemma 4.4(1). Moreover, Lemma 4.1
implies that |ΓG(A \ {v})| ≥ |A \ {v}| + n − 1 = |A| + n − 2, a contradiction to |ΓG(A)| ≤ |A| + n − 3.

In both cases, we can find a contradiction, so G has n internally disjoint M-alternating vu-paths when min{dG(u) −

1, dG(v)} ≥ n and hence statement (1) holds.
(2) Assume v ≠ w. Now we prove statement (2) by induction on n.

If n = 1, then min{dG(u) − 1, dG(v) − 1, n − 1} = 0 and statement (2) is obviously true. Assume statement (2) is true
when G is defect k-extendable for all integer k ≤ n − 1. Now we consider the case when G is defect n-extendable.

By Lemma 2.4, G is defect (n − 1)-extendable, thus by induction hypothesis, G has min{dG(u) − 1, dG(v) − 1, n − 2}
internally disjointM-alternating vu-paths.

If min{dG(u) − 1, dG(v) − 1} ≤ n − 2, then min{dG(u) − 1, dG(v) − 1, n − 1} = min{dG(u) − 1, dG(v) − 1, n − 2} and
hence G has min{dG(u) − 1, dG(v) − 1, n − 1} internally disjointM-alternating vu-paths by induction hypothesis.

In the following, we consider the case of min{dG(u) − 1, dG(v) − 1} ≥ n − 1.
Note that min{dG(u)−1, dG(v)−1, n−1} = n−1 andmin{dG(u)−1, dG(v)−1, n−2} = n−2. Therefore, G has n−2

internally disjoint M-alternating vu-paths, say P0
1 , P

0
2 , . . . , P

0
n−2. It is enough to prove that G has n − 1 internally disjoint

M-alternating vu-paths. Suppose G has no such n − 1 vu-paths.
Let Q 0

= v. Then S0 = (P0
1 , P

0
2 , . . . , P

0
n−2,Q

0, φ) is an (n − 1)-system of Gwith respect to v and u. Assume vu0 ∈ M and
vyi ∈ E(P0

i ), 1≤ i ≤ n − 2. we discuss two cases: u ∉ {u0, y1, y2, . . . , yn−2} and u ∈ {u0, y1, y2, . . . , yn−2}. The proof of the
two cases are similar to that in statement (1) by replacing yn−1 with u0. �
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Fig. 1. A defect 2-extendable graph G.

Remark 4.7. (1) It is easy to check that the bounds in Theorem 4.6 are sharp (cf. Fig. 1). Clearly, U = {xi : 1 ≤ i ≤ 5}
and W = {yi : 1 ≤ i ≤ 5} ∪ {w} are the bipartitions of G with |W | = |U| + 1. It is easy to check that κ(G) ≥ 2 and
for any S ⊆ U and 1≤ |S| ≤ |U| − 2, |ΓG(S)| ≥ |S| + 2. So Lemma 2.1 implies that G is defect 2-extendable. Note that
M = {xiyi : 1 ≤ i ≤ 5} is a near perfect matching of G, w is the M-unsaturated vertex and min{dG(x1) − 1, dG(w), 2} = 2.
Clearly, there are exactly two internally disjoint M-alternating wx1-paths in G because each M-alternating wx1-path must
contain y3 or y4. So the bound in Theorem 4.6(1) is sharp. Note that min{dG(x4) − 1, dG(y5) − 1, 2 − 1} = 1 and x4y5 is the
only M-alternating x4y5-path in G. Thus the bound in Theorem 4.6(2) is sharp, too.

(2) Given a defect n-extendable bipartite graph G = (U,W ) with κ(G) ≥ 2 and |W | = |U| + 1, and a near perfect matching
M of G. Select any u ∈ U and v ∈ W . Since Wen and Yang [12] prove that 2 ≤ δ(G) ≤ n + 1, Theorem 4.6 implies that
the number of internally disjointM-alternating vu-paths may be much less than n. But by Lemma 2.1, d(u) ≥ n + 1 and by
Theorem 1.2, |ΓG({v, y})| ≥ n + 1 for any y ∈ W and y ≠ v. Then it is reasonable to guess that the number of internally
disjointM-alternating vu-paths may be not less than n if we add some new edges to G such that v is adjacent to all vertices
in ΓG(v, y). So we introduce the operation ∗ defined as follows. Let G be a graph, v, y ∈ V (G) and S ⊆ V (G). Let E(v, y) = {

edges joining vertex v to all vertices in Gwhich are adjacent to y but not adjacent to v}. We use G∗(S, y) to denote a graph
constructed from G by adding all edges in


v∈S E(v, y) to G. Then we get the following theorem.

Theorem 4.8. Let n be a positive integer, G = (U,W ) be a bipartite graph such that |W | = |U| + 1 and κ(G) ≥ 2. Then G is
defect n-extendable if and only if for any w ∈ W the following two statements hold:

(1) there is a near perfect matching M in G such that w is the M-unsaturate vertex;
(2) for any near perfect matching M in G such that w is the M-unsaturated vertex and any vertex u ∈ U and v ∈ W \ {w}, there

are n internally disjoint M-alternating wu-paths in H = G ∗ ({w}, v).

Proof. First we prove the necessity. Let G = (U,W ) be a defect n-extendable bipartite graph with |W | = |U| + 1 and
κ(G) ≥ 2. Select any vertex w in G.
(1) Since n ≥ 1 and κ(G) ≥ 2, we havemin{κ(G)−1, n−1} ≥ 0. Thus Lemma 2.5 implies that G−w has a perfect matching
M . Clearly,M is a near perfect matching in G such that w is theM-unsaturated vertex. Then statement (1) holds.
(2) Select any v ∈ W\{w}. LetH = G∗({w}, v). Then by Lemma2.1,H is a defectn-extendable bipartite graphwith κ(G) ≥ 2.
Note that dH(w) = |ΓG({v, w})| ≥ 2 + n − 1 = n + 1 by Theorem 1.2, and dH(u) ≥ |ΓG(u)| ≥ n + 1 by Lemma 2.1. So
min{dH(u)−1, dH(w), n} = n and hence Theorem 4.6(1) implies that there are n internally disjointM-alternatingwu-paths
in H . Thus statement (2) holds.

Now we prove the sufficiency. Suppose to the contrary G is not defect n-extendable. Then there is a matching S of size
n in G which is not contained in any near perfect matching of G. By statement (1), we may assume that M is a near perfect
matching of G that contains as many edges in S as possible andw is theM-unsaturated vertex. Clearly, there is an edge e ∈ S
and e ∉ M . Assume e = ab where a ∈ U and b ∈ W . Then there is a vertex v in W such that av ∈ M . If b = w, then
M ′

= (M \ {av}) ∪ {ab} is a near perfect matching in G and |M ′
∩ S| > |M ∩ S|, a contradiction to the choice ofM .

So b ≠ w. Then there is a vertex u in U such that ub ∈ M . Let H = G ∗ ({w}, v). It is not difficult to see that M is a near
perfect matching in H . Statement (2) implies that there are n internally disjointM-alternating wu-paths, say P1, P2, . . . , Pn,
in H . Clearly, for all 1 ≤ i ≤ n, ub ∉ E(Pi) as ub ∈ M . Therefore, e ∉ E(Pi) for all 1 ≤ i ≤ n. Since |S \ {e}| = n − 1, there is
at least a path Pj among P1, P2, . . . , Pn satisfies that E(Pj) ∩ S = φ.

Suppose v ∈ V (Pj). By the definition of H , we have C = vPjubav is an M-alternating cycle in G. Let M ′
= M1E(C). Then

M ′ is also a near perfect matching in G such that |M ′
∩ S| > |M ∩ S|, a contradiction to the choice ofM .

So v ∉ V (Pj) and hence a ∉ V (Pj). Assume Pj = wa0a1 . . . aku. Then a0 ∈ ΓG(w) ∪ ΓG(v) as H = G ∗ ({w}, v).
Suppose a0 ∈ ΓG(w). Then Pj is an M-alternating wu-path in G. Since v ∉ V (Pj), we have that Q = wPjubav is an

M-alternating wv-path in G and E(Q ) ∩ S = {e}. Therefore, M ′′
= M1E(Q ) is a near perfect matching in G such that

|M ′′
∩ S| > |M ∩ S|, a contradiction to the choice ofM .

So a0 ∉ ΓG(w). Then a0 ∈ ΓG(v). Since v ∉ V (Pj) and H = G ∗ ({w}, v), we have R = va0a1 . . . aku is an M-alternating
vu-path in G. Moreover, since a ∉ V (Pj), we have C ′

= vRubav is an M-alternating cycle in G and E(C ′) ∩ S = {e}. Let
T = M1E(C ′). Then T is a near perfect matching in G such that |T ∩ S| > |M ∩ S|, a contradiction to the choice ofM .

So every matching of size n is contained in a near perfect matching of G and we complete the proof of sufficiency. �
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To identify if a bipartite graph G with κ(G) ≥ 2 is defect n-extendable, Theorem 4.8 requires us to check every near
perfect matching in G. However, the following theorem greatly reduces the number.

Theorem 4.9. Let n be a positive integer and G = (U,W ) be a bipartite graph with |W | = |U| + 1, which has a near perfect
matching. Let M and M0 be two near perfect matchings of G, w be the M-unsaturated vertex and w0 be the M0-unsaturated
vertex. Let u ∈ U and v ∈ W. If w = w0 and G has k internally disjoint M0-alternating uv-paths, then G also has k internally
disjoint M-alternating uv-paths.
Proof. Assume w = w0 and G has k internally disjoint M0-alternating uv-paths, say P1, P2, . . . , Pk, in G, where u ∈ U and
v ∈ W . Let H be a graph constructed from G by adding a new vertex x and joining x to w only. Let M ′

= M ∪ {xw} and
M ′

0 = M0 ∪{xw}. Obviously,M ′ andM ′

0 are perfect matchings inH and P1, P2, . . . , Pk are k internally disjointM ′

0-alternating
uv-paths in H . So Lemma 2.3 implies that there are also k internally disjointM ′-alternating uv-paths, say Q1,Q2, . . . ,Qk, in
H . Since x only joins to w in H , we have x ∉ V (Qi) for all 1 ≤ i ≤ k. Then Q1,Q2, . . . ,Qk are also M-alternating uv-paths in
G and this complete the proof of the theorem. �

By Theorems 4.8 and 4.9, we can get the following theorem immediately.

Theorem 4.10. Let n be a positive integer, G = (U,W ) be a bipartite graph such that |W | = |U| + 1 and κ(G) ≥ 2. Then G is
defect n-extendable if and only if for any w ∈ W the following two statements hold:
(1) There is a near perfect matching M in G such that w is the M-unsaturate vertex;
(2) Let M be a near perfect matching in G such that w is the M-unsaturated vertex. Then for any vertex u ∈ U and v ∈ W \ {w},

there are n internally disjoint M-alternating wu-paths in H = G ∗ ({w}, v).
Proof. It follows from Theorems 4.8 and 4.9. �

Remark 4.11. Given a bipartite graph G = (U,W ) with κ(G) ≥ 2 and |W | = |U|+ 1, to identify if G is defect n-extendable,
Theorem 4.10 shows that for any w ∈ W , it is enough to check that if G contains a near perfect matching M such that w
is the M-unsaturated vertex and if it does, then we continue to check that for any u ∈ U and v ∈ W \ {w}, if there are n
internally disjointM-alternating uw-paths inH = G∗ ({w}, v). Note that to find a near perfect matching in G is equal to find
a maximummatching in G, which needs O(p1/2q) time [6]. If we construct a directed graph

−→
H from H by giving orientation

to all edges inM from U toW and orientation to the other edges of H fromW to U , then the maximum number of internally
disjointM-alternating wu-paths in H is equivalent to the maximum number of internally disjoint directed path from w to u
in

−→
H . Such paths can be found inO(p3) time by using the algorithmof finding themaximum flowbetweenw and u in

−→
H each

edge of which is assigned with unit capacity [9]. Since w, v and u are arbitrary, we have to compute the maximum number
of internally disjoint alternating paths between two vertices O(p3) times. Furthermore, we have to findmaximummatching
|W | = O(p) times. So determining if a bipartite graph G is defect n-extendable can be done in O(p3 ∗p3 +p∗p1/2q) = O(p6)
time. Especially, when κ(G) ≥ n, we can greatly decrease the time complexity by the following theorem.

Theorem 4.12. Let n be a positive integer and G = (U,W ) be a bipartite graph such that |W | = |U| + 1 and κ(G) ≥ n. Let G′

be a graph constructed from G by adding a vertex x ∉ V (G) and joining x to all vertices in W. Then G is defect n-extendable if and
only if G′ is n-extendable.
Proof. Let G′ be as defined in the statement.

First we prove the necessity. Assume G is defect n-extendable. We consider two cases.
Case 1. n = 1. Select any e ∈ E(G′). It suffices to prove there is a perfect matching in G′ that contains e.

Suppose e ∈ E(G). Since G is defect 1-extendable, there is a near perfect matching M in G containing e. Assume w is the
M-unsaturated vertex in G. Obviously,M ∪ {xw} is a perfect matching in G′ containing e.

Suppose e ∉ E(G). Then e is incident with x. Assume e = xv. Then v ∈ W and Lemma 2.5 implies that G − v is
min{κ(G) − 1, n − 1}-extendable. Note that min{κ(G) − 1, n − 1} ≥ 0 as κ(G) ≥ n ≥ 1. Then G − v has a perfect
matchingM ′. ClearlyM ′

∪ {e} is a perfect matching in G′ containing e.
Case 2. n ≥ 2. Select any S ⊆ W such that 1 ≤ |S| ≤ |W | − n. By the definition of G′, we have ΓG′(S) = ΓG(S) ∪ {x}, thus
|ΓG′(S)| = |ΓG(S)| + 1.

Suppose |S| = 1. Assume S = {t}. Then ΓG(t) = dG(t) ≥ κ(G) ≥ n and hence |ΓG′(S)| = |ΓG(t)| + 1 ≥ n + 1 = |S| + n.
Suppose |S| ≥ 2. Since κ(G) ≥ n ≥ 2, Theorem 1.2 implies that |ΓG′(S)| = |ΓG(S)| + 1 ≥ |S| + n − 1 + 1 = |S| + n.
So |ΓG′(S)| ≥ |S| + n for any 1≤ |S| ≤ |W | − n, and hence Lemma 2.7 implies that G′ is n-extendable.
Now we prove the sufficiency. Assume G′ is n-extendable. Select any matching F of size n in G. Then F is also a matching

in G′. So there is a perfect matchingM in G′ containing F and xw ∈ M for some w ∈ W . Note that xw ∉ F as x ∉ V (F). Thus
M \ {xw} is a near perfect matching in G containing F . Therefore, G is defect n-extendable. �

Remark 4.13. Theorem 4.12 shows that verifying if a graph G with p vertices, q edges and κ(G) ≥ n is defect n-extendable
is equal to verify if a bipartite graph G′ with p + 1 vertices and (p + 1)/2 + q edges is n-extendable, which was proved in
[13] to be done in O((p + 1)((p + 1)/2 + q)) = O(pq) time.

Theorem 4.14. Let k and n be positive integer and G = (U,W ) be a defect n-extendable bipartite graph with κ(G) ≥ 2. Let
e = xy be an edge such that x, y ∉ V (G) and H be a graph constructed from G by joining x to at least k + 1 vertices in W and
joining y to at least k vertices in U. Then H is defect min{n, k}-extendable.
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Proof. Let U ′
= U ∪ {x} and W ′

= W ∪ {y}. Then (U ′, W ′) be the bipartitions of H . Let m = min{n, k}. Since κ(G) ≥ 2, by
the construction of H , we have κ(H) ≥ 2. Select any S ′

⊆ U ′ such that 1 ≤ |S ′
| ≤ |U ′

| − m. Lemma 2.1 implies that it is
enough to prove that |ΓH(S ′)| ≥ |S ′

| + m. We consider the following cases:
Case 1. x ∉ S ′.
Case 1.1. |S ′

| ≤ |U| − n. Since G is defect n-extendable with κ(G) ≥ 2, Lemma 2.1 implies that |ΓH(S ′)| ≥ |ΓG(S ′)| ≥

|S ′
| + n ≥ |S ′

| + min{n, k} = |S ′
| + m.

Case 1.2. |S ′
| > |U| − n. Note that |ΓG(S ′)| ≥ |W | − 1 by Lemma 2.2.

Case 1.2.1. k ≥ n. Then |S ′
| > |U| − n ≥ |U| − k. Since y is adjacent to k vertices in U, y joins to at least a vertex in S ′.

Therefore |ΓH(S ′)| = |ΓG(S ′) ∪ {y}| = |ΓG(S ′)| + 1 ≥ |W | − 1 + 1 = |W | = |U ′
| ≥ |S ′

| + m since |S ′
| ≤ |U ′

| − m.
Case 1.2.2. k < n. If |S ′

| ≤ |U| − k, thenm = min{n, k} = k. So |ΓH(S ′)| ≥ |ΓG(S ′)| ≥ |W | − 1 = |U| ≥ |S ′
| + k = |S ′

| + m.
If |S ′

| > |U| − k, then similarly to the proof in Case 1.2.1, we have |ΓH(S ′)| ≥ |S ′
| + m.

Case 2. x ∈ S ′.
Let S = S ′

\ {x}. Then S ⊆ U .
If S = ∅, then S ′

= {x} and hence |ΓH(S ′)| = k + 1 ≥ 1 + min{n, k} = |S ′
| + m.

If 1 ≤ |S| ≤ |U| − n, then Lemma 2.1 implies that |ΓG(S)| ≥ |S| + n. Since y is adjacent to x, we have |ΓH(S ′)| ≥

|ΓG(S) ∪ {y}| ≥ |S| + n + 1 = |S ′
| + n ≥ |S ′

| + min{n, k} = |S ′
| + m.

If |S| > |U| − n, then Lemma 2.2 implies that |ΓG(S)| ≥ |W | − 1. Moreover, y is adjacent to x and |S ′
| ≤ |U ′

| − m, then
we have |ΓH(S ′)| ≥ |ΓG(S) ∪ {y}| ≥ |W | − 1 + 1 = |W | = |U ′

| ≥ |S ′
| + m.

Thus in all cases, we have |ΓH(S ′)| ≥ |S ′
| + m and the proof is completed. �

5. Verify defect n-extendable bipartite graph G with n ≥ 2 and κ(G) = 1

Using M-alternating paths, Sections 3 and 4 present the methods to decide if a bipartite graph G is defect n-extendable
in polynomial time for the case of n = 1 or κ(G) ≥ 2. In this section, we will solve the case of n ≥ 2 and κ(G) = 1.
Firstly, we define two types of bipartite graphs G with κ(G) = 1. Let G = (U,W ) be a bipartite graph with κ(G) = 1 and
|W | = |U| + 1. If G contains no cut vertex in W , we called it a Type-A graph, otherwise we call it a Type-B graph. Clearly
any defect n-extendable bipartite graph G with κ(G) = 1 and n ≥ 2 belongs to either Type-A or Type-B graph. We will
characterize the two types of defect n-extendable bipartite graph respectively.

Theorem 5.1. Let G = (U,W ) with κ(G) = 1 and |W | = |U| + 1 be a Type-A bipartite graph. Let n be a positive integer with
2 ≤ n ≤ |U| − 1, x be a cut vertex in G and H = (X, Y ) be a component in G− x. Then G is defect n-extendable if and only if the
following statements hold:

(1) There are exactly two components in G − x.
(2) ||X | − |Y || = 1.
(3) If |X | = |Y | + 1 = m + 1, then

(3.1) Y ⊆ U and X ⊆ W.
(3.2) H is isomorphic to K1, K2,1 or a defect s-extendable graph with κ(H) ≥ 2 where s = min{n,m − 1}.
(3.3) For any w ∈ V (H) such that wx ∈ E(G), each component H ′

= (X ′, Y ′) in H − w with |X ′
| = m′ is t-extendable

where t = min{n − 1,m′
− 1}.

(3.4) If |ΓG(x) ∩ V (H)| < |X | holds for each component H = (X, Y ) in G − x with |X | = |Y | + 1, then dG(x) ≥ n + 1.

Proof. Sufficiency is immediate from Theorem 1.1. Now we prove the necessity.
Since G is a Type-A defect n-extendable graph, Theorem 1.1 implies that we only need to prove statement (3.2). Assume

|X | = |Y | + 1 = m + 1. We discuss three cases.
Case 1. m = 0. Then |X | = 1 and |Y | = 0. So H is isomorphic to K1.
Case 2. m = 1. Then |X | = 2 and |Y | = 1. Since H is connected, we have H is isomorphic to K2,1.
Case 3. m ≥ 2. Let s = min{n,m − 1}. Since n ≥ 2 and m ≥ 2, we have s ≥ 1. Theorem 1.1(4.2) implies that H is defect
s-extendable. Thus it suffices to prove that κ(H) ≥ 2. Suppose to the contrary κ(H) = 1. We consider two cases.
Case 3.1. Suppose H is a Type-B graph.

Then there is a cut vertex w of H in X . Clearly, w ∈ W . Let H1 = (X1, Y1) and H2 = (X2, Y2) be two components of
H − w where Xi ∈ X and Yi ∈ Y , i = 1, 2. Since H is defect s-extendable and w ∈ X , Theorem 1.1(1) and (2) imply that
|Xi| = |Yi| ≥ 1, i = 1, 2.

Note that xv ∈ E(G) for some v ∈ X1. Otherwise H1 is a component of G − w and hence w is a cut vertex of G in W , a
contradiction, since G is a Type-A graph. Obviously, wy2 ∈ E(G) for some y2 ∈ Y2 as H2 is a component of H − w. Since
|Y1| > |X1 \ {v}| and vertices in Y1 can only join to vertices in X1 \ {v} in G− {v, x, w, y2}, there is no near perfect matching
in G containing {vx, wy2}, a contradiction to the hypothesis that G is defect n-extendable where n ≥ 2.
Case 3.2. Suppose H is a Type-A graph.

Then there is no cut vertex of H in X . Since κ(H) = 1, there is a cut vertex, say y, in Y and Theorem 1.1 (1) and (2) imply
that there are exactly two components C1 = (U1,W1) and C2 = (U2,W2) in H − y where Wi ⊆ X and Ui ⊆ Y , i = 1, 2.
Then xz ∈ E(G) for some z ∈ W1 ∪W2. Without loss of generality, assume z ∈ W1. Since H is defect s-extendable and y ∈ Y ,
Theorem 1.1(1) and (4) imply that |Wi| = |Ui| + 1, i = 1, 2. Let ki = |Ui|, i = 1, 2. Then ki ≥ 0.
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Suppose U1 = φ. ThenW1 = {z}. Note that xa ∈ E(G) for some a ∈ W2, otherwise, G− z is disconnected, while z ∈ W , a
contradiction, since G is a Type-A graph. Since U1 = φ and |U1 ∪U2 ∪ {y}| = m ≥ 2, we have U2 ≠ qφ. Note that y joins to a
vertex b inW2 such that a ≠ b. Otherwise, y only joins vertex a inW2 and hence H2 − a and H1 are different components in
G − a, a contradiction to the assumption hypothesis that G is Type-A graph. It is not difficult to see that |U2| > |W2 \ {a, b}|
and vertices inU2 can only join to vertices inW2\{a, b} inG−{a, x, b, y}, so there is no near perfectmatching inG containing
{ax, by}, a contradiction to the hypothesis that G is defect n-extendable where n ≥ 2.

So U1 ≠ φ. Analogous to the proof above, we can prove that y joins to a vertex c in W1 such that c ≠ z and there is
no near perfect matching in G containing matching {zx, cy}, a contradiction to the hypothesis that G is defect n-extendable
where n ≥ 2.

In both Cases 3.1 and 3.2, we can find a contradiction. Therefore, κ(H) ≥ 2 and statement (3.2) follows. �

Theorem 5.2. Let G = (U,W ) with κ(G) = 1 and |W | = |U| + 1 be a Type-B bipartite graph. Let n be a positive integer such
that 2 ≤ n ≤ |U|−1 and v be a cut vertex of G in W. Then G is defect n-extendable if and only if for any component H = (X, Y )
in G − v, the following statements hold:
(1) |X | = |Y |.
(2) If |X | = |Y | = m, then

(2.1) H is s-extendable where s = min{n − 1,m − 1};
(2.2) H ′

= G[V (H) ∪ {v}] is defect t-extendable where t = min{n,m − 1} and if κ(H ′) = 1, then H ′ is a Type-A graph.

Proof. Sufficiency is immediate by Theorem 1.1(1)–(3). To prove the necessity, by Theorem 1.1, we only need to prove that
H ′

= G[V (H) ∪ {v}] is a Type-A graph when κ(H ′) = 1. Assume κ(H ′) = 1. Suppose to the contrary H ′ is not Type-A graph.
Without loss of generality, assume X ⊆ U and Y ⊆ W , then X ′

= X and Y ′
= Y ∪ {v} are the two bipartitions of H ′ with

|Y ′
| = |X ′

| + 1.
Since H ′ is not Type-A graph, then H ′ is a Type-B graph and hence H ′ has a cut vertex y in Y ′. Let H1 = (U1,W1) be the

component in H ′
− y that contains v where U1 ⊆ U andW1 ⊆ W . Let H2 be another component in H ′

− y. Note that H1 and
H2 are in different components of G − y. Therefore, y is also a cut vertex in G.

LetH ′′
= (X ′′, Y ′′) be a component in G−v such thatH ′′

≠ H, X ′′
⊆ U and Y ′′

⊆ W and Q = (U ′,W ′) be the component
in G − y that contains vertex v,U ′

⊆ U and W ′
⊆ W .

Note that y ∉ V (H1) ∪ V (H ′′), v ∈ V (Q ), v ∈ V (H1) and v joins to at least a vertex in H ′′. So V (H1) ∪ V (H ′′) ⊆ V (Q )
and hence U1 ∪ X ′′

⊆ U ′. Since H ′ is defect min{n,m − 1} extendable and H1 is a component of H ′
− y, by Theorem 1.1(1)

and (2), we have |U1| = |W1| ≥ 1. Analogously, we have |X ′′
| = |Y ′′

| ≥ 1. Thus |U ′
| ≥ |U1 ∪ X ′′

| ≥ 2. Furthermore,
since Q is a component of G − y, by Theorem 1.1(3) again, we have Q is min{n − 1, |U ′

| − 1} ≥ 1 extendable as n ≥ 2. So
Lemma 2.8 implies that κ(Q ) ≥ 2. However, note thatH1 −v andH ′′ are in different components of Q −v. Hence κ(Q ) = 1,
a contradiction to κ(Q ) ≥ 2. Thus H ′ is a Type-A graph. �

Remark 5.3. A bipartite graph G = (U,W ) with κ(G) = 1 and |W | = |U| + 1 is a Type-A graph can be determined in
O(p2) time. This together with Theorem 5.1 imply that verifying if G is Type-A defect n-extendable (n ≥ 2) can be done in
polynomial time as statements (1), (2), (3.1) and (3.4) can be checked inO(p2) time, Section 4 shows that verifying statement
(3.2) needs O(p6) time and verifying statement (3.3) needs O(p2q) time as it only needs to test if a bipartite graph is t-
extendable p times at most and each can be done in O(pq) time [13]. So the total time complexity to determine if G is Type-A
defect n-extendable using Theorem 5.1 is O(p6). Moreover, by Theorem 5.2, to determine if G is Type-B defect n-extendable
can also be done in polynomial time.
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