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This present work is concerned with planar cracks embedded in an infinite space of one-dimensional
hexagonal quasicrystals. The potential theory method together with the general solutions is used to
develop the framework of solving the crack problems in question. The mode I problems of three common
planar cracks (a penny-shaped crack, an external circular crack and a half-infinite crack) are solved in a
systematic manner. The phonon and phason elastic fundamental fields along with some important
parameters in crack analysis are explicitly presented in terms of elementary functions. Several examples
are given to show the applications of the present fundamental solutions. The validity of the present
solutions is discussed both analytically and numerically. The derived analytical solutions of crack will
not only play an important role in understanding the phonon–phason coupling behavior in quasicrystals,
but also serve as benchmarks for future numerical studies and simplified analyses.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction bimaterials with imperfect interfaces (Gao and Ricoeur, 2010) have
Quasicrystals (QCs), which are aperiodic but ordered structural
forms between crystals and glass, were initially discovered by
Shechtman et al. (1984). Since then, the theoretical and experi-
mental studies of QCs have been one of the foci of research in
the physics of condensed matter. Up to now, more than 100 differ-
ent alloys of QCs with stable thermodynamic properties have been
produced (Fan and Mai, 2004) and the engineering application of
QCs has been found recently, as reinforced phases of polymer-ma-
trix composites (Kenzari et al., 2012).

According to the theory of elasticity based on Landau’s theory
(Landau and Lifshitz, 1958), the elastic behavior of QCs is described
by the phonon and phason fields which are in general anisotropic
and coupled to each other (Wang et al., 1997). This definitely
brings out a great deal of challenges in mechanical analyses of
QCs, and simplifications are therefore made in the previous inves-
tigations, especially those for cracks and dislocations (Fan, 2011).
In the past three decades, various plane stress and strain problems
were investigated, and many methods in classic planar elasticity
have been generalized to QCs, for example, Fourier transform
(Bochner and Chandrasekharan, 1949), perturbation method
(Hinch, 1991), Stroh formulism (Stroh, 1958, 1962) and the com-
plex variable function method developed by Muskhelishvili
(1963). By these methods, some problems of crack (Fan et al.,
2012), dislocation (Li and Liu, 2012), inclusion (Wang, 2004) and
been successfully solved. It should be noted that aforementioned
solutions are essentially independent of one spatial coordinate.
This may not reflect the characteristics of a real problem in
practice.

As a result, it is imperative to seek 3D elastic solutions to clarify
the simplified analyses. Some scholars have made several develop-
ments relative to general solutions (Chen et al., 2004), Green’s func-
tions for an infinite space consisting of two materials (Gao and
Ricoeur, 2011), axisymmetric crack and indentation problems (Peng
and Fan, 2001), the interaction of the phonon and phason fields at a
crack tip (Mariano et al., 2004), and non-axisymmetric mode I crack
problem in the context of thermo-elasticity of QC (Li, 2013).

According to the review article (Fan and Mai, 2004) and the
monograph (Fan, 2011), which comprehensively give the state of
the art of investigations on the mechanical analyses of QCs, 3D ana-
lytical studies on the crack problems are quite scarce. The research
works (Fan, 2011) conducted by Fan and his co-authors by means
of Fourier and Hankel transforms are limited to axisymmetric prob-
lems and the physical quantities on the crack plane. To the best of
authors’ knowledge, there is no non-axisymmetric solutions avail-
able in the literature, within the framework of elasticity of QC.

From an overall point of view, most of foregoing research work
were performed within the linear elasticity of QCs, and did not take
self-actions in phason field into account. In some particular cases,
the absence of phason self-actions would lead to non-physical re-
sults, which was first pointed out by Mariano (2006) and then
numerically verified by Colli and Mariano (2011). Furthermore,
self-interaction in phason field can be described in the context of
nonlinear elasticity of QCs (Mariano, 2006). Recently, Mariano
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and Planas (2013), on the basis of first invariance principles and
within the framework of (both finite and small strain) continuum
mechanics of QCs, discussed the existence of a phason self-interac-
tion with both conservative and dissipative components. In this
study, however, the assumptions in standard linear elasticity of
QC are still accepted, and all the quantities obtained make a phys-
ical sense, as shown later.

The present work is on a penny-shaped crack, an external circu-
lar crack and a half-infinite plane crack, each of which is embedded
in an infinite space of one-dimensional hexagonal quasi-crystals.
The problems of these three typical cracks are classic ones in frac-
ture mechanics and have been extensively investigated in the
framework of pure elasticity (Fabrikant, 1989, 1991; Fabrikant
and Karapetian, 1994; Fabrikant et al., 1994). In this study, two
pairs of equal but opposite phonon and phason loads are applied
on the upper and lower crack lips for each crack, and the original
problem is transformed into a mixed boundary problem of a
half-infinite space. Potential theory method (Fabrikant, 1989,
1991) in cooperation with the general solution (Chen et al., 2004)
is employed to solve the resulting mixed boundary problem.

The next sections are organized as follows. In Section 2, we re-
call the general solutions in terms of quasi-harmonic functions for
3D static problems, which were proposed by Chen et al. (2004)
using the rigorous operator theory and generalized Almansi’s the-
orem. In Section 3 dedicated to extention of the potential theory
method to the crack analysis of 1D hexagonal QCs, a new potential
is introduced to account for the effect of phason field. The con-
stants involved are determined and the boundary integro-differen-
tial equations (BIEs) are established using the boundary conditions
as well as the properties of simple layer potentials (SLP). Section 4
is concerned with the solution of the BIEs and the exact and com-
plete fundamental solutions expressed in terms of elementary
functions. Some important quantities in crack analyses such as
stress intensity factor (SIF) and crack surface displacement (CSD)
are derived in Section 5. As applications of the present fundamen-
tal solutions, three concrete examples are given in Section 6. In
Section 7, numerical calculations are performed to show the varia-
tions of physical quantities of special interests. Finally, some con-
cluding remarks are drawn in Section 8.

2. General solution of static problem

Consider a 1D hexagonal QC with point groups
6mm;62h2h; �6m2h and 6mhmm, whose atoms are arranged periodi-
cally in the x� y plane and quasi-periodically in the z-direction in a
Cartesian coordinate system Oxyz. Without the effect of body
forces, the equilibrium equations, in terms of the phonon displace-
ments ðux;uy;uzÞ and the phason degree of freedom ðwzÞ, read
(Chen et al., 2004; Fan, 2011)

c11
@2

@x2 þ c66
@2

@y2 þ c44
@2

@z2

 !
ux þ ðc12 þ c66Þ

@2uy

@x@y

þ ðc13 þ c44Þ
@2uz

@x@z
þ R1 þ R3ð Þ @

2wz

@x@z
¼ 0; ð1aÞ

ðc12 þ c66Þ
@2ux

@x@y
þ c66

@2

@x2 þ c11
@2

@y2 þ c44
@2

@z2

 !
uy

þ ðc13 þ c44Þ
@2uz

@y@z
þ R1 þ R3ð Þ @

2wz

@y@z
¼ 0; ð1bÞ

ðc13þ c44Þ
@

@z
@ux

@x
þ@uy

@x

� �
þ c44Dþ c33

@2

@z2

 !
uz

þ R3DþR2
@2

@z2

 !
wz ¼0; ð1cÞ
ðR1 þ R3Þ
@

@z
@ux

@x
þ @uy

@x

� �
þ R3Dþ R2

@2

@z2

 !
uz

þ K2Dþ K1
@2

@z2

 !
wz ¼ 0 ð1dÞ

where D ¼ @2=@x2 þ @2=@y2 is the plane Laplacian; cij;Ki and Ri are,
respectively, phonon, phason and phonon–phason coupling elastic
constants.

Physically, phason degree of freedom appears as a result of the
quasi-periodic symmetric of QCs. Phason degrees of freedom de-
scribe the atomic jump from one location to another one nearby
bearing a similar local environment or rearrangement of atoms
from one potential valley to another, which will break the quasi-
periodic symmetric property of QCs and change the system elastic
energy (Wu et al., 2013). Corresponding to the phason degrees of
freedom, there exist phason gradient, stress and force in theory
of elasticity of QC (Fan, 2011).

It should be pointed out that the conservative component of the
inner self-action as shown in Mariano (2006) in the phason field is
not considered in (1d), which may result in non-physical results as
evidenced by Colli and Mariano (2011). However, the topic is be-
yond the scope of the present study, and the common assumptions
are accepted as in the recent advances for static problems (Fan
et al., 2012; Gao and Ricoeur, 2011; Li, 2013) and dynamic prob-
lems (Fan et al., 2012; Radi and Mariano, 2011).

The general solutions to the partial differential equations in (1)
depend on the eigenvalues siði ¼ 1;2;3Þ, which are roots, with po-
sitive real parts [ReðsiÞ > 0], of the following characteristic equa-
tion (Chen et al., 2004)

as6 � bs4 þ cs2 � d ¼ 0; ð2Þ

where the constants a; b; c and d, related to the material constants
cij;Ri and Ki, are specified by Chen et al. (2004) and are listed in
Appendix A. From a physical point of view, the eigen-values si char-
acterize the anisotropy degree of the material under consideration.

Chen et al. (2004), using the operator theory and generalized Al-
mansi’s theorem, gave 3D general solutions in terms of four quasi-
harmonic functions wj ðj ¼ 0;1;2;3Þ, for transversely isotropic
materials whose eigenvalues sj are all distinct. In this case (si – sj

once i – j), the general solutions take in the simplest forms:

U ¼ �
^ X3

j¼1

wj þ iw0

 !
; uzm ¼

X3

j¼1

amj
@wj

@zj
; ðm ¼ 1;2Þ; ð3Þ

with zj ¼ zsj ðj ¼ 1;2;3Þ; i ¼
ffiffiffiffiffiffiffi
�1
p

(without specification elsewhere),V
¼ @=@xþ i@=@y;U � ux þ iuy;uz1 � uz and uz2 � wz. In addition,

the constants amj are defined by Chen et al. (2004) and are listed
in Appendix A. The potential functions wj ðj ¼ 0;1;2;3Þ are required
to satisfy
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We can express the stress components in the following compact
form
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where the constants cmj and -j are also given in Appendix A, and
the following notations are introduced for the phonon stresses rij

and the phason stresses Hij
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r1 ¼ rxx þ ryy; r2 ¼ rxx � ryy þ 2irxy; rz1 ¼ rzz;

rz2 ¼ Hzz; sz1 ¼ rzx þ irzy; sz2 ¼ Hzx þ iHzy: ð6Þ

In addition, the index m ranges from 1 to 2 hereafter.
The general solutions in (3) and (5) have been proven to be

completed as done by Gao et al. (2009). Based on the general solu-
tions and the potential theory method presented by Fabrikant
(1989, 1991), we can tackle many non-classic crack problems, as
pointed out by Li (2013) in the recent study for 1D QCs under ther-
mal loadings.

3. Generalized potential theory method for crack problem

Consider an infinite space of 1D hexagonal QCs weakened by a
planar crack in parallel to the isotropic plane of the material, which
lies in the plane z ¼ 0. The crack is subjected to a pair of phonon
loads p1ðx; yÞ and �p1ðx; yÞ, and a pair of phason loads p2ðx; yÞ
and �p2ðx; yÞ, on the upper and lower crack lips (see Fig. 1(a)).
For notational convenience, the region occupied by the crack is
symbolized by S and the complement of S is denoted by S, so that
S \ S ¼ ø and S [ S ¼ I with I denoting the plane z ¼ 0. By symme-
try, we need to consider only the boundary value problem (BVP) of
the half-space z P 0 with the following boundary conditions (BCs)
on the plane I (Fan, 2011; Peng and Fan, 2001):

rz1 ¼ p1ðx; yÞ; rz2 ¼ p2ðx; yÞ; 8ðx; yÞ 2 S;

uz1 ¼ 0; uz2 ¼ 0; 8ðx; yÞ 2 S;

sz1 ¼ 0; 8ðx; yÞ 2 I: ð7Þ

The BCs at infinite

rij ! 0; Hij ! 0; 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
!1 ð8Þ

must be met as well.
Although no experiments have been reported yet on how to im-

pose the phason loads, within the theory of elasticity of QC (Fan,
2011), however, traction in the phason field must exist on the
boundary of a QC, from a theoretical point of view. Hence, we, from
the perspective of theoretical study, set on the crack lips
rz2 ¼ p2ðx; yÞ, in this paper, in which p2ðx; yÞ can either vanish or
be a function of x and y. Such a setting is without losing any gen-
erality. In fact, Gao and Ricoeur (2011) used a similar boundary
conditions regarding phason force, during the course of derivation
of Green’s functions for two-dimensional quasi-crystal bimaterials.
Of course, the boundary condition relative to phason field should
be verified by future experiments.

The sole external boundary condition on phason traction, that
appears to be reasonable in terms of phason stress is rz2 ¼ 0. From
the perspective of continuum modeling, in fact, the degrees of free-
dom included in the phason field ‘‘internal’’ to material elements
identified with points in space. The same phason actions appear of-
ten as about 1% perturbations of the standard stress field. There-
fore, it is hard (even impossible, probably) to control them
directly from the exterior, at the macroscopic scale.

To solve the above BVP, we assume that

w0 ¼ 0; wj ¼ dj1W1ðzjÞ þ dj2W2ðzjÞ ðj ¼ 1;2;3Þ; ð9Þ

where dij are constants to be determined and WmðzÞ are defined by

WmðzÞ ¼ WmðMÞ ¼
Z Z

S
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RðM;N0Þ
; ð10Þ

with dS0 ¼ dx0dy0;RðM;N0Þ denoting the distance between Mðx; y; zÞ
and N0ðx0; y0;0Þ, and Xm ¼ uzmðx; y;0Þ being the crack surface dis-
placements (CSDs) in the phonon and phason field, respectively.
Furthermore, WmðzÞ are simple layer potentials (SLPs) with the
property (Fabrikant, 1989, 1991; Kellogg, 1929)
@WmðzÞ
@z
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Observe that (4) and (8) are verified by the potentials in (9), in view
of the property of the harmonic function 1=RðM;N0Þ (Kellogg, 1929).
As a consequence, our concern in what follows is about the satisfac-
tion of the BCs prescribed by (7).

The satisfaction of (8) is of physical significance. As pointed out
in Section 2, the exclusion of a conservative self-action may lead to
meaningless results, from a physical point of view (Colli and Mari-
ano, 2011). This crucial remark was first reported by Mariano
(2006) and then evidenced by Colli and Mariano (2011). Owing
to the absence of the self-action conservative components, the
the dimensionless displacement in phason field at infinity would
be divergent (Colli and Mariano, 2011). Now, (8) is checked to
avoid failing into such a non-physical situation.

It can be readily verified that all the homogeneous BCs in (7)
have been met upon letting
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with dim being the Kronecker delta
Accounting for the first condition in (7), we can derive the fol-

lowing two boundary integro-differential equations (BIEs)
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and RðN;N0Þ is the distance between the points Nðx; y;0Þ 2 S and
N0ðx0; y0;0Þ 2 S. Next, we can rewrite (13) as

D
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where FjðNÞ are generalized loadings

F1ðNÞ �
g12p2ðNÞ � g22p1ðNÞ

A
; F2ðNÞ �

g21p1ðNÞ � g11p2ðNÞ
A
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with A ¼ g11g22 � g12g21.
For an irregular plane crack, we have established two BIEs in

(15) bearing the same mathematical structure, which can be in
general solved only numerically. However, for some special crack
configurations, (15) is expected to have analytical solutions by
using the results of potential theory method. Hereafter, our atten-
tion will be paid to the aforementioned three common cracks, in
the following sections, where the cylindrical coordinate system
ðr; h; zÞ and the Cartesian coordinate system ðx; y; zÞ, for conve-
nience, are employed for circular and half-infinite plane cracks,
respectively.

4. Fundamental elastic field

Assume that the planar cracks are located on the plane z ¼ 0,
and the regions occupied by the cracks are symbolized by
S � fðr; hÞjr 6 a;0 6 h � 2pg for the penny-shaped crack of radius
a, by S � fðr; hÞjr P a;0 6 h � 2pg for the external circular crack
with an interior radius a, and by S � fðx; yÞj �1 < x < þ1;
y P 0g for the half-infinite crack (see Fig. 1(b)–(d)). For the three
common planar cracks, the solutions to the BIEs in (15) can be
analytically obtained by virtue of the potential theory method,
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Fig. 1. Schematic figures of a planar crack (a) and of the vertical cross sections of the three common cracks: penny-shaped crack (b), external circular crack (b) and half-
infinite crack (d). Two pairs of opposite concentrated forces �P1 (phonon) and �P2 (phason) acting on the lips of a flat crack S perpendicular to the z axis common to the polar
coordinate system ðr; h; zÞ and the Cartesian coordinate system ðx; y; zÞ.
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namely, Fabrikant (1989, 1991) for penny-shaped crack, Fabrikant
et al. (1994) for external crack and Fabrikant and Karapetian
(1994) for the half-infinite crack. Substituting the resultant expres-
sions for Xm into (10), we determine the SLPs WmðzÞ as

WmðzÞ ¼ �
1

2p3

Z Z
S

KðM; N0ÞFmðN0Þr0dr0dh0; ð17Þ

where KðM; N0Þ is the Green’s function (Fabrikant, 1989, 1991; Fab-
rikant and Karapetian, 1994; Fabrikant et al., 1994)
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with dSq ¼ qdqd/ ¼ dx0dy0, and
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with Nq denoting the point ðq;/;0Þ for the circular cracks and
ðx0; y0;0Þ for the half-infinite crack. Although the integral in (18)
is difficult to explicitly figure out, the various derivatives of
KðM; N0Þ, necessary to construct the 3D fundamental elastic fields,
can be found in Fabrikant (1989) and are listed in Appendix B.

As shown in Fig. 1, consider that two pairs of equal but opposite
concentrated phonon forces �P1 and phason forces �P2 are respec-
tively applied at the points N1ðr1; h1;0

�Þ N1ðx1; y1;0
�Þ

� 	
and

N2ðr2; h2;0
�Þ N2ðx2; y2;0

�Þ
� 	

on the crack lips of circular cracks
(half-infinite crack), i.e., pmðr; hÞ ¼ Pmdðr � rmÞdðh� hmÞ=r; pmðx; yÞ½
¼ Pmdðx� xmÞdðy� ymÞ�. The exact and fundamental elastic field
in the half-space z P 0 induced by the external forces can be
figured out by inserting the Green’s function in (18) and its deriv-
atives in Appendix B to (3) and (5). In terms of elementary func-
tions, corresponding fundamental field to the three cracks can be
uniformly expressed as
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2j ¼ P2ðdj1g12 � dj2g11Þ: ð21Þ
The superscript k ¼ p; e and h of the functions in (20) indicates the
penny-shaped, external circular and half-infinite cracks, respec-
tively. In (20), functions f ðkÞjm ðzÞ ðj ¼ 1;2; . . . ;5Þ is equal to
f ðkÞj ðr; h; z; rm; hmÞ for circular crack and f ðkÞj ðx; y; z; xm; ymÞ for the
half-infinite crack, and all these functions, directly related to the
derivatives of the Green’s function in (18), are specified in
Appendix B.

In the physical context of the present paper, the fundamental
solutions (20) reflect, in particular, the effects of the phonon–
phson coupling on the elastic fields in a 1D hexagonal QC body
weakened by a flat crack.
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5. Stress intensity factor and crack surface displacement

Since the fundamental solutions have been derived explicitly in
the last section, it is ready to obtain some important quantities
associated with the crack. In what follows, we derive the stress
intensity factors (SIFs) and crack surface displacements (CSDs)
for the three cracks.

5.1. Penny-shaped crack

In view of the properties specified in (B-3), we can deduce that
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Thus, the normal stress components at the point Nðr; h;0Þ 2 S are gi-
ven by
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where the constants are specified by
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Bm2 ¼
1

p2A

X3

j¼1

cmjðdj1g12 � dj2g11Þ: ð24Þ

With the aid of (14), we can derive the normal stress components
outside the crack as

rzmðr; h;0Þ ¼ �
Pm

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

m

r2 � a2

r
1

r2 þ r2
m � 2rrm cosðh� hmÞ

: ð25Þ

It is seen that the normal phonon and phason stresses depend only
upon the external phonon load and no interactions between the
phonon and phason fields occur in regard to these normal stresses.

Defining the stress intensity factors for mode I crack problems
by

kmI ¼ lim
r!a

ffiffiffiffiffiffiffiffiffiffiffi
r � a
p

rzmðr; h;0Þ; ð26Þ

we get

kmI ¼ �
Pmffiffiffiffiffiffi
2a
p

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

m

p
a2 þ r2

m � 2arm cosðh� hmÞ
: ð27Þ

It is clearly shown that the SIFs, independent of the material prop-
erties, are related to the magnitudes and positions of the external
loadings.

The CSDs Xm ¼ uzmðr; h;0Þ can be derived from (20) and (22) as

uzmðr; h;0Þ ¼ �
1

p2A

X3

j¼1

P0
1jamj

 !
f ðpÞ21 ð0Þ

� 1
p2A

X3

j¼1

P0
2jamj

 !
f ðpÞ22 ð0Þ; ð28Þ

where f ðpÞ2m ð0Þ ¼ f ðpÞ2 ðr; h;0; rm; hmÞ. Using the relations in (21) and
(12), we can simplify (28) as

X1 ¼ �
P1g22

2p3A
f ðpÞ21 ð0Þ þ

P2g12

2p3A
f ðpÞ22 ð0Þ; X2

¼ P1g21

2p3A
f ðpÞ21 ð0Þ �

P2g11

2p3A
f ðpÞ22 ð0Þ: ð29Þ
5.2. External circular crack

To obtain the SIFs and CSDs, we need the behaviors of two func-
tions f ðeÞ2 ðzÞ and f ðeÞ3 ðzÞwhen z tends to zero. From (B-4b), (B-4c) and
(B-6), it is seen that

f ðeÞ2 ðN; N0Þ ¼ �
1

RðN;N0Þ
arctan

JðN;N0Þ
RðN;N0Þ

N 2 S;

f ðeÞ3 ðN; N0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � a2

a2 � r2

r
1

R2ðN;N0Þ
N 2 S; ð30Þ

where

JðN;N0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � a2Þðr2

0 � a2Þ
q

=a: ð31Þ

We can obtain the generalized normal stresses in the crack neck S as

rzmjz¼0 ¼
X2

i¼1

PiBmi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i � a2

a2 � r2

s
1

r2 þ r2
i � 2rri cosðh� hmÞ

: ð32Þ

By means of (14), (32) is simplified as

rzmjz¼0 ¼ �
Pm

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m � a2

a2 � r2

r
1

r2 þ r2
m � 2rrm cosðh� hmÞ

: ð33Þ

Introducing the stress intensity factors of mode I

kmI ¼ lim
r!a

ffiffiffiffiffiffiffiffiffiffiffi
a� r
p

rzmðr; h;0Þ; ð34Þ

to describe the singularities at the crack tip, we obtain from (33 )
that

kmI ¼ �
Pm

p2
ffiffiffiffiffiffi
2a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m � a2
p

a2 þ r2
m � 2arm cosðh� hmÞ

: ð35Þ

From (20) and (39), the CSDs are determined as

Xm ¼ �
1

p2A

X3

j¼1

P0
1jamj

 !
f ðeÞ21 ð0Þ �

1
p2A

X3

j¼1

P0
2jamj

 !
f ðeÞ22 ð0Þ; ð36Þ

with f ðeÞ2mð0Þ ¼ f ðeÞ2 ðr; h;0; rm; hmÞ Taking advantage of the relations in
(21) and (12), we simplify (36) as

X1 ¼ �
P1g22

2p3A
f ðeÞ21 ð0Þ þ

P2g12

2p3A
f ðeÞ22 ð0Þ;

X2 ¼
P1g21

2p3A
f ðeÞ21 ð0Þ �

P2g11

2p3A
f ðeÞ22 ð0Þ: ð37Þ
5.3. Half-infinite plane crack

From (B-8), it is easy to get that

lim
z!0

l�1 ¼minðy;0Þ; lim
z!0

l�2 !maxðy;0Þ;

lim
z!0

h� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 maxðy;0Þ

p
; lim

z!0

z
h�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�minðy;0Þ

y0

s
: ð38Þ

By virtue of (B-7b), (B-7c) and (38), we arrive at

f ðhÞ2 ð0Þ ¼ �
1

RðN;N0Þ
arctan

gðN;N0Þ
RðN;N0Þ

; ðy > 0Þ;

f ðhÞ3 ð0Þ ¼ �
1

R2ðN;N0Þ

ffiffiffiffiffiffiffi
y0

�y

r
; ðy < 0Þ: ð39Þ

Thus the generalized normal stresses in the region S (y < 0) are ob-
tained as

rzmðx; y;0Þ ¼
X2

i¼1

PiBmi

ffiffiffiffiffiffiffi
yi

�y

r
1

ðx� xiÞ2 þ ðy� yiÞ
2 : ð40Þ

In view of (14), (54) is recast into
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rzmðx; y;0Þ ¼ �
Pm

p2

ffiffiffiffiffiffiffi
ym

�y

r
1

ðx� xmÞ2 þ ðy� ymÞ
2 : ð41Þ

Defining the SIFs of mode I crack problem

kmI ¼ lim
y!0�

ffiffiffiffiffiffiffi
�y
p

rzmðx; y; 0Þ; ð42Þ

we immediately get

kmI ¼ �
Pm

p2

ffiffiffiffiffiffi
ym
p

ðx� xmÞ2 þ y2
m

: ð43Þ

The CSDs Xm ¼ umðx; y;0Þ can be obtained from (39) and (20).
Without details, they read

X1 ¼ �
P1g22

2p3A
f ðhÞ21 ð0Þ þ

P2g12

2p3A
f ðhÞ22 ð0Þ;

X2 ¼
P1g21

2p3A
f ðhÞ21 ð0Þ �

P2g11

2p3A
f ðhÞ22 ð0Þ; ð44Þ

with f ðhÞ2m ð0Þ ¼ f ðhÞ2 ðx; y; 0; xm; ymÞ.
For arbitrary distributed phonon and phason loads pmðx; yÞ, the

corresponding physical quantities of interest can be obtained by
integrating the relative fundamental results over the crack surface.
We present three typical examples, which are classic problems and
are often solely investigated in literature, in the next section, where
distributive loads are considered to be applied on the crack lips.

6. Application of the fundamental solution

6.1. Uniformly loaded penny-shaped crack

Consider case where the crack is under the action of two pairs of
equal but opposite pressures �p0

1 (phonon) and �p0
2 (phason),

which are uniformly distributed over the crack lips, namely,
p1ðr; hÞ ¼ p0

1; p2ðr; hÞ ¼ p0
2, F0

1 � F1ðNÞ ¼ ðg12p0
2 � g22p0

1Þ=A and
F0

2 � F2ðNÞ ¼ ðg21p0
1 � g11p0

2Þ=A.
The problem in question is thus axisymmetric. Under this cir-

cumstance, the generalized normal stresses Rzm at the crack front,
which are independent of h, can be derived by integrating the fun-
damental solutions in (25)

rzmðr; h;0Þ ¼ �
p0

m

p2

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

m

r2 � a2

r
rmdrmZ 2p

0

dhm

r2 þ r2
m � 2rrm cosðh� hmÞ

: ð45Þ

Taking advantage of the following identity,

1
2p

Z 2p

0

x2 � y2

x2 þ y2 � 2xy cosðh� h0Þ
dh0 ¼ 1 ðx > y > 0Þ; ð46Þ

we can obtain that

rzzjz¼0 ¼
2p0

1

p
arcsin

a
r
� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

� �
;

Hzzjz¼0 ¼
2p0

2

p
arcsin

a
r
� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

� �
: ð47Þ

Then, the SIFs can be obtained from (53) and (26) as

kmI ¼ �
ffiffiffiffiffiffi
2a
p

p
p0

m: ð48Þ

It is noted that (48) can be retrieved by integrating (27) with the
help of (46).

Following a similar procedure, the CSDs for the uniformly
loaded crack can be deduced via integration of (63). Without
details, they turn out to be

XmðrÞ ¼ uzmðr; h;0Þ ¼ �
F0

m

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p

; ð49Þ
which can be directly recovered by solving the (BIEs) (Fabrikant,
1989)

M

Z 2p

0
dh0

Z a

0

Xmðr0; h0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

0 � 2rr0 cosðh� h0Þ
q r0dr0 ¼ F0

m:

Since the problem is axisymmetric and the crack front always
keeps the shape of a circle concentric to the original one in the
plane z ¼ 0, the energy release rate (ERR) is invariant along the
crack front. Prior to presenting the ERR, we have to examine the
asymptotic behavior of the elastic quantities around the crack
tip. Letting q0 ¼ jr � aj ! 0, we can obtain the following asymp-
totic expressions

rs
zzðq0Þ¼�

p0
1

p

ffiffiffiffiffiffi
2a
q0

s
; Hs

zzðq0Þ¼�
p0

2

p

ffiffiffiffiffiffi
2a
q0

s
;

Xs
1ðq0Þ ¼�

g12p0
2�g22p0

1

p2A

ffiffiffiffiffiffiffiffiffiffiffi
2aq0

p
;Xs

2ðq0Þ¼�
g21p0

1�g11p0
2

A

ffiffiffiffiffiffiffiffiffiffiffi
2aq0

p
: ð50Þ

Then, with the help of the concept of crack closure energy (Fan,
2011), the total potential energy release rate is given by

P¼ lim
Da!0

1
Da

Z Da

0
rs

zzðq0ÞX
s
1ðDa�q0ÞþHs

zzðq0ÞX
s
2ðDa�q0Þdq0: ð51Þ

Substituting (50) into (51) and making use of (48) immediately give
rise to

P ¼ � 1
2A

g22k2
1I þ g11k2

2I � ðg12 þ g21Þk1Ik2I

h i
: ð52Þ

The first, second and third terms in the brackets attributes to the
phonon field, phason field and phonon–phason interactions,
respectively.

In principle, the remaining components of the phonon–phason
elastic field can be figured out in the same manner described
above. However, the integrals involved is very tedious. In Appendix
C, we present an alternative way to seek the elastic fields associ-
ated with the crack in question.

6.2. External circular crack subjected to annular ring loads

Assume that two pairs of loads �p0
1 (phonon) and �p0

2 (phason),
which are uniformly applied on the annular ring region
a 6 b 6 r 6 c <1. Now the problem is degenerated to an axisym-
metric one and all the physical quantities are consequently inde-
pendent of h.

The corresponding normal stresses in the crack neck can be ob-
tained by integrating over the annular region

rzmjz¼0 ¼ �
1
p2

Z 2p

0
dh1

Z c

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 � a2

a2 � r2

r

� p0
mr1dr1

r2 þ r2
1 � 2rr1 cosðh� h1Þ

: ð53Þ

Making use of the identity (46), we rewrite (53) as

rzmjz¼0 ¼
2p0

m

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

a2 � r2

s
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

a2 � r2

s2
4

3
5

� 2p0
m

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

a2 � r2

r
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

a2 � r2

r" #
: ð54Þ

As a consequence, we can derive the SIFs from (34) as

kmI ¼ �
p0

m

p

ffiffiffi
2
a

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q� �
; ð55Þ

which can be also retrieved by integrating (35).
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The CSDs, in this case, can be deduced by integrating the funda-
mental results in (37) as

Xm ¼ �
F0

m

p2 IeðrÞ; ð56Þ

where

IeðrÞ ¼
1

2p

Z 2p

0
dh0

Z c

b

1
RðN;N0Þ

arctan
JðN;N0Þ
RðN;N0Þ

r0dr0: ð57Þ

The integral (57) can be figured out by following the method pro-
posed by Li (2012) and it turns out to be a continuous function of r

I1ðrÞ ¼
F1ðr; c; aÞ � F1ðr; b; aÞ; a 6 r 6 b;

F1ðr; c; aÞ � F2ðr; b; aÞ; b 6 r 6 c;

F2ðr; c; aÞ � F2ðr; b; aÞ; c 6 r <1;

8><
>: ð58Þ

where F1 and F2 are combinations of elliptic functions defined in
Appendix D.

With the previous results, the asymptotic behaviors of the
stress and displacement can be derived

rs
zz ¼ �

k1Iffiffiffiffiffiffiq0
p ; Xs

1 ¼
g22k1I � g12k2Ið Þ

p
ffiffiffiffiffiffi
q0
p

;

Hs
zz ¼ �

k2Iffiffiffiffiffiffiq0
p ; Xs

2 ¼ �
g21k1I � g11k2Ið Þ

p
ffiffiffiffiffiffi
q0
p

; ð59Þ

with q0 ¼ a� rj j ! 0. Thus the ERR defined in (51) is of the follow-
ing form

P ¼ � 1
2A

g22k2
1I þ g11k2

2I � ðg12 þ g21Þk1Ik2I

h i
;

which is identical to that for penny-shaped crack under the uniform
loads.

6.3. Half-infinite crack subjected to linear loads

Let us now consider two pairs of linear loads �P0
1 (phonon) and

�P0
2 (phason) applied along the lines y ¼ �ym ðym > 0Þ, namely,

pmðx; yÞ ¼ P0
mdðy� ymÞ. Thus the crack problem is reduced to an

plane strain one and all the physical quantities would be indepen-
dent of the argument x.

Parallel to the foregoing two cases, we can express rzmjz¼0 as

rzmjz¼0 ¼ �
1
p2

Z þ1

�1
dx0

Z þ1

0

ffiffiffiffiffiffiffi
y0

�y

r
P0

mdðy0 � ymÞ
ðx� x0Þ2 þ ðy� y0Þ

2 dy0

" #
;

ð60Þ

which can be readily evaluated, with the aid of the property of the
Dirac-delta function, as

rzmjz¼0 ¼ �
P0

m

p ym � yð Þ

ffiffiffiffiffiffiffi
ym

�y

r
; ðy < 0; ym > 0Þ: ð61Þ

As a consequence, the SIFs are of the form

kmI ¼ �
P0

m

p2

Z þ1

�1

ffiffiffiffiffiffi
ym
p

dx0

ðx� x0Þ2 þ y2
m

¼ � P0
m

p ffiffiffiffiffiffi
ym
p : ð62Þ

From (44), we can express the CSDs in the current case as

X1 ¼ �
P0

1g22

2p3A

Z þ1

�1
dx0

Z þ1

0
dðy0 � y1Þf �2 ð0Þdy0

þ P0
2g12

2p3A

Z þ1

�1
dx0

Z þ1

0
dðy0 � y2Þf �2 ð0Þdy0;

X1 ¼
P0

1g21

2p3A

Z þ1

�1
dx0

Z þ1

0
dðy0 � y1Þf �2 ð0Þdy0

� P0
2g11

2p3A

Z þ1

�1
dx0

Z þ1

0
dðy0 � y2Þf �2 ð0Þdy0: ð63Þ
It is evident that the CSDs are dependent of the following integral

Ihðy; ymÞ ¼
1

2p

�
Z þ1

�1
dx0

Z þ1

0

dðy0 � ymÞ
RðN;N0Þ

arctan
gðN;N0Þ
RðN;N0Þ

dy0

� �
; ð64Þ

which seems to be difficult to evaluate. On the other hand, (64) can
be transformed into the following form with the help of the results
involved in Fabrikant and Karapetian (1994)

Ihðy;ymÞ¼
1
2

Z y

0

dtffiffiffiffiffiffiffiffiffiffi
y� t
p

Z þ1

t

1ffiffiffiffiffiffiffiffiffiffiffiffi
y0� t
p £�ðyþy0�2tÞdðy0�ymÞ
� �

dy0;

ð65Þ

where £�ð	Þ is an operator defined as

£�ð.Þf ðx; 	Þ ¼ 1
p

Z þ1

�1

.f ðx0; 	Þdx0

.2 þ ðx� x0Þ2
; . > 0: ð66Þ

By virtue of (66), we have

£�ðyþ y0 � 2tÞdðy0 � ymÞ ¼ dðy0 � ymÞ: ð67Þ

Substitution of (67) into (57) yields

Ihðy; ymÞ ¼
1
2

Z y

0

dtffiffiffiffiffiffiffiffiffiffiffi
y� t
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ym � t
p : ð68Þ

Applying the Euler substitution
ffiffiffiffiffiffiffiffiffiffiffi
y� t
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ym � t
p ¼ x0 � t, we reduce

(68) to

Ihðy; ymÞ ¼
Z ffiffiffiffiffi

yy1
p

0

dx0

yþ ym � 2x0
;

which is equal to

Ihðy; ymÞ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ ym
pffiffiffi
y
p � ffiffiffiffiffiffi

ym
p

 

 : ð69Þ

Consequently, the CSDs turn out to be

X1 ¼
P0

1g22

p2A
Iðy; y1Þ �

P0
2g12

p2A
Iðy; y2Þ;

X2 ¼ �
P0

1g21

p2A
Iðy; y1Þ þ

P0
2g11

p2A
Iðy; y2Þ: ð70Þ

As expected from a physical point of view, X1 and X2 are logarith-
mic singular along the lines y ¼ ym, in contrast to the circular cracks
exhibiting a square-root singularity.

Similar to the cases of penny-shaped and external circular
cracks, we need the asymptotic expressions of stresses and CSDs
involved in the definition of ERR (51). From (61) and (70), it is evi-
dent that

rs
zz ¼

k1Iffiffiffiffiqp ; Xs
1 ¼

P0
1g22

p2A
Is
hðq; y1Þ �

P0
2g12

p2A
Is

hðq; y2Þ;

Hs
zz ¼

k2Iffiffiffiffiqp ; Xs
2 ¼ �

P0
1g21

p2A
Is
hðq; y1Þ þ

P0
2g11

p2A
Is

hðq; y2Þ; ð71Þ

with q ¼ yj j ! 0 and Is
hðq; ymÞ ¼ ln

ffiffiffiffi
ym
pffiffiffiffi

ym
p � ffiffiffiqp .

Starting from (51) and making use of the results

lim
Da!0

1
Da

Z Da

0

1ffiffiffiffiqp ln
ffiffiffiffiffiffi
ym
p

ð ffiffiffiffiffiffiym
p � ffiffiffiffiqp Þ

� �
dq ¼ p

2
ffiffiffiffiffiffi
ym
p ; ð72Þ

we arrive at

P ¼ � 1
2A

g22k2
1I þ g11k2

2I � ðg12 þ g12Þk1Ik2I

h i
; ð73Þ

which is of the same form as those for penny-shaped and external
circular cracks.
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7. Numerical results and discussions

This section is devoted to numerically presenting the the fore-
going analytical results. To this end, a specific 1D hexagonal QC
is considered, with the material properties tubulated in Table 1,
by refereing to previous studies (Li, 2013; Radi and Mariano,
2011; Wu et al., 2013). Correspondingly, the eigenvalue si

(i ¼ 0;1; . . . ;3), characterizing the anisotropic degree of the mate-
rials, have the following the numerical values s0 ¼ 1:0260; s1 ¼
0:7488þ 0:5177i;s2 ¼ 0:7488� 0:5177i and s3 ¼ 0:5070, which
are different from each other.

For the sake of illustration, the following dimensionless quanti-
ties is introduced

n ¼ x
a
; g ¼ y

a
; f ¼ z

a
; r0 ¼ r

a
;

U0r ¼
ur

a
; X01 ¼

X1

a
; X02 ¼

X2

a
; Rf ¼

rz1

c11
; K 01I ¼

k01I

ffiffiffi
a
p

c11
:

In other words, a; c11; c11=
ffiffiffi
a
p

are selected as reference scales for spa-
tial coordinates/displacement, stress and stress intensity factors,
respectively. Throughout this section, attention is confined to the
physical quantities on the crack plane z ¼ 0, for simplicity.

7.1. Validity of the present solutions

First, let us first discuss the validity of the present solutions. It is
seen from (1) that the phonon–phason coupling effect will vanish
by artificially letting Ri be zero. In such a special case, the elastic
field resulting from an external mechanical force should be identi-
cal to those in the context of pure elasticity. This provides a useful
way to check the validity of the present solutions. In this subsec-
tion, the validity of the present solutions for circular cracks is dis-
cussed by following this path.

Table 2 lists the dimensionless CSD X01 and the dimensionless
normal stress Rf in the intact region S, for a penny-shaped crack
subjected to a pair of uniform pressures p0=c11 ¼ 6� 10�4. Com-
parison of the present solutions is made with in their elastic coun-
terparts, and an excellent agreement is observed.

For the external circular crack, we consider a concentrated pho-
non force P1 ¼ �p2a2c11 � 10�6 applied at the point ðr01; h1Þ ¼ ð2;0Þ
on the crack lip. Similar to the case of the penny-shaped crack,
comparison is made with the counterpart given by Fabrikant
et al. (1994) in the framework of pure elasticity, as shown in Ta-
ble 3. Again, the present solutions coincide with those in literature.

It should be pointed out that the data only in Tables 2 and 3 are
derived by setting Ri to null. Moreover, the other components of
the physical quantities also agree with their counterparts in litera-
ture. However, they are omitted for the space-saving purpose.

As far as the half-infinite plane crack is concerned, we adopt an-
other way to check the appropriateness of the solutions. Previous
studies (Fabrikant et al., 1993, Fabrikant et al., 1995; Li, 2013)
clearly reveal that the fundamental solutions for a half-infinite
crack can be extracted from those for the penny-shaped crack,
through a limiting procedure.

To fulfill our purpose, we first place the Cartesian coordinate
system ðx; y; zÞ at the edge of the circular crack so that
Table 1
Material constants for a particular 1D hexagonal quasi-crystal. (cij;Ri and Ki in
109 Nm�2).

c11 c12 c13 c33 c44

150 55 45 90 50

R1 R2 R3 K1 K2

-1.68 1.20 1.20 0.084 0.036
x ¼ r cos h; y ¼ r sin hþ a; z ¼ z: ð75Þ

Then we let the the radius of the circular crack approaches to infi-
nite, i:e., a!1. Such a procedure is graphically shown in Fig. 2. In
this manner, a half-infinite plane crack is generated and the solu-
tions associated with the circular crack consequently tend to the
ones for half-infinite plane crack.

It is noted that the fundamental solutions for penny-shaped and
half-infinite cracks are of the same forms. As a result, we need pay
our attentions only to the functions f p

j ðzÞ and f ðhÞj ðzÞ (j ¼ 1� 5) in-
volved in those fundamental solutions. This purpose can be readily
achieved by virtue of the following results

lim
a!1

a2 � l2
1

a
¼ 2l�2; lim

a!1

l22 � a2

a
¼ �2l�1; lim

a!1

a2 � r2
0

a
¼ 2y0;

lim
a!1

s2

a
¼ s�; lim

a!1
h ¼ h�; lim

a!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

q
�s

¼ c; ð76Þ

where l1;2; h and s are defined in (B-3), and l�1;2;h
�
; s� and c are given

in (B-8). Furthermore, R0 and t specified by (B-2) keep invariant dur-
ing the course of limiting procedure.

With the help of (76), we are readily to obtain that

lim
a!1

f ðpÞj ðzÞ ¼ f ðhÞj ðzÞ; j ¼ 1� 5 ð77Þ

where f ðhÞj ðzÞ and f ðpÞj ðzÞ are defined in (B-7) and (B-1), respectively.

7.2. Normal stress, SIF and CSD

Consider a penny-shaped crack and an external circular crack,
both of which are subjected to a pair of concentrated phonon
forces only. The force is assumed to be P1 ¼ �p2a2c11 � 10�6 and
is applied at the points (n;g; fÞ ¼ ðk;0;0�). Without specification
elsewhere, the parameter k < 1:0 for penny-shaped crack is as-
signed to 0 and 0.5, and k > 1:0 for external circular crack is set
to 2.0 and 3.0. In this subsection, we only focus on the normal
stresses in the region S of the crack plane, SIFs and CSDs of the
circular cracks.

It is seen from (25) and (33) that the normal stress rzz in the in-
tact region is independent of the material properties and only a
function of r and h. Its variations are plotted in Fig. 3, which clearly
shows that Rf decrease with r0 and h, for these two circular cracks.
As expected, Rf is singular at the crack front r0 ¼ 1:0.

To investigate its whole profile, Fig. 4 displays the 3D figure and
the contour of Rf. From an overall point of view, Rf changes signif-
icantly in the neighborhood of the point ðn;g; fÞ ¼ ð1;0;0Þ. Further-
more, the symmetry with respect to the x-axis (y ¼ 0), associated
with the problem in question in this subsection, is checked.

The singularity in Rf is quantified by the dimensionless stress
intensity factor K 01I , whose expression for the circular cracks reads

ffiffiffi
2
p

K 01I � 106 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� k2j

q
1þ k2 � 2k cos h

:

crack on the crack plane f ¼ 0.

r0 ¼ r
a X01 � 103 r0 ¼ r

a Rf � 103

Present Fabrikant (1989) Present Fabrikant (1989)

0.0 1.179279 1.179279 1.05 0.711432 0.711432
0.2 1.155452 1.155452 1.10 0.397664 0.397664
0.4 1.080827 1.080827 1.15 0.269894 0.269894
0.6 0.943423 0.943423 1.20 0.199560 0.199560
0.8 0.707567 0.707567 1.25 0.155095 0.155095
1.0 0.000000 0.000000 1.30 0.124608 0.124608



Table 3
The dimensionless displacements at the point ðn;g; fÞ ¼ ðn;0;0Þ for the external circular crack subjected to a concentrated phonon force exerted at ðr01 ; h1Þ ¼ ð2; 0Þ.

n ¼ x
a X01 � 105 U0x � 105

Present Fabrikant et al. (1994) Present Fabrikant et al. (1994)

1.0 0.000000 0.000000 0.230594 0.230594
1.2 0.371466 0.371466 0.249483 0.249483
1.4 0.633399 0.633399 0.301589 0.301589
1.6 1.071278 1.071278 0.421162 0.421162
1.8 2.305933 2.305933 0.797463 0.797463

x

y

N1 N2

O

Fig. 2. A schematic figure for the limiting procedure a!1. N1 x1ðr1; h1Þ; y1ðr1; h1Þ½ �
and N2 x2ðr2; h2Þ; y2ðr2; h2Þ½ � denote the points at which the concentrated phonon and
phason forces are respectively applied on the lips of penny-shaped and half infinite
plane cracks.

1450 X.-Y. Li / International Journal of Solids and Structures 51 (2014) 1442–1455
Since K 01I is independent of the material constants, the SIFs should
coincide with their counterparts in the framework of the elasticity.
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Fig. 3. The dimensionless normal stress component Rf as functions of r0 (a, c) and h=p
k ¼ 0:50 for the penny-shaped crack and k ¼ 2:0 for the latter.
More specifically, the result for the penny-shaped crack is identical
to those predicted by Fabrikant (1989) and the remaining is same to
these proposed by Fabrikant et al. (1994). As expected, when the
force is applied at the center of the penny-shaped crack, namely,
k ¼ 0, K 01I is independent of the variable h because the problem un-
der consideration is axisymmetric. However, in the case of k > 0 for
circular cracks, the problem is thus non-axisymmetric and K 01I de-
creases with h 2 ½0;pÞ. These characteristics are reflected in Fig. 5.

Fig. 6 illustrates the dimensionless CSD X01 as a function of
dimensionless r0. As expected, X01 is singular at the point
ðr0; h; fÞ ¼ ð0:5;0; 0Þ for the penny-shaped crack and at ð2:0;0;0Þ
for the external circular crack. Further, Fig. 6 also indicates that
X01 decreases with h 2 ½0;pÞ.

From (29) and (37), distribution of X02 is similar to that of X01,
since they are different from each other only by a constant. Hence,
the distribution of the latter is not presented for brevity. Further-
more, under the current circumstance, the ratio between them

a ¼ X2

X1
¼ � g21

g11
¼ �27:0426 ð78Þ

characterizes the effect of the phonon–phason effect.
0 1/4 1/2 3/4 1
0

4

8

12

16

θ/π

Σ ζ×1
06

r′=1.02
r′=1.05
r′=1.10
r′=1.20

(b)

0 1/4 1/2 3/4 1
0

2

4

6

8

10

12

14

θ/π

Σ ζ×1
06

r′=0.99
r′=0.95
r′=0.75
r′=0.25

(d)

(b, d) for penny-shaped crack (a, b) and external circular crack (b, d). Data are for
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Fig. 4. The 3D figure (a, c) and the contour (b, d) of the dimensionless normal stress components Rf on the intact region S for the penny-shaped crack (a, b) and circular
external crack (c, d). Data are for k ¼ 0:50 for former and k ¼ 2:0 for the latter. The symbol
 denotes the position of the external load in (b), and the dashed lines in (b) and (d)
stand for the edges of the circular cracks.
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Fig. 5. The distributions of the dimensionless SIF K 01I � 106 in the polar system, for the penny-shaped crack (a) and the external circular crack (b). The solid and dashed lines
represents the data for k ¼ 0:0 and 0.5 for the former crack, and for k ¼ 2:0 and 3.0 for the latter. The symbols (M) and (�) stand for the elastic results given by Fabrikant
(1989) and Fabrikant et al. (1994).
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Fig. 6. The variations of the dimensionless CSDs X01 for the penny-shaped crack (a) and the external circular crack (b) with the dimensionless coordinate r0 . Data are for
k ¼ 0:5 (a) and k ¼ 2:0 (b).
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8. Concluding remarks

The problem of a planar crack contained in an infinite medium
of 1D hexagonal QCs has been analytically treated by means of the
potential theory method in conjunction with the general solutions
of 3D static problems. In particular, a new potential has been intro-
duced to account for the phonon field. Corresponding boundary
integral equations, which are of primary significance for boundary
element method, are established.

When the lips of crack with special configurations (penny-
shaped, external circular and half-infinite plane) are subjected to
non-axisymmetric external concentrated forces, the resulting pho-
non and phason elastic fields are expressed completely and exactly
in terms of some elementary functions. The physical quantities
such as SIFs and CSDs, which play an important role in crack anal-
ysis, have been explicitly derived. In particular, no interactions be-
tween the phonon and phason fields are observed in SIFs.

For the crack subjected to arbitrarily distributed loading, corre-
sponding physical quantities can be obtained by integrating the
fundamental solution over the crack surface. In the present study,
three concrete examples, which are classical in the context of the
fracture mechanics, are presented to illustrate applications of the
fundamental solutions. Of particular interest is that the energy re-
lease rate for the three common cracks bears an identical expres-
sions in terms of stress intensity factors.

It is also interesting that the fundamental solutions for the three
cracks are of a uniform form. This means intrinsic relations must
exist among the solutions for these three cracks, for example, the
solution for half-infinite plane crack can be exacted from those
for penny-shaped crack through a limiting procedure. However,
the relations between penny-shaped and external circular cracks
remain unknown.

It should be noted that the results presented in this work are va-
lid under the condition that the eigenvalues defined in Section 2
are all distinct. However, if any two, or more than two, of them
are equal, the corresponding results can be extracted from the
present ones through the limiting procedure suggested by Fabrik-
ant (1989) using L’Hôspital rule.
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Appendix A

The constants a; b; c and d involved in the characteristic equa-
tion (2) are related to the material properties as follows (Chen
et al., 2004)

a ¼ c44ðR2
2 � c33K1Þ; d ¼ c11ðR2

3 � c44K2Þ;

b ¼ c33 �c44K2 þ ðR1 þ R3Þ2
h i

� K1½c11c33 þ c2
44 � ðc13 þ c44Þ2�

þ R2 2c44R3 þ c11R2 � 2ðc13 þ c44ÞðR1 þ R3Þ½ �;

c ¼ c44 �c11K1 þ ðR1 þ R3Þ2
h i

� K2½c11c33 þ c2
44 � ðc13 þ c44Þ2�

þ R3 2c11R2 þ c44R3 � 2ðc13 þ c44ÞðR1 þ R3Þ½ �:

In order to specify the constants in (3) and (5), we introduce the fol-
lowing constants

m1 ¼�K2ðc13þ c44ÞþR3ðR1þR3Þ; m2 ¼�K1ðc13þc44ÞþR2ðR1þR3Þ;
m3 ¼�c11K1� c44K2þðR1þR3Þ2; m4 ¼ c11R2� c44R1� c13ðR1þR3Þ;
b1j ¼m2s2

j �m1; b2j ¼�c11K2�m3s2
j �c44K1s4

j ;b3j ¼ c11R3�m4s2
j þ c44R2s4

j :

The constants in (3) and (5) are defined as

a1j¼
b2j

b1jsj
; a2j ¼

b3j

b1jsj
; -j¼ c12þc13a1jsjþR1a2jsj; #1¼ c44;

c1j¼ c13þc33a1jsjþR2a2jsj; #2¼R3; c2j¼R1þR2a1jsjþK1a2jsj:
Appendix B

Here, the derivatives of Green’s function KðM; N0Þ in (18) are
given case by case for the three typical cracks.
B.1. Penny-shaped crack

The derivatives of the Green’s function, which are also involved
in (20), have been derived by Fabrikant (1989) as

^
K ¼ 2pf ðpÞ1 ðzÞ ¼

2p
�t

z
R0

arctan
h
R0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

q
�s

arctan
�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
2 � a2

q
2
64

3
75;

ðB-1aÞ
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@K
@z
¼ 2pf ðpÞ2 ðzÞ ¼ �

2p
R0

arctan
h
R0
; ðB-1bÞ

@2K
@z2 ¼ 2pf ðpÞ3 ðzÞ ¼ 2p z

R3
0

arctan
h
R0
� h

zðR2
0 þ h2Þ

r2 � l2
1

l2
2 � l2

1

� z2

R2
0

 !" #
;

ðB-1cÞ

^2
K ¼ 2pf ðpÞ4 ðzÞ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

q
�t�s

2
�t
� r0eih0

�s2

� �
arctan

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � a2

q
8><
>:

� zð3R2
0 � z2Þ

�t2R3
0

arctan
h
R0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2 � a2

q
�t�s2 l2

2 � rr0e�iðh�h0Þ
h i

� zh

ðR2
0 þ h2Þ

t
�tR2

0

� r2ei2h

ðl2
2 � l2

1Þðl
2
2 � r2Þ

" #)
; ðB-1dÞ

^ @K
@z
¼ 2pf ðpÞ5 ðzÞ

¼ 2p t

R3
0

arctan
h
R0
þ zh

R2
0 þ h2

reih

l2
2 � l2

1

þ t

R2
0

 !" #
; ðB-1eÞ

where the over bar stands for the conjugate of a complex variable,
and

t ¼ reih � r0eih0 ; h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l2

1

q
a

;

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � rr0e�iðh�h0Þ

p
;

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

0 � 2rr0 cos h� h0ð Þ þ z2
q

;

l1 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ aÞ2 þ z2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞ2 þ z2

q� �
;

l2 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ aÞ2 þ z2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞ2 þ z2

q� �
: ðB-2Þ

In addition, the characteristic lengths h; l1 and l2 have the following
properties

l1 !minða; rÞ; l2 !maxða; rÞ;

h!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �min2ða; rÞ

q
a

;
h
z
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

max2ða; rÞ � a2

s
; ðB-3Þ

when z approaches to 0.
It is noted that, the variables r0 and h0 should be replaced by rm

and hm, respectively, when the function f ðpÞj ðzÞ in (B-1) are replaced
by f ðpÞjm ðzÞ in (20).

B.2. External circular crack

We can define the derivatives of the Green’s function for exter-
nal circular crack by referring to the article (Fabrikant et al., 1994)
as
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where R0; t and l1;2 are defined in (B-2), and

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr0e�iðh�h0Þ � a2

p
; J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

2 � a2Þðr2
0 � a2Þ

q
=a: ðB-5Þ

With the property of the characteristic lengths l1 and l2, we can ob-
tain that

lim
z!0

J
z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � a2

a2 �min2ða; rÞ

s
: ðB-6Þ
B.3. Half-infinite plane crack

The derivatives of the Green’s functions in (18) and the func-
tions involved in (20) for the half-infinite plane crack are of the fol-
lowing form (Fabrikant and Karapetian, 1994)

^
K ¼ 2pf ðhÞ1 ðzÞ ¼

2p
�t

z
R0

arctan
h�

R0
� c arctan

ffiffiffiffiffiffiffiffiffiffi
�s�

�2l�1

s" #
; ðB-7aÞ

@K
@z
¼ 2pf ðhÞ2 ðzÞ ¼ �

2p
R0

arctan
h�

R0
; ðB-7bÞ

@2K
@z2 ¼ 2pf ðhÞ3 ðzÞ ¼ 2p z

R3
0

arctan
h�

R0
� h�

z R2
0 þ h�2

� � l�1
l�1 � l�2

� z2

R2
0

 !2
4

3
5;

ðB-7cÞ

^2
K ¼ 2pf ðhÞ4 ðzÞ ¼ 2p � 2

ffiffiffiffiffiffiffiffi
y0l�1

p
�t�s �s� � 2l�1
 �þ c

�t
i

�s�
þ 2

�t

� �
arctan

ffiffiffiffiffiffiffiffiffiffi
�s�

�2l�1

s(

�
z 3R2

0 � z2
� �

�t2R3
0

arctan
h�

R0
� zh�

R2
0 þ h�2

t
�tR2

0

þ 1
4l�2 l�2 � l�1
 �

" #9=
;; ðB-7dÞ

^ @K
@z
¼ 2pf ðhÞ5 ðzÞ ¼ 2p t

R3
0

arctan
h�

R0
þ h�

R2
0 þ h�2

i
2 l�1 � l�2
 �þ t

R2
0

" #( )
;

ðB-7eÞ

where
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t¼ðx�x0Þþ iðy�y0Þ; s� ¼ ðyþy0Þ� iðx�x0Þ; c¼
ffiffiffiffiffiffiffiffi
2y0

�s�

r
; ðB-8Þ

R0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ

2þz2

q
; 2l�1;2¼ y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þz2

p
; h� ¼2

ffiffiffiffiffiffiffiffi
y0l�2

q
:

Appendix C

The elastic field in the infinite QC space weakened by a uni-
formly load penny-shaped crack can be obtained via the general
solutions for crack problem, which were developed by Peng and
Fan (2001). Such an approach consists of Fourier series, Hankel
transform and duel integral equations, and all the physical quanti-
ties are in the form of integral with Bessel functions involved. As a
result, the physical quantities seem not to be readily obtained in
this way. Owing to its significance of the problem, here, we provide
a simple and straightforward method to fulfill our purpose.

Substituting (49) into (10), we can obtain the potentials as
(Fabrikant, 1989)

Wmðr; zÞ ¼ �
F0

m

2p
2a2 þ 2z2 � r2
 �

arcsin
a
l2
� 2a2 � 3l21

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2 � a2

q" #
:

ðC-1Þ

According to (3), (5), (9) and (C-1), the corresponding elastic field is
obtained through a procedure of differentiation

U ¼ reih

p
X3

j¼1

Dj

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2j � a2

q
l22j

� arcsin
a
l2j

2
4

3
5; ðC-2aÞ

uzm ¼ �
2
p
X3

j¼1

Djamj zj arcsin
a
l2j
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l2

1j

q� �
; ðC-2bÞ

r1 ¼ �
4
p
X3

j¼1

Dj-j arcsin
a
l2j
�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2j � a2

q
l2
2j � l2

1j

2
4

3
5; ðC-2cÞ

r2 ¼ �
4c66r2ei2h

p
X3

j¼1

Dj

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2j � a2

q
l4
2jðl

2
2j � l21jÞ

; ðC-2dÞ

rzm ¼ �
2
p
X3

j¼1

Djcmj arcsin
a
l2j
�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2j � a2

q
l2
2j � l21j

2
4

3
5; ðC-2eÞ

szm ¼ �
2a2reih

p
X3

j¼1

Djsjcmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l2

1j

q
l2
2j l22j � l2

1j

� � ; ðC-2fÞ

with Dj ¼
P2

k¼1djkF0
k and lmj ¼ lmðzjÞ specified in (B-2). It should be

pointed out that the displacements in (C-2b) and the normal stres-
ses in (C-2e) are readily reduced to (49) and (53), respectively, upon
letting z ¼ 0.

Appendix D

This section is devoted to define the special functions involved
in (69) (Gradsbteyn and Ryzbik, 2000)

F1ðr;a;bÞ�
Z r

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

r2�x2

r
dx¼aEðn;tÞ�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�b2

a2�b2

s
ða> r>bP0Þ;

F2ðr;a;bÞ�
Z a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

r2�x2

r
dx;

¼ rEðn;tÞ�r2�a2

r
Fðn;tÞ�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

r2�b2

s
ðr>a>bP0Þ;
where Fðn; tÞ and Eðn; tÞ are elliptic functions of the first and second
kinds and defined by

Fðn; tÞ ¼
Z n

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 sin2 x

p ; Eðn; tÞ ¼
Z n

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 sin2 x

p
dx;

ðD-1Þ

with

n ¼
arcsin a

r

ffiffiffiffiffiffiffiffiffiffi
r2�b2

a2�b2

q
a > r > b

arcsin r
a

ffiffiffiffiffiffiffiffiffiffi
a2�b2

r2�b2

q
r > a > b

8><
>: ; t ¼ minðr;aÞ

maxðr;aÞ : ðD-2Þ

In the limiting case r !bþ with a > r, we have the properties

n! a
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2

a2 � b2

s
; Fðn; tÞ ! n; Eðn; tÞ ! n:

These limits are of significance in predicting the asymptotic behav-
iors of CSDs.
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