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Abstract

Chronic lung disease remains the major cause of morbidity and mortality of cystic fibrosis (CF) patients. Cftr mutant mice developed
severe intestinal obstruction, but did not exhibit the characteristic CF ion transport defects (i.e. deficient cAMP-dependent Cl− secretion
and increased Na+ absorption) in the lower airways, and failed to develop CF-like lung disease. These observations led to the generation
of transgenic mice with airway-specific overexpression of the epithelial Na+ channel (ENaC) as an alternative approach to mimic CF ion
transport pathophysiology in the lung. Studies of the phenotype of βENaC-transgenic mice demonstrated that increased airway Na+ absorption
causes airway surface liquid (ASL) depletion, reduced mucus transport and a spontaneous CF-like lung disease with airway mucus obstruction
and chronic airway inflammation. Here, we summarize approaches that can be applied for studies of the complex in vivo pathogenesis and
preclinical evaluation of novel therapeutic strategies in this model of CF lung disease.
© 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Cystic fibrosis (CF) is caused by mutations in the Cys-
tic Fibrosis Transmembrane Conductance Regulator (CFTR)
gene and remains one of the most common lethal hereditary
diseases in Caucasian populations. Although CF is a complex
multi-organ disease, chronic lung disease still determines
more than 90% of morbidity and mortality in CF patients
and remains a primary focus of CF research [1]. Previous
studies demonstrated that CF lungs are structurally normal at
birth, with an early onset of lung disease in infancy evolv-
ing from small airway mucus obstruction to chronic airway
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inflammation, bacterial infection, progressive lung damage
and ultimately death due to respiratory failure [1–3]. Despite
the detailed pathological and clinical description, important
questions regarding the initiation and spontaneous progression
of CF lung disease remain unsolved, and effective therapies
targeting its root cause are still pending.
Genetically engineered mice offer unique opportunities

to unravel the in vivo pathogenesis of inherited diseases
and test novel therapies in a living organism in the pre-
clinical area. The first CF mouse models, in which Cftr
function was either disabled by homologous recombination
or impaired by introduction of specific Cftr mutations were
generated shortly after cloning of the CFTR gene [4–6]. As
reviewed by Wilke et al. in this issue [7], Cftr mutant mice
exhibited characteristic defects in intestinal cAMP-dependent
Cl− secretion producing a severe CF-like gastrointestinal
phenotype. However, even when it became possible to prevent
early intestinal mortality by treatment with osmotic laxatives,
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Cftr mutant mice did not develop CF-like lung disease
[6]. Careful histopathological examination revealed that Cftr
mutant mice on some genetic backgrounds and at older
age developed signs of alveolitis with thickening of alveolar
walls [8,9], but none of the Cftr mutant mouse models
develops airway mucus plugging, goblet cell metaplasia and
spontaneous airway inflammation characteristic of CF lung
disease in humans [1,6]. Subsequently, a series of functional
studies demonstrated that the lower airways of CF mice do
not recapitulate the basic ion transport and mucus clearance
defects characteristic of CF patients [10,11]. In human
CF airways, CFTR malfunction causes deficient cAMP-
dependent Cl− secretion and increased ENaC-mediated Na+

absorption in the superficial airway epithelium [12] and
abnormal fluid secretion by submucosal glands [13–15],
and these alterations in fluid transport are associated with
reduced mucociliary clearance [16,17]. In Cftr mutant mice,
these basic CF ion transport defects are detected in the
nasal epithelium [18] but not in the superficial epithelium
of lower airways where lack of Cftr-mediated Cl− secretion
is likely compensated by alternative Ca2+-activated Cl−
channels (CaCC), and airway Na+ transport and mucus
clearance remain normal [6,10,11,19]. In addition, in contrast
to humans, intrapulmonary conducting airways of mice do
not possess submucosal glands [6]. These studies indicated
that the differences in airway ion transport (patho)physiology
and anatomy between mice and man protects Cftr mutant
mice from the development of CF-like lung disease. Further,
these observations formed the rationale for the generation of
transgenic mice with airway-specific overexpression of ENaC
to mimic the increased Na+ absorption across the superficial
epithelium observed in human CF airways to determine the
relative role of this abnormality in CF pathogenesis and as an
alternative strategy to produce CF-like lung disease in mice
[20–24].

2. Development of a mouse model with airway-specific
overexpression of ENaC

2.1. Generation and functional characterization of transgenic
mice with airway-specific overexpression of ENaC

To mimic increased ENaC activity observed in CF airways
and prevent unrelated pathologies in other organs that may
result from systemic overexpression of ENaC such as arterial
hypertension due to increased absorption of Na+ and fluid
in the kidney [25], we used the Clara cell secretory protein
(CCSP) promoter element to target expression of ENaC
to mouse airways [26]. Clara cells are the most abundant
cell type in mouse airways constituting ∼50% of epithelial
cells in the trachea and up to ∼80% in the small airways
[27]. Therefore, the CCSP promoter enables tissue-specific
transgene expression throughout the conducting airways of
mice. Because ENaC is a heteromultimeric protein composed
of three subunits (α, β, γ), and heterologous expression
studies indicate that co-expression of all three subunits is
required for maximal Na+ channel activity [28], we generated

transgenic mice with airway-specific overexpression of the
three individual subunits (α, β and γ) of mouse ENaC [29]
by pronuclear injection (Fig. 1A, B). In situ hybridization
of lung sections confirmed that CCSP-driven overexpression
of α, β and γENaC transgenes was localized to airway
epithelia (Fig. 1C). Surprisingly, measurements of bioelectric
properties in freshly excised tracheal tissues from neonatal
and adult mice demonstrated that overexpression of βENaC,
but not αENaC or γENaC alone, was sufficient to produce
a ∼2 to 3-fold increase in amiloride-sensitive Na+ transport
(Fig. 1D–F, Table 1), whereas cAMP-induced (forskolin) and
Ca2+-activated (UTP) Cl− secretion remained unchanged in
airways from βENaC-overexpressing (βENaC-Tg) mice [30].
In an attempt to elucidate the selective functional effect

of overexpression of βENaC, transcript levels of endogenous
α, β and γENaC subunits were compared by quantitative
real-time PCR. These studies demonstrated that βENaC is
expressed at relatively low levels in mouse lower airways
suggesting that the βENaC subunit is rate limiting for airway
Na+ absorption in vivo [30]. Recent studies indicate that
the increased airway Na+ and fluid absorption produced by
selective overexpression of βENaC (in airway cells expressing
α, β, and γENaC endogenously) was not only caused by an
increase in the number of αβγENaC channels inserted into
the luminal membrane of airway epithelial cells, but also by
a shift in subunit stoichiometry resulting in a subpopulation
of αβENaC channels. These αβENaC channels are known to
have an increased open probability (Po ∼ 1.0) [31] and were
found to be constitutively active in native airway tissues from
βENaC-Tg mice [32].
Of note, hemizygosity for the βENaC transgene is suf-

ficient to produce increased Na+ transport, which facilitates
breeding and genotyping of βENaC-Tg mice. Another impor-
tant consideration for studies using transgenic mouse models
is the genetic background and the use of an appropriate
control group. Since βENaC-Tg were generated on a mixed
genetic background (C3H x C57BL/6), it seems prudent to
breed βENaC-Tg with C3B6 F1 hybrid wild-type mice to pre-
vent genetic drifts in the colony, and use wild-type littermate
controls for all experiments to control for possible effects of
strain background on the phenotype.

2.2. Increased airway Na+ absorption causes ASL volume
depletion and reduced mucociliary clearance

Evidence from in vitro studies in cultured primary normal
and CF airway epithelia suggested that increased ENaC-
mediated Na+ absorption and defective CFTR-mediated Cl−
secretion cause volume depletion of the thin film of liquid
(∼7 μm) covering airway surfaces, and that this abnormality
results in mucus adhesion and impaired mucociliary function
[33]. These observations led to the hypothesis that airway
surface liquid (ASL) volume depletion may play an important
role in the pathogenesis of CF lung disease. However, the
results of these in vitro studies were discussed controversially
[34] and it was not feasible to study the thin (∼7 μm) ASL
layer in humans. Therefore, the βENaC-Tg mouse provided a
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Fig. 1. Generation and functional characterization of transgenic mice (Tg) with airway-specific overexpression of the subunits (α, β and γ) of the epithelial
Na+ channel (ENaC). (A) Transgenic (Tg) constructs for airway-specific overexpression of individual ENaC subunit genes, containing the rat CCSP promoter
(white), αENaC, βENaC or γENaC cDNAs (black), followed by the SV40 polyadenylation signal (gray). (B) Generation of Tg mice by pronuclear injection
of constructs into fertilized oocytes. (C) In situ hybridization of a lung section from a neonatal βENaC-Tg mouse, using a Tg-specific anti-sense probe. Scale
bar, 100 μm. (D–F) Amiloride-sensitive short-circuit current (Isc) in neonatal and adult αENaC-, βENaC- and γENaC-Tg mice and wild-type (WT) littermates
*P < 0.0001 compared with WT. (G) PCL height in bronchi from WT and βENaC-Tg mice, as visualized by transmission electron microscopy after fixation
with OsO4/PFC. Scale bar, 2.5 μm. (H) Percent solids of mucus sampled from airways of adult WT (white bar) and βENaC-Tg mice (light gray bar), and of
mucus plugs removed from the tracheobronchial tree of βENaC-Tg adult (dark gray bar) and neonatal (black bar) mice. *P < 0.05 compared with wild-type;
**P < 0.05 compared to mucus samples from WT and βENaC-Tg mice. (I) Mucus clearance in WT and βENaC-Tg mice. *P < 0.01 compared with WT
Adapted, with permission, from Mall et el. [30].

model to study the effect of raised ENaC-mediated absorption
of Na+ and fluid on ASL in vivo. To preserve the ASL in
situ, lungs from βENaC-Tg mice were inflation fixed with
1 % osmium tetroxide in perfluorocarbon (OsO4/PFC) [35].
Morphometric studies by transmission electron microscopy
of airway surfaces demonstrated that the height of the
periciliary liquid (PCL) layer is significantly reduced on
lower airway surfaces of βENaC-Tg mice (Fig. 1G) [30].
Independent evidence that increased Na+ absorption causes
ASL depletion came from measurements of airway mucus
concentration in βENaC-Tg mice. Similar to CF patients

[36], the water content of mucus specimens sampled from
the airways in vivo as determined by measuring the ratio
of wet to dry mucus weights, was significantly reduced in
βENaC-Tg mice compared to wild-type littermate controls
(Fig. 1H, Table 1). These results demonstrated that both
compartments of the ASL, i.e. the PCL layer and the mucus
layer were dehydrated by increased airway Na+ absorption
[30]. The pathophysiological significance of ASL dehydration
was demonstrated by in vivo measurements of mucociliary
clearance (MCC). Using a new technique that allows the
determination of MCC in living mice from the clearance
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Table 1
Pulmonary phenotypes of CF patients, Cftr-deficient mice and βENaC-Tg mice

CF patients Cftr mutant mice βENaC-Tg mice

Genetic defect CFTR mutations Cftr knockout
Specific Cftr mutations

βENaC overexpression

Ion transport in lower airways Increased ENaC-mediated Na+

absorption
Deficient cAMP-dependent Cl−
secretion

Normal ENaC-mediated Na+

absorption
Normal cAMP-dependent Cl−
secretion

Increased ENaC-mediated Na+

absorption
Normal cAMP-dependent Cl−
secretion

ASL homeostasis in lower airways Increased mucus concentration
Reduced PCL height (in vitro)

Not determined Increased mucus concentration
Reduced PCL height (in vivo)

Mucociliary clearance Reduced Normal Reduced

Airway mucus obstruction Mucus plugging
Goblet cell metaplasia

Absent Mucus plugging
Goblet cell metaplasia

Airway inflammation Chronic neutrophilia Absent Chronic neutrophilia
Transient eosinophilia

Airway infection Chronic bacterial infection
(Pseudomonas aeruginosa and other
pathogens)

No spontaneous infection No spontaneous infection

Disease mortality >90% pulmonary mortality No pulmonary mortality
Variable gastrointestinal mortality

∼50% pulmonary mortality

rate of a fluorescent dye deposited into the lower airways
and measurements of the appearance of the dye in the
trachea with microdialysis [11], it was demonstrated that ASL
volume depletion reduced MCC in βENaC-Tg mice by ∼50%
(Fig. 1I, Table 1) [30]. Taken together, these studies showed
that increased airway Na+ transport in βENaC-Tg mice causes
ASL depletion similar to CF airway cultures and CF sputum
and that this mechanism impaired the mucociliary clearance
component of lung defense similar to CF patients [16,33,36]
(Table 1).

3. Modeling CF lung disease in βENaC-Tg mice

3.1. βENaC-Tg mice develop airway mucus plugging and
pulmonary mortality

A first clue about the disease-causing effects of increased
airway Na+ absorption and impaired mucociliary clearance
came from the observation that ∼50 % of βENaC-Tg mice
die within the first weeks of life (Fig. 2A). Observations
of clinical signs of respiratory distress, such as intercostal
and subdiaphragmatic retractions, indicated that the mortality
was caused by airflow obstruction and asphyxia. This was
confirmed by post mortem histopathological examination that
revealed severe airway mucus plugging in the lung, but
no pathology in other organ systems of βENaC-Tg mice
(Fig. 2B, Table 1) [30]. Subsequently, longitudinal studies of
lung morphology were performed to elucidate the onset and
spontaneous progression of lung disease in βENaC-Tg mice.
These studies demonstrated that lungs are structurally normal
at birth and identified mucus obstruction of the trachea as
an early and invariable lesion in the airways of βENaC-Tg
mice [37]. Of note, mucus plugs in βENaC-Tg neonates
form in the absence of goblet cell metaplasia and elevated

mucin gene expression [37]. These results indicate that initial
mucus obstruction results from mucus that is constitutively
secreted onto airway surfaces where it accumulates due to
lack of proper clearance. Thus ASL depletion alone, i.e. in
the absence of mucus hypersecretion, is sufficient to cause
mucus obstruction leading to severe airflow limitation and
spontaneous pulmonary mortality in βENaC-Tg mice [37].
Of note, airway mucus plugging in the absence of goblet
cell metaplasia was also the earliest change detected in the
lungs of CF infants [2] (Table 1). The similarity in the early
mucus plugging phenotype between βENaC-Tg mice and CF
infants supports the concept that ASL depletion may also be
sufficient to produce severe airway mucus obstruction in the
human lung.
Juvenile and adult βENaC-Tg mice exhibit chronic lung

disease with mucus obstruction throughout the conducting
airways, substantial goblet cell metaplasia and elevated ex-
pression of airway mucins, including the secreted mucins
Muc5ac and Muc5b and the membrane-tethered mucin Muc4,
which likely contribute to airway mucus obstruction in
βENaC-Tg mice with chronic CF-like lung disease (Fig. 2C,
D) [37–39]. In contrast, Cftr mutant mice do not develop
mucus obstruction, mucus hypersecretion or other CF-like
abnormalities in the conducting airways (Fig. 2C, D) [4–6].
Thus the βENaC-Tg mouse provides an experimental model
to study both the development of initial airway mucus plug-
ging, as well as secondary goblet cell metaplasia and mucus
hypersecretion observed in CF patients (Table 1).

3.2. Chronic airway inflammation in βENaC-Tg mice

In parallel to airway mucus obstruction and mucus hy-
persecretion, βENaC-Tg mice develop chronic airway inflam-
mation. Longitudinal bronchoalveolar lavage (BAL) studies
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Fig. 2. Pulmonary mortality and development of airway mucus obstruction and goblet cell metaplasia in βENaC-Tg mice. (A) Survival curves for βENaC-Tg
mice and wild-type (WT) littermates. (B) Representative airway histology from WT, βENaC-Tg and Cftr−/− mice. Sections were cut at the level of the
proximal main axial airway and stained with Alcian blue-periodic acid Schiff (AB-PAS) to visualize mucus. Scale bars, 100 μm. (C, D) Summary of
longitudinal development of airway mucus obstruction and goblet cell metaplasia in bronchi from neonatal (3-day-old), juvenile (2- and 3-week-old) and adult
(6-week-old) βENaC-Tg mice, adult Cftr−/− mice and their respective WT littermates. n = 5–10 mice per group. (C) Airway mucus content, as determined by
mucus volume density. *P < 0.01 versus WT mice of same age; †P < 0.05 versus 3-day-old and 3-week-old WT mice; ‡P < 0.05 versus 3-day-old βENaC-Tg
mice. (D) Goblet cell counts in proximal main axial airways. *P < 0.05 versus WT mice of same age; †P < 0.05 versus 3-day-old mice of same genotype.
Note that Cftr−/− mice did not show airway mucus obstruction or goblet cell metaplasia. Adapted from Mall et al. [37] and reprinted with permission of the
American Thoracic Society.

demonstrated that airway inflammation is characterized by
an early influx of macrophages associated with transient ele-
vation of TNFα and chronic neutrophilic inflammation with
elevated levels of the neutrophil attractant chemokines KC
and Mip-2 (constituting the murine homologues of human
IL-8), findings consistent with the inflammatory response
observed in human CF airways (Fig. 3A–H, Table 1). Surpris-
ingly, these longitudinal BAL studies also identified transient
eosinophilic airway inflammation with increased expression
of the Th2 signaling molecule IL-13 (Fig. 3F, I) as well as
the eosinophil attractant eotaxin-1 and other Th2 signature
genes [37]. Likely, this inflammatory response, together with
secondary goblet cell metaplasia and mucus hypersecretion
was triggered by inhaled stimuli, such as particulate matter
or bacterial products, and effector molecules released from
inflammatory cells (e.g. neutrophil elastase) and/or airway
epithelial cells (e.g. agonists of the epidermal growth factor
receptor) [40–43] that were concentrated in mucostatic air-
ways. The surprising finding that juvenile βENaC-Tg mice
with a Th2 polarized immune system [44] develop transient
allergic airway inflammation suggests that ASL depletion

results in reduced clearance of inhaled allergens and is con-
sistent with the increased prevalence of concomitant allergic
airway disease such as allergic bronchopulmonary aspergillo-
sis (ABPA) in CF patients.

3.3. Impaired clearance of bacterial pathogens, but no
spontaneous respiratory tract infection in βENaC-Tg mice

Impaired mucociliary clearance [17,33,45], together with
several other factors that compromise innate airways defense
against bacterial pathogens, including anaerobic conditions
in mucus obstructed airways [46], or neutrophil elastase
mediated cleavage of the chemokine receptor CXCR1 on neu-
trophils disabling their bacterial-killing capacity [47] likely
contribute to the chronic bacterial colonization and infection
of the CF lung. Initial attempts to mimic bacterial infec-
tion in βENaC-Tg mice by intrapulmonary challenge with
Pseudomonas aeruginosa or Haemophilus influenzae, isolated
from airway secretions of CF patients indeed demonstrated
that pulmonary clearance of these pathogens was substan-
tially slowed in βENaC-Tg mice (Fig. 4A, B) [30]. Whereas
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Fig. 3. Development of airway inflammation in βENaC-Tg mice. (A) Neutrophils (arrow) in airway mucus plaque in an adult βENaC-Tg mouse (stained with
hematoxylin and eosin). Scale bar, 100 μm. (B, C) Cytospin preparations of bronchioalveolar lavage (BAL) cells (stained with May Grünwald Giemsa) from
adult wild-type (WT) (B) and βENaC-Tg mice (C) showing activated macrophages and neutrophilia in βENaC-Tg mice. Scale bars, 100 μm. (D–F) Summary
of longitudinal studies of BAL inflammatory cell counts in neonatal (5-day-old), juvenile (2- and 3-week-old) and adult (6-week-old) WT (open bars) and
βENaC-Tg (solid bars) mice. (D) Macrophages. *P < 0.01 versus WT mice of same age; †P < 0.05 versus 5-day-old and 6-week-old WT mice; ‡P < 0.05
versus 5-day-old, 2-week-old, and 3-week-old βENaC-Tg mice. (E) Neutrophils. *P < 0.001 versus WT mice of same age; †P < 0.05 versus 5-day-old
βENaC-Tg mice. (F) Eosinophils. *P < 0.001 versus WT mice of same age; †P < 0.05 versus 5-day-old and 6-week-old mice of same genotype. (G–I) Time
course of expression of proinflammatory cytokines TNF-α, KC and IL-13 in lungs from fetal, neonatal, juvenile and adult WT (open bars) and βENaC-Tg
(solid bars) mice. (G) TNF-α. *P < 0.01 versus WT mice of same age; †P < 0.05 versus newborn βENaC-Tg mice; ‡P < 0.05 versus fetal and newborn
βENaC-Tg mice. (H) KC. *P < 0.01 versus WT mice of same age; †P < 0.05 versus newborn βENaC-Tg mice. (I) IL-13. *P < 0.05 versus WT mice of same
age; †P < 0.05 versus newborn and 5-day-old βENaC-Tg mice. Adapted from Mall et al. [37] and reprinted with permission of the American Thoracic Society.

wild-type mice cleared bacteria almost completely within 24
hours following a single intratracheal challenge, significant
numbers of bacteria were detected in the lungs of βENaC-Tg
mice for periods of 3 days up to 2 weeks. However, bacteria
were cleared thereafter, and single challenges did not result
in chronic bacterial infection in βENaC-Tg mice. Further,
in contrast to CF patients, βENaC-Tg mice do not develop
spontaneous bacterial infections, as evidenced by culturing
lung homogenates on various growth media used in the di-
agnostic setting including blood agar, MacConckey agar and
thioglycolate broth [30]. In the majority of lungs, no bacterial
growth was detected by routine microbiological culture. Low
grade growth (≤ 30 cfu/lung) of lactobacilli, α-hemolytic
streptococci, coagulase-negative staphylococci or micrococ-
cus was detected in the lungs of some animals; however the
bacterial counts were not different in βENaC-Tg mice com-
pared to wild-type mice. More recently, in order to address the

possibility that low numbers of bacteria escaped detection by
these culture techniques, we performed quantitative analyses
of bacterial DNA load by quantitative real time PCR that
amplifies 16S ribosomal DNA in lungs from βENaC-Tg mice
and wild-type littermates by using established protocols [48].
With this highly sensitive technique, we detected bacterial
DNA in the lungs from most (∼70%) mice. However, bacte-
rial DNA load was low and did not differ between βENaC-Tg
and wild-type mice (Fig. 4C, Table 1).
Several possibilities may explain why βENaC-Tg mice,

in contrast to CF patients, do not appear to develop spon-
taneous bacterial airway infections. First, it is possible that
the conditions under which these murine experiments were
performed (i.e. specific pathogen free environment and single
challenge with human pathogens) did not adequately mimic
the conditions under which chronic bacterial infections are
acquired by CF patients (i.e. repetitive challenge and/or coin-
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Fig. 4. Slowed clearance of bacterial pathogens, but no spontaneous bacterial infection in lungs of βENaC-Tg mice. (A, B) Increased bacterial burden 3 days
after intratracheal instillation with clinical isolates of Haemophilus influenzae (A) or Pseudomonas aeruginosa (B) in lungs from βENaC-Tg mice compared
with wild-type (WT) littermates. *P < 0.01. Adapted, with permission, from Mall et al. [30]. (C) Quantitative analysis of bacterial DNA load in lungs from
WT and βENaC-Tg mice in the absence of bacterial challenge. DNA was extracted from lungs of adult WT and βENaC-Tg mice (n = 16 each) and total
bacterial load was determined by quantitative real-time PCR that amplifies 16S ribosomal DNA, and quantified by applying a recombinant plasmid standard,
as previously described [48]. Using this sensitive method, low levels of bacterial DNA were detected in both groups, however, bacterial load did not differ in
lungs from WT versus βENaC-Tg mice.

fection with different pathogens). Second, mice may have
host defense mechanisms that enable efficient bacterial killing
in the lung even in the presence of impaired mucociliary
clearance and chronic inflammation. Third, besides dysregu-
lation of cAMP-mediated Cl− secretion and ENaC-mediated
Na+ absorption, CFTR malfunction has been implicated in
a number of other cellular dysfunctions including abnormal
clearance of Pseudomonas aeruginosa, phagosome acidifi-
cation in macrophages and ceramide metabolism [49–51].
These abnormalities may contribute to the high susceptibility
for bacterial infection in lungs from CF patients, but not
βENaC-Tg mice, in which Cftr function is normal. How-
ever, it should be stressed that Cftr mutant mice, similar to
βENaC-Tg mice, also fail to develop spontaneous pulmonary
bacterial infections [6]. The βENaC-Tg mouse should be a
useful model to test these possibilities in future studies, which
may provide novel insights into host–pathogen interactions in
mucostatic airways in vivo and contribute to the development
of novel anti-bacterial therapies for CF patients.

4. Application of the βENaC-Tg mouse in basic and
translational research of CF lung disease

4.1. βENaC-Tg mice as a model to elucidate modifiers of CF
lung disease

Clinical studies demonstrated that the severity of lung
disease can vary substantially in CF patients carrying the
same CFTR genotypes [52]. These observations suggest that
the disease severity can be modulated by modifier genes that
may alter airway ion transport, mucus secretion, inflammation
or other important abnormalities in the CF lung. The βENaC-
Tg mouse can be used as a tool to elucidate potential modifiers
of CF lung disease by two different general strategies. First,
cross-breeding of the βENaC-Tg mouse with knockout mouse
models can be used to elucidate the role of specific candidate
genes in the in vivo pathogenesis. So far, this approach has
been used to determine the selective roles of TNF-α and
IL-4Rα signaling in chronic airway inflammation in βENaC-

Tg mice [38]. Although TNF-α and IL-13 were markedly
elevated at early time points [37] genetic deletion of their
respective receptors, i.e. TNFR1 and IL-4Rα, did not affect
airway neutrophilia and mucus obstruction in adult βENaC-
Tg mice [38]. These results suggest that other signaling
pathways are responsible for the development of chronic
inflammation in mucostatic airways. Second, phenotypic and
genetic analyses of βENaC-Tg mice with different genetic
backgrounds provide additional opportunities to study the
role of modifier genes. Recent experiments in which the
βENaC-Tg mouse was backcrossed from its original mixed
genetic background (C3H x C57BL/6 hybrids) onto the
parental strains and other commonly used inbred strains
such as BALB/c demonstrated that genetic background has
profound effects on the severity of pulmonary mortality [53].
Therefore, we predict that further functional and genetic
studies of βENaC-Tg mice with different genetic backgrounds
and divergent pulmonary phenotypes have a high potential to
identify genetic modifiers of CF lung disease [54].

4.2. In vivo evaluation of therapies for CF lung disease in
βENaC-Tg mice

The βENaC-Tg mouse also provides a powerful tool for
preclinical evaluation of treatment strategies targeting ASL
depletion, airway mucus obstruction and chronic inflammation
in CF lung disease. In a recent study, we were able to
demonstrate that pharmacological inhibition of increased Na+

absorption and ASL depletion by preventive intrapulmonary
treatment with the ENaC blocker amiloride had significant
therapeutic benefits in this model of CF lung disease [24,55].
Preventive administration of amiloride, from the first day of
life for a period of 2 weeks, had significant mucolytic effects
as evidenced by a substantial reduction of airway mucus
obstruction, goblet cell metaplasia and mucus hypersecretion,
and reduced the spontaneous pulmonary mortality of βENaC-
Tg mice by ∼70% (Fig. 5A–C). Interestingly, preventive
amiloride treatment also had potent anti-inflammatory effects
in βENaC-Tg mice, likely due to improved clearance of
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Fig. 5. Preventive amiloride therapy reduces mortality, airway mucus obstruction and airway inflammation in βENaC-Tg mice. Effects of preventive amiloride
treatment, administered from the first day of life for a period of 2 weeks on (A) survival, (B and C) airway mucus obstruction and (D) airway inflammation
in βENaC-Tg mice and wild-type (WT) littermates. (A) Survival curves for βENaC-Tg and WT mice treated with amiloride or vehicle alone. *P < 0.001
compared with vehicle-treated βENaC-Tg mice. (B) Airway histology of βENaC-Tg and WT mice after preventive treatment with amiloride or vehicle alone.
Sections were stained with Alcian blue-periodic acid Schiff (AB-PAS) to visualize intraluminal mucus and goblet cells. Scale bars, 100 μm. (C) Airway mucus
content was determined by measuring the volume density of AB-PAS-positive material in proximal and distal main axial airways. *P < 0.001 compared
with vehicle-treated WT; †P < 0.05 and ‡P < 0.001 compared with vehicle-treated βENaC-Tg mice. (D) BAL inflammatory cell counts. *P < 0.05 and
**P < 0.001 compared with vehicle-treated WT mice; †P < 0.05 and ‡P < 0.001 compared with vehicle-treated βENaC-Tg mice. Adapted from Mall et al.
[37] and reprinted with permission of the American Thoracic Society.

inhaled irritants and allergens that otherwise accumulated and
triggered chronic inflammation in mucostatic airways [55].
Taken together, these results provide a proof-of-concept that
preventive treatment with amiloride is an effective mucolytic
and anti-inflammatory therapy in this in vivo model of CF
lung disease, and suggest that this preventive strategy may be
beneficial for CF patients who are diagnosed in early infancy
by CF newborn screening [3,56].
However, similar to observations in previous clinical trials

[57,58], amiloride had no effect on airway mucus obstruction
or inflammation when treatment was started in βENaC-Tg
mice with chronic lung disease [55]. We predict that the
βENaC-Tg mouse will be useful to determine if the lack
of therapeutic effects of amiloride in chronic lung disease
is caused by its low potency and rapid absorption from
airway surfaces [59,60] or, alternatively, by the persistence
of anatomical and functional abnormalities in chronically in-
flamed airways [61], even if ASL is restored. With the recent
development of novel highly potent and long-acting ENaC

blockers, such as 552-02 [62–64] it will be possible to test
if ENaC-directed pharmacotherapy can be beneficial in estab-
lished CF lung disease. Besides the preclinical evaluation of in
vivo effects of specific ENaC blockers, the βENaC-Tg mouse
may also be used to test the efficacy of other mucolytic and
anti-inflammatory agents. For example, DNAse and hyper-
tonic saline were shown to improve lung function and quality
of life as indirect outcome measures and are already used for
the treatment of CF patients [65,66]. However, no information
is available as to what extent these therapeutic agents reduce
airway mucus obstruction and airway inflammation in the CF
lung. Further, a direct comparison of the efficacy of DNAse
and hypertonic saline is still pending. With an increasing
number of new mucolytic and anti-inflammatory compounds
becoming available for clinical testing, systematic and com-
parative preclinical evaluation in the βENaC-Tg mouse could
help to pre-select the most promising compounds and stratify
future clinical trials and new therapeutic strategies in CF
patients. Such a strategy of systematic pre-selection of new
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mucolytic and/or anti-inflammatory therapies should help to
reduce the number of compounds that have to be tested in
CF patients, and thus reduce the overall development costs, as
well as the burden for patients associated with participation
in multiple clinical trials. Of note, CFTR expression and
function are not altered in the airways of βENaC-Tg mice.
Therefore, this model does not allow testing of therapeutic
effects of drugs designed to correct and/or potentiate the
function of mutated CFTR.

5. Summary and conclusions

In summary, mimicking increased epithelial Na+ absorp-
tion, i.e. a basic defect in CF airways, by airway-specific
overexpression of βENaC in mice resulted in the first animal
model with spontaneous CF-like lung disease characterized
by airway mucus obstruction, goblet cell metaplasia, mucus
hypersecretion, chronic airway inflammation, reduced clear-
ance of bacterial pathogens and high pulmonary mortality
[24,30,37,67]. Studies of the phenotype of the βENaC-
Tg mouse provided a proof-of-concept that ASL depletion,
due to an imbalance of ENaC-mediated Na+ absorption
and CFTR/CaCC-mediated Cl− secretion, causes mucociliary
dysfunction and that this mechanism plays a critical role in
initiating CF-like lung disease in vivo. Thus, the βENaC-
Tg mouse provides a useful tool for further elucidation of
the complex in vivo pathogenesis, identification of modifier
genes, and the in vivo evaluation of novel therapies targeting
ASL depletion, mucus obstruction and chronic inflammation
in CF lung disease [24,53,55]. Because overexpression of
ENaC is restricted to the lung, and CFTR function is normal
in βENaC-Tg mice, this model does not allow to study CF
pathogenesis in other organ systems, nor to study the role
of cellular dysfunctions caused by mutant CFTR that are
independent of deficient Cl− secretion and ASL homeostasis,
e.g. phagosome acidification in macrophages, cellular lipid
trafficking or ceramide metabolism [50,51,68]. However, this
limitation could be overcome by crossbreeding of the βENaC-
Tg mouse with Cftr mutant mice to produce double-mutant
mice exhibiting both increased airway Na+ absorption and
CFTR malfunction in the lung.
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