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a b s t r a c t

PM2.5 retrieval from space is still challenging due to the elusive relationship between PM2.5 and aerosol
optical depth (AOD), which is further complicated by meteorological factors. In this work, we investi-
gated the diurnal cycle of PM2.5 in China, using ground-based PM measurements obtained at 226 sites of
China Atmosphere Watch Network during the period of January 2013 to December 2015. Results showed
that nearly half of the sites witnessed a PM2.5 maximum in the morning, in contrast to the least frequent
occurrence (5%) in the afternoon when strong solar radiation received at the surface results in rapid
vertical diffusion of aerosols and thus lower mass concentration. PM2.5 tends to peak equally in the
morning and evening in North China Plain (NCP) with an amplitude of nearly twice or three times that in
the Pearl River Delta (PRD), whereas the morning PM2.5 peak dominates in Yangtze River Delta (YRD)
with a magnitude lying between those of NCP and PRD. The gridded correlation maps reveal varying
correlations around each PM2.5 site, depending on the locations and seasons. Concerning the impact of
aerosol diurnal variation on the correlation, the averaging schemes of PM2.5 using 3-h, 5-h, and 24-h time
windows tend to have larger R biases, compared with the scheme of 1-h time window, indicating diurnal
variation of aerosols plays a significant role in the establishment of explicit correlation between PM2.5

and AOD. In addition, high cloud fraction and relative humidity tend to weaken the correlation,
regardless of geographical location. Therefore, the impact of meteorology could be one of the most
plausible alternatives in explaining the varying R values observed, due to its non-negligible effect on
MODIS AOD retrievals. Our findings have implications for PM2.5 remote sensing, as long as the aerosol
diurnal cycle, along with meteorology, are explicitly considered in the future.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aerosols have been extensively suggested to play an important
role in climate change on regional and global scales, largely due to
their significant but uncertain direct and indirect effects (e.g.,
Kaufman et al., 2002; Rosenfeld et al., 2008; Li et al., 2011; IPCC,
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2013; Wang et al., 2014a; Guo et al., 2016a). In addition, PM2.5
(particulate matter with an aerodynamic diameter smaller than
2.5 mm) is believed to be closely associated with a wide range of
adverse health effects, including cardiovascular, respiratory dis-
eases, and even premature death (e.g., Al-Saadi et al., 2005; Vidot
et al., 2007; Wang et al., 2010; Apte et al., 2015; Schwartz et al.,
2015). Therefore, the ability of getting accurate temporal and
spatial distribution of ground-based PM2.5 becomes an increasingly
key prerequisite for the effective reduction and prevention of
aerosol pollution (Wang and Christopher, 2003; Lin et al., 2015; Guo
et al., 2016b).

Apart from the traditional surface PM2.5 monitoring network,
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satellite remote sensing with large spatial coverage and reliable
repeated measurements is a very promising approach to monitor
the large-scale aerosol loadings and their transport pathways,
especially over the remote regions where ground-based observa-
tions are sparse (Kaufman et al., 2002; Wang and Christopher,
2003; Engel-Cox et al., 2004; van Donkelaar et al., 2006; Vidot
et al., 2007; Wang et al., 2010; Creamean et al., 2013). For instance,
the Moderate Resolution Imaging Spectroradiometer (MODIS) on-
board the polar orbiting satellites of Terra/Aqua can provide long-
term global aerosol optical depth (AOD), a measure of extinction
by aerosols in the atmospheric column (Remer et al., 2005). The
MODIS AOD data have been widely used to estimate near-surface
PM concentration, with accuracy differing greatly by regions
(Hauser et al., 2005; Al-Saadi et al., 2005; Gupta et al., 2006; Kumar
et al., 2008, 2011; Gupta and Christopher, 2008; Kim et al., 2013; Li
et al., 2015; Lin et al., 2015).

The estimationmethods of near-surface PM2.5 from space-borne
AOD can be classified into two categories: observation- and
simulation-based methods (Lin et al., 2015). The observation-based
methods largely rely on statistical relationships between AOD and
surface-level PM2.5 observations, which was initially conducted in
the United States by Wang and Christopher (2003), who compared
MODIS AOD with seven ground measured PM2.5 concentrations in
Alabama, United States, in 2002, and found that the correlation
coefficient (R) between AOD and PM2.5 differed by regions, with a
maximum R of 0.90. The correlation analyses based on MODIS AOD
and PM2.5 measurements were then extended throughout the
contiguous United States (Engel-Cox et al., 2004), revealing a rela-
tively moderate correlation (R z 0.4) between MODIS AOD with
daily and hourly mean PM2.5 concentration. A similar statistical
regression study was performed in Europe as well (Koelemeijer
et al., 2006). Recently, more sophisticated methods used to esti-
mate PM2.5 from space were developed by taking into account
meteorological factors such as cloud cover, wind speed, the mixed
layer height, and relative humidity (Gupta et al., 2006; Liu et al.,
2009; Wang et al., 2010; Zheng et al., 2015). As a consequence,
the correlation coefficient between AOD and PM2.5 or PM10
improved significantly (e.g., Guo et al., 2009; van Donkelaar et al.,
2010; Wang et al., 2010; Li et al., 2015).

As a side effect of fast economic development, China is currently
suffering from serious aerosol pollution, which leads to increasing
attention paid to this region (Xia et al., 2006; Guo et al., 2009; Song,
2009; Wang et al., 2010, 2014b), and underscores the urgent need
for real-time air pollution monitoring. However, few operational
remote sensing algorithms have been developed to monitor large-
scale surface PM2.5 concentrations, despite the recent great ad-
vances in sophisticated nonlinear methods for PM2.5 estimation
from space-borne AOD products like multivariate linear models
(Seo et al., 2015), back-propagation artificial neural network (e.g.,
Wu et al., 2012), and geographically weighted regression (GWR)
statistical model (e.g., Song et al., 2014; van Donkelaar et al., 2015).
This is in part caused by the inhomogeneous horizontal or vertical
distributions (Huang et al., 2015), in addition to the meteorology
effect in both ground-level PM2.5 and satellite AOD retrievals (Li
et al., 2015).

It is still challenging to directly estimate ground-level PM2.5 due
to difficulty inmaking comparison of a pixel-wide AOD valuewith a
point observation of PM2.5. Large-scale discrepancy between AOD
and PM2.5 might mask their smaller-scale correspondences
(Hutchison et al., 2008; Kumar, 2010). This will be the case if we
intentionally or unintentionally ignore the effect caused by the
diurnal variation of aerosols. As we know, the diurnal cycle of PM2.5
seems to be quite important due to its great impact on various
applications, including radiative forcing computation, aerosol-
cloud interaction, as well as public health (Smirnov et al., 2002;
Arola et al., 2013; Xu et al., 2016), most of which are limited to
studies of aerosol optical properties at local scale (Kuang et al.,
2015; Xu et al., 2016). To the best of our knowledge, few studies
have taken the diurnal variability of PM2.5 into account when
attempting to develop methods to estimate PM2.5 over large scale
from space.

Therefore, the objective of this study is to investigate the diurnal
cycle of PM2.5 based on long-term large-scale PM2.5 observational
network across China, in addition to conducting correlation ana-
lyses between PM2.5 and AOD by considering the potential impact
of aerosol diurnal cycle, ground-based cloud fraction (CF) and
relative humidity (RH). The paper is organized as follows: de-
scriptions of the MODIS-derived AOD, ground-based PM2.5, RH and
CF measurements in China are presented in section 2. The results
concerning the correlation analysis between AOD and PM2.5, and its
influential factors are presented in section 3. Section 4 gives the
major conclusions.
2. Data and method

2.1. PM2.5 observations and their processing

Hourly ground-based PM2.5 measurements during the period
from January 1, 2013 to December 31, 2015 were obtained from 226
sites, which constitute one indispensible part of the China Atmo-
sphere Watch Network (CAWNET) operated by the China Meteo-
rological Administration (CMA). CAWNET was mainly designed to
measure ambient aerosol loadings across China, and most of its
sites are located in suburban areas, in sharp contrast to the urban
settings of the PM2.5 sites which belong to the observational
network maintained by the Ministry of Environment Protection of
China. The latter network takes continuous PM2.5 measurements
primarily from the Tapered Element Oscillating Microbalance
(TEOM) with an accuracy of ±5 mg m�3 for 10 min-averaged data
and ±1.5 mgm�3 for hourly averages. It is well known that PM2.5 has
to be measured at RH <40% (e.g., Barnaba et al., 2010), and all the
PM2.5 data have undergone strict quality control according to the
criteria described in detail by Guo et al. (2009).

All ground-based PM2.5 measurements are recorded in Beijing
time (BJT). In order to reflect the real effect of solar radiation on the
diurnal variation in PM2.5, the time coordinates have to be con-
verted to local solar time (LST) using the following formula (Guo
et al., 2014):

TLST ¼ TBJT � 8þ Lon=15 (1)

where TLST denotes the observational time in LST, TBJT denotes the
original observational time recorded in BJT, and Lon denotes the
longitude for a given PM2.5 site. To enhance visual interpretation,
for a given PM2.5 observation station, each daily 24-h period is
divided into four 6-hourly intervals defined as follows: early
morning (0000e0600 LST), morning (0600e1200 LST), afternoon
(1200e1800 LST), and evening (1800e2400 LST).

The diurnal cycles of PM2.5 concentration and frequency are
determined on the basis of the daily average distribution of hourly
time series for the whole period from January 2011 to December
2015. Following the similar methods proposed for characterizing
the diurnal variation of precipitation (Guo et al., 2014), the averaged
PM2.5 at a particular hour of the day PM2:5ðx; y; tÞ is expressed as

PM2:5ðx; y; tÞ ¼
Xd¼day

d¼1

PM2:5ðx; y; t;dÞ
,

day (2)

where PM2:5ðx; y; t;dÞ represents the PM2.5 concentration at “t”
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o'clock (t ¼ 1, 2, 3 …, 24) on the day of “d” for a particular site with
coordinates (x, y), and “day” represents the total number of days
during the three-year period. As such, 24 mean hourly PM2.5 values
were obtained, each of which was further examined to identify the
hour with a maximum in PM2.5 concentration (amplitude) and
occurrence frequency (phase) for a given day. In this way, the time
series of PM2.5 concentration (amplitude) and occurrence fre-
quency can be obtained for each site.

2.2. MODIS AOD

The MODIS level 2 AOD data (version 5.1, with a resolution of
10 km� 10 km) for the period January 2013 to December 2015were
downloaded from the Level 1 and Atmosphere Archive and Dis-
tribution System (LAADS, https://ladsweb.nascom.nasa.gov/data/
search.html). For simplicity, only MODIS-Aqua AOD data which
are retrieved at ~1330 LST are used. The MODIS AOD of this version
is retrieved using the dual-channel Dark-Target algorithm, which
has improved aerosol optical models for the AOD algorithm over
land. The algorithm employs primarily three spectral channels
centered at 0.47, 0.66, and 2.1 mm respectively. AOD is derived at
0.47 and 0.66 mm, and interpolated to 0.55 mm in order to make
comparison with ground-based sun-photometer derived AOD
(Anderson et al., 2012).

Extensive field validation campaigns (Wang et al., 2007; Levy
et al., 2010) suggested that the MODIS level 2 AOD product has
an accuracy of 0:05ta±0:15 (ta represents AOD) over land, high
enough for further correlation analyses in the following text.

2.3. Collocation between PM2.5 concentration and MODIS AOD

Ground-based measurements are point values, while MODIS
AOD is reported at a grid box of 10 km � 10 km (nominal). To
investigate the relationship between columnar AOD and surface-
level PM2.5, both measures must be collocated in space and time.
To accomplish realistic spatio-temporal collocation of MODIS AOD
and ground-level PM2.5, we averaged the original MODIS AOD
product (10 km � 10 km) over 50 km � 50 km grid box centered at
each PM2.5 observational site shown in Fig. 1. Furthermore,
continuous PM2.5 measurements at each site were collocated with
the MODIS-Aqua AOD retrievals within ±30 min of its overpass
time. In this way, only the data that were spatially collocated and
temporally matched at the MODIS overpasses were obtained and
used in the following analyses.

To eliminate the potential influence caused by extreme atmo-
spheric pollution, AOD values greater than 2, as well as PM mea-
surements greater than 400 mgm�3, are excluded. At the same time,
only the sites with 30 or more valid pairs of satellite/ground ob-
servations (Wilks, 2011) were used to perform correlation analyses.

2.4. Ground-based meteorological observations

The meteorological observations considered here contain RH
and total cloud cover (TCC), both of which are obtained from sur-
face weather stations. All of these RH and TCC measurements are
made simultaneously with PM2.5 concentrations at the same 226
PM2.5 sites, which provide an ideal testbed and foundation to
investigate how meteorological conditions affect the association of
ground-level PM2.5 with MODIS AOD. Due to the increasingly
deteriorating air quality during recent years (Li et al., 2007; Guo
et al., 2011), further correlation analyses were focused on three
regions of interest (ROIs): the North China Plain (NCP, 36�N - 41�N,
114�E � 119�E), the Yangtze River Delta (YRD, 30�N - 35�N, 117�E �
123.0�E), the Pearl River Delta (PRD, 20.5�N e 25.5�N, 111.5�E �
116.5�E), which respectively correspond to the red rectangles A, B,
and C in Fig. 1b.
RH measurements were made at 3-h intervals each day: 0200

LST, 0500 LST, 0800 LST, 1100 LST, 1400 LST, 1700 LST, 2000 LST, and
2300 LST, respectively. Only 1400 LST RH observations were taken
to make more genuine temporal collocation with MODIS-Aqua
AOD. Table S1 (in the supplementary materials) shows the statis-
tics with respect to the classification criteria of RH in NCP, YRD, and
PRD, respectively. In NCP, the RH ranges of 0e24.5%, 4.5%e39.5%,
and 39.5%e100% correspond to “Lowest”, “Medium”, and “Highest”
RH conditions, respectively. In YRD, the “Lowest”, “Medium”, and
“Highest” RH conditions are characterized with RH of 0e40.5%,
40.5%e54.5%, 54.5%e100%, respectively. Similar thresholds hold
true for PRD, which have 0e45.5%, 45.5%e56.5%, and 56.5%e100%,
respectively.

Cloud observations at weather sites operated by CMA include
TCC and low cloud cover, both of which are measured by human
observers. The observations are made at 1-h intervals at the na-
tional climate observation stations, and made at 3-h intervals at
national basic weather observation stations (Xia, 2012). The TCC is
the fraction of sky covered by clouds, ranging from 0 to 10. The
observation with TCC of zero is referred to as clear and that with
TCC of ten is referred to as overcast.

To facilitate the elucidation of how the TCC influences the cor-
relation between AOD and PM2.5, three TCC categories were defined
(Table S2 in the supplementary materials): “Clear sky”, “Median
cloudy”, and “High cloudy”, each of which contains an equal
number of samples. The thresholds for these three TCC categories
large vary by region.

3. Results and discussion

3.1. Spatial distribution of aerosol particles

As shown in Fig. 1a, the most populous regions like Pearl River
Delta (PRD), North China Plain (NCP), and Sichuan Basin, which are
generally characterized with high industrialization and intense
anthropogenic emissions, have AOD values up to 1.2 or larger.
Generally, regions with high PM2.5 concentrations coincide with
high AOD loadings (Fig. 1b), with the exception of southeastern
China (e.g., PRD) and northwestern China. For instance, high AOD
can be distinctly seen in northwestern China where dust or dust
storms prevail, which generally results in high PM10 concentra-
tions. But relatively low PM2.5 concentration can be seen in this
region (Fig. 1b), indicating aerosol particles with a large aero-
dynamic diameter contribute to these high AOD values. On the
whole, MODIS AOD exhibits a similar spatial pattern as PM2.5. That
is to say, the regions with great AOD typically correspond to those
with high PM2.5 concentrations.

Fig. S1 (in supplementary materials) shows the spatial distri-
bution of valid MODIS-Aqua AOD samples (in percentage) for each
1� � 1� domain of China for spring (March-April-May), summer
(June-July-August), fall (September-October-November), and
winter (December-January-February). In terms of seasonal differ-
ence of valid MODIS samples, NCP can reach to as low as 20% in
winter, in comparisonwith 60e80% in the other three seasons. PRD
has relatively lower valid AOD samples (20e50%) compared to the
other areas, depending on the seasons. What's more interesting is
that large climatological AOD is found in the PRD region, contrary to
the relatively small PM2.5 concentration. This is mostly likely due to
the persistent high cloud coverage over this region (Wang et al.,
2015), since cloud cover often exerts considerable contamination
on the AOD, but can hardly affect the ground-based PM2.5 mea-
surements. The observed limited valid AOD samples over PRD,
therefore, could at least in part account for the observed mismatch
between the two quite different metrics for aerosol loadings: AOD

https://ladsweb.nascom.nasa.gov/data/search.html
https://ladsweb.nascom.nasa.gov/data/search.html


Fig. 1. Spatial distributions of (a) AOD from MODIS onboard Aqua averaged over the period from January 2013 to December 2015, and (b) ground-based PM2.5 concentrations (in
units of mg m¡3) averaged over 1300 LST - 1400 LST during the same period. The following regions of interest (ROIs) are highlighted with red boxes: (A) North China Plain (NCP), (B)
Yangtze River Delta (YRD), and (C) Pearl River Delta (PRD). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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versus PM2.5.

3.2. Diurnal variability of PM2.5

Fig. 2 presents the spatial distribution of diurnal phase and
amplitude of PM2.5 averaged during the period from January 2013
to December 2015 according to maximum mean PM2.5 concentra-
tion and maximum occurrence frequency of PM2.5 peak for each
hour within the 24 h. To minimize the impact caused by the
recorded time zone (BJT), all hourly PM2.5 concentrations are sub-
jected to the conversion procedures based on Eq. (1) in section 2.1.
As such, the diurnal cycles of both PM2.5 concentration and occur-
rence frequency can be determined.

Overall, among the 226 PM2.5 observational sites, maximum
PM2.5 concentrations occur in the morning at 107 sites (about
47.3%), followed by 85 sites (37.6%) with peaks in the evening. On
the other hand, only 12 sites (5.3%) have the afternoon peak,
whereas 22 sites (9.8%) have the earlymorning peak. The storywith



Fig. 2. Diurnal phase and amplitude of PM2.5 averaged over the period from January 2013 to December 2015 according to (a) maximum mean PM2.5 concentration, and (b)
maximum occurring frequency of PM2.5 peak for each hour of the 24 h. The direction towards which an arrow points denotes the local solar time (LST) when the maximum occurs
(shown on the clock dial in the bottom left corner of each panel) and the arrow length represents magnitudes of PM2.5 concentration or frequency. The arrow color denotes varying
diurnal phases: blue (0000e0600 LST), green (0600e1200 LST), red (1200e1800 LST) and black (1800e2400 LST). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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respect to the diurnal phase and amplitude of maximum frequency
of PM2.5 is almost the same (Fig. 2b). In terms of the spatial pattern,
the timing of maximum PM2.5 concentration agrees well with the
diurnal cycle of its occurrence frequency. To be more specific, peak
PM2.5 generally occurs in the evening in the Pearl River Delta region
(YRD in Fig. 1b) of southern China, where sporadic sites witness an
afternoon or evening PM2.5 maximum (Fig. 2a), with magnitude
generally lower than 50 mg m�3. By comparison, both morning and
evening PM2.5 peaks contribute almost equally to the diurnal cycle
in the North China Plain region (NCP in Fig.1b), with amplitude that
is twice or three times that over southern China, indicative of the
severe air pollution in northern China. Interestingly, observational
sites in northeastern China also have large diurnal amplitude and
the maximum PM2.5 tends to occur in the morning and evening.
This further bears out the AOD and PM2.5 pattern observed in Fig. 1.
Besides, morning PM2.5 peak dominates the Yangze River Delta
region (YRD in Fig. 1b), with amplitude lying between those of NCP
and PRD.

3.3. The spatio-temporal variability of correlation between PM2.5

and AOD

In order to better characterize the regional features, correlation
analyses between PM2.5 and AOD have been performed over all the
sites shown in Fig. 1b, through downscaling to regional scale.
Namely, we divided the 226 monitoring sites into 23 sub-domains,
each of which has a domain size of 5� � 5�. The scatter plots of
ground-based in-situ PM2.5 against AOD, as well as their concom-
itant correlation coefficients (R) in these 23 sub-domains are
shown in Fig. 3. The R values range from 0.17 to 0.57, exhibiting
large regional variability, which is in good agreement with the re-
sults found in United States (Li et al., 2015). In particular, R values in



Fig. 3. Scatter plots of ground-based PM2.5 against coincident MODIS-Aqua AOD for each 5� � 5� subdomain with enough PM2.5 observations. The color shading represents fre-
quency of occurrence for each bin of 0.1 AOD � 10 mg m�3 PM2.5. The regression line and its corresponding correlation coefficients between PM2.5 and AOD are given in each subplot
as black lines and red numbers, respectively. Note that the asterisk in the superscript attached to red numbers (R) means the regression is statistically significant (p < 0.05). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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eastern China on average are higher than those in western China,
where most of the domains have arid conditions and high surface
albedos, thereby leading to highly uncertain AOD retrievals (Remer
et al., 2005). This in turn results in large biases for the correlation
analysis between PM2.5 and AOD. A close-up look at sample density
distributions (shaded color in Fig. 3) suggests that AOD values for
most of the data-pairs are limited to less than 0.5, and PM2.5 limited
to less than 50 mg m�3. This further supports the results shown in
Fig. 3a.

Fig. 4 compares the correlation coefficients for the regression
analyses between PM2.5 concentration and AOD in different sea-
sons throughout China. In terms of the seasonal variability of R,
there exists a large spatial discrepancy. In particular, R values
generally range from 0.5 to 0.8 in Northeast China, NCP, and YRD,
indicating that AOD is a good indicator of PM2.5 pollution levels in
these regions. In addition, we notice that R is relatively low in areas
with complex topography, such as southwestern China, which
agrees with previous results (e.g., Xie et al., 2015). Also, the corre-
lation coefficients in coastal areas can not be as high, which may be
related to the difficulties in dealing with complex aerosol types and
underlying surface albedo in the AOD inversion algorithm applied
to the coastal areas (van Donkelaar et al., 2006; Anderson et al.,
2012).

As shown in Table 1, the annually averaged R over NCP can be as
high as 0.54, gradually reduced to 0.46 over YRD and then dropping
to as low as 0.37 over PRD, indicating R values exhibit spatial
dependence to some degree. Meanwhile, the MODIS-derived AOD
is found to be most closely associated with the ground-based PM2.5
pollution level in spring over NCP with the highest R value (0.71). In
contrast, the highest R (0.55) occurs in winter over YRD, whereas it
occurs in fall over PRD with R ¼ 0.45.

3.4. Impact of various spatio-temporal average schemes on the
correlation between AOD and PM2.5

As previously demonstrated in section 3.2, significant diurnal
variation in PM2.5 has beenwidely observed. Herewe selected three
ROIs (NCP, PRD, and YRD) to further determine whether or not the
diurnal cycle of PM2.5 will influence the correlation analyses
between AOD and PM2.5, and how. As illustrated in Fig. 5, the
occurrence time with the maximum averaged PM2.5 values is quite
different, depending on geographical locations. The PM2.5
(112 mg m�3) peaks at midnight over NCP, as compared with the
evening peak (67 mg m�3) over YRD, and the morning peak
(36 mg m�3) over PRD. In contrast, the lowest PM2.5 values occur
uniformly at 1400e1600 LST, irrespective of NCP, YRD, and PRD.
This could be due to the increased incident solar radiation, which
has been suggested to be closely linked to enhanced turbulence and
buoyancy and elevated boundary layer height (Guo et al., 2016c).

It is intriguing to note that all the correlation coefficients (in-
dividual 1-h mean PM2.5 versus MODIS-Aqua AOD) over three ROIs
peaks at 1330 LST, then decreases slowly as the PM2.5 observational
time moves further away from 1330 LST. Therefore, except for the
perennially high PM2.5 values over NCP which deserves more
attention, the impact of PM2.5 diurnal variability on the remote
sensing of ground-based PM2.5 should be considered seriously.

Table 2 shows the results concerning correlation analyses be-
tween PM2.5 and AOD using different temporal averaging schemes
of PM2.5 centered overMODIS-Aqua observational time (about 1330
LST). The PM2.5 concentrations were averaged over 1300 to 1400,
1200 to 1500, 1100 to 1600, and 0000 to 2400 LST and then
compared with the corresponding MODIS-Aqua AOD values. Even
though themagnitudes differ greatly, R values are typically reduced
from north to south, despite various temporal averaging schemes.
More importantly, the more closer the MODIS-Aqua overpass time
to the time PM2.5 was taken, the larger the R values are. That is to
say, the schemewith 3-h, 5-h, and 24-h timewindowswill result in
large biases in constructing realistic regression equations,
compared with the 1-h time window. This indicates that the large
biases in part reflect the abovementioned temporal mismatch, and
more careful attention should be paid to the temporal mismatch
between AOD and PM2.5, especially for the temporal averaging
scheme for hourly PM2.5 observations.

In the meanwhile, we have performed sensitive analyses over
NCP, YRD, and PRD regarding the impact of MODIS AOD averaging
scheme on the changes in correlation between ground-based PM2.5
and collocated MODIS AOD, which corresponds to a spatial reso-
lution of 10 km � 10 km, 30 km � 30 km, 50 km � 50 km,



Fig. 4. The spatial distribution of correlation coefficients between ground-based PM2.5 and MODIS-Aqua AOD for each 5� � 5� subdomain in (a) spring, (b) summer, (c) fall, and (d)
winter over China. The PM2.5 measurements made during 1300e1400 BJT were averaged, while the MODIS AOD data were obtained directly from the pixel centered at the cor-
responding PM2.5 observational site during the period of January 2013 to December 2015. The black dots mark grid points where the correlation exceeds 95% significance level
(p < 0.05) according to the F test.

Table 1
Statistics concerning the correlation coefficients between ground-based seasonally and annually averaged PM2.5 concentration and AOD fromMODIS onboard Aqua over NCP,
YRD, and PRD, during the period of 2013 throughout 2015. Note that the p value is calculated according to F test of the linear regression.

ROI Spring Summer Fall Winter Annual

NCP R 0.71 0.50 0.55 0.59 0.54
p value <0.05 <0.05 <0.05 <0.05 <0.05
# of samples 1657 1680 1008 448 4793

YRD R 0.36 0.43 0.35 0.55 0.46
p value <0.05 <0.05 <0.05 <0.05 <0.05
# of samples 2043 1506 1368 820 5737

PRD R 0.36 0.43 0.45 0.38 0.37
p value 0.12 <0.05 <0.05 <0.05 <0.05
# of samples 362 452 621 441 1876

Fig. 5. Diurnal variation of PM2.5 concentration (in black curves) and the correlation coefficients (in red curves) between hourly averaged PM2.5 concentration and MODIS-Aqua AOD
over the domains of NCP (in solid squares), YRD (in solid diamonds), and PRD (in solid triangles) during the period of January 1, 2013 to December 31, 2015. The vertical red dashed
line denotes the approximate time when Aqua overpasses the PM2.5 observational site. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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respectively. As shown in both Table S3 and Figure S2 in the sup-
plementary material, R values decreases with the size of grid box
for averaging the original level 2 MODIS AOD (10 km) when
matching AOD and coincident PM2.5. This holds true over NCP, YRD,
and PRD. Therefore, the correlation between PM2.5 and AOD, to
some extent, depends on spatial average scheme of MODIS AOD.

3.5. The potential impact of meteorology

Hygroscopic growth of aerosol particles was found to be



Table 2
Summary for the correlation coefficients between 1-h, 3-h, 5-h and 24-h averaged ground-based PM2.5 concentration and AOD retrieved from the MODIS onboard Aqua over
NCP, YRD, and PRD during the period of 2013 throughout 2015. Note that p value is calculated according to F test to the linear regression.

ROI 1300 - 1400 LST 1200 - 1500 LST 1100 - 1600 LST 0000 - 2400 LST

NCP R 0.54 0.49 0.50 0.42
p value <0.05 <0.05 <0.05 <0.05
# of samples 4793 5916 6261 6691

YRD R 0.46 0.41 0.43 0.40
p value <0.05 <0.05 <0.05 <0.05
# of samples 5737 6870 6990 7162

PRD R 0.37 0.35 0.36 0.34
p value <0.05 <0.05 <0.05 <0.05
# of samples 1876 2108 2149 2235
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ubiquitous, which inevitably leads to uncertainties to varying de-
gree in retrieving of AOD from satellite observations (e.g., Remer
et al., 2005; Guo et al., 2009). In addition, cloud contamination
often induces uncertain or artifact retrievals of satellite- or ground-
based AOD (Jeong and Li, 2010; M€a€att€a et al., 2014; Ford and Heald,
2016). Therefore, the effect of RH and cloud fraction on the corre-
lation between PM2.5 and AOD merits further detailed and explicit
analyses in certain ROIs when PM2.5 concentrations are to be esti-
mated from satellite-based AOD (e.g., MODIS-derived AOD).

Fig. S3 (in the supplementary materials) presents the histo-
grams of RH over NCP, YRD, and PRD averaged over the period from
1300 to 1400 LST, matching well with the MODIS-Aqua overpass
time. The lowest and highest 30% quantiles of RHs are marked with
red dashed lines in each subplot. More details on the criteria have
been given for the determination of largest RH and smallest RH
conditions. PRD is the most humid region, which is in sharp
contrast to the driest NCP. Can this discrepancy in RH have any
impact on the regional correlation coefficients derived from the
regression analyses of PM2.5 against AOD?.

Fig. 6 shows the scatter plots of ground-based PM2.5 (averaged
over 1300 to 1400 LST) versus the collocated MODIS AOD under
different levels of RH over NCP, YRD, and PRD. Overall, regardless of
the geographical discrepancy, R exhibits a decreasing trend as the
ambient atmosphere becomes more humid. For instance, R over
NCP is reduced by 30% (from 0.62 to 0.44), as compared with a
magnitude of reduction of 37.5% (42.2%) over YRD (PRD). Also, we
also notice a distinct southward decrease in R. In other words, the
smallest R can be seen over PRD (southernmost ROI) for all RH
conditions, in sharp contrast to the largest R over NCP (northern-
most ROI) and median R over YRD (central ROI). This signifies that
RH exerts a significant influence on the correlation between PM2.5
and AOD, and cannot be ignored, despite the existing differences in
R values.

The effect of cloud fraction on correlation analyses between AOD
and PM2.5 is investigated by separating the matched samples into
three equal-sample bins (Table S2). As shown in Fig. 7, R tends to
become much higher when all samples are taken under clear sky
conditions over NCP, YRD, and PRD, as compared with that under
high cloudy conditions. The well-known cloud-induced artificial
AOD due to aerosol humidification near clouds (e.g., Twohy et al.,
2009), and light scattering from the side of clouds (e.g., Koren
et al., 2007; V�arnai and Marshak, 2009), generally result in large
uncertainties in MODIS AOD retrievals, thereby leading to a dete-
riorated association of MODIS AOD with ground-based PM2.5.
Therefore, the confounding meteorological factors like cloud frac-
tion and RH, if any, will make the direct retrieval of PM2.5 from
MODIS AOD almost impossible due to its adverse impact on R.
4. Concluding remarks

In this study, three years (2013e2015) of ground-based PM2.5
data across China were spatio-temporally collocated with MODIS-
Aqua AOD data, combined with surface-observed cloud and hu-
midity data to perform explicit correlation analyses.

The diurnal cycles of mass concentration and occurrence fre-
quency of PM2.5 are investigated across China. Roughly speaking,
one half sites, among the 226 sites, have the maximum PM2.5
concentration in the morning, in sharp contrast to the least
frequent occurrence (about 5%) in the afternoon, which is most
likely due to strong solar radiation received at the surface in the
afternoon, thereby leading to the rapid diffusion of aerosol particles
and lower mass concentration. Interestingly, the occurrence fre-
quency of PM2.5 has almost the same diurnal cycles, as well as its
spatial pattern. In particular, PM2.5 tends to peak equally in the
morning and evening in NCP with amplitudes twice or three times
that in PRD. The morning PM2.5 peak dominates YRD with ampli-
tudes lying between those of NCP and PRD.

The correlation between surface level PM2.5 and MODIS varies
greatly in China, both spatially and temporally, which is in good
agreement with the previous results. In particular, correlation in
eastern China is on average stronger than those in other domains.
In terms of the seasonal variability of R, there still exists large
spatial discrepancy. MODIS AOD can better represent the surface
PM2.5 in spring over NCP with the largest R value (0.71). By com-
parison, maximum correlation (R ¼ 0.55) occurs in winter over
YRD, whereas it occurs in fall over PRD with R ¼ 0.45.

As far as the impact of aerosol diurnal variation on the correlation
was concerned, we found that the schemes with 3-h, 5-h, and 24-h
time windows have larger biases in constructing realistic regression
equations, in comparison with the scheme using 1-h time window.
This suggests that the large biases at least partly reflect the above-
mentioned temporal mismatch. The impact of meteorology becomes
one of the most plausible alternatives that can explain the relatively
low R values observed in most sites of China, due to its non-
negligible effect on MODIS AOD retrievals. The results have great
implications for future PM2.5 remote sensing from space.

Nevertheless, accurate estimation of the association of PM2.5
with AOD remains extremely challenging because both PM2.5 and
AOD co-vary with meteorological conditions, including cloud
fraction and relative humidity. Even though the effect of meteo-
rological factors like CF and RH has been elucidated, the boundary
layer height along with vertical structure of aerosols, among others,
have been sufficiently recognized to be key to modulating the
statistical relationship between PM2.5 and AOD. Therefore, more
work should be warranted in this regard. Furthermore, the aerosol
types with differing light absorbing and scattering properties may
affect the correlation analysis results to some extent, which merits
more attention in the future.
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