Galois extensions, plus closure, and maps on local cohomology

Akiyoshi Sannai ${ }^{\mathrm{a}, 1}$, Anurag K. Singh ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
${ }^{\text {b }}$ Department of Mathematics, University of Utah, 155 S. 1400 E., Salt Lake City, UT 84112, USA

Received 1 April 2011; accepted 20 December 2011
Available online 23 December 2011
Communicated by Karen Smith

Abstract

Given a local domain (R, \mathfrak{m}) of prime characteristic that is a homomorphic image of a Gorenstein ring, Huneke and Lyubeznik proved that there exists a module-finite extension domain S such that the induced map on local cohomology modules $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)$ is zero for each $i<\operatorname{dim} R$. We prove that the extension S may be chosen to be generically Galois, and analyze the Galois groups that arise.

© 2011 Elsevier Inc. All rights reserved.
MSC: primary 13D45; secondary 13A35, 14B15, 14F17
Keywords: Characteristic p methods; Local cohomology; Big Cohen-Macaulay algebras; Integral ring extensions; Galois extensions

1. Introduction

Let R be a commutative Noetherian integral domain. We use R^{+}to denote the integral closure of R in an algebraic closure of its fraction field. Hochster and Huneke proved the following:

[^0]Theorem 1.1. (See [8, Theorem 1.1].) If R is an excellent local domain of prime characteristic, then each system of parameters for R is a regular sequence on R^{+}, i.e., R^{+}is a balanced big Cohen-Macaulay algebra for R.

It follows that for a ring R as above, and $i<\operatorname{dim} R$, the local cohomology module $H_{\mathfrak{m}}^{i}\left(R^{+}\right)$ is zero. Hence, given an element $[\eta]$ of $H_{\mathfrak{m}}^{i}(R)$, there exists a module-finite extension domain S such that $\left[\eta\right.$] maps to 0 under the induced map $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)$. This was strengthened by Huneke and Lyubeznik, albeit under mildly different hypotheses:

Theorem 1.2. (See [10, Theorem 2.1].) Let (R, \mathfrak{m}) be a local domain of prime characteristic that is a homomorphic image of a Gorenstein ring. Then there exists a module-finite extension domain S such that the induced map

$$
H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)
$$

is zero for each $i<\operatorname{dim} R$.
By a generically Galois extension of a domain R, we mean an extension domain S that is integral over R, such that the extension of fraction fields is $\operatorname{Galois} ; \operatorname{Gal}(S / R)$ will denote the Galois group of the corresponding extension of fraction fields. We prove the following:

Theorem 1.3. Let R be a domain of prime characteristic.
(1) Let \mathfrak{a} be an ideal of R and $[\eta]$ an element of $H_{\mathfrak{a}}^{i}(R)_{\text {nil }}$ (see Section 2.3). Then there exists a module-finite generically Galois extension S, with $\operatorname{Gal}(S / R)$ a solvable group, such that $\left[\eta\right.$] maps to 0 under the induced map $H_{\mathfrak{a}}^{i}(R) \longrightarrow H_{\mathfrak{a}}^{i}(S)$.
(2) Suppose (R, \mathfrak{m}) is a homomorphic image of a Gorenstein ring. Then there exists a modulefinite generically Galois extension S such that the induced map $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)$ is zero for each $i<\operatorname{dim} R$.

Set $R^{+ \text {sep }}$ to be the R-algebra generated by the elements of R^{+}that are separable over frac (R). Under the hypotheses of Theorem 1.3(2), $R^{+ \text {sep }}$ is a separable balanced big Cohen-Macaulay R-algebra; see Corollary 3.3. In contrast, the algebra R^{∞}, i.e., the purely inseparable part of R^{+}, is not a Cohen-Macaulay R-algebra in general: take R to be an F-pure domain that is not CohenMacaulay; see [8, p. 77].

For an \mathbb{N}-graded domain R of prime characteristic, Hochster and Huneke proved the existence of a \mathbb{Q}-graded Cohen-Macaulay R-algebra $R^{+\mathrm{GR}}$, see Theorem 5.1. In view of this and the preceding paragraph, it is natural to ask whether there exists a \mathbb{Q}-graded separable CohenMacaulay R-algebra; in Example 5.2 we show that the answer is negative.

In Example 5.3 we construct an \mathbb{N}-graded domain of prime characteristic for which no module-finite \mathbb{Q}-graded extension domain is Cohen-Macaulay.

We also prove the following results for closure operations; the relevant definitions may be found in Section 2.1.

Theorem 1.4. Let R be an integral domain of prime characteristic, and let \mathfrak{a} be an ideal of R.
(1) Given an element $z \in \mathfrak{a}^{F}$, there exists a module-finite generically Galois extension S, with $\operatorname{Gal}(S / R)$ a solvable group, such that $z \in \mathfrak{a} S$.
(2) Given an element $z \in \mathfrak{a}^{+}$, there exists a module-finite generically Galois extension S such that $z \in \mathfrak{a} S$.

In Example 4.1 we present a domain R of prime characteristic where $z \in \mathfrak{a}^{+}$for an element z and ideal \mathfrak{a}, and conjecture that $z \notin \mathfrak{a} S$ for each module-finite generically Galois extension S with $\operatorname{Gal}(S / R)$ a solvable group. Similarly, in Example 4.3 we present a 3-dimensional ring R where we conjecture that $H_{\mathfrak{m}}^{2}(R) \longrightarrow H_{\mathfrak{m}}^{2}(S)$ is nonzero for each module-finite generically Ga lois extension S with $\operatorname{Gal}(S / R)$ a solvable group.

Remark 1.5. The assertion of Theorem 1.2 does not hold for rings of characteristic zero: Let (R, \mathfrak{m}) be a normal domain of characteristic zero, and S a module-finite extension domain. Then the field trace map $\operatorname{tr}: \operatorname{frac}(S) \longrightarrow \operatorname{frac}(R)$ provides an R-linear splitting of $R \subseteq S$, namely

$$
\frac{1}{[\operatorname{frac}(S): \operatorname{frac}(R)]} \operatorname{tr}: S \longrightarrow R
$$

It follows that the induced maps on local cohomology $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)$ are R-split. A variation is explored in [15], where the authors investigate whether the image of $H_{\mathfrak{m}}^{i}(R)$ in $H_{\mathfrak{m}}^{i}\left(R^{+}\right)$ is killed by elements of R^{+}having arbitrarily small positive valuation. This is motivated by Heitmann's proof of the direct summand conjecture for rings (R, \mathfrak{m}) of dimension 3 and mixed characteristic $p>0$ [5], which involves showing that the image of

$$
H_{\mathfrak{m}}^{2}(R) \longrightarrow H_{\mathfrak{m}}^{2}\left(R^{+}\right)
$$

is killed by $p^{1 / n}$ for each positive integer n.
Throughout this paper, a local ring refers to a commutative Noetherian ring with a unique maximal ideal. Standard notions from commutative algebra that are used here may be found in [2]; for more on local cohomology, consult [11]. For the original proof of the existence of big Cohen-Macaulay modules for equicharacteristic local rings, see [6].

2. Preliminary remarks

2.1. Closure operations

Let R be an integral domain. The plus closure of an ideal \mathfrak{a} is the ideal $\mathfrak{a}^{+}=\mathfrak{a} R^{+} \cap R$.
When R is a domain of prime characteristic $p>0$, we set

$$
R^{\infty}=\bigcup_{e \geqslant 0} R^{1 / p^{e}}
$$

which is a subring of R^{+}. The Frobenius closure of an ideal \mathfrak{a} is the ideal $\mathfrak{a}^{F}=\mathfrak{a} R^{\infty} \cap R$. Alternatively, set

$$
\mathfrak{a}^{\left[p^{e}\right]}=\left(a^{p^{e}} \mid a \in \mathfrak{a}\right)
$$

Then $\mathfrak{a}^{F}=\left(r \in R \mid r^{p^{e}} \in \mathfrak{a}^{\left[p^{e}\right]}\right.$ for some $\left.e \in \mathbb{N}\right)$.

2.2. Solvable extensions

A finite separable field extension L / K is solvable $\operatorname{if} \operatorname{Gal}(M / K)$ is a solvable group for some Galois extension M of K containing L. Solvable extensions form a distinguished class, i.e.,
(1) for finite extensions $K \subseteq L \subseteq M$, the extension M / K is solvable if and only if each of M / L and L / K is solvable;
(2) for finite extensions L / K and M / K contained in a common field, if L / K is solvable, then so is the extension $L M / M$.

A finite separable extension L / K of fields of characteristic $p>0$ is solvable precisely if it is obtained by successively adjoining
(1) roots of unity;
(2) roots of polynomials $T^{n}-a$ for n coprime to p;
(3) roots of Artin-Schreier polynomials, $T^{p}-T-a$;
see, for example, [12, Theorem VI.7.2].

2.3. Frobenius-nilpotent submodules

Let R be a ring of prime characteristic p. A Frobenius action on an R-module M is an additive map $F: M \longrightarrow M$ with $F(r m)=r^{p} F(m)$ for each $r \in R$ and $m \in M$. In this case, ker F is a submodule of M, and we have an ascending sequence

$$
\operatorname{ker} F \subseteq \operatorname{ker} F^{2} \subseteq \operatorname{ker} F^{3} \subseteq \cdots
$$

The union of these is the F-nilpotent submodule of M, denoted $M_{\text {nil }}$. If R is local and M is Artinian, then there exists a positive integer e such that $F^{e}\left(M_{\text {nil }}\right)=0$; see [13, Proposition 4.4] or [4, Theorem 1.12].

3. Proofs

We record two elementary results that will be used later:
Lemma 3.1. Let K be a field of characteristic $p>0$. Let a and b be elements of K where a is nonzero. Then the Galois group of the polynomial

$$
T^{p}+a T-b
$$

is a solvable group.
Proof. Form an extension of K by adjoining a primitive $p-1$ root of unity and an element c that is a root of $T^{p-1}-a$. The polynomial $T^{p}+a T-b$ has the same roots as

$$
\left(\frac{T}{c}\right)^{p}-\left(\frac{T}{c}\right)-\frac{b}{c^{p}}
$$

which is an Artin-Schreier polynomial in T / c.

Lemma 3.2. Let R be a domain, and \mathfrak{p} a prime ideal. Given a domain S that is a module-finite extension of $R_{\mathfrak{p}}$, there exists a domain T, module-finite over R, with $T_{\mathfrak{p}}=S$.

Proof. Given $s_{i} \in S$, there exists $r_{i} \in R \backslash \mathfrak{p}$ such that $r_{i} s_{i}$ is integral over R. If s_{1}, \ldots, s_{n} are generators for S as an R-module, set $T=R\left[r_{1} s_{1}, \ldots, r_{n} s_{n}\right]$.

Proof of Theorem 1.3. Since solvable extensions form a distinguished class, (1) reduces by induction to the case where $F([\eta])=0$. Compute $H_{\mathfrak{a}}^{i}(R)$ using a Cech complex $C^{\bullet}(\boldsymbol{x} ; R)$, where $\boldsymbol{x}=x_{0}, \ldots, x_{n}$ are nonzero elements generating the ideal \mathfrak{a}; recall that $C^{\bullet}(\boldsymbol{x} ; R)$ is the complex

$$
0 \longrightarrow R \longrightarrow \bigoplus_{i=0}^{n} R_{x_{i}} \longrightarrow \bigoplus_{i<j} R_{x_{i} x_{j}} \longrightarrow \cdots \longrightarrow R_{x_{0} \cdots x_{n}} \longrightarrow 0
$$

Consider a cycle η in $C^{i}(\boldsymbol{x} ; R)$ that maps to $[\eta]$ in $H_{\mathfrak{a}}^{i}(R)$. Since $F([\eta])=0$, the cycle $F(\eta)$ is a boundary, i.e., $F(\eta)=\partial(\alpha)$ for some $\alpha \in C^{i-1}(\boldsymbol{x} ; R)$.

Let μ_{1}, \ldots, μ_{m} be the square-free monomials of degree $i-2$ in the elements x_{1}, \ldots, x_{n}, and regard $C^{i-1}(\boldsymbol{x} ; R)=C^{i-1}\left(x_{0}, \ldots, x_{n} ; R\right)$ as

$$
R_{x_{0} \mu_{1}} \oplus \cdots \oplus R_{x_{0} \mu_{m}} \oplus C^{i-1}\left(x_{1}, \ldots, x_{n} ; R\right)
$$

There exist a power q of the characteristic p of R, and elements b_{1}, \ldots, b_{m} in R, such that α can be written in the above direct sum as

$$
\alpha=\left(\frac{b_{1}}{\left(x_{0} \mu_{1}\right)^{q}}, \ldots, \frac{b_{m}}{\left(x_{0} \mu_{m}\right)^{q}}, *, \ldots, *\right) .
$$

Consider the polynomials

$$
T^{p}+x_{0}^{q} T-b_{i} \quad \text { for } i=1, \ldots, m
$$

and let L be a finite extension field where these have roots t_{1}, \ldots, t_{m} respectively. By Lemma 3.1, we may assume L is Galois over $\operatorname{frac}(R)$ with the Galois group being solvable. Let S be a module-finite extension of R that contains t_{1}, \ldots, t_{m}, and has L as its fraction field; if R is excellent, we may take S to be the integral closure of R in L.

In the module $C^{i-1}(x ; S)$ one then has

$$
\alpha=\left(\frac{t_{1}^{p}+x_{0}^{q} t_{1}}{\left(x_{0} \mu_{1}\right)^{q}}, \ldots, \frac{t_{m}^{p}+x_{0}^{q} t_{m}}{\left(x_{0} \mu_{m}\right)^{q}}, *, \ldots, *\right)=F(\beta)+\gamma
$$

where

$$
\beta=\left(\frac{t_{1}}{\left(x_{0} \mu_{1}\right)^{q / p}}, \ldots, \frac{t_{m}}{\left(x_{0} \mu_{m}\right)^{q / p}}, 0, \ldots, 0\right)
$$

and

$$
\gamma=\left(\frac{t_{1}}{\mu_{1}^{q}}, \ldots, \frac{t_{m}}{\mu_{m}^{q}}, *, \ldots, *\right)
$$

are elements of

$$
C^{i-1}(\boldsymbol{x} ; S)=S_{x_{0} \mu_{1}} \oplus \cdots \oplus S_{x_{0} \mu_{m}} \oplus C^{i-1}\left(x_{1}, \ldots, x_{n} ; S\right)
$$

Since $F(\eta)=\partial(F(\beta)+\gamma)$, we have

$$
F(\eta-\partial(\beta))=\partial(\gamma)
$$

But $[\eta]=[\eta-\partial(\beta)]$ in $H_{\mathfrak{a}}^{i}(S)$, so after replacing η we may assume that

$$
F(\eta)=\partial(\gamma)
$$

Next, note that γ is an element of $C^{i-1}\left(1, x_{1}, \ldots, x_{n} ; S\right)$, viewed as a submodule of $C^{i-1}(\boldsymbol{x} ; S)$. There exits ζ in $C^{i-2}\left(1, x_{1}, \ldots, x_{n} ; S\right)$ such that

$$
\partial(\zeta)=\left(\frac{t_{1}}{\mu_{1}^{q}}, \ldots, \frac{t_{m}}{\mu_{m}^{q}}, *, \ldots, *\right)
$$

Since

$$
F(\eta)=\partial(\gamma-\partial(\zeta)),
$$

after replacing γ we may assume that the first m coordinate entries of γ are 0 , i.e., that

$$
\gamma=\left(0, \ldots, 0, \frac{c_{1}}{\lambda_{1}^{Q}}, \ldots, \frac{c_{l}}{\lambda_{l}^{Q}}\right)
$$

where Q is a power of p, the c_{i} belong to S, and $\lambda_{1}, \ldots, \lambda_{l}$ are the square-free monomials of degree $i-1$ in x_{1}, \ldots, x_{n}.

The coordinate entries of $\partial(\gamma)$ include each c_{i} / λ_{i}^{Q}. Since $\partial(\gamma)=F(\eta)$, each c_{i} / λ_{i}^{Q} is a p-th power in $\operatorname{frac}(S)$; it follows that each c_{i} has a p-th root in $\operatorname{frac}(S)$. After enlarging S by adjoining each $c_{i}^{1 / p}$, we see that $\gamma=F(\xi)$ for an element ξ of $C^{i-1}(\boldsymbol{x} ; S)$. But then

$$
F(\eta)=\partial(F(\xi))=F(\partial(\xi))
$$

Since the Frobenius action on $C^{i}(\boldsymbol{x} ; S)$ is injective, we have $\eta=\partial(\xi)$, which proves (1).
For (2), it suffices to construct a module-finite generically separable extension S such that $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)$ is zero for $i<\operatorname{dim} R$; to obtain a generically Galois extension, enlarge S to a module-finite extension whose fraction field is the Galois closure of $\operatorname{frac}(S)$ over $\operatorname{frac}(R)$.

We use induction on $d=\operatorname{dim} R$, as in [10]. If $d=0$, there is nothing to be proved; if $d=1$, the inductive hypothesis is again trivially satisfied since $H_{\mathfrak{m}}^{0}(R)=0$. Fix $i<\operatorname{dim} R$. Let (A, \mathfrak{M}) be a Gorenstein local ring that has R as a homomorphic image, and set

$$
M=\operatorname{Ext}_{A}^{\operatorname{dim} A-i}(R, A) .
$$

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be the elements of the set $\operatorname{Ass}_{A} M \backslash\{\mathfrak{M}\}$.

Let \mathfrak{q} be a prime ideal of R that is not maximal. Since R is catenary, one has

$$
\operatorname{dim} R=\operatorname{dim} R_{\mathfrak{q}}+\operatorname{dim} R / \mathfrak{q} .
$$

Thus, the condition $i<\operatorname{dim} R$ may be rewritten as

$$
i-\operatorname{dim} R / \mathfrak{q}<\operatorname{dim} R_{\mathfrak{q}}
$$

Using the inductive hypothesis and Lemma 3.2, there exists a module-finite extension R^{\prime} of R such that $\operatorname{frac}\left(R^{\prime}\right)$ is a separable field extension of $\operatorname{frac}\left(R_{\mathfrak{q}}\right)=\operatorname{frac}(R)$, and the induced map

$$
\begin{equation*}
H_{\mathfrak{q} R_{\mathfrak{q}}}^{i-\operatorname{dim} R / \mathfrak{q}}\left(R_{\mathfrak{q}}\right) \longrightarrow H_{\mathfrak{q} R_{\mathfrak{q}}}^{i-\operatorname{dim} R / \mathfrak{q}}\left(R_{\mathfrak{q}}^{\prime}\right) \tag{3.2.1}
\end{equation*}
$$

is zero. Taking the compositum of finitely many such separable extensions inside a fixed algebraic closure of $\operatorname{frac}(R)$, there exists a module-finite generically separable extension R^{\prime} of R such that the map (3.2.1) is zero when \mathfrak{q} is any of the primes $\mathfrak{p}_{1} R, \ldots, \mathfrak{p}_{s} R$. We claim that the image of the induced map $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}\left(R^{\prime}\right)$ has finite length.

Using local duality over A, it suffices to show that

$$
M^{\prime}=\operatorname{Ext}_{A}^{\operatorname{dim} A-i}\left(R^{\prime}, A\right) \longrightarrow \operatorname{Ext}_{A}^{\operatorname{dim} A-i}(R, A)=M
$$

has finite length. This, in turn, would follow if

$$
M_{\mathfrak{p}}^{\prime}=\operatorname{Ext}_{A_{\mathfrak{p}}}^{\operatorname{dim} A-i}\left(R_{\mathfrak{p}}^{\prime}, A_{\mathfrak{p}}\right) \longrightarrow \operatorname{Ext}_{A_{\mathfrak{p}}}^{\operatorname{dim} A-i}\left(R_{\mathfrak{p}}, A_{\mathfrak{p}}\right)=M_{\mathfrak{p}}
$$

is zero for each prime ideal \mathfrak{p} in $\operatorname{Ass}_{A} M \backslash\{\mathfrak{M}\}$. Using local duality over $A_{\mathfrak{p}}$, it suffices to verify the vanishing of

$$
H_{\mathfrak{p} R_{\mathfrak{p}}}^{\operatorname{dim} A_{\mathfrak{p}}-\operatorname{dim} A+i}\left(R_{\mathfrak{p}}\right) \longrightarrow H_{\mathfrak{p} R_{\mathfrak{p}}}^{\operatorname{dim} A_{\mathfrak{p}}-\operatorname{dim} A+i}\left(R_{\mathfrak{p}}^{\prime}\right)
$$

for each \mathfrak{p} in $\operatorname{Ass}_{A} M \backslash\{\mathfrak{M}\}$. This, however, follows from our choice of R^{\prime} since

$$
\operatorname{dim} A_{\mathfrak{p}}-\operatorname{dim} A+i=i-\operatorname{dim} A / \mathfrak{p}=i-\operatorname{dim} R / \mathfrak{p} R
$$

What we have arrived at thus far is a module-finite generically separable extension R^{\prime} of R such that the image of $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}\left(R^{\prime}\right)$ has finite length; in particular, this image is finitely generated. Working with one generator at a time and taking the compositum of extensions, given $[\eta]$ in $H_{\mathfrak{m}}^{i}\left(R^{\prime}\right)$, it suffices to construct a module-finite generically separable extension S of R^{\prime} such that $\left[\eta\right.$] maps to 0 under $H_{\mathfrak{m}}^{i}\left(R^{\prime}\right) \longrightarrow H_{\mathfrak{m}}^{i}(S)$.

By Theorem 1.2, there exists a module-finite extension R_{1} of R^{\prime} such that [η] maps to 0 under the map $H_{\mathfrak{m}}^{i}\left(R^{\prime}\right) \longrightarrow H_{\mathfrak{m}}^{i}\left(R_{1}\right)$. Setting R_{2} to be the separable closure of R^{\prime} in R_{1}, the image of $[\eta]$ in $H_{\mathfrak{m}}^{i}\left(R_{2}\right)$ lies in $H_{\mathfrak{m}}^{i}\left(R_{2}\right)_{\text {nil }}$. The result now follows by (1).

Corollary 3.3. Let (R, \mathfrak{m}) be a local domain of prime characteristic that is a homomorphic image of a Gorenstein ring. Then $H_{\mathfrak{m}}^{i}\left(R^{+ \text {sep }}\right)=0$ for each $i<\operatorname{dim} R$.

Moreover, each system of parameters for R is a regular sequence on $R^{+ \text {sep }, ~ i . e ., ~} R^{+ \text {sep }}$ is a separable balanced big Cohen-Macaulay algebra for R.

Proof. Theorem 1.3(2) implies that $H_{\mathfrak{m}}^{i}\left(R^{+\operatorname{sep}}\right)=0$ for each $i<\operatorname{dim} R$. The proof that this implies the second statement is similar to the proof of [10, Corollary 2.3].

Proof of Theorem 1.4. Let p be the characteristic of R. If $z \in \mathfrak{a}^{F}$, then there exists a prime power $q=p^{e}$ with $z^{q} \in \mathfrak{a}^{[q]}$. In this case, $z^{q / p}$ belongs to the Frobenius closure of $\mathfrak{a}^{[q / p]}$, and

$$
\left(z^{q / p}\right)^{p} \in\left(\mathfrak{a}^{[q / p]}\right)^{[p]}
$$

Since solvable extensions form a distinguished class, we reduce to the case $e=1$, i.e., $q=p$.
There exist nonzero elements, $a_{0}, \ldots, a_{m} \in \mathfrak{a}$ and $b_{0}, \ldots, b_{m} \in R$ with

$$
z^{p}=\sum_{i=0}^{m} b_{i} a_{i}^{p} .
$$

Consider the polynomials

$$
T^{p}+a_{0}^{p} T-b_{i} \quad \text { for } i=1, \ldots, m
$$

and let L be a finite extension field where these have roots t_{1}, \ldots, t_{m} respectively. By Lemma 3.1, we may assume L is Galois over $\operatorname{frac}(R)$ with the Galois group being solvable. Set

$$
\begin{equation*}
t_{0}=\frac{1}{a_{0}}\left(z-\sum_{i=1}^{m} t_{i} a_{i}\right) \tag{3.3.1}
\end{equation*}
$$

Taking p-th powers, we have

$$
t_{0}^{p}=\frac{1}{a_{0}^{p}}\left(\sum_{i=0}^{m} b_{i} a_{i}^{p}-\sum_{i=1}^{m} t_{i}^{p} a_{i}^{p}\right)=b_{0}+\frac{1}{a_{0}^{p}} \sum_{i=1}^{m}\left(b_{i}-t_{i}^{p}\right) a_{i}^{p}=b_{0}+\sum_{i=1}^{m} t_{i} a_{i}^{p} .
$$

Thus, t_{0} belongs to the integral closure of $R\left[t_{1}, \ldots, t_{m}\right]$ in its field of fractions. Let S be a modulefinite extension of R that contains t_{0}, \ldots, t_{m}, and has L as its fraction field; if R is excellent, we may take S to be the integral closure of R in L. Since (3.3.1) may be rewritten as

$$
z=\sum_{i=0}^{m} t_{i} a_{i}
$$

it follows that $z \in \mathfrak{a} S$, completing the proof of (1).
Assertion (2) follows from [17, Corollary 3.4], though we include a proof using (1). There exists a module-finite extension domain T such that $z \in \mathfrak{a} T$. Decompose the field extension $\operatorname{frac}(R) \subseteq \operatorname{frac}(T)$ as a separable extension $\operatorname{frac}(R) \subseteq \operatorname{frac}(T)$ followed by a purely inseparable extension $\operatorname{frac}(T) \subseteq \operatorname{frac}(T)$. Let T_{0} be the integral closure of R in $\operatorname{frac}(T)$.

Since T is a purely inseparable extension of T_{0}, and $z \in \mathfrak{a} T$, it follows that z belongs to the Frobenius closure of the ideal $\mathfrak{a} T_{0}$. By (2) there exists a generically separable extension S_{0} of T_{0} with $z \in \mathfrak{a} S_{0}$. Enlarge S_{0} to a generically Galois extension S of R. This concludes the argument in the case R is excellent; in the event that S is not module-finite over R, one may replace it by a subring satisfying $z \in \mathfrak{a} S$ and having the same fraction field.

The equational construction used in the proof of Theorem 1.4(1) arose from the study of symplectic invariants in [16].

4. Some Galois groups that are not solvable

Let R be a domain of prime characteristic, and let \mathfrak{a} be an ideal of R. If z is an element of \mathfrak{a}^{F}, Theorem 1.4(1) states that there exists a solvable module-finite extension S with $z \in \mathfrak{a} S$. In the following example one has $z \in \mathfrak{a}^{+}$, and we conjecture $z \notin \mathfrak{a} S$ for any module-finite generically Galois extension S with $\operatorname{Gal}(S / R)$ solvable.

Example 4.1. Let a, b, c_{1}, c_{2} be algebraically independent over \mathbb{F}_{p}, and set R be the hypersurface

$$
\frac{\mathbb{F}_{p}\left(a, b, c_{1}, c_{2}\right)[x, y, z]}{\left(z^{p^{2}}+c_{1}(x y)^{p^{2}-p_{z}}+c_{2}(x y)^{p^{2}-1} z+a x p^{p^{2}}+b y p^{p^{2}}\right)} .
$$

We claim $z \in(x, y)^{+}$. Let u, v be elements of R^{+}that are, respectively, roots of the polynomials

$$
\begin{equation*}
T^{p^{2}}+c_{1} y^{p^{2}-p} T^{p}+c_{2} y^{p^{2}-1} T+a \tag{4.1.1}
\end{equation*}
$$

and

$$
T^{p^{2}}+c_{1} x^{p^{2}-p} T^{p}+c_{2} x^{p^{2}-1} T+b .
$$

Set S to be the integral closure of R in the Galois closure of $\operatorname{frac}(R)(u, v)$ over $\operatorname{frac}(R)$. Then $(z-u x-v y) / x y$ is an element of S, since it is a root of the monic polynomial

$$
T^{p^{2}}+c_{1} T^{p}+c_{2} T
$$

It follows that $z \in(x, y) S$.
We next show that $\operatorname{Gal}(S / R)$ is not solvable for the extension S constructed above. Since u is a root of (4.1.1), u / y is a root of

$$
\begin{equation*}
T^{p^{2}}+c_{1} T^{p}+c_{2} T+\frac{a}{y^{p^{2}}} \tag{4.1.2}
\end{equation*}
$$

The polynomial (4.1.2) is irreducible over $\mathbb{F}_{q}\left(c_{1}, c_{2}, a / y^{p^{2}}\right)$, and hence over the purely transcendental extension $\mathbb{F}_{q}\left(c_{1}, c_{2}, a, x, y, z\right)=\operatorname{frac}(R)$. Since $\operatorname{frac}(S)$ is a Galois extension of $\operatorname{frac}(R)$ containing a root of (4.1.2), it contains all roots of (4.1.2). As (4.1.2) is separable, its roots are distinct; taking differences of roots, it follows that $\operatorname{frac}(S)$ contains the p^{2} distinct roots of

$$
\begin{equation*}
T^{p^{2}}+c_{1} T^{p}+c_{2} T \tag{4.1.3}
\end{equation*}
$$

We next verify that the Galois group of (4.1.3) over $\operatorname{frac}(R)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$.
Quite generally, let L be a field of characteristic p. Consider the standard linear action of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ on the polynomial ring $L\left[x_{1}, x_{2}\right]$. The ring of invariants for this action is generated over L by the Dickson invariants c_{1}, c_{2}, which occur as the coefficients in the polynomial

$$
\prod_{\alpha, \beta \in \mathbb{F}_{p}}\left(T-\alpha x_{1}-\beta x_{2}\right)=T^{p^{2}}+c_{1} T^{p}+c_{2} T,
$$

see [3] or [1, Chapter 8]. Hence the extension $L\left(x_{1}, x_{2}\right) / L\left(c_{1}, c_{2}\right)$ has Galois group $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.
It follows from the above that if c_{1}, c_{2} are algebraically independent elements over a field L of characteristic p, then the polynomial

$$
T^{p^{2}}+c_{1} T^{p}+c_{2} T \in L\left(c_{1}, c_{2}\right)[T]
$$

has Galois group $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.
The group $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ is a subquotient of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, and, we conjecture, a subquotient of $\operatorname{Gal}(S / R)$ for any module-finite generically Galois extension S of R with $z \in \mathfrak{a} S$. For $p \geqslant 5$, the group $\operatorname{PSL}_{2}\left(\mathbb{F}_{p}\right)$ is a nonabelian simple group; thus, conjecturally, $\operatorname{Gal}(S / R)$ is not solvable for any module-finite generically Galois extension S with $z \in \mathfrak{a} S$.

Example 4.2. Extending the previous example, let $a, b, c_{1}, \ldots, c_{n}$ be algebraically independent elements over \mathbb{F}_{q}, and set R to be the polynomial ring $\mathbb{F}_{q}\left(a, b, c_{1}, \ldots, c_{n}\right)[x, y, z]$ modulo the principal ideal generated by

$$
z^{q^{n}}+c_{1}(x y)^{q^{n}-q^{n-1}} z^{q^{n-1}}+c_{2}(x y)^{q^{n}-q^{n-2}} z^{q^{n-2}}+\cdots+c_{n}(x y)^{q^{n}-1} z+a x^{q^{n}}+b y^{q^{n}} .
$$

Then $z \in(x, y)^{+}$; imitate the previous example with u, v being roots of

$$
T^{q^{n}}+c_{1} y^{q^{n}-q^{n-1}} T^{q^{n-1}}+c_{2} y^{q^{n}-q^{n-2}} T^{q^{n-2}}+\cdots+c_{n} y^{q^{n}-1} T+a,
$$

and

$$
T^{q^{n}}+c_{1} x^{q^{n}-q^{n-1}} T^{q^{n-1}}+c_{2} x^{q^{n}-q^{n-2}} T^{q^{n-2}}+\cdots+c_{n} x^{q^{n}-1} T+b .
$$

If S is any module-finite generically Galois extension of R with $z \in \mathfrak{a} S$, we conjecture that $\operatorname{frac}(S)$ contains the splitting field of

$$
\begin{equation*}
T^{q^{n}}+c_{1} T^{q^{n-1}}+c_{2} T^{q^{n-2}}+\cdots+c_{n} T \tag{4.2.1}
\end{equation*}
$$

Using a similar argument with Dickson invariants, the Galois group of (4.2.1) over $\operatorname{frac}(R)$ is $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. Its subquotient $\operatorname{PSL}_{n}\left(\mathbb{F}_{q}\right)$ is a nonabelian simple group for $n \geqslant 3$, and for $n=2$, $q \geqslant 4$.

Likewise, we record conjectural examples R where $H_{\mathfrak{m}}^{i}(R) \longrightarrow H_{\mathfrak{m}}^{i}(S)$ is nonzero for each module-finite generically Galois extension S with $\operatorname{Gal}(S / R)$ solvable:

Example 4.3. Let a, b, c_{1}, c_{2} be algebraically independent over \mathbb{F}_{p}, and consider the hypersurface

$$
A=\frac{\mathbb{F}_{p}\left(a, b, c_{1}, c_{2}\right)[x, y, z]}{\left(z^{2 p^{2}}+c_{1}(x y)^{p^{2}-p} z^{2 p}+c_{2}(x y)^{p^{2}-1} z^{2}+a x p^{2}+b y p^{2}\right)}
$$

Let (R, \mathfrak{m}) be the Rees ring $A[x t, y t, z t]$ localized at the maximal ideal $x, y, z, x t, y t, z t$. The elements $x, y t, y+x t$ form a system of parameters for R, and the relation

$$
z^{2} t \cdot(y+x t)=z^{2} t^{2} \cdot x+z^{2} \cdot y t
$$

defines an element $[\eta]$ of $H_{\mathfrak{m}}^{2}(R)$. We conjecture that if S is any module-finite generically Galois extension such that $[\eta]$ maps to 0 under the induced map $H_{\mathfrak{m}}^{2}(R) \longrightarrow H_{\mathfrak{m}}^{2}(S)$, then $\operatorname{frac}(S)$ contains the splitting field of

$$
T^{p^{2}}+c_{1} T^{p}+c_{2} T
$$

and hence that $\operatorname{Gal}(S / R)$ is not solvable if $p \geqslant 5$.

5. Graded rings and extensions

Let R be an \mathbb{N}-graded domain that is finitely generated over a field R_{0}. Set $R^{+\mathrm{GR}}$ to be the $\mathbb{Q} \geqslant 0$-graded ring generated by elements of R^{+}that can be assigned a degree such that they then satisfy a homogeneous equation of integral dependence over R. Note that $\left[R^{+\mathrm{GR}}\right]_{0}$ is the algebraic closure of the field R_{0}. One has the following:

Theorem 5.1. (See [8, Theorem 6.1].) Let R be an \mathbb{N}-graded domain that is finitely generated over a field R_{0} of prime characteristic. Then each homogeneous system of parameters for R is a regular sequence on $R^{+\mathrm{GR}}$.

Let R be as in the above theorem. Since $R^{+\mathrm{GR}}$ and $R^{+ \text {sep }}$ are Cohen-Macaulay R-algebras, it is natural to ask whether there exists a \mathbb{Q}-graded separable Cohen-Macaulay R-algebra. The answer to this is negative:

Example 5.2. Let R be the Rees ring

$$
\frac{\overline{\mathbb{F}}_{2}[x, y, z]}{\left(x^{3}+y^{3}+z^{3}\right)}[x t, y t, z t]
$$

with the \mathbb{N}-grading where the generators $x, y, z, x t, y t, z t$ have degree 1 . Set B to be the R-algebra generated by the homogeneous elements of $R^{+\mathrm{GR}}$ that are separable over frac (R). We prove that B is not a balanced Cohen-Macaulay R-module.

The elements $x, y t, y+x t$ constitute a homogeneous system of parameters for R since the radical of the ideal that they generate is the homogeneous maximal ideal of R, and $\operatorname{dim} R=3$. Suppose, to the contrary, that they form a regular sequence on B. Since

$$
z^{2} t \cdot(y+x t)=z^{2} t^{2} \cdot x+z^{2} \cdot y t
$$

it follows that $z^{2} t \in(x, y t) B$. Thus, there exist elements $u, v \in B_{1}$ with

$$
\begin{equation*}
z^{2} t=u \cdot x+v \cdot y t \tag{5.2.1}
\end{equation*}
$$

Since $z^{3}=x^{3}+y^{3}$, we also have $z^{2}=x \sqrt{x z}+y \sqrt{y z}$ in $R^{+\mathrm{GR}}$, and hence

$$
\begin{equation*}
z^{2} t=t \sqrt{x z} \cdot x+\sqrt{y z} \cdot y t \tag{5.2.2}
\end{equation*}
$$

Comparing (5.2.1) and (5.2.2), we see that

$$
(u+t \sqrt{x z}) \cdot x=(v+\sqrt{y z}) \cdot y t
$$

in $R^{+\mathrm{GR}}$. But $x, y t$ is a regular sequence on $R^{+\mathrm{GR}}$, so there exists an element c in $\left[R^{+\mathrm{GR}}\right]_{0}$ with $u+t \sqrt{x z}=c y t$ and $v+\sqrt{y z}=c x$. Since $\left[R^{+G R}\right]_{0}=\overline{\mathbb{F}}_{2}$, it follows that $c \in R$, and hence that $\sqrt{y z} \in B$. This contradicts the hypothesis that elements of B are separable over $\operatorname{frac}(R)$.

The above argument shows that any graded Cohen-Macaulay R-algebra must contain the elements $\sqrt{y z}$ and $t \sqrt{x z}$.

We next show that no module-finite \mathbb{Q}-graded extension domain of the ring R in Example 5.2 is Cohen-Macaulay.

Example 5.3. Let R be the Rees ring from Example 5.2, and let S be a graded Cohen-Macaulay ring with $R \subseteq S \subseteq R^{+\mathrm{GR}}$. We prove that S is not finitely generated over R.

By the previous example, S contains $\sqrt{y z}$ and $t \sqrt{x z}$. Using the symmetry between x, y, z, it follows that $\sqrt{x y}, \sqrt{x z}, t \sqrt{x y}, t \sqrt{y z}$ are all elements of S. We prove inductively that S contains

$$
\begin{array}{ccc}
x^{1-2 / q}(y z)^{1 / q}, & y^{1-2 / q}(x z)^{1 / q}, & z^{1-2 / q}(x y)^{1 / q} \\
t x^{1-2 / q}(y z)^{1 / q}, & t y^{1-2 / q}(x z)^{1 / q}, & t z^{1-2 / q}(x y)^{1 / q}, \tag{5.3.1}
\end{array}
$$

for each $q=2^{e}$ with $e \geqslant 1$. The case $e=1$ has been settled.
Suppose S contains the elements (5.3.1) for some $q=2^{e}$. Then, one has

$$
\begin{aligned}
& x^{1-2 / q}(y z)^{1 / q} \cdot t y^{1-2 / q}(x z)^{1 / q} \cdot(y+x t) \\
& \quad=t x^{1-2 / q}(y z)^{1 / q} \cdot t y^{1-2 / q}(x z)^{1 / q} \cdot x+x^{1-2 / q}(y z)^{1 / q} \cdot y^{1-2 / q}(x z)^{1 / q} \cdot y t .
\end{aligned}
$$

Using as before that $x, y t, y+x t$ is a regular sequence on S, we conclude

$$
x^{1-2 / q}(y z)^{1 / q} \cdot t y^{1-2 / q}(x z)^{1 / q}=u \cdot x+v \cdot y t
$$

for some $u, v \in S_{1}$. Simplifying the left-hand side, the above reads

$$
\begin{equation*}
t(x y)^{1-1 / q} z^{2 / q}=u \cdot x+v \cdot y t \tag{5.3.2}
\end{equation*}
$$

Taking q-th roots in

$$
z^{2}=x \sqrt{x z}+y \sqrt{y z}
$$

and multiplying by $t(x y)^{1-1 / q}$ yields

$$
\begin{equation*}
t(x y)^{1-1 / q} z^{2 / q}=t y^{1-1 / q}(x z)^{1 / 2 q} \cdot x+x^{1-1 / q}(y z)^{1 / 2 q} \cdot y t . \tag{5.3.3}
\end{equation*}
$$

Comparing (5.3.2) and (5.3.3), we see that

$$
\left(u+t y^{1-1 / q}(x z)^{1 / 2 q}\right) \cdot x=\left(v+x^{1-1 / q}(y z)^{1 / 2 q}\right) \cdot y t
$$

so there exists c in $\left[R^{+G R}\right]_{0}=\overline{\mathbb{F}}_{2}$ with

$$
u+t y^{1-1 / q}(x z)^{1 / 2 q}=c y t \quad \text { and } \quad v+x^{1-1 / q}(y z)^{1 / 2 q}=c x .
$$

It follows that $t y^{1-1 / q}(x z)^{1 / 2 q}$ and $x^{1-1 / q}(y z)^{1 / 2 q}$ are elements of S. In view of the symmetry between x, y, z, this completes the inductive step. Setting

$$
\theta=\frac{x y}{z^{2}}
$$

we have proved that

$$
\theta^{1 / q} \in \operatorname{frac}(S) \quad \text { for each } q=2^{e}
$$

We claim $\theta^{1 / 2}$ does not belong to $\operatorname{frac}(R)$. Indeed if it does, then $(x y)^{1 / 2}$ belongs to frac (R), and hence to R, as R is normal; this is readily seen to be false. The extension

$$
\operatorname{frac}(R) \subseteq \operatorname{frac}(R)\left(\theta^{1 / q}\right)
$$

is purely inseparable, so the minimal polynomial of $\theta^{1 / q} \operatorname{over} \operatorname{frac}(R)$ has the form $T^{Q}-\theta^{Q / q}$ for some $Q=2^{E}$. Since $\theta^{1 / 2} \notin \operatorname{frac}(R)$, we conclude that the minimal polynomial is $T^{q}-\theta$. Hence

$$
\left[\operatorname{frac}(R)\left(\theta^{1 / q}\right): \operatorname{frac}(R)\right]=q \quad \text { for each } q=2^{e}
$$

It follows that $[\operatorname{frac}(S): \operatorname{frac}(R)]$ is not finite.
Theorems 1.2 and 1.3(2) discuss the vanishing of the image of $H_{\mathfrak{m}}^{i}(R)$ for $i<\operatorname{dim} R$. In the case of graded rings, one also has the following result for $H_{\mathfrak{m}}^{d}(R)$.

Proposition 5.4. Let R be an \mathbb{N}-graded domain that is finitely generated over a field R_{0} of prime characteristic. Set $d=\operatorname{dim} R$. Then $\left[H_{\mathfrak{m}}^{d}(R)\right]_{\geqslant 0}$ maps to zero under the induced map

$$
H_{\mathfrak{m}}^{d}(R) \longrightarrow H_{\mathfrak{m}}^{d}\left(R^{+\mathrm{GR}}\right)
$$

Hence, there exists a module-finite \mathbb{Q}-graded extension domain S of R such that the induced map $\left[H_{\mathfrak{m}}^{d}(R)\right]_{\geqslant 0} \longrightarrow H_{\mathfrak{m}}^{d}(S)$ is zero.

Proof. Let $F^{e}: H_{\mathfrak{m}}^{d}(R) \longrightarrow H_{\mathfrak{m}}^{d}(R)$ denote the e-th iteration of the Frobenius map. Suppose $[\eta] \in\left[H_{\mathfrak{m}}^{d}(R)\right]_{n}$ for some $n \geqslant 0$. Then $F^{e}([\eta])$ belongs to $\left[H_{\mathfrak{m}}^{d}(R)\right]_{n p^{e}}$ for each e. As $\left[H_{\mathfrak{m}}^{d}(R)\right]_{\geqslant 0}$ has finite length, there exists $e \geqslant 1$ and homogeneous elements $r_{1}, \ldots, r_{e} \in R$ such that

$$
\begin{equation*}
F^{e}([\eta])+r_{1} F^{e-1}([\eta])+\cdots+r_{e}[\eta]=0 \tag{5.4.1}
\end{equation*}
$$

We imitate the equational construction from [10]: Consider a homogeneous system of parameters $\boldsymbol{x}=x_{1}, \ldots, x_{d}$, and compute $H_{\mathfrak{m}}^{i}(R)$ as the cohomology of the Čech complex $C^{\bullet}(\boldsymbol{x} ; R)$ below:

$$
0 \longrightarrow R \longrightarrow \bigoplus_{i=1}^{d} R_{x_{i}} \longrightarrow \bigoplus_{i<j} R_{x_{i} x_{j}} \longrightarrow \cdots \longrightarrow R_{x_{1} \cdots x_{d}} \longrightarrow 0
$$

This complex is \mathbb{Z}-graded; let η be a homogeneous element of $C^{d}(\boldsymbol{x} ; R)$ that maps to [η] in $H_{\mathfrak{m}}^{d}(R)$. Eq. (5.4.1) implies that

$$
F^{e}(\eta)+r_{1} F^{e-1}(\eta)+\cdots+r_{e} \eta
$$

is a boundary in $C^{d}(\boldsymbol{x} ; R)$, say it equals $\partial(\alpha)$ for a homogeneous element α of $C^{d-1}(\boldsymbol{x} ; R)$. Solving integral equations in each coordinate of $C^{d-1}(x ; R)$, there exists a module-finite extension domain S and β in $C^{d-1}(\boldsymbol{x} ; S)$ with

$$
F^{e}(\beta)+r_{1} F^{e-1}(\beta)+\cdots+r_{e} \beta=\alpha .
$$

Moreover, we may assume S is a normal ring. Since $\eta-\partial(\beta)$ is an element on frac (S) satisfying

$$
T^{p^{e}}+r_{1} T^{p^{e-1}}+\cdots+r_{e} T=0
$$

it belongs to S. But then $\eta-\partial(\beta)$ maps to zero in $H_{\mathfrak{m}}^{d}(S)$. Thus, each homogeneous element of the module $\left[H_{\mathfrak{m}}^{d}(R)\right]_{\geqslant 0}$ maps to 0 in $H_{\mathfrak{m}}^{d}\left(R^{+\mathrm{GR}}\right)$.

For the final statement, note that $\left[H_{\mathfrak{m}}^{d}(R)\right]_{\geqslant 0}$ has finite length.
The next example illustrates why Proposition 5.4 is limited to $\left[H_{\mathfrak{m}}^{d}(R)\right]_{\geqslant 0}$.
Example 5.5. Let K be a field of prime characteristic, and take R to be the semigroup ring

$$
R=K\left[x_{1} \cdots x_{d}, x_{1}^{d}, \ldots, x_{d}^{d}\right]
$$

It is easily seen that R is normal, and that $\left[H_{\mathfrak{m}}^{d}(R)\right]_{n}$ is nonzero for each integer $n<0$. We claim that the induced map

$$
H_{\mathfrak{m}}^{d}(R) \longrightarrow H_{\mathfrak{m}}^{d}(S)
$$

is injective for each module-finite extension ring S. For this, it suffices to check that R is a splinter ring, i.e., that R is a direct summand of each module-finite extension ring; the splitting of $R \subseteq S$ then induces an R-splitting of $H_{\mathfrak{m}}^{d}(R) \longrightarrow H_{\mathfrak{m}}^{d}(S)$.

To check that R is splinter, note that normal affine semigroup rings are weakly F-regular by [7, Proposition 4.12], and that weakly F-regular rings are splinter by [9 , Theorem 5.25]. For more on splinters, we point the reader towards [14,9,18].

Acknowledgment

We thank Kazuhiko Kurano for pointing out an error in an earlier version of this manuscript.

References

[1] D.J. Benson, Polynomial Invariants of Finite Groups, London Math. Soc. Lecture Note Ser., vol. 190, Cambridge University Press, Cambridge, 1993.
[2] W. Bruns, J. Herzog, Cohen-Macaulay Rings, revised edition, Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, Cambridge, 1998.
[3] L.E. Dickson, A fundamental system of invariants of the general modular linear group with a solution to the form problem, Trans. Amer. Math. Soc. 12 (1911) 75-98.
[4] R. Hartshorne, R. Speiser, Local cohomological dimension in characteristic p, Ann. of Math. (2) 105 (1977) 45-79.
[5] R.C. Heitmann, The direct summand conjecture in dimension three, Ann. of Math. (2) 156 (2002) 695-712.
[6] M. Hochster, Topics in the Homological Theory of Modules Over Commutative Rings, CBMS Reg. Conf. Ser. Math., vol. 24, Amer. Math. Soc., Providence, RI, 1975.
[7] M. Hochster, C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990) 31-116.
[8] M. Hochster, C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992) 53-89.
[9] M. Hochster, C. Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994) 599-670.
[10] C. Huneke, G. Lyubeznik, Absolute integral closure in positive characteristic, Adv. Math. 210 (2007) 498-504.
[11] S.B. Iyengar, G.J. Leuschke, A. Leykin, C. Miller, E. Miller, A.K. Singh, U. Walther, Twenty-Four Hours of Local Cohomology, Grad. Stud. Math., vol. 87, Amer. Math. Soc., Providence, RI, 2007.
[12] S. Lang, Algebra, revised third edition, Grad. Texts in Math., vol. 211, Springer-Verlag, New York, 2002.
[13] G. Lyubeznik, F-modules: Applications to local cohomology and D-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997) 65-130.
[14] F. Ma, Splitting in integral extensions, Cohen-Macaulay modules and algebras, J. Algebra 116 (1988) 176-195.
[15] P. Roberts, A.K. Singh, V. Srinivas, Annihilators of local cohomology in characteristic zero, Illinois J. Math. 51 (2007) 237-254.
[16] A.K. Singh, Failure of F-purity and F-regularity in certain rings of invariants, Illinois J. Math. 42 (1998) 441-448.
[17] A.K. Singh, Separable integral extensions and plus closure, Manuscripta Math. 98 (1999) 497-506.
[18] A.K. Singh, \mathbb{Q}-Gorenstein splinter rings of characteristic p are F-regular, Math. Proc. Cambridge Philos. Soc. 127 (1999) 201-205.

[^0]: * Corresponding author.

 E-mail addresses: sannai@ms.u-tokyo.ac.jp (A. Sannai), singh@math.utah.edu (A.K. Singh).
 1 The author was supported by the Excellent Young Researcher Overseas Visit Program of the Japan Society for Promotion of Science (JSPS).
 2 The author was supported by NSF grant DMS 0856044.

