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1. Terminology and introduction

We only consider bipartite graphs. All graphs considered in this paper are undirected, finite and simple.

A matching covering all but d vertices in a graph G is a defect d matching in G. A defect 0 matching is also called a perfect
matching and a defect 1 matching is also called a near perfect matching. Let G be a connected graphandn < (|V(G)|—2)/2
be a positive integer. If any n independent edges in G are contained in a perfect matching of G, then G is n-extendable. If any
n independent edges in G are contained in a near perfect matching of G, then G is defect n-extendable. Particularly, if G has
a perfect matching, then G is 0-extendable and if G has a near perfect matching, then G is defect 0-extendable.

We use G = (U, W) to denote a bipartite graph G with bipartition U, W. Let A and B be two sets. Then AAB denotes
the symmetric difference of A and B. Let G be a graph and S C V(G). Then I'¢(S) denotes the neighbor set of S in G, and
the minimum degree and the connectivity of G are denoted by §(G) and k(G) respectively. Throughout this paper, p and q
denote the number of vertices and edges of the given graph respectively.

A path from vertex x to vertex y is called an xy-path. If a path P contains vertices u and v, then we use uPv to denote the
path from u to v in P. Let G be a graph and M be a matching of G. An M-alternating path (cycle) of G is a path (cycle) in G
where edges in M and edges in E(G) \ M appear on the path (cycle) alternately. In this paper, we only consider alternating
paths starting from an edge not in the given matching. In other words, when we say that P = a;a; . . . ai is an M-alternating
a;ag-path in a graph G, it always means that a;a;,1 € E(G) \ M ifiis odd and a;a;; € M if i is even.

For the other terminology and notations not defined in this paper, the reader is referred to [2].

The concept of defect n-extendable graph was introduced by Lou and Wen [10]. They showed that the connectivity of a
defect n-extendable graph can be any positive integer. While Plummer [7] proved that the connectivity of an n-extendable
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graph is not less than n + 1, which implies that the results on defect n-extendable graphs may not be deduced trivially from
those of n-extendable graphs.

In fact, a few results on defect n-extendable graphs have been established until now.

In [3], Little et al. gave two characterizations of defect 1-extendable graphs which were called 1-covered graph in their
paper.

A graphis said to be k-critical if deleting any k of its vertices, the remaining subgraph has a perfect matching. To combine
the concept of n-extendable graphs and k-critical graphs, Liu and Yu [4] introduced (k, n, d)-graphs. Let G be a graph. Let
k, n, and d be non-negative integers such that k + 2n +d < |V(G)| — 2 and |V(G)| — k — d is even. Then G is called a
(k, n, d)-graph if deleting any k of its vertices, the subgraph contains a matching of size n and every matching of size n can
be extended to a defect d matching. It is not difficult to see that (0, n, 1)-graphs are the same as defect n-extendable graphs.
They gave a Tutte style characterization and a property of (k, n, d)-graphs which can directly deduce a characterization of
defect n-extendable graphs.

Lou and Wen found the path decomposition of defect 1-extendable bipartite graphs in [11] and gave the characterization
of defect n-extendable bipartite graphs with different connectivities in [10] (see Theorems 1.1 and 1.2).

Theorem 1.1 (Wen and Lou [10]). Let G = (U, W) be a bipartite graph with k (G) = 1 and |W| = |U| + 1, x be a cut vertex of
GandH = (X, Y) be a component in G — x. Let n be a positive integer withn < (|V(G)| — 2)/2. Then G is defect n-extendable if
and only if the following statements hold:
(DX =Yl =1
(2) Either there are exactly two odd components and no even component in G — x, or all components in G — x are even.
(3) If |X| = |Y| = m, then H is s-extendable and G[V (H) U {x}] is defect t-extendable where s = min{n — 1, m — 1} and
t = min{n, m — 1}.
%/|X| [Y|+1=m+ 1, then
41)xeU,YCUandX CW.
(4.2) if m > 1, then H is defect s-extendable where s = min{n, m — 1}.
(4.3) forany w € V(H) such that xw € E(G), each component H' = (X', Y’) in H — w with |X'| = m’ is t-extendable where
t =min{fn — 1, m
(5) If G—x has Od(} components and |[Ic(x)NV (H)| < |X] holds for each odd component H = (X, Y) in G—xwith |X| = |Y|+1,
thendg(x) > n+ 1.

Theorem 1.2 (Wen and Lou [10]). Let G = (U, W) be a bipartite graph with |W| = |U| + 1 and «(G) > 2. Then G is defect
n-extendable if and only if foranyS C Wand2 < |S| < [W| —n, |[Ic(S)| > |S|+n— 1.

In spite of the considerable amount of work on the characterizations of defect n-extendable graphs, the fundamental
problem: is there a polynomial time algorithm to determine if a graph G is a defect n-extendable graph (even bipartite
graph) is not solved yet. In this paper, we solve this problem for bipartite graphs by characterizing defect n-extendable
bipartite graph G using M-alternating path theory whenn = 1or «(G) > 2 in Sections 3 and 4, and by giving a construction
characterization of G when x(G) = 1and n > 2 in Section 5.

2. Preliminary results

In this section, we introduce some known results which will be used in the proof of the main results of this paper.

Lemma 2.1 (Wen and Yang [12]). A bipartite graph G = (U, W) with |W| = |U| + 1 and «(G) > 2 is defect n-extendable if
andonly if foranyS CUand 1< |S| < |U| —n, |I5(S)| = |S| +n.

Lemma 2.2 (Wen and Yang [12]). Let n be a positive integer and G = (U, W) be a defect n-extendable bipartite graph with
W| =|U|+ 1andk(G) > 2. ThenforanyS CUand |U| —n+ 1 < |S| < |U|, |[Ic(S)| = [W| — 1.

Lemma 2.3 (Lou et al. [5]). Let G = (U, W) be a bipartite graph with |U| = |W|, which has a perfect matching. Let x € U
andy € W. Let M and My be perfect matchings of G. If G has k internally disjoint My-alternating xy-paths, then G also has k
internally disjoint M-alternating xy-paths.

Lemma 2.4 (Liu and Yu [4]). A defect n-extendable graph is also defect (n — 1)-extendable.

Lemma 2.5 (Wen and Lou [10]). Let n be an integer and G = (U, W) be a defect n-extendable bipartite graph with |W| = |U|+1.
Then for any w € W, each component in G — w is k-extendable where k = min{x (G) — 1, n — 1}.

Lemma 2.6 (Aldred et al. [1]). Let G = (U, W) be a bipartite graph which has a perfect matching. Then G is n-extendable if and
only if for any perfect matching M and for each pair of vertices x € U andy € W, there are n internally disjoint M-alternating
xy-paths.

Lemma 2.7 (Plummer [8]). Let G = (U, W) be a bipartite graph with |W| = |U|. Then G is n-extendable if and only if for any
SCUand1=<|S| < |U|l—n, [I5S)] =S| +n.

Lemma 2.8 (Plummer [7]). Let n be a positive integer. If G is n-extendable, then k (G) > n+ 1.
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3. M-alternating paths in defect 1-extendable bipartite graphs

Theorem 3.1. Let G = (U, W) be a bipartite graph with |W| = |U| 4 1. Let M be a near perfect matching in G and w be the
M-unsaturated vertex. Then G is defect 1-extendable if and only if for any u € U, there is an M-alternating wu-path in G.

Proof. Firstly, we prove the necessity. Assume Xq, X1, . . ., X, are all the vertices in U that can be reached by an M-alternating
path beginning with w. Let A = {x; : 0 < i < r}. It suffices to prove that A = U.

Suppose to the contrary A # U. Since M is a near perfect matching and w is the only M-unsaturated vertex, there is a
vertex y; such that x;y; € M forany0 <i <r.LetB=U\A,C={y;: 0<i<r}andD = W \ (CU {w}). Then |A| = |C|
and |B| = |D| # 0 since A # U.

Note that no vertex in B joins to any vertex in C. Otherwise, suppose there is a vertex v € B that joins to a vertex
Yk, 0 < k < r.Then x; € A and hence there is an M-alternating wxy-path P in G. Suppose v € V(P). Then wPv is an
M-alternating wv-path and hence v € A, a contradiction to v € B.So v ¢ V(P). Clearly, both end edges in P are in
E(G) \ M, xyx € M and y,v € E(G) \ M. Thus wPx,y,v is an M-alternating wv-path and hence v € A, a contradiction
tov € B.

Analogously, we can prove that no vertex in B joins to w. So vertices in B can only join to vertices in W \ (C U {w}) = D.
Then there is at least an edge between D and U \ B = A as «(G) > 1. Assume ux; is such an edge where u € D and
Xj € A,0 <j <r.Since G is defect 1-extendable, ux; is contained in a near perfect matching of G which matches vertices in
B U {x;} to vertices in D. Hence |D| > |BU {x;}| = |B| + 1, a contradiction to |D| = |B|. Hence A = U.

Now we prove sufficiency. Since G has a near perfect matching M and there is an M-alternating wv-path forallv € U, G
is connected. Choose any edge e in G. Assume e = xy where x € U and y € W. It is enough to prove that there is a near
perfect matching in G containing e.

Since M is a near perfect matching and x € U, there is a vertex y" in G such that xy’ € M.

Supposey = y'.Thene € M and hence M is a near perfect matching in G containing e. Suppose y = w.Then (MU{e})\ {xy'}
is a near perfect matching in G containing e. Suppose y € W \ {y, w}. Since w is the only M-unsaturated vertex, there is a
vertex X" in U such that yx' € M. Then there is an M-alternating wx’-path P’ in G. Note that P’ begins and ends with an edge
in E(G) \ M, thusy & V(P").

Ifx € V(P'), then C = xP’x'yx is an M-alternating cycle and hence M AE(C) is a near perfect matching in G containing e.

Ifx & V(P'), theny' ¢ V(P’) and hence P = wP’X'yxy’ is an M-alternating wy’-path beginning with w and ending with
an edge in M. Clearly, M AE(P) is a near perfect matching in G containinge. O

Remark 3.2. Given a bipartite graph G = (U, W) where |W| = |U| + 1. If G has no near perfect matching, then G is not
defect 1-extendable. If G has a near perfect matching M where w is the M-unsaturated vertex, we can construct a directed
graph G from G by giving orientation to all edges in M from U to W and orientation to the other edges of G from W to U.
To identify if G is defect 1-extendable, Theorem 3.1 shows that we only need to check if for any vertex u € U, there is an
M-alternating wu-path in G, which is equal to check if in 6 w can reach all the vertices in U and can be done by doing a BFS
(Breadth-First Search) of G beginning from vertex w. Since finding a near perfect matching in G needs O(p'/q) time [6] and
doing a BFS on G costs O(p + q) time, verifying if G is defect 1-extendable can be done in O(p'/?q) time by Theorem 3.1.

4. M-alternating paths in defect n-extendable bipartite graph G with «(G) > 2

Let G = (U, W) be a bipartite graph with |W| = |U| + 1 and M be a near perfect matching of G,u € U and v € W be a
pair of vertices.

The predecessor of a vertex in an M-alternating path or M-alternating cycle in G is defined as follows:

If P = aja; ... a, is an M-alternating path in G such that a; € W, we define the predecessor of vertex a; (i # q1) in P,
denoted by a;*, tobe a; " = a;_1;

If C is an M-alternating cycle in G, each vertex a has exactly two neighbors ¢’ and a” in C withaa’ € M and aa” € E(G)\ M.
Then we define the predecessor of vertex a in C, denoted by a=¢,tobea ¢ = d’ ifa € Wanda=¢ = ¢ ifa € U.

Let k be a positive integer. If Py, P5, ..., Py_q, are k — 1 M-alternating vu-paths in G, Q is an M-alternating path
starting from v and ending at some vertex y € W (possibly y = v) and I' is a set of M-alternating cycles in G, then
S=(Py,P,,...,P1,Q, I')is said to be a k-system of G with respect to v and u if it satisfies:

(
(
(
(

) P, Py, ..., Py_q are internally disjoint;

) V(P)NV(Q) ={v}foreach1 <i<k-—1;

) the cycles in I" are mutually vertex disjoint;

4) (U viey uv@) nv(G) € (v} forall G e T.

1
2
3

Givenak-systemS = (Py, Py, ..., Py_1, Q, I') with respect to v and u. We define V(S) and E(S) by V(S) = U;‘:—f v(e)u
V(Q)UU,er V(C)andE(S) = Uf: E(P)UE(Q)U . E(C). And for each x € U \ {u}, the predecessor of x with respect
to S, denoted by x5, is defined as:
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1) Ifx € V(P;), thenx™S = x~";

2) Ifx € V(Q), thenx™S = x~¢;

3) Ifx € V(C) forsome C € I', then x5 = x~¢;

4) Ifx ¢ V(S), then x5 = y where xy € M for somey € W.

—~ o~ o~ —~

Furthermore, forany V C U \ {u}, we define VS by V=S = {xS|x e V}.
The functions A(i, S) : {(i, S)|i is an integer and S is a k-system of G with respect to v and u} — W and B(, S) : {(i,S)|i
is an integer and S is a k-system of G with respect to v and u} — U are inductively defined as follows:
R [ ifi=0
B(i. 5) = {FG_U(A(i —1,5) ifi>1
. v ifi=0
AG.5) = {A(i —1,5) U (BG,S)™S ifi= 1.

It is easily seen that A(i, S) € W, B(i,S) € U, B(i,S) € B(j,S) and A(i, S) € A(j,S) wheni < j. Let S be a k-system in G,
we define A(S) and B(S) by A(S) = U}’io A(i, S) and B(S) = U:;Oo B(i, S). Moreover, for each z € A(S) U B(S), the height of
z with respect to S, denoted by h(z, S), is defined by

min{i|z € A(i,S)} ifz € A(S)
h@z,$) = {min{i|z € BG.S)} ifz € B(S).

Lemma 4.1. Let G = (U, W) be a defect n-extendable bipartite graph with |W| = |U| + 1 and k (G) > 2. Then foranyS C W
and |S| > 2,if I(S) # U, then |I5(S)| > |S|+n— 1.

Proof. Let G be as defined in the statement,S € W, |S| > 2 and I;(S) # U.

Suppose |S| > |W|—n+ 1.Then thereisaset S’ C Sand |S'| = |W|— n. Since G is a defect n-extendable bipartite graph
with « (G) > 2, Theorem 1.2 implies that | I5(S')| > |S|+n—1=|[W|—n+n—1= |U|.However [;(S') CUasS C W.
So I'¢(S") = U.SinceS’ C S,wehave U = I'¢(S’) C I¢(S). Note that I';(S) C U asS € W.Thus I';(S) = U, a contradiction
to the hypothesis of I'(S) # U.

So |S| < |[W| — n and hence Theorem 1.2 implies that [/(S)| > |S|+n—1. O

Lemma 4.2. Let n be a positive integer, G = (U, W) be a bipartite graph with |W| = |U| + 1 and M be a near perfect matching

of G.Let u € U and v € W be a pair of vertices in G and S® = (P, PY, ..., P? |, Q°, I'°) be an n-system of G with respect to
v and u such that Q° = v. Then for each x € A(S®), there is an n-system S = (P1, P5, ..., Pa_1, Q, I') with respect to v and u
such that

(1) xis the end vertex of Q; and
(2) foreachy € U\ {u}, if h(y, S°) > h(x, S°), theny=S = y~5°.

Proof. For simplicity, we use A;, B;, A, B and h(z) to denote A(i, S°), B(i, S°), A(S°), B(§°) and h(z, S°) respectively for any
integer i and vertex z € A(S°) U B(S°). We prove the lemma by induction on h(x).

Ifh(x) = 0, then x = v and S° is the required n-system. Assume h(x) > 0 and the lemma holds for h(x) <m—1,m > 1.
Now we consider the case of h(x) = m.

Note thatx € A, — A1 C B;SO. Thus x = ygso for some y, € B, and hence h(yy) < m. Suppose h(yg) = t < m,
thenx € B{SO C A;, and hence h(x) <t < m, a contradiction to h(x) = m. So h(yg) = m. Then there is a vertex xy in Ap,_1
such thatyg € I'c_,(xp). Obviously, h(xg) < m — 1. Suppose h(xp) =1 < m — 1, thenyy € Ic_,(A;) = B;11, and hence
h(yo) <r+1 < m— 1, acontradiction to h(yg) = m. Thus h(xg) = m — 1.

By the induction hypothesis, there is an n-system S’ = (P{, P}, ..., P;_;, Q', I'") with respect to v and u such that:

(1) xq is the end vertex of Q; and
(2) foranyy € U \ {u},if h(y) > h(xo), theny=S" = y~5".

Sinceh(yp) =m>m—1= h(xo),ygs/ = ygso = x. We consider two cases:
Case 1. xpyo & M.
()Ifyo e V(P)),1 <i<n—1,thenx =y55/ =y5pi.LetP,» = vQ'xoyoPu, P; = P/ forallj #i,Q = vP{xand I" = I"". Note
thatyg # quasyo € I'c_,(Xp). So P; # vu and hence Py, P, ..., P,_; are n — 1 internally disjoint M-alternating vu-paths.
(2)Ifyg € V(Q'), thenx = ygs/ = ng . Since xpyo € M, we have yq # x;Q ,and hence C = xoyoQ ' is an M-alternating
cycle.LetP; =P/ forall1 <i<n—-1,Q =vQ'xand I' = I'" U {C}.
(3)Ifyg € V(C') for some C' € I'’,thenx = ygs/ = ygc/. Let C' = qapay ...a,ap where g;a;1 € M and g; € U ifiis odd.
Without loss of generality, assume yo = g;. Then 1< j < r and x = g;_;.
B.1DIfv €V(C'), thenletP; =P/ for1 <i<n-—1,Q = vQ'XYoj+10j42 ...xand I' = I'"\ {C'}.



X. Wen et al. / Discrete Mathematics 311 (2011) 817-826 821

(3.2) If v € V(C'), without loss of generality, assume v = ag, thenletP; = P/ for1 <i <n—1,Q = vaya;...x,C" =
X0Y0Gj+10j12 - .- a0Q'Xg and I = (I'"\ {C'}) U {C"}.
(4)Ifyo € V(S'), then yox; € M for some x; € W. By the definition of predecessor, x = ygs/ = X;. Note that x # v.
Otherwise, h(x) = h(v) = 0, a contradiction to the assumption hypothesis that h(x) > 0. Thusx ¢ V(S'). Let P; = P/ for
1<i<n-—1,Q =vQ'xpyoxand I' = I'".
Case 2. Xpyo € M.

Suppose xog = v. Then vy, € M and hence x = ygso = v. Therefore, h(x) = h(v) = 0, a contradiction to h(x) > 0. So

Xo # v and hence xoyo € E(Q’). Therefore, x = yaso = ygs/ = y;Q/. LetP;=P/for1<i<n—-1,Q =vQxand ' =TI".
In both cases, let S = (P, P,, ..., P,_1,Q, I'). Then S is an n-system in G with respect to v and u such that x is the end
vertex of Q. Select any y € U \ {u}. Clearly,y™> = y*S/ ify # yo.If h(y) > h(x), since h(x) = h(yp), theny # yo and hence

y=S = y=5'. Moreover, h(y) > h(x) > h(xo), so by induction hypothesis, y5 = y=5" = y=. Thus in both cases, S is the
required n-system and the lemma holds. O

Lemma 4.3. Let n be a positive integer, G = (U, W) be a bipartite graph with |W| = |U| + 1 and M be a near perfect matching
inG.Let u € U, v € W and S° be an n-system of G with respect to v and u. Then

(1) Te_u(A(S%)) = B(S%)
(2) (B(S%)™S" C A(SY).

Proof. For simplicity, we use A;, B;, A, B and h(x) to denote A(i, S°), B(i, S°), A(S®), B(§°) and h(x, S°) respectively for any
integer i and vertex x € A(S%) U B(S?).
(1) Choose any y € I¢_,(A). Then there is a vertex x € A such thaty € Ic_,(x). Let t = h(x). Then x € A; and hence
y € I—y(Ar) = Bry1 S B.So I'c—y(A) CB.

Suppose B = ¢. Then I'_,(A) = ¢ =Bas I'c_,(A) CB.

Suppose B # q¢. Select any y’ € B.Let m = h(y'). Note that m > 1as By = ¢. Theny' € By, = I'c_u(Am_1) € T_u(A).
SoB C I;_y4(A) and hence I'c_,(A) = B.
(2) Choose any x € B=". Then x = y~5° for some y € B, where t > 1 since By = ¢. Therefore, x = y~5' € Bt_SO C A CA
ThusB~5" CA. O

Lemma 4.4. Let n be a positive integer, G = (U, W) be a bipartite graph with |W| = |U| + 1 and M be a near perfect matching
of G.Let u € U and v € W be apair of vertices in Gand S° = (P, P, ..., P?_,, Q°, I"°) be an n-system of G with respect to v

sp—1»
and u such that Q° = v. If there are not n internally disjoint M-alternating vu-paths in G, then

(1) u & IG(AGS®) \ {v}) and
(2) To(AGS®) \ {v]) S B(SY).

Proof. For simplicity, we use A and B to denote A(S°) and B(S°) respectively.

(1) Suppose to the contrary u € I'c(A \ {v}). Then there is a vertex x € A \ {v} such that xu € E(G). Lemma 4.2 implies
that there is an n-system S = (P, P, ..., P,_1, Q, I') of G with respect to v and u such that x is the end vertex of Q. By the
definition of n-system with respect to v and u, u € V(Q). Thus xu ¢ M and hence P, P,, ..., P,_1, vQxu are n internally
disjoint M-alternating vu-paths, a contradiction to the hypothesis. Therefore, u & I'c(A \ {v}).

(2) By statement (1) and Lemma 4.3 (1), we have Ic(A\ {v}) = Ic_y(A\ {v}) C Ic_y(A) =B. O

Lemma 4.5. Let n be a positive integer, G = (U, W) be a defect n-extendable bipartite graph with |W| = |U|+ 1 and k (G) > 2
and M be a near perfect matching of G. Let u € U and v € W be a pair of vertices in G such that d;(v) > n. Then the following
statements hold:

(1) if v = w, there is an n-system S° = (P, PY, ..., P? |, Q°, ) of G with respect to v and u such that Q° = v and there are
not n internally disjoint M-alternating vu-paths in G, then |A(S®)| > 3.

(2) if v # qu, thereis an (n — 1)-system S® = (PY, P, ..., P? ,, Q% ¢) of G with respect to v and u such that Q° = v and
there are not n — 1 internally disjoint M-alternating vu-paths in G, then |A(S®)| > 3.

Proof. For simplicity, we use A;, B;, A and B to denote A(i, 5°), B(i, S%), A(S°) and B(S°) respectively for any integer i.
(1) Suppose v = w, there is an n-system S = (P, PY, ..., P% |, Q°, #) with respect to v and u in G such that Q° = v and
there are not n internally disjoint M-alternating vu-paths.

Assume vy; € Pi0 forall1 <i < n— 1.Since dg(v) > n, there is a vertex z; & {y1,¥2, --.,Yn—1} such that vz; € E(G).

Note that z; # u, otherwise pY, Pg, R P,?_l, vu are n internally disjoint M-alternating vu-paths, a contradiction to the

assumption hypothesis. So z; € I'c_,({v}) = I'c_y(Ag) = By. Letx; = z{so. Thenx; € Bl’SO CA CA
Since z; € {y1,¥2,...,¥n—1} U {u} and v = w, we have x; # qv and hence [Ic({v,x1})| > 24+n—1=n+ 1by
Theorem 1.2. So there is a vertex z, € I'c({v, x1}) such thatz, & {z1} U {y1,y2, ..., ¥n—1}. Then vz, € E(G) or x1z; € E(G).
Suppose z, = u. Note that vz, ¢ E(G). Otherwise, P?, PS e P,?fl, vu are n internally disjoint M-alternating vu-paths,
a contradiction to the assumption hypothesis. Thus x1z; € E(G). Since x; € A, Lemma 4.2 implies that there is an n-system
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S =(P,P,,...,P,_1,Q, I') with respect to v and u such that x; is the end vertex of Q. Clearly, Py, P,, ..., P,_1, vQx;u are
n internally disjoint M-alternating vu-paths as x; # qv, a contradiction to the assumption hypothesis.

Soz, # uand hencez; € Ic_,({v,x1}) C I'c_u(A1) = By. Letx, = 22_50. Thenx, € BZ_SO C Aand hence {v, x1, X2} C A.
Moreover, since z, & {z1} U {y1,¥2, ..., Yn_1}, We have x, & {v, x1}. Therefore, |A| > |{v, X1, x2}| > 3 and statement (1)
holds.

(2) Suppose v # qw. Then there is a vertex ug in G such that vuy € M. The proof of statement (2) is similar with that of
statement (1) by replacing n and y,,_; with n — 1 and ug respectively. O

Theorem 4.6. Let n be a positive integer and G = (U, W) be a defect n-extendable bipartite graph with |W| = |U| 4+ 1 and
k(G) > 2. Let M be a near perfect matching in G and w be the M-unsaturated vertex. Let u € U and v € W. Then the following
statements hold:

(1) If v = w, then there are min{d;(u) — 1, dg(v), n} internally disjoint M-alternating vu-paths in G.
(2) If v #£ w, then there are min{ds(u) — 1, dg(v) — 1, n — 1} internally disjoint M-alternating vu-paths in G.

Proof. (1) Assume v = w. We prove statement (1) by induction on n.

Suppose n = 1. Since «(G) > 2, we have dg(u) > 2 and dg(v) > 2. Then min{ds(u) — 1, dg(v), n} = 1. Note that G
is a defect 1-extendable bipartite graph, thus Theorem 3.1 implies that there is an M-alternating vu-path in G. Therefore,
statement (1) holds whenn = 1.

Assume statement (1) holds when G is defect k-extendable for any integer k < n — 1. Now we consider the case when G
is defect n-extendable where n > 2.

Suppose min{dg(u) — 1,ds(v)} < n — 1, then min{dg(u) — 1, dg(v), n} = min{dg(u) — 1, dg(v), n — 1}. Since G is
defect (n — 1)-extendable, by induction hypothesis, there are min{dg(u) — 1, dg(v), n — 1} internally disjoint M-alternating
vu-paths in G and hence statement (1) holds.

Assume min{ds(u) — 1, dg(v)} > n, then min{dg(u) — 1, dg(v), n} = n. It suffices to prove that there are n internally
disjoint M-alternating vu-paths in G. Suppose to the contrary, G has no such n vu-paths.

Since G is defect (n — 1)-extendable and min{dg(u) — 1,dc(v),n — 1} = n — 1 as min{dg(u) — 1,dg(v)} > n, by

induction hypothesis, there are (n — 1) internally disjoint M-alternating vu-paths, say PY, P9, ..., P? ,in G.Let Q° = v.
Then S° = (P%, P,...,P? |, Q0 &) is an n-system of G with respect to v and u. For simplicity, we use the abbreviation

A=A(%,B=B(",y" =y foranyy e U\ {u}and V= = V=" forany V C U \ {u}.
Let vy; € E(Pio), 1 <i < n— 1. Wediscuss two cases:

Case 1. Suppose u & {y1,¥2, - - - s Yn—1}-

Suppose vu € E(G). Then vu & M as v is an M-unsaturated vertex. So P?, PS, el P,?q, vu are n internally disjoint M-
alternating vu-paths, a contradiction to the assumption that such paths do not exist. So vu ¢ E(G).Sinceu & Ic(A \ {v})
by Lemma 4.4(1), we have u & I';(A). Furthermore, Lemma 4.3(1) implies that I';(A) = Ic—,(A) = B. Note that for distinct
vertex vy and v, in U \ {u}, v; = v, occurs only if {vi, v2} € {¥1,¥2,...,Yn-1}. Clearly, {y1,¥2,...,¥n1}" = {v},
then |[B”| > |B| — (n — 1) + 1 and hence |B|] < |B™| + n — 2. Therefore, by I';(A) = B and Lemma 4.3(2), we have
e =IB| < B |+n—2<|A|+n—2

On the other hand, note that G is defect n-extendable with «(G) > 2, |A| >3 by Lemma 4.5 and u ¢ I';(A). Therefore,
Lemma 4.1 implies that |I;(A)| > |A| + n — 1, a contradiction to | I;(A)| < |A] +n — 2.

Case 2. Suppose u € {y1,Y2, - --»¥n—1}

Note that for distinct vertex vy and v, in U \ {u}, v = v; occurs only if {vi, v2} € {y1,¥2,...,¥a-1} \ {u}. So
[B~| > |B| — (n — 2) + 1and hence |B| < |B~| 4+ n — 3. Moreover, by Lemmas 4.4(2) and 4.3(2), we have |IG(A \ {v})] <
Bl <|B|+n—3<|Al+n—3.

On the other hand, note that |A \ {v}| > 2 by Lemma 4.5(1)and u ¢ I'c(A\ {v}) by Lemma 4.4(1). Moreover, Lemma 4.1
implies that [IG(A\ {v})| = |A\ {v}| +n— 1 = |A| + n — 2, a contradiction to | I;(A)| < |A| +n — 3.

In both cases, we can find a contradiction, so G has n internally disjoint M-alternating vu-paths when min{ds(u) —
1, d¢(v)} > n and hence statement (1) holds.

(2) Assume v # w. Now we prove statement (2) by induction on n.

If n = 1, then min{dg(u) — 1, dg(v) — 1, n — 1} = 0 and statement (2) is obviously true. Assume statement (2) is true
when G is defect k-extendable for all integer k < n — 1. Now we consider the case when G is defect n-extendable.

By Lemma 2.4, G is defect (n — 1)-extendable, thus by induction hypothesis, G has min{d¢(u) — 1, dc(v) — 1,n — 2}
internally disjoint M-alternating vu-paths.

If min{dg(u) — 1, dg(v) — 1} < n — 2, then min{dg(u) — 1, dg(v) — 1,n — 1} = min{dg(u) — 1, dg(v) — 1,n — 2} and
hence G has min{ds(u) — 1, dg(v) — 1, n — 1} internally disjoint M-alternating vu-paths by induction hypothesis.

In the following, we consider the case of min{dg(u) — 1,dg(v) — 1} >n — 1.

Note that min{dg(u) — 1, dg(v) —1,n— 1} = n— 1 and min{dg(u) — 1, dg(v) — 1, n — 2} = n — 2. Therefore, Ghasn — 2
internally disjoint M-alternating vu-paths, say P?, P9, ..., P? ,. It is enough to prove that G has n — 1 internally disjoint
M-alternating vu-paths. Suppose G has no such n — 1 vu-paths.

LetQ® = v.ThenS® = (PY, PY, ..., P? ,,Q°, ¢) is an (n — 1)-system of G with respect to v and u. Assume vuy € M and
vy; € E(Pio), 1<1i < n— 2.wediscuss two cases: u ¢ {ug, y1,y2, - .., Yn—2} and u € {ug, y1, y2, - - . , ¥n—2}. The proof of the
two cases are similar to that in statement (1) by replacing y,_1 withug. O
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X X, X, X, Xs

N ¥ s Vs ¥s w

Fig. 1. A defect 2-extendable graph G.

Remark 4.7. (1) It is easy to check that the bounds in Theorem 4.6 are sharp (cf. Fig. 1). Clearly, U = {x; : 1 < i < 5}
and W = {y; : 1 < i < 5} U {w} are the bipartitions of G with |[W| = |U| + 1. It is easy to check that «(G) > 2 and
forany S € U and 1< |S| < |U| — 2, |I5(S)| > |S| 4+ 2. So Lemma 2.1 implies that G is defect 2-extendable. Note that
M = {x;y; : 1 <i < 5}is anear perfect matching of G, w is the M-unsaturated vertex and min{dg(x;) — 1, dg(w), 2} = 2.
Clearly, there are exactly two internally disjoint M-alternating wx;-paths in G because each M-alternating wx;-path must
contain y3 or ¥4. So the bound in Theorem 4.6(1) is sharp. Note that min{ds(x4) — 1, dg(ys) — 1,2 — 1} = 1 and x4ys is the
only M-alternating x4ys-path in G. Thus the bound in Theorem 4.6(2) is sharp, too.

(2) Given a defect n-extendable bipartite graph G = (U, W) with x(G) > 2 and |W| = |U| 4 1, and a near perfect matching
M of G. Select any u € U and v € W. Since Wen and Yang [12] prove that 2 < §(G) < n + 1, Theorem 4.6 implies that
the number of internally disjoint M-alternating vu-paths may be much less than n. But by Lemma 2.1, d(u) > n+ 1 and by
Theorem 1.2, [Ic({v,y})] > n+ 1foranyy € W and y # v. Then it is reasonable to guess that the number of internally
disjoint M-alternating vu-paths may be not less than n if we add some new edges to G such that v is adjacent to all vertices
in I'z(v, y). So we introduce the operation # defined as follows. Let G be a graph, v,y € V(G) and S C V(G).Let E(v, y) = {
edges joining vertex v to all vertices in G which are adjacent to y but not adjacent to v}. We use G#(S, y) to denote a graph
constructed from G by adding all edges in (s E(v, ¥) to G. Then we get the following theorem.

Theorem 4.8. Let n be a positive integer, G = (U, W) be a bipartite graph such that |W| = |U| + 1 and «(G) > 2. Then G is
defect n-extendable if and only if for any w € W the following two statements hold:

(1) there is a near perfect matching M in G such that w is the M-unsaturate vertex;
(2) for any near perfect matching M in G such that w is the M-unsaturated vertex and any vertexu € U and v € W \ {w}, there
are n internally disjoint M-alternating wu-paths in H = G x ({w}, v).

Proof. First we prove the necessity. Let G = (U, W) be a defect n-extendable bipartite graph with |W| = |U| + 1 and
k(G) > 2. Select any vertex w in G.

(1)Sincen > 1and «(G) > 2, we have min{x (G) — 1, n— 1} > 0. Thus Lemma 2.5 implies that G — w has a perfect matching
M. Clearly, M is a near perfect matching in G such that w is the M-unsaturated vertex. Then statement (1) holds.
(2)Selectany v € W\{w}.LetH = G*({w}, v). Then by Lemma 2.1, H is a defect n-extendable bipartite graph with « (G) > 2.
Note that dy(w) = [Ic({v, w})| > 2+ n—1=n+ 1byTheorem 1.2, and dy(u) > |Ic(u)| > n+ 1 by Lemma 2.1. So
min{dy (u) — 1, dg(w), n} = nand hence Theorem 4.6(1) implies that there are n internally disjoint M-alternating wu-paths
in H. Thus statement (2) holds.

Now we prove the sufficiency. Suppose to the contrary G is not defect n-extendable. Then there is a matching S of size
n in G which is not contained in any near perfect matching of G. By statement (1), we may assume that M is a near perfect
matching of G that contains as many edges in S as possible and w is the M-unsaturated vertex. Clearly, there is an edgee € S
and e ¢ M. Assume e = ab wherea € U and b € W. Then there is a vertex v in W such that av € M. If b = w, then
M’ = (M \ {av}) U {ab} is a near perfect matching in G and M’ N'S| > |[M N S|, a contradiction to the choice of M.

So b # w. Then there is a vertex u in U such that ub € M. Let H = G * ({w}, v). It is not difficult to see that M is a near
perfect matching in H. Statement (2) implies that there are n internally disjoint M-alternating wu-paths, say Py, Py, ..., Py,
in H. Clearly, forall 1 <i < n, ub & E(P;) as ub € M. Therefore, e ¢ E(P;) forall 1 <i < n.Since |S \ {e}| = n — 1, there is
at least a path P; among Py, P, ..., P, satisfies that E(P})) N S = ¢.

Suppose v € V(P;). By the definition of H, we have C = vPjubav is an M-alternating cycle in G. Let M’ = MAE(C). Then
M’ is also a near perfect matching in G such that |[M’ N S| > |M N S|, a contradiction to the choice of M.

Sov ¢ V(P;) and hence a € V(P;). Assume P; = wapa; ... axu.Then ag € I'c(w) U I'z(v) asH = G x ({w}, v).

Suppose ay € Ig(w). Then P; is an M-alternating wu-path in G. Since v ¢ V(P;), we have that Q = wP;ubav is an
M-alternating wv-path in G and E(Q) NS = {e}. Therefore, M" = MAE(Q) is a near perfect matching in G such that
IM” 0S| > [M N S|, a contradiction to the choice of M.

Soay & I'c(w). Thenag € I'c(v).Since v € V(Pj) and H = G * ({w}, v), we have R = vapa . .. au is an M-alternating
vu-path in G. Moreover, since a ¢ V(P;), we have C’ = vRubav is an M-alternating cycle in G and E(C’) NS = {e}. Let
T = MAE(C’). Then T is a near perfect matching in G such that |T N S| > |M N S|, a contradiction to the choice of M.

So every matching of size n is contained in a near perfect matching of G and we complete the proof of sufficiency. O
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To identify if a bipartite graph G with «(G) > 2 is defect n-extendable, Theorem 4.8 requires us to check every near
perfect matching in G. However, the following theorem greatly reduces the number.

Theorem 4.9. Let n be a positive integer and G = (U, W) be a bipartite graph with |W| = |U| + 1, which has a near perfect
matching. Let M and My be two near perfect matchings of G, w be the M-unsaturated vertex and wq be the My-unsaturated
vertex. Let u € Uand v € W.If w = wq and G has k internally disjoint My-alternating uv-paths, then G also has k internally
disjoint M-alternating uv-paths.

Proof. Assume w = wg and G has k internally disjoint My-alternating uv-paths, say Py, P, ..., Py, in G, where u € U and
v € W. Let H be a graph constructed from G by adding a new vertex x and joining x to w only. Let M’ = M U {xw} and
Mg = Mo U {xw}. Obviously, M’ and M; are perfect matchings in H and Py, P, ..., Py are k internally disjoint Mg-alternating
uv-paths in H. So Lemma 2.3 implies that there are also k internally disjoint M’-alternating uv-paths, say Qi, Qa, ..., Qi in
H. Since x only joins to w in H, we have x & V(Q;) forall 1 <i < k. Then Q4, Q,, ..., Qi are also M-alternating uv-paths in
G and this complete the proof of the theorem. O

By Theorems 4.8 and 4.9, we can get the following theorem immediately.

Theorem 4.10. Let n be a positive integer, G = (U, W) be a bipartite graph such that |W| = |U| 4+ 1 and k(G) > 2. Then G is

defect n-extendable if and only if for any w € W the following two statements hold:

(1) There is a near perfect matching M in G such that w is the M-unsaturate vertex;

(2) Let M be a near perfect matching in G such that w is the M-unsaturated vertex. Then for any vertexu € U andv € W \ {w},
there are n internally disjoint M-alternating wu-paths in H = G x ({w}, v).

Proof. It follows from Theorems 4.8 and4.9. O

Remark 4.11. Given a bipartite graph G = (U, W) with «(G) > 2 and |W| = |U| + 1, to identify if G is defect n-extendable,
Theorem 4.10 shows that for any w € W, it is enough to check that if G contains a near perfect matching M such that w
is the M-unsaturated vertex and if it does, then we continue to check that forany u € U and v € W \ {w}, if there are n
internally disjoint M-alternating uw-paths in H = G ({w}, v). Note that to find a near perfect matching in G is equal to find

—
a maximum matching in G, which needs 0(p'/2q) time [6]. If we construct a directed graph H from H by giving orientation
to all edges in M from U to W and orientation to the other edges of H from W to U, then the maximum number of internally
disjoint M-alternating wu-paths in H is equivalent to the maximum number of internally disjoint directed path from w to u

in ﬁ Such paths can be found in O(p?) time by using the algorithm of finding the maximum flow between w and u in FI) each
edge of which is assigned with unit capacity [9]. Since w, v and u are arbitrary, we have to compute the maximum number
of internally disjoint alternating paths between two vertices O(p®) times. Furthermore, we have to find maximum matching
[W| = O(p) times. So determining if a bipartite graph G is defect n-extendable can be done in O(p>  p> 4+ p*p'/2q) = 0(p®)
time. Especially, when « (G) > n, we can greatly decrease the time complexity by the following theorem.

Theorem 4.12. Let n be a positive integer and G = (U, W) be a bipartite graph such that |W| = |U| + 1and «(G) > n. Let G’
be a graph constructed from G by adding a vertex x ¢ V (G) and joining x to all vertices in W. Then G is defect n-extendable if and
only if G is n-extendable.

Proof. Let G’ be as defined in the statement.

First we prove the necessity. Assume G is defect n-extendable. We consider two cases.

Case 1.n = 1. Select any e € E(G). It suffices to prove there is a perfect matching in G’ that contains e.

Suppose e € E(G). Since G is defect 1-extendable, there is a near perfect matching M in G containing e. Assume w is the
M-unsaturated vertex in G. Obviously, M U {xw} is a perfect matching in G’ containing e.

Suppose e ¢ E(G). Then e is incident with x. Assume e = xv. Then v € W and Lemma 2.5 implies that G — v is
min{x(G) — 1, n — 1}-extendable. Note that min{x(G) — 1,n — 1} > 0as«(G) > n > 1. Then G — v has a perfect
matching M'. Clearly M’ U {e} is a perfect matching in G’ containing e.

Case 2.n > 2.Selectany S € W such that 1 < |S| < |W| — n. By the definition of G’, we have I'¢'(S) = I5(S) U {x}, thus
e (S| = TS| + 1.

Suppose |S| = 1. Assume S = {t}. Then I';(t) = dg(t) > «(G) > nand hence | (S)| = [[c(t)|+1>n+1=|S|+n.

Suppose |S| > 2. Since k(G) > n > 2, Theorem 1.2 implies that | (S)| = |[IcS)|+1>|S|+n—1+1=|S|+n.

So |I'z(S)| = |S| + nforany 1< |S| < [W]| — n, and hence Lemma 2.7 implies that G’ is n-extendable.

Now we prove the sufficiency. Assume G’ is n-extendable. Select any matching F of size n in G. Then F is also a matching
in G'. So there is a perfect matching M in G’ containing F and xw € M for some w € W. Note that xw ¢ F as x & V(F). Thus
M \ {xw} is a near perfect matching in G containing F. Therefore, G is defect n-extendable. O

Remark 4.13. Theorem 4.12 shows that verifying if a graph G with p vertices, g edges and « (G) > n is defect n-extendable
is equal to verify if a bipartite graph G’ with p + 1 vertices and (p + 1)/2 + q edges is n-extendable, which was proved in
[13] to be done in O((p + 1)((p + 1)/2 + q)) = O(pq) time.

Theorem 4.14. Let k and n be positive integer and G = (U, W) be a defect n-extendable bipartite graph with k(G) > 2. Let
e = xy be an edge such that x,y &€ V(G) and H be a graph constructed from G by joining x to at least k + 1 vertices in W and
joining y to at least k vertices in U. Then H is defect min{n, k}-extendable.
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Proof. Let U' = U U {x} and W' = W U {y}. Then (U’, W’) be the bipartitions of H. Let m = min{n, k}. Since x(G) > 2, by
the construction of H, we have «(H) > 2. Select any S’ C U’ such that 1 < |S| < |U’| — m. Lemma 2.1 implies that it is
enough to prove that [ Iy (S")| > |S’| + m. We consider the following cases:
Case 1.x ¢ S'.
Case 1.1. |S'| < |U]| — n. Since G is defect n-extendable with «(G) > 2, Lemma 2.1 implies that |y (S")| > |I5(S)| >
IS’| +n > |S’| + min{n, k} = |S'| + m.
Case 1.2.|S’| > |U| — n. Note that | I;(S")| > |[W| — 1 by Lemma 2.2.
Case 1.2.1. k > n.Then |S’| > |U] —n > |U| — k. Since y is adjacent to k vertices in U, y joins to at least a vertex in S’.
Therefore |[I'y(S)| = [IcSH Uy} = Tc(SH|+1>|W|—-1+1=|W|=|U'| > |S'| + msince |S'| < |U'| — m.
Case 1.2.2.k < n. If |S’| < |U| — k,then m = min{n, k} = k.So [Ix(S")| > |[I(S)| > |W|—1=|U| > |S'| +k=|S'| + m.
If |S’| > |U]| — k, then similarly to the proofin Case 1.2.1, we have [I'y(S))| > |S'| + m.
Case2.x € S'.

LetS =S\ {x}.ThenS C U.

IfS = @, then S’ = {x} and hence [I3(S)] =k + 1> 1+ min{n, k} = |S'| +m.

If1 < |S| < |U| — n, then Lemma 2.1 implies that |[I5(S)| > |S| + n. Since y is adjacent to x, we have |I'y(S")| >
IS Uy = ISI+n+1=|Sl+n=> S| + min{n, k} = |S'| + m.

If |S| > |U| — n, then Lemma 2.2 implies that | I;(S)| > |W| — 1. Moreover, y is adjacent to x and |S’| < |U’| — m, then
we have [I(S)| > [T(S) U{yH = W] -1+ 1=|W|=|U"| > |S'| +m.

Thus in all cases, we have |I'y(S’)| > |S’| + m and the proof is completed. O

5. Verify defect n-extendable bipartite graph G withn > 2 and «(G) = 1

Using M-alternating paths, Sections 3 and 4 present the methods to decide if a bipartite graph G is defect n-extendable
in polynomial time for the case of n = 1 or k(G) > 2. In this section, we will solve the case of n > 2 and x(G) = 1.
Firstly, we define two types of bipartite graphs G with x(G) = 1. Let G = (U, W) be a bipartite graph with «(G) = 1 and
|W| = |U| + 1. If G contains no cut vertex in W, we called it a Type-A graph, otherwise we call it a Type-B graph. Clearly
any defect n-extendable bipartite graph G with k(G) = 1and n > 2 belongs to either Type-A or Type-B graph. We will
characterize the two types of defect n-extendable bipartite graph respectively.

Theorem 5.1. Let G = (U, W) with k(G) = 1and |W| = |U| + 1 be a Type-A bipartite graph. Let n be a positive integer with
2<n<|Ul—1,xbeacutvertexinGand H = (X, Y) be a component in G — x. Then G is defect n-extendable if and only if the
following statements hold:

(1) There are exactly two components in G — x.
@) IXI = 1Yl =1
B) IfIXI=Y|+1=m+1, then
B31)YCUandX CW.
(3.2) H isisomorphic to Ky, K; 1 or a defect s-extendable graph with « (H) > 2 where s = min{n, m — 1}.
(3.3) For any w € V(H) such that wx € E(G), each component H' = (X', Y’) in H — w with |X'| = m' is t-extendable
wheret = min{n — 1, m’ — 1}.
(3.4) If |[Ic(x) "N V(H)| < |X| holds for each component H = (X, Y) in G — x with |X| = |Y| + 1, thendg(x) > n+ 1.

Proof. Sufficiency is immediate from Theorem 1.1. Now we prove the necessity.

Since G is a Type-A defect n-extendable graph, Theorem 1.1 implies that we only need to prove statement (3.2). Assume

|X| =1Y| + 1= m+ 1. We discuss three cases.

Case 1.m = 0. Then |X| = 1and |Y| = 0. So H is isomorphic to K;.

Case2.m = 1.Then |X| = 2 and |Y| = 1. Since H is connected, we have H is isomorphic to K ;.

Case 3.m > 2.Lets = min{n, m — 1}. Sincen > 2 and m > 2, we have s > 1. Theorem 1.1(4.2) implies that H is defect
s-extendable. Thus it suffices to prove that « (H) > 2. Suppose to the contrary « (H) = 1. We consider two cases.

Case 3.1. Suppose H is a Type-B graph.

Then there is a cut vertex w of H in X. Clearly, w € W. Let H; = (X1, Y1) and H, = (X3, Y>) be two components of
H — wwhereX; € Xand Y; € Y,i = 1, 2. Since H is defect s-extendable and w € X, Theorem 1.1(1) and (2) imply that
|Xl| = |Yl| > 1, i= 1, 2.

Note that xv € E(G) for some v € X;. Otherwise H; is a component of G — w and hence w is a cut vertex of Gin W, a
contradiction, since G is a Type-A graph. Obviously, wy, € E(G) for some y, € Y, as H, is a component of H — w. Since
|Y1] > |X1 \ {v}| and vertices in Y; can only join to vertices in X; \ {v}in G — {v, X, w, y,}, there is no near perfect matching
in G containing {vx, wy,}, a contradiction to the hypothesis that G is defect n-extendable where n > 2.

Case 3.2. Suppose H is a Type-A graph.

Then there is no cut vertex of H in X. Since « (H) = 1, there is a cut vertex, say ¥, in Y and Theorem 1.1 (1) and (2) imply
that there are exactly two components C; = (U, W;) and C; = (U, W5) inH — y where W; € Xand U; C Y,i = 1, 2.
Then xz € E(G) for some z € W; U W,. Without loss of generality, assume z € Wjy. Since H is defect s-extendableandy € Y,
Theorem 1.1(1) and (4) imply that |W;| = |U;| + 1,i = 1, 2. Let k; = |U;|,i = 1, 2. Then k; > 0.
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Suppose U; = ¢. Then W; = {z}. Note that xa € E(G) for some a € W,, otherwise, G — z is disconnected, whilez € W, a
contradiction, since G is a Type-A graph. Since U; = ¢ and |U; U U, U {y}| = m > 2, we have U, # q¢. Note that y joins to a
vertex b in W, such that a # b. Otherwise, y only joins vertex a in W, and hence H, — a and H; are different components in
G — a, a contradiction to the assumption hypothesis that G is Type-A graph. It is not difficult to see that |U,| > |W> \ {a, b}|
and vertices in U, can only join to vertices in W5 \ {a, b} in G—{a, x, b, y}, so there is no near perfect matching in G containing
{ax, by}, a contradiction to the hypothesis that G is defect n-extendable where n > 2.

So U; # ¢. Analogous to the proof above, we can prove that y joins to a vertex c in W such that ¢ # z and there is
no near perfect matching in G containing matching {zx, cy}, a contradiction to the hypothesis that G is defect n-extendable
wheren > 2.

In both Cases 3.1 and 3.2, we can find a contradiction. Therefore, x (H) > 2 and statement (3.2) follows. O

Theorem 5.2. Let G = (U, W) with «(G) = 1and |W| = |U| + 1 be a Type-B bipartite graph. Let n be a positive integer such
that 2 < n < |U| — 1and v be a cut vertex of Gin W. Then G is defect n-extendable if and only if for any component H = (X, Y)
in G — v, the following statements hold:
(1) IX] =1Y].
(2) If |X]| = |Y| = m, then

(2.1) H is s-extendable where s = min{n — 1, m — 1};

(2.2) H = G[V(H) U {v}] is defect t-extendable where t = min{n, m — 1} and if « (H") = 1, then H' is a Type-A graph.

Proof. Sufficiency is immediate by Theorem 1.1(1)-(3). To prove the necessity, by Theorem 1.1, we only need to prove that
H' = G[V(H) U {v}] is a Type-A graph when « (H") = 1. Assume x (H") = 1. Suppose to the contrary H’ is not Type-A graph.

Without loss of generality, assume X C Uand Y C W, then X’ = X and Y’ = Y U {v} are the two bipartitions of H' with
Y| = |X'| + 1.

Since H' is not Type-A graph, then H’ is a Type-B graph and hence H' has a cut vertex y in Y'. Let H; = (U;, W;) be the
component in H — y that contains v where U; C U and W; € W. Let H, be another component in H — y. Note that H; and
H, are in different components of G — y. Therefore, y is also a cut vertex in G.

LetH” = (X", Y”) be acomponentin G— v suchthat H” # H,X” C UandY” C W and Q = (U’, W’) be the component
in G — y that contains vertex v, U’ C Uand W' C W.

Note thaty ¢ V(H;) UV (H"),v € V(Q), v € V(H;) and v joins to at least a vertex in H”. So V(H;) U V(H") C V(Q)
and hence U; U X" C U’. Since H' is defect min{n, m — 1} extendable and H, is a component of H" — y, by Theorem 1.1(1)
and (2), we have |U;| = |W;| > 1. Analogously, we have |X”| = |Y”| > 1. Thus |U’'| > |U; UX"| > 2. Furthermore,
since Q is a component of G — y, by Theorem 1.1(3) again, we have Q is min{n — 1, |U’| — 1} > 1 extendable as n > 2. So
Lemma 2.8 implies that « (Q) > 2. However, note that H; — v and H” are in different components of Q — v. Hence x (Q) = 1,
a contradiction to k(Q) > 2. Thus H’' is a Type-A graph. O

Remark 5.3. A bipartite graph G = (U, W) with «(G) = 1and |[W| = |U| 4+ 1is a Type-A graph can be determined in
O(p?) time. This together with Theorem 5.1 imply that verifying if G is Type-A defect n-extendable (n > 2) can be done in
polynomial time as statements (1), (2), (3.1) and (3.4) can be checked in O(p?) time, Section 4 shows that verifying statement
(3.2) needs O(p®) time and verifying statement (3.3) needs O(p?q) time as it only needs to test if a bipartite graph is t-
extendable p times at most and each can be done in O(pq) time [13]. So the total time complexity to determine if G is Type-A
defect n-extendable using Theorem 5.1 is O(p®). Moreover, by Theorem 5.2, to determine if G is Type-B defect n-extendable
can also be done in polynomial time.
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