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Abstract

Brain Computer Interface (BCI) systems have been widely used to develop viable assistive technology for physically disabled

persons. In this paper, we present the design and development of a BCI-based system for generation of synthesized speech, which

works on eye-blinks detected from the Electroencephalogram (EEG) signals of the user. Such a system is particularly useful for

patients suffering from locomotive disorders such as locked-in syndrome, who can use this interface to communicate with their

caretakers. This system enables patients to communicate by selecting the desired options from a configured list by performing

eye-blinks, which is then converted to synthesized speech by the computer system. The key advantages of our system are that it

uses the portable and easy-to-wear Emotiv headset, is built on using an open-source application stack and also does not require

training for individual users. The system has been tested on patients who have been able to use it conveniently to communicate

with their caretakers in a medical facility.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Brain Computer Interface (BCI) enables the use of voluntary variations in brain activity to control devices. These

systems typically use a combination of signal processing and machine learning techniques to identify intents from

Electroencephalogram (EEG) signals, which are then translated to commands by an end-user application1. Such

systems have recently gained popularity in being used as assistive technology for patients suffering from locomotive

disorders such as Amyotrophic Lateral Sclerosis (ALS), locked-in syndrome and other neurological disorders2. BCI

systems are useful to such patients, as they provide a medium for communication using actions discernible from the

subject’s EEG signals.
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There have been many assistive technology applications based on BCI such as the P300 speller3, robot control4,

prosthesis control5, games6 and use in control of virtual environments7, among others8,9. These systems are based

on a variety of control paradigms and cater to different requirements of users10. However, the BCI system presented

here, which is an extension of our work published previously11, is significant for the following reasons. Firstly,

conventional BCI systems require training, both for the system (in terms of training a learning model on a large data

corpus) as well as the user (development of the skill to use a BCI system efficiently)12,13. However, our system uses

eye-blinks as a control intent which is similar for all users, hence the use of the system does not require individual

user training by the users. Further, it uses the Emotiv headset which is easy to wear and portable in comparison to

other EEG acquisition systems. The integration with a “text-to-speech” system provides a more natural context to the

usage of a BCI system, as it suitably augments the conventional human perception of speech. Moreover, it is built on

a free and open-source stack and can be configured as per the individual user’s convenience.

This paper presents the design and development of a BCI system which enables the user to use eye-blinks to select

text options on a computer screen, which are then converted to synthesized speech using a Text-to-Speech (TTS)

system. The user’s eye-blinks are detected by processing EEG signals using feature extraction and classification tech-

niques. The application allows the user to select the sentence which he/she wishes to speak from a list of configured

sentences by blinking when the sentence is highlighted. This is useful for patients who cannot verbally communicate

and are physically constrained due to locomotive disorders. They can use this to communicate with their caretakers

or other people for day-to-day activities such as wanting food, medicines etc. or to be taken to a particular location.

The rest of the paper is organized as follows. Section 2 discusses the basic architecture and building blocks of a

BCI system. Our BCI system is presented in section 3, followed by findings from field trials of the system in Section

4. The conclusions and discussion of our work is presented in Section 5.

2. Architecture of a BCI System

The architecture of a BCI system primarily consists of four stages. The first stage is the EEG signal acquisition

phase, which is responsible for interfacing with the EEG acquisition device to provide the EEG data stream for

further processing. The second stage is the pre-processing and feature extraction unit. Pre-processing involves artifact

removal and filtering of EEG data in the frequency band of interest. The feature extraction stage14 is responsible for

extracting features from the EEG data, which represent significant components of the EEG in a lower-dimensional

space. The next stage is the classification stage15, which uses a classifier to identify the intent from the features

obtained from EEG data. In a typical BCI system, the classifier is trained by using features from the training EEG

dataset (which constitutes the “offline” stage), and during online usage of the system, the trained classifier determines

the intent using features computed from the test EEG data. The final component in the pipeline is the end-user

application, which translates the intent identified by the previous stage into the action intended to be performed.

Figure 1 illustrates the architecture of our BCI system. We use the Emotiv EPOC headset which provides EEG

data through OpenViBE16, an open source platform for designing BCI systems. Once the EEG signals are obtained,

pre-processing and feature extraction are done using band pass filtering and Common Spatial Pattern (CSP) techniques

respectively, which are discussed in the subsequent sections. The classification stage uses Linear Discriminant Anal-

ysis (LDA) as a classifier, which identifies the intent and sends it to the end-user application through the OpenViBE

desktop bridge. The TTS application receives the intent from the classifier and synthesizes the selected text to speech.

Our system is primarily a single-intent based BCI system that enables a user to operate the TTS system by using

eye-blinks. The eye-blinks are visibly prominent in EEG signals and therefore can be detected efficiently. They are

also universal for all users, and therefore the system does not need to be trained for each user. The use of eye-blinks

as control signals is further substantiated by the fact that patients suffering from motor-neuron disorders primarily

use eye-blinks to communicate with others17. Conventional BCI systems consider eye-blinks as artifacts and use

approaches to remove them from EEG signals18. We propose the use of eye blinks as control signals owing to their

prominence in EEG signals as compared to other paradigms.

We use the Emotiv EPOC Neuroheadset for EEG signal acquisition, which is a portable 14-channel device. It is

easy to setup and use as compared to a clinical EEG device19. Eye blinks can easily be detected using the Emotiv

headset as it has electrodes placed in the frontal regions, namely AF3, AF4, F7 and F8, according to the 10-20

system20.
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Fig. 1: System Architecture

3. The BCI Processing Pipeline

There are two phases of operation of a BCI System, the offline and online phase. Initially, during both phases, the

EEG data of the user is acquired using the intended paradigm and it undergoes pre-processing and feature extraction.

During the offline phase, the classifier is trained using the features, whereas during the online phase, it is used to

identify the user intent, which is mapped to a command to control a device. Our system is trained once to identify eye

blinks, however the system need not be trained subsequently for each user.

This section presents the details of the various components of the BCI processing pipeline mentioned above. We

discuss the EEG signal acquisition paradigm in sub-section 3.1, followed by the CSP feature extraction technique in

sub-section 3.2. For classification we use the Linear Discriminant Analysis (LDA) which is explained in 3.3, followed

by translation to a control command, discussed in sub-section 3.4.

3.1. EEG Signal Acquisition Paradigm

This stage essentially involves acquisition of the EEG signals using a suitable device, such as the Emotiv Neuro-

headset. During the offline or training phase, the subject (user) sits facing a computer screen wearing the EEG headset.

The EEG of the subject is being continuously recorded and stored in a file. The subject is shown a visual stimulus on

the screen, indicating the subject to blink or sit idle. This is termed as an event or a trial. As the subject performs the

action intended for the trial, markers are added to the file to enable extraction of EEG signals in a time window around

the events for further processing. The user’s EEG data is acquired for multiple trials, which constitutes a session. The

sequence of trials are randomized to prevent adaptation of the brain21.

The Emotiv headset filters the data with a low pass filter at 85 Hz cutoff followed by a high pass filter at 0.16 Hz

to retain the EEG spectrum. It also applies a notch filter at 50 Hz to remove supply lines interference. As the power

spectrum of eye movements is concentrated in the frequency range of 0.5 to 3Hz22, the EEG is then band passed at

0.5-3 Hz using a Butterworth filter having a pass band ripple of 1dB.

3.2. Feature Extraction using CSP

This section discusses the use of CSP, originally proposed by Ramoser et al. 23, for feature extraction for BCI sys-

tems. It has been widely used as it provides better results over other available spatial filters like bipolar filter, Common

Average Reference (CAR) filter, Laplacian filter etc24. The primary advantage of using CSP is that it addresses the

problem of spatial blurring25.
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The steps for implementing CSP are shown in Figure 2. We first compute the covariance matrix of the trials, and

then obtain the normalized covariance matrix for data of both classes. These are combined to obtain the composite

normalized covariance matrix. Next, we obtain the eigenvalue decomposition of the composite normalized covariance

matrix and compute the whitening transformation from the decomposition. We then re-compute the eigenvalue de-

composition of the whitened matrix and select the ‘k’ eigenvectors corresponding to the ‘k’ highest eigenvalues. Here,

‘k’ is a configurable parameter of the CSP algorithm. Finally, we project the data to the ‘k’ dimensional subspace

spanned by the selected eigenvectors and take the log-variance of the projected vectors as features for each trial. A

detailed description of this algorithm can be found in23, and its implementation for BCI can be found in our work11,26.
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Fig. 2: Flowchart for computing features using Common Spatial Patterns

3.3. Classification using LDA

The next step in the BCI processing pipeline is that of classification, where a classifier is trained to identify the

intent from the features. We use the LDA classifier27, that aims at obtaining a linear decision boundary between the

features of the two classes.

The objective of the LDA classifier is to assign a feature to the class having highest conditional probability, thereby

minimizing the total error on classification28. The classifier is trained using features of the training data, and during

online usage of the BCI system, the classifier is used to identify the user intent from the features of the EEG data.

In terms of implementation, the output of the classifier during the online phase is sent to an external application that

translates the identified intent to a control command or action.

The following are the steps involved in implementing the LDA classifier. Given the matrix of training features X
of size [samples X f eatures] and a label vector Y of size [samples X 1], where yi ∈ {0, 1} indicates the class label of

the corresponding sample in the feature matrix, we first center the data around the mean for the training data of each

class. This is done by subtracting the mean of the training data of each class from each sample of that class.

Next, we compute the covariance matrix from the training data as shown in Equations (1)-(2).

Covariance matrix of class i, ci =
xT

i xi

ni
(1)

Group covariance matrix C(r, s) =
1

n

g∑

i=1

ci(r, s) (2)

where xi is the mean centered training sample of class i.
We also compute the prior probability pi of class i as the ratio of the number of samples of class i to the total

number of training samples available for all classes. Further, if the mean for a class of data be denoted by μi, then the

discriminant function for that class can be computed as shown in Equation (3). We assign an object xk to a class i that

has maximum fi.

fi = μiC−1xT
k −

1

2
μiC−1μT

i + ln(pi) (3)
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3.4. End-User Application

A Java application has been developed which takes as input the output of the classifier as discussed in the previous

section and provides as output an audio or voice message. The input to the application is binary in nature i.e. it is

either a zero or one. Appearance of one indicates the detection of an eye blink made by the user and zero otherwise.

The user is shown a panel containing some sentences arranged one below the other which are flashed sequentially. To

choose a text, the user has to blink when the desired text is focused and then the text will then be converted to an audio

output. As discussed previously, this system will be helpful for patients as the application can be used as a warning

system in case the patient needs urgent attention.

The application has been built on a software stack which includes EEGLAB29 (a MATLAB plugin for EEG signal

processing), OpenViBE16, Java and Emotiv. OpenViBE provides a driver to interface and capture raw EEG signals

provided by the Emotiv headset. We developed an OpenViBE scenario that does pre-processing on the signals by

passing them through a temporal band pass filter of 0.5Hz to 3Hz, which is the frequency band of interest for de-

tecting eye blinks. These are then passed on to EEGLAB, which realizes the channel selection, feature extraction

and classification procedures. The classification result is given back to OpenViBE which then forwards it to the Java

application using the VRPN server.

The GUI for the application has been built using Java Swing30. At first, the user is shown a screen as in Figure

3a which provides an indication as to whether the system has stabilized or not. During this time the user has to stay

calm without doing any muscular movements. This is provided to allow the user some time to get ready to use the

system and to prevent the system from providing unexpected outputs while the user may require to adjust the headset

position. Once the stability has been achieved, the application automatically takes the user to another screen where

texts are flashed sequentially to the user as shown in Figure 3b. The user has to indicate an option by blinking at a time

when the desired option is in focus and that option will be ”read aloud” by the system. The options are configurable

and can be fed to the system using an XML file.

The options can also be multilevel in nature. For example the user can first choose “Help Me” from the rest of

options as provided in Figure 3b. Seeing this the application asks the user whether he or she needs an “Attendant” or a

“Doctor” for help, as shown in Figure 3c. The application uses three consecutive blinks made by the user as an intent.

However, this can also be made configurable depending on the user’s comfort level. The application has a text to

speech interface which enables the conversion of the text inputs to audio signals. The authors chose to use FreeTTS31

for speech synthesis as it is written in Java and could be easily integrated with our system. For serializing XML to

Java objects a java library called XStream32 has been used. This became quite useful for implementing the multilevel

use of options in the system as discussed before.

(a) Stabilizer Panel (b) Menu (Level 1) (c) Menu (Level 2)

Fig. 3: Screen shots of the application
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4. Findings from Field Trials

The developed application was deployed for trials by patients suffering from motor disabilities. The initial training

of the system was done by collecting EEG data of 5 subjects with eye-blinks at marked intervals (the data had record-

ings for two sessions per subject, with 30 trials per session). EEG signals corresponding to rest and eye-blink states

were extracted and band-pass filtered in the range of interest (0.5 to 3Hz). CSP features were then extracted from the

filtered data and used to train a classifier offline. The system gave an offline accuracy of the order of 95%, averaged

across the users. This indicated that the system was suitable for online usage.

As part of performing field trials, the system was deployed at the Neurology wing of a medical facility for use by

disabled patients. It was found that users were able to successfully use the application to generate the desired speech

from the available options. During the trials, it was observed that the user might also blink involuntarily, which the

system may detect as an intent to perform an operation. To address this, a threshold was set to the number of eye

blinks to be detected prior to initiation of an operation. For instance, three eye blinks would be required to perform

the operation of translating the selected text to speech.

The users gradually became adept at using the application. Initially, most users took some time to understand the

operation of the system, primarily with regard to aspects such as the rate of blinking and time at which the user needed

to blink. However, with gradual usage, users were able to adapt to using the application comfortably and communicate

with their caretakers.

5. Conclusion and Future Work

This paper presented a mechanism to detect eye blinks from EEG signals to use a “Text-to-Speech” application.

The accuracy of the system during online classification is appreciably high to enable its day-to-day use. The system

has been found to be beneficial for use by patients suffering from motor disabilities as it enables them to communicate

with their caretakers or indicate when they need urgent attention, without the prior requirement of training the system.

Future work lies in evolving the processing pipeline to identify imagined movements. The key challenge in de-

veloping such a system lies in the inter-session and inter-subject variability in EEG signals for motor imagery. This

is presently addressed by training the system for individual users. We intend to evolve such systems to subject-

independent scenarios where the system can be used without extensive training.
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