

Topology Vol. 35, No. 4, pp. 887–900, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0040-9383/96/\$15.00 + 0.00

0040-9383(95)00050-X

TOPOLOGY ON $S^{-1}S$ FOR BANACH ALGEBRAS

MICHAEL PALUCH

(Received 27 March 1995)

IN THIS note we show that Quillen's $S^{-1}S$ -construction on the category of finitely generated projective modules over a Banach algebra Λ with identity has a topological enrichment $S^{-1}S^{top}(\Lambda)$ and $B(S^{-1}S^{top}(\Lambda))$ has the homotopy type of $K_0\Lambda \times BGL^{top}\Lambda$. By applying the singular complex functor, we obtain a first quadrant spectral $E_{p,q}^{1}(\Lambda) = K_q^{alg}\Lambda(\Delta^p)$, where $\Lambda(\Delta^p)$ is the ring of continuous Λ -valued functions on Δ^p , that converges to $K_p^{top} = \pi_{p+q}(K_0\Lambda \times BGL^{top}\Lambda)$ for $p+q \ge 0$. Copyright © 1996 Elsevier Science Ltd

0. INTRODUCTION

Let Λ be a Banach algebra with identity. For p > 0 the topological K-theory of Λ is defined to be $K_p^{top}\Lambda := \pi_p BGL^{top}\Lambda$, where $GL^{top}\Lambda$ is the colimit of finite-dimensional invertible matrices over Λ and $BGL^{top}\Lambda$ is its classifying space. Since the Grothendieck group $K_0\Lambda$ of Λ only depends on the algebraic structure of Λ , $K_*^{top}\Lambda = \pi_*(K_0\Lambda \times BGL^{top}\Lambda)$ where $K_0\Lambda$ is given the discrete topology. On the other hand, the algebraic K-theory of Λ is defined to be $K_*^{alg}\Lambda := \pi_*(K_0\Lambda \times BGL^{\delta}\Lambda^+)$, where $GL^{\delta}\Lambda$ is the colimit of the discrete groups of finitedimensional invertible matrices over Λ and $(-)^+$ is Quillen's plus construction [2]. The map $GL^{\delta}\Lambda \to GL^{top}\Lambda$ induces a map

$$K_0 \Lambda \times \mathrm{BGL}^{\delta} \Lambda^+ \to K_0 \Lambda \times \mathrm{BGL}^{\mathrm{top}} \Lambda \tag{1}$$

of topological spaces and a map

$$K_*^{\text{alg}}\Lambda \to K_*^{\text{top}}\Lambda, \quad * \ge 0 \tag{2}$$

from the algebraic K-theory to the topological K-groups of Λ .

In this note we approach the topological and algebraic K-theory of Λ through Quillen's $S^{-1}S$ -construction [7]. Recall that if \mathscr{P} is the category of finitely generated (left) projective Λ -modules, then the homotopy groups of the classifying space of the category $S^{-1}S(\mathscr{P})$ are the algebraic K-theory of Λ —we shall assume that most all categories are small. Like the topological enrichment $GL^{top}\Lambda$ of $GL^{\delta}\Lambda$, there is a topological enrichment $S^{-1}S^{top}(\mathscr{P})$ of the category $S^{-1}S(\mathscr{P})$. The central result of this note, Theorem 3.1, asserts $K_{tp}^{top}\Lambda \cong \pi_p S^{-1}S^{top}(\mathscr{P})$ and the forgetful functor

$$S^{-1}S(\mathscr{P}) \to S^{-1}S^{\mathrm{top}}(\mathscr{P}) \tag{3}$$

induces the map in (2). This result is part of the folklore of group completions [1]; however, the proof given does not deal with localization of homology groups. Instead we show that there is a continuous extension of the setting considered in [7] and the fibres of the continuous map $BGL^{top}\Lambda \rightarrow B(S^{-1}S^{top}(\mathscr{P}))$ are contractible; in fact these fibres can be identified with a realization of a simplicial model of frames in Λ^{∞} . The discerning feature of the functor in (3) is that it is the "identity," whereas the map in (1) is induced by the "identity" and involves universal properties of H-spaces and the +-construction. In Section 1 we extend Quillen's Theorem A [19], which says that a functor with contractible fibres induces a homotopy equivalence of classifying spaces, to topological categories, and mention that Thomason's homotopy colimit theorem [24] also has a topological extension. We topologize Quillen's $S^{-1}S$ -construction in Section 3 after giving a Banach space analog of the Stiefel manifold of k-frames in \mathbb{R}^n .

In Section 4 we replace the topological category with the simplicial category

$$[p] \mapsto S^{-1}S^{\operatorname{top}}(\mathscr{P})(\Delta^p).$$

Using Karoubi's extension [11] of a theorem of Swan [23], which states that there is equivalence between the category of \mathscr{P} -fibre bundles over a compact space X and the category of finitely generated projective modules over the ring of continuous functions from X to Λ , we are able to identify the homotopy groups of the classifying space of $S^{-1}S^{\text{top}}(\mathscr{P})(\Delta^p)$ with the algebraic K-theory of $\Lambda(\Delta^p)$, where $\Lambda(\Delta^p)$ is the ring of continuous Λ -valued functions on the geometric p-simplex Δ^p . We then obtain a spectral sequence

$$K_q^{\text{alg}}\Lambda(\Delta^p) = E_{p,q}^1(\Lambda) \Rightarrow K_{p+q}^{\text{top}}\Lambda$$

whose edge homomorphism is the map in (2). If $\Lambda = \mathbb{C}(X)$ is the commutative Banach algebra of continuous \mathbb{C} -valued functions on X, then

$$K_1^{\operatorname{alg}}\Lambda(\Delta^p) \cong \mathbb{C}^*(X \times \Delta^p) \oplus [X, \operatorname{SU}]$$
$$E_{p,1}^2(\Lambda) \cong \begin{cases} H^1(X, \mathbb{Z}) \oplus [X, \operatorname{SU}] & \text{if } p = 0\\ H^{1-p}(X, \mathbb{Z}) & \text{if } p > 0. \end{cases}$$

Motivated by this observation we define the homotopy groups of the algebraic K-theory of Λ to be $\pi_p K_q^{\text{alg}} \Lambda := E_{p,q}^2(\Lambda)$.

1. TOPOLOGICAL CATEGORIES

The term topological category should be taken to mean a category in which each hom set is endowed with the structure of a compactly generated topological space and the usual structure maps are continuous. Let \mathscr{C} and \mathscr{D} be topological categories. A functor $F: \mathscr{C} \to \mathscr{D}$ is called *continuous* if for each pair (A, B) of objects of \mathscr{C} the map $F: \text{Hom}(A, B) \to \text{Hom}(F(A),$ F(B)) is continuous. Let Y be an object in \mathscr{D} . The comma category Y/F is not, in general, a topological category, however, it does have the structure of a category object (see [5, Section 7]) in **Top**, the cartesian closed category of compactly generated topological spaces. To be precise, the space of objects of Y/F is

obj
$$Y/F = \coprod_X \operatorname{Hom}_{\mathscr{D}}(Y, F(X))$$

and the space of arrows is

arr
$$Y/F = \prod_{X_0, X_1} \operatorname{Hom}_{\mathscr{D}}(Y, F(X_0)) \times \operatorname{Hom}_{\mathscr{C}}(X_0, X_1).$$

Similarly one can define the category object F/Y. Note that the product of two topological spaces is given the compactly generated topology [21].

Given a category object \mathscr{C} in Top, let N \mathscr{C} denote the nerve of \mathscr{C} . Recall that N \mathscr{C} is a simplicial object in Top, and the classifying space of \mathscr{C} is the geometric realization $B\mathscr{C} = |N\mathscr{C}|$ of N \mathscr{C} obtained from $\coprod_n \Delta^n \times N\mathscr{C}_n$ by the relation $(t, \alpha^* x) \sim (\alpha_* t, x)$ for all $\alpha : [m] \to [n], t \in \Delta^m$ and $x \in N\mathscr{C}_n$.

Let \mathscr{C} be a topological category and X an object of \mathscr{C} . Denote by X/\mathscr{C} the comma category X/F with F equal to the identity functor. Let $\rho: X/\mathscr{C} \to X/\mathscr{C}$ be the continuous functors given by $\rho(f) = id_X$.

LEMMA 1.1. Let \mathscr{C} be a topological category, and let X be an object in \mathscr{C} . There is a continuous natural transformation $\eta: \rho \to 1$. In particular the classifying space $B(X/\mathscr{C})$ is contractible.

Proof. Let η : obj $X/\mathscr{C} \to \operatorname{arr} X/\mathscr{C}$ be the map given by

$$(f: X \to X_0) \mapsto (id: X \to X, f: X \to X_0).$$

Clearly η is continuous. Let $(f: X \to X_0, f_0: X_0 \to X_1)$ be an arrow in X/\mathscr{C} . Since the following diagram is commutative.

 η is a natural transformation.

Remark. A similar proof that the space $B(\mathcal{C}/X)$ is also contractible for every X in \mathcal{C} .

Quillen's Theorem A. Recall that a bisimplicial space X is a functor $([p], [q]) \mapsto X_{p,q} \in \mathsf{Top}$. One may view X as a family of spaces in the first quadrant of the plane together with horizontal and vertical face and degeneracy operators that commute and satisfy the familiar identities [13]. Given a bisimplicial space X, there are natural homeomorphisms $|[p] \mapsto |X_{p,*}|| \cong |\operatorname{diag} X| \cong |[q] \mapsto |X_{*,q}||$, where diag X is the simplicial space $[p] \mapsto X_{p,p}$. Following Segal [20] we call the simplicial space X good if all the degeneracy operators $s_i: X_n \to X_{n+1}$ are closed cofibrations. Good simplicial spaces have the property that a simplicial map which is termwise a homotopy equivalence determines a homotopy equivalence of the corresponding geometric realizations.

The following theorem is a version of Quillen's Theorem A [19] for topological categories. We shall follow his proof with little change.

THEOREM 1.2. Let \mathscr{C} and \mathscr{D} be topological categories, with the property that the inclusion of the point $*_X \mapsto 1_X \in \operatorname{Hom}(X, X)$ are cofibrations for all objects of \mathscr{C} and \mathscr{D} , and let $F: \mathscr{C} \to \mathscr{D}$ be a continuous functor. If the classifying space B(Y/F) has the homotopy type of a point for each object Y in \mathscr{D} , then

$$\mathbf{B}F:\mathbf{B}\mathscr{C}\to\mathbf{B}\mathscr{D}$$

is a homotopy equivalence.

Proof. Let S(F) be the category object in Top whose space of objects is

$$\operatorname{obj} S(F) = \prod_{X,Y} \operatorname{Hom}_{\mathscr{D}}(Y, F(X))$$

and whose space of arrows arr S(F) is

$$\coprod_{Y_i,X_i} \operatorname{Hom}_{\mathscr{D}}(Y_1,Y_0) \times \operatorname{Hom}_{\mathscr{D}}(Y_0,F(X_0)) \times \operatorname{Hom}_{\mathscr{C}}(X_0,X_1).$$

A triple

$$(g_0: Y_1 \to Y_0, g: Y_0 \to F(X_0), f_0: X_0 \to X_1)$$

is an arrow from $g: Y_0 \to F(X_0)$ to $F(f_0) \circ g \circ g_0: Y_1 \to F(X_1)$. Define $\pi_1: S(F) \to \mathcal{D}^{op}$ by sending $(g: Y \to F(X); X)$ to Y, and define $\pi_2: S(F) \to \mathscr{C}$ by sending the same object to X. Let T(F) be the bisimplicial space whose (p, q)-simplices are of the form

$$(Y_q \rightarrow \cdots \rightarrow Y_0 \rightarrow F(X_0), X_0 \rightarrow \cdots \rightarrow X_p).$$

 $T(F)_{p,q}$ is topologized as the disjoint union

$$\coprod_{X_i,Y_j} \operatorname{Hom}_{\mathscr{G}}(Y_q, Y_{q-1}) \times \cdots \times \operatorname{Hom}_{\mathscr{G}}(X_{p-1}, X_p).$$

Let $N\mathscr{C}^{v}$ be the bisimplicial space equal to the nerve of \mathscr{C} in the horizontal direction and constant in the vertical direction. The obvious projections induce a map

$$\Gamma(F) \to \mathbf{B}\mathscr{C}^{\nu} \tag{4}$$

of bisimplicial spaces. Since the nerve of S(F) is equal to diagonal of T(F), the realization of the map in (4) is equal to $B\pi_2$. By first realizing (4) with respect to the vertical direction we get a map

$$\coprod_{X_i} \mathbf{B}(\mathscr{D}/F(X_p)) \times \operatorname{Hom}(X_p, X_{p-1}) \times \cdots \times \operatorname{Hom}(X_1, X_0) \to \mathbb{N}\mathscr{C}_p$$

of good simplicial spaces. By the previous lemma, $B(\mathcal{D}/F(X_p))$ is contractible. It follows that $B\pi_2$ is a homotopy equivalence. Similarly there is a map

$$T(F) \to \mathbf{N}\mathscr{D}^{\mathrm{oph}} \tag{5}$$

of bisimplicial spaces, where $N\mathscr{D}^{oph}$ is constant in the horizontal direction; furthermore, the realization of this map is $B\pi_1$. By first realizing (5) with respect to the horizontal direction we get a map

$$\coprod_{Y_i} \operatorname{Hom}(Y_0, Y_1) \times \cdots \times \operatorname{Hom}(Y_{q-1}, Y_q) \times \operatorname{B}(Y_q/F) \to \operatorname{B}\mathscr{D}^{\operatorname{op}}$$

of good simplicial spaces. Since $B(Y_q/F)$ is contractible, $B\pi_1$ is a homotopy equivalence. Piecing these maps together we obtain the following commutative diagram

$$B\mathscr{D}^{\operatorname{op}} \stackrel{B\pi_1}{\longleftarrow} BS(F) \stackrel{B\pi_2}{\longrightarrow} B\mathscr{C}$$
$$\downarrow^{id} \qquad \downarrow \qquad \downarrow^{B(F)}$$
$$B\mathscr{D}^{\operatorname{op}} \stackrel{B\pi_1}{\longleftarrow} BS(id) \stackrel{B\pi_2}{\longrightarrow} B\mathscr{D}$$

where the middle map is induced by the continuous functor $S(F) \rightarrow S(1_{\mathcal{D}})$

$$(Y, X; g: Y \to F(X)) \mapsto (Y, F(X); g: Y \to F(X)).$$

Since all the horizontal maps are homotopy equivalences, it follows that BF is a homotopy equivalence.

Grothendieck construction. Let Cat be the category of small categories and functors. Suppose $F: J \rightarrow Cat$ is a small diagram. By composing F with the nerve functor N, we obtain a small diagram NF of simplicial sets. Thomason [24] has shown that the homotopy colimit [3] of NF is, up to weak equivalence, the nerve of $J \int F$, the Grothendieck

construction on F. J
ightharpow F is the category whose objects are the pairs (j, X), where j is an object in J and X is an object in F(J). An arrow from (j, X) to (k, Y) consists of a pair (α, ϕ) , where $\alpha: j \to k$ is an arrow in J and $\phi: F(\alpha)(X) \to Y$ is an arrow in F(k).

If F is a small diagram of topological categories, composition with the classifying space functor B gives a small diagram $j \mapsto BF(j)$ of topological spaces. The simplicial replacement functor \amalg_* associates to the J-indexed diagram $j \mapsto BF(j)$ the simplicial space $[p] \mapsto \amalg_p BF$, where

$$\coprod_p \mathbf{B}F = \coprod_{j_0 \to \cdots \to j_p} \mathbf{B}F(j_0).$$

The face and degeneracy maps d_j , s_j for j > 0 are induced by the identity $BF(j_0) \rightarrow BF(j_0)$ and $d_0: BF(j_0) \rightarrow BF(j_1)$ is the map associated to $j_0 \rightarrow j_1$. The homotopy colimit of the diagram $j \mapsto BF(j)$ is the geometric realization of $\coprod_* BF$.

THEOREM 1.3. Let $F: J \to Cat^{top}$ be a small diagram of topological categories. Suppose the inclusion of the point corresponding to the identity map, $1_X \in Hom_{F(j)}(X, X)$ is a cofibration for each object X in each $F(j), j \in J$. Then there is a natural homotopy equivalence

$$\eta$$
: holim BF \rightarrow B($J \int F$).

Proof. One can mimic Thomason's proof [24, Theorem 1.2].

2. FRAMES IN BANACH SPACES

Let k denote either the field of real or complex numbers. Recall that a Banach space is a complete normed k-vector space. Given two Banach spaces E and F the product norm on $E \times F$ is given by $|(e, f)| = \max\{|e|, |f|\}$. Recall that a k-linear map $T: E \to F$ is continuous if and only if there is a positive constant C such that $|T(e)| \leq C|e|$ for all $e \in E$. Let L(E, F)be the k-vector space of continuous k-linear maps from E to F. The operator norm on L(E, F) is given by

$$|T| = \sup\{|T(e)|: e \in E, |e| \le 1\}.$$

It is well known (see [9]) that L(E, F) is a Banach space and $|T \circ S| \leq |T| |S|$ for all $T, S \in L(E, F)$.

A k-algebra Λ with unit I is a Banach algebra if it is a Banach space, |I| = 1 and $|\lambda \cdot \mu| \leq |\lambda| \cdot |\mu|$ for all $\lambda, \mu \in \Lambda$. If E is a Banach space then L(E, E) is a Banach algebra, and the k-algebra k(X) of continuous k-valued functions defined on a compact space X with norm $|f| = \sup\{|f(x)|: x \in X\}$ is a Banach algebra.

Let Λ be a Banach algebra, and let $\mathscr{P}(\Lambda)$ be the category of finitely generated projective (left) Λ -modules and Λ -linear maps. Given $P \in \mathscr{P}(\Lambda)$ choose a surjective map $\varphi : \Lambda^n \to P$, and give P the quotient topology.

LEMMA 2.1. The topology on P is independent of the choice of surjective map φ above.

Proof. If $\psi : \Lambda^m \to P$ is a surjective map let P_{ψ} be the space with the quotient topology induced by ψ . Given ϕ and ψ as above there exists a Λ -linear map $T : \Lambda^m \to \Lambda^n$ such that $\psi = \phi \circ T$. In particular the identity map $P_{\psi} \to P_{\phi}$ is continuous. Since there also exists a Λ -linear map $S : \Lambda^n \to \Lambda^m$ such that $\phi = \psi \circ S$, the two spaces P_{ϕ} and P_{ψ} have the same topology.

COROLLARY 2.2. Let P, Q be modules in $\mathcal{P}(\Lambda)$. Then P and Q are Banach spaces, and Hom(P, Q) is a Banach space with the operator norm.

Proof. To prove that P is a Banach space it is enough to show that P is a closed linear subspace of some Banach space. Choose a surjective map $\phi : \Lambda^n \to P$, and let $\rho : P \to \Lambda^n$ be a section of ϕ . Then P is isomorphic to the image of ρ which is also equal to the kernel of the map $(I - \rho \circ \phi) : \Lambda^n \to \Lambda^n$. Since a Λ -linear map is continuous, the result follows.

We shall prove that $\operatorname{Hom}(P, Q)$ is a closed linear subspace of L(P, Q). Let $\{\phi_n\}$ be a Cauchy sequence in $\operatorname{Hom}(P, Q)$. Since L(P, Q) is a Banach algebra $\lim \phi_n$ exists in L(P, Q), and it is given by mapping $p \in P$ to $\lim \phi_n(p)$. Hence it is enough to show that $\lim \phi_n(\lambda \cdot p) = \lambda \cdot \lim \phi_n(p), \quad \lambda \in \Lambda$. This follows from $|(\phi_m - \phi_n)(\lambda \cdot p)| \leq |\lambda| \cdot |\phi_m - \phi_n| \cdot |p|$.

Denote the Banach space of Λ -continuous maps from P to Q by Hom(P, Q), and the topological subspace of automorphisms of P by Aut(P).

COROLLARY 2.3. The set Aut(P) is open in Hom(P, P).

Proof. Let I be the identity map of P, and put $B_1(0)$ equal to the open subset $\{\varphi: P \to P: |\varphi| < 1\}$. Notice that if $\varphi \in B_1(0)$ then the sequence

$$I + \varphi + \varphi^2 + \cdots$$

converges to $(I - \varphi)^{-1}$. Hence the open ball $B_1(I) = \{I - \varphi; \varphi \in B_1(0)\} \subseteq \operatorname{Aut}(P)$ is a neighborhood of I. Since composition is continuous the open ball $B_1(I)$ can be translated to an open neighborhood of any $\psi \in \operatorname{Aut}(P)$.

Banach manifolds. The natural inclusion $P \to P \oplus Q$ induces an injective map $Aut(P) \to Aut(P \oplus Q)$. In order to understand the coset space

$$\operatorname{Aut}(P \oplus Q) / \operatorname{Aut}(P)$$

we shall introduce the concept of a Banach manifold. Roughly speaking a Banach manifold is a topological space that is locally a Banach space. To be more specific we give the following (cf. [12])

Definition 2.4. Let X be a topological Hausdorff space.

- A chart for X is a pair (U, φ) where U is an open subset of X and φ is a homeomorphism of U onto an open subset φ(U) of some Banach space.
- (2) An atlas for X is a collection (U_i, φ_i) , $i \in I$ of charts of X such that $X = \bigcup U_i$ and $\varphi_i(U_i \cap U_j)$ is an open subset of $\varphi_i(U_i)$ and

$$\varphi_j \varphi_i^{-1} : \varphi_i (U_i \cap U_j) \to \varphi_j (U_i \cap U_j)$$

is an isomorphism for each pair of indices i, j.

A topological space that admits an atlas is called a manifold. In order to rule out pathological examples of manifolds we shall assume that all manifolds are paracompact with a countable base; in particular all manifolds are metrizable and have the homotopy type of CW-complexes [17]. By a Lie group we mean a manifold with a group structure. LEMMA 2.5. Let H be a closed subgroup of the Lie group G. Then the natural projection $\pi: G \to G/H$ is a Serre fibration.

Proof. This follows from [14, 7.2 and 8.4].

Stiefel manifolds. Fix a Banach algebra Λ . Let $\mathscr{P} = \mathscr{P}(\Lambda)$, and for $P \in \mathscr{P}$ let $\mathscr{P}_n(P)$ be the full subcategory of the groupoid Iso \mathscr{P} of isomorphisms in \mathscr{P} whose objects are $A \in \mathscr{P}$ such that $P \oplus A \cong \Lambda^n$. Consider the space

$$V_n(P) = \lim_{\substack{\rightarrow \\ A \in \mathscr{P}_n(P)^{\rm op}}} \operatorname{Iso}_{\mathscr{P}}(P \oplus A, \Lambda^n)$$

If $\phi \in \operatorname{Iso}_{\mathscr{P}}(P \oplus A, \Lambda^n)$ let $F(\phi): \operatorname{Iso}_{\mathscr{P}}(P \oplus \Lambda, \Lambda^n) \to \operatorname{Aut}(P \oplus A)$ be $F(\phi)(\psi) = \phi^{-1} \circ \psi$. If $\pi_0 \mathscr{P}_n(P)$ is a skeletal subcategory of $\mathscr{P}_n(P)$ then $V_n(P)$ is isomorphic to

$$\coprod_{\mathbf{A}\in\pi_0\mathscr{P}_n(P)}\operatorname{Aut}(P\oplus A)/\operatorname{Aut}(0\oplus A).$$

The topological space $V_n(P)$ is an infinite-dimensional analog of the finite-dimensional Stiefel manifold of *p*-frames in k^n .

The map $\operatorname{Iso}_{\mathscr{P}}(P \oplus A, \Lambda^n) \to \operatorname{Iso}_{\mathscr{P}}(P \oplus A \oplus \Lambda, \Lambda^{n+1})$ given by $\phi \mapsto \phi \oplus I$ induces a map $V_n(P) \stackrel{!}{\to} V_{n+1}(P)$. Let $V_{\infty}(P)$ be the colimit of the sequence

$$\cdots \to V_n(P) \to V_{n+1}(P) \to \cdots.$$
(6)

PROPOSITION 2.6. The space $V_{\infty}(P)$ has the homotopy of a point.

Proof. First observe that $\iota: V_n(P) \to V_{n+1}(P)$ is a closed cofibration [17]. Thus $V_{\infty}(P)$ has the homotopy of a CW-complex (cf. [15, Appendix]), and it suffices to show that $V_{\infty}(P)$ has the weak homotopy of a point.

Suppose $\phi_0, \phi_1 \in V_{\infty}(P)$, then there is *n* such that $\phi_0, \phi_1 \in V_n(P)$. We may view an element $\phi \in V_n(P)$ as monomorphisms from *P* to Λ^n . Indeed Iso_#($P \oplus A, \Lambda^n$)/Aut(*A*) is a torsor under the contractible Banach Lie group Hom(*A*, *P*), and so $V_n(P) \to \text{Mono}(P, \Lambda^n)$ is Serre fibration and a homotopy equivalence. Define a family of monomorphisms $\Phi_t: P \to \Lambda^n \oplus \Lambda^n$ for $0 \le t \le 1$ by

$$\Phi_t(p) = (t \cdot \phi_0(p) + (1-t) \cdot \phi_1(p), t(-t) \cdot \phi_0(p)).$$

The monomorphism Φ determines a path from ϕ_0 and ϕ_1 in $V_{2n}(P)$ and shows that $V_{\infty}(P)$ is path connected.

Now consider an element $x \in \pi_q(V_{\infty}(P), *)$, where $* \in Iso_{\mathscr{P}}(P \oplus A, \Lambda^n)/Aut(A)$ is some fixed base point and q > 0. We may represent x by a map $f: S^q \to V_n(P)$ for any continuous map $S^q \to V_{\infty}(P)$ factors as $S^q \to V_n(P) \to V_{\infty}(P)$ by [21, Section 9] for some n. The fibration $Iso_{\mathscr{P}}(P \oplus A, \Lambda^n) \xrightarrow{P} Iso_{\mathscr{P}}(P \oplus A, \Lambda^n)/Aut(A)$ induces an isomorphism (cf. [26, Ch. IV, Theorem 8.5])

$$p_*: \pi_p(\operatorname{Iso}_{\mathscr{P}}(P \oplus A, \Lambda^n), \operatorname{Aut}(A)) \to \pi_p(\operatorname{Iso}_{\mathscr{P}}(P \oplus A, \Lambda^n)/\operatorname{Aut}(A))$$

and by fixing an isomorphism $P \oplus A \cong \Lambda^n$, we may identify $\operatorname{Iso}_{\mathscr{P}}(P \oplus A, \Lambda^n)$ with $\operatorname{Aut}(P \oplus A)$.

Given $x \in \pi_q(\operatorname{Aut}(P \oplus A), \operatorname{Aut}(0 \oplus A))$ is image in

 $\pi_q(\operatorname{Aut}(P \oplus A \oplus P \oplus A), \operatorname{Aut}(0 \oplus A \oplus P \oplus A))$

induced by the map $S \mapsto S \oplus I$, is zero since the homotopy of maps $\operatorname{Aut}(P \oplus A) \to \operatorname{Aut}(P \oplus A \oplus P \oplus A)$ given by

$$H(t,S) = \begin{pmatrix} \cos\frac{\pi}{2}t & -\sin\frac{\pi}{2}t \\ \sin\frac{\pi}{2}t & \cos\frac{\pi}{2}t \end{pmatrix} \begin{pmatrix} S & 0 \\ 0 & I \end{pmatrix}$$

for $S \in \operatorname{Aut}(P \oplus A)$, carries $\operatorname{Aut}(0 \oplus A)$ to $\operatorname{Aut}(0 \oplus A \oplus 0 \oplus A)$ for all t.

3. QUILLEN'S S⁻¹S-CONSTRUCTION

Recall that Quillen's $S^{-1}S$ -construction on the category \mathscr{P} is the category whose objects are pairs (A, B) where $A, B \in \mathscr{P}$. A morphism from (A_1, B_1) to (A_2, B_2) is an equivalence class of pairs (f, S) where

$$f: (A_1 \oplus S, B_1 \oplus S) \rightarrow (A_2, B_2)$$

is a morphism in Iso \mathscr{P}^2 and $(f, S) \sim (f', S')$ if there exists an isomorphism $\alpha: S \to S'$ with $f = f'(I \oplus \alpha, I \oplus \alpha)$ (cf. [7]). In particular

 $\operatorname{Hom}_{S^{-1}S}((A_1, B_1), (A_2, B_2)) = \lim_{\substack{\rightarrow \\ S \in \mathscr{P}(A, B)^{\operatorname{op}}}} \operatorname{Hom}_{\operatorname{Iso} \mathscr{P}^2}((A_1 \oplus S, B_1 \oplus S), (A_2, B_2))$

where $\mathscr{P}(A, B)$ is the full subcategory of the groupoid Iso \mathscr{P} whose objects are $S \in \mathscr{P}$ such that $A_1 \oplus S \cong A_2$ and $B_1 \oplus S \cong B_2$. In [7], [6] it was proved that

$$\pi_i \mathbf{B}(S^{-1}S(\mathscr{P})) = K_i^{\mathrm{alg}}(\Lambda).$$

Topological $S^{-1}S$. From the discussion of the previous section on Stiefel manifolds it follows that $S^{-1}S(\mathscr{P})$ has a topological enrichment which we denote as $S^{-1}S^{\text{top}}(\mathscr{P})$. Let * be the base point in $B(S^{-1}S(\mathscr{P}))$ determined by the pair (0, 0). To simplify notation we denote $S^{-1}S(\mathscr{P})$ and $S^{-1}S^{\text{top}}(\mathscr{P})$ by $S^{-1}S$ and $S^{-1}S^{\text{top}}$, respectively.

THEOREM 3.1. The classifying space $B(S^{-1}S^{top})$ has the homotopy type of

$$K_0(\Lambda) \times \mathrm{BGL}^{\mathrm{top}}\Lambda$$

and $\pi_i \mathbf{B}(S^{-1}S^{\text{top}}) = K_i^{\text{top}} \Lambda$. Furthermore the obvious functor

$$S^{-1}S \rightarrow S^{-1}S^{\text{top}}$$

induces the standard map $K_i^{\text{alg}}\Lambda \to K_i^{\text{top}}\Lambda$.

Proof. The functor

$$+:S^{-1}S\times S^{-1}S\to S^{-1}S$$

given by sending the pair $((A_0, A_1), (B_0, B_1))$ to $(A_0 \oplus B_0, A_1 \oplus B_1)$ induces an associative H-space structure on $B(S^{-1}S)$. Since + is clearly continuous, the classifying space $B(S^{-1}S^{\text{top}})$ is also an associative H-space. Moreover,

$$\pi_0 \mathbf{B}(S^{-1}S^{\text{top}}) = \pi_0 \mathbf{B}(S^{-1}S) = K_0 \Lambda$$

894

is a group. Since the H-space $B(S^{-1}S^{top})$ admits a homotopy inverse [6, Lemma 3.2], there is a homotopy equivalence

$$\mathbf{B}(S^{-1}S^{\mathrm{top}}) \cong K_0(\Lambda) \times \mathbf{B}(S^{-1}S_0^{\mathrm{top}})$$

where $B(S^{-1}S_0^{top})$ is the connected component of the base point and $S^{-1}S_0$ is the full subcategory of pair (A_1, A_2) for which A_1 and A_2 are stably isomorphic.

Let $S^{-1}S_0^{\text{top}}$ be the full subcategory of pairs (B_1, B_2) with $B_1 \cong B_2$, and let *i* denote the inclusion functor. Then B(i) is a homotopy equivalence, and it is enough to show that $B(S^{-1}S_0^{\text{top}})$ and $BGL^{\text{top}}\Lambda$ have the same homotopy type. To see that *i* determines a homotopy equivalence it suffices by Theorem 1.2 to show that the classifying space of the comma category $(A_1, A_2)/i$ is contractible. If (A_1, A_2) is an object in $S^{-1}S_0^{\text{top}}$, then there exists P such that $A_1 \oplus P \cong A_2 \oplus P$. Composition with the arrow (P, 1, 1): $(A_1, A_2) \to (A_1 \oplus P, A_2 \oplus P)$, determines a continuous functor

$$(A_1 \oplus P, A_2 \oplus P)/\iota \rightarrow (A_1, A_2)/\iota.$$

Since $(A_1 \oplus P, A_2 \oplus P)/i$ has an initial object, its classifying space is contractible. There is a continuous functor from $(A_1, A_2)/i$ to $(A_1 \oplus P, A_2 \oplus P)/i$ sending (C, c_1, c_2) : $(A_1, A_2) \rightarrow (B_1, B_2)$ to $(C, \tau^*c_1, \tau^*c_2): (A_1 \oplus P, A_2 \oplus P) \rightarrow (B_1 \oplus P, B_2 \oplus P)$, where τ^*c_i is the composite

$$A_i \oplus P \oplus C \xrightarrow{\tau} A_i \oplus C \oplus P \xrightarrow{c_i \oplus 1} B_i \oplus P.$$

The composition γ of the continuous functors $(A_1, A_2)/\iota \rightarrow (A_1 \oplus P, A_2 \oplus P)/\iota \rightarrow (A_1, A_2)/\iota$ sends (C, c_1, c_2) to the diagonal arrow in the following commutative diagram.

The upper triangle shows that there is a continuous natural transformation from the identity functor to γ . Hence $B((A_1, A_2)/i)$ is a homotopy retract of the contractible space $B((A_1 \oplus P, A_2 \oplus P)/i)$. Thus B(i) is a homotopy equivalence.

Let $GL_*^{top}\Lambda: \mathbb{N} \to Cat^{top}$ be the diagram of topological categories that assigns to *n* the groupoid $GL_n^{top}\Lambda$. Denote the unique object of $GL_n^{top}\Lambda$ by Λ^n , and to simplify notation let **n** represent the object (n, Λ^n) in the Grothendieck construction $\mathbb{N}\int GL_*^{top}\Lambda$ of $GL_*^{top}\Lambda$. Let

$$F: \mathbb{N} \int GL_*^{top} \Lambda \to S^{-1} S_{\bar{0}}^{top}$$

be the functor that sends **n** to the pair (Λ^n, Λ^n) and the arrow $(\mathbf{m} \leq \mathbf{n}, T)$ to

$$((I, T), \Lambda^{n-m}): (\Lambda^m, \Lambda^m) \to (\Lambda^n, \Lambda^n)).$$

Clearly F is well defined and continuous. Now $B(\mathbb{N}\int GL_*^{top}\Lambda)$ has the homotopy type of the colimit

$$\cdots \to \mathcal{B}(\mathcal{GL}_n^{\operatorname{top}}\Lambda) \to \mathcal{B}(\mathcal{GL}_{n+1}^{\operatorname{top}}\Lambda) \to \cdots$$
(7)

by Theorem 1.3. Since each map in the sequence (3.7) is a cofibration and for every *n* the space $B(GL_n^{top}\Lambda)$ has the homotopy type of a CW-complex, it follows that the classifying space of $\mathbb{N} \int GL_*^{top}\Lambda$ has the homotopy type of $BGL^{top}\Lambda$ (cf. [3, Ch. XII, Section 3]).

Michael Paluch

Let $A = (A_1, A_2)$ be an object in $S^{-1}S_0^{\text{top}}$. By the following lemma, $V_{\infty}(A_1)$ and B(A/F) have the same homotopy type. Since $V_{\infty}(A_1)$ is contractible by Proposition 2.6, it follows that B(A/F) has the homotopy type of a point. Thus BF is a homotopy equivalence by Theorem 1.2.

In the discrete case the functor F is essentially the functor defined in [7, p. 224], where it was proved that BF is acyclic (cf. [6, Section 4]). In particular there is a commutative diagram

and it follows that the map in (2) is equivalent to $\pi_i B(S^{-1}S) \rightarrow \pi_i B(S^{-1}S^{\text{top}})$.

LEMMA 3.2. B(A/F) and $V_{\infty}(A_1)$ have the same homotopy type.

Proof. Since the sequence (6) is a sequence of closed cofibrations, $V_{\infty}(A_1)$ is the homotopy colimit of the diagram $n \mapsto V_n(A_1)$. Hence it is enough to show that B(A/F) and $|\coprod_* V(A_1)|$ have the same homotopy type.

For $[p] \in \Delta$ we have

$$\mathbf{N}(A/F)_p = \coprod_{n_0 \leqslant \cdots \leqslant n_p} \operatorname{Hom}_{S^{-1}S}(A, F(n_0)) \times \operatorname{GL}_{n_1}^{\operatorname{top}} \Lambda \times \cdots \operatorname{GL}_{n_p}^{\operatorname{top}} \Lambda.$$

Composition in A/F, when restricted to the first factor, is induced by the standard inclusion, so the projection map

$$\operatorname{Iso}_{\mathscr{P}\times\mathscr{P}}((A_1\oplus P, A_2\oplus P), (\Lambda^n, \Lambda^n)) \to \operatorname{Iso}_{\mathscr{P}}(A_1\oplus P, \Lambda^n)$$

induces a continuous simplicial map $\pi: N(A/F) \to \coprod_* V(A_1)$.

Since $A = (A_1, A_2) \in S^{-1}S_0^{\text{top}}$, there exists an isomorphism $\alpha : A_2 \to A_1$. Using α we define a continuous map $\alpha^* : \operatorname{Iso}_{\mathscr{P}}(A_1 \oplus P, \Lambda^n) \to \operatorname{Iso}_{\mathscr{P}}(A_1 \oplus P, \Lambda^n) \times \operatorname{Iso}_{\mathscr{P}}(A_2 \oplus P, \Lambda^n)$ by $\alpha^*(\varphi) = (\varphi, \varphi \circ \alpha)$. The map α^* is stable in the sense that

commutes for non-negative k and i = 1, 2. Thus α^* determines a continuous simplicial map $\iota_a : \coprod_* V(A_1) \to N(A/F)$.

The composition $\pi \circ \iota_{\alpha}$ is the identity, and there is a simplicial homotopy equivalence from the identity to $\iota_{\alpha} \circ \pi$ defined as follows. If $(P, \varphi_1, \varphi_2): (A_1, A_2) \to (\Lambda^n, \Lambda^n)$ is an arrow in $S^{-1}S_0^{\text{top}}$, then the isomorphism $\varphi_1(\alpha \oplus 1_P)\varphi_2^{-1}: \Lambda^n \to \Lambda^n$ is independent of the choice of representatives P, φ_1, φ_2 . Now given a point $((P, \varphi_1, \varphi_2): A \to F(n_0), T_1, \ldots, T_P)$ in $N(A/F)_P$ with $T_i \in GL_{n_i}^{\text{top}} \Lambda$. Let $\Theta_0 = \varphi_1(\alpha \oplus 1_P)\varphi_2^{-1}$, and define

$$\Theta_i = \left[\varphi_1(\alpha \oplus 1_P)\varphi_2^{-1} \oplus I\right] T_i^{-1} \in \operatorname{GL}_{n_i}^{\operatorname{top}} \Lambda$$

for i = 1, ..., p. With these isomorphisms we obtain a commutative diagram

that determines a simplicial homotopy equivalence from the identity to $l_{\alpha} \circ \pi$.

4. HOMOTOPY GROUPS OF ALGEBRAIC K-THEORY GROUPS

Let s.Sets denote the category of simplicial. In this section we utilize the adjoint functors [13, Section 16]

s.Sets
$$\underset{\text{Sing}}{\overset{|\cdot|}{\longleftarrow}}$$
 Top

to convert simplicial spaces to bisimplicial sets. Recall the singular complex functor Sing carries a topological space X to the simplicial set $p \mapsto \text{Sing}_p X = \text{Hom}(\Delta^p, X)$, and the counit $|\text{Sing } X| \to X$ is a weak homotopy equivalence [13, Section 16].

Let $\mathscr{P}_T(\Delta^p)$ denote the additive category of finitely generated projective (left) Λ -modules whose morphisms are Λ -linear transformations parametrized by Δ^p . The subscript T is used to suggest an identification of $\mathscr{P}_T(X)$ with the category of trivial \mathscr{P} -fibre bundles over a compact space X (cf. [10, p. 179]).

The underlying simplicial set of $N(S^{-1}S^{top})$ can be viewed as $Sing_0N(S^{-1}S^{top})$, similarly $N(S^{-1}S(\mathscr{P}_T(\Delta^p))) = Sing_pS^{-1}S^{top}$. Since $N(S^{-1}S^{top})_q$ has the homotopy type of CW-complex the counit

$$|\text{Sing N}(S^{-1}S^{\text{top}})_q| \rightarrow N(S^{-1}S^{\text{top}})_q$$

is a homotopy equivalence; moreover, $N(S^{-1}S^{top})$ and $q \mapsto |Sing N(S^{-1}S^{top})_q|$ are a good simplicial spaces. Thus $|Sing N(S^{-1}S^{top})|$ is homotopy equivalent to $B(S^{-1}S^{top})$.

LEMMA 4.1. There is an isomorphism

$$\pi_i \mathbf{B}(S^{-1}S(\mathscr{P}_T(\Delta^p))) \cong K_i^{\mathrm{alg}} \Lambda(\Delta^p).$$

Proof. Since Δ^p is contractible every locally trivial \mathscr{P} -fibre bundle over Δ^p is trivial (cf. [8, Ch. 4, Section 2]). Using Swan's proof [23] of the equivalence between the category of locally trivial vector bundles over a compact space and the category of finitely generated projective modules over the ring of continuous functions, one sees that $\mathscr{P}_T(\Delta^p)$ is equivalent to the category $\mathscr{P}(\Lambda(\Delta^p))$, of finitely generated projective modules over the ring of continuous functions over the ring of continuous functions of Δ^p . Since the $S^{-1}S$ -construction preserves equivalences, the lemma follows.

THEOREM 4.2. Let Λ be a Banach algebra. There is a first quadrant spectral sequence

$$K_q^{\text{alg}}\Lambda(\Delta^p) = E_{p,q}^1(\Lambda) \Rightarrow K_{p+q}^{\text{top}}\Lambda.$$
(8)

Michael Paluch

Proof. Let $X_p = N(S^{-1}S(\mathscr{P}_T(\Delta^p)))$. Since this space has the structure of an H-space and $\pi_0 |X_p|$ is a group [6, Lemma 6.2] asserts that there is a spectral sequence

$$E_{p,q}^2 = \pi_p([n] \mapsto \pi_q X_n) \Rightarrow \pi_{p+q}|X|.$$

Now $\pi_p X_n = K_q^{\text{alg}} \Lambda(\Delta^n)$ by the previous lemma. Whence the E^2 -term is the homology of the chain complex associated to the simplicial abelian group $[p] \mapsto K_q^{\text{alg}} \Lambda(\Delta^p)$, see [13, Section 22].

The natural simplicial map $\operatorname{Sing}_0 N(S^{-1}S^{\operatorname{top}}(\mathscr{P})) \to \operatorname{diag} \operatorname{Sing} N(S^{-1}S^{\operatorname{top}}(\mathscr{P}))$ induces the map in (2) and we obtain

COROLLARY 4.3. The map $K_q^{\text{alg}}\Lambda \to K_q^{\text{top}}\Lambda$ is the edge homomorphism

 $K_{q}^{\mathrm{alg}}\Lambda \xrightarrow{} \cdots \xrightarrow{} E_{0,q}^{\infty}\Lambda \xrightarrow{} K_{q}^{\mathrm{top}}\Lambda$

of the spectral sequence in (8).

Homotopy groups of algebraic K-theory. Since Δ^p is a compact topological space, each algebra $\Lambda(\Delta^p)$ is a Banach algebra. A result of Milnor [16, Corollary 7.2] states that if Λ is commutative then

$$K_1^{\mathrm{alg}}\Lambda(\Delta^p) = \Lambda^* \oplus \pi_0 \mathrm{SL}^{\mathrm{top}}\Lambda(\Delta^p).$$

Since Δ^p is contractible it follows that $\pi_0 SL^{top} \Lambda(\Delta^*) = \pi_0 SL^{top} \Lambda$

$$E_{p,1}^{2}(\Lambda) = \begin{cases} \pi_{0}\Lambda^{*} \oplus \pi_{0}\mathrm{SL}^{\mathrm{top}}\Lambda & \text{if } p = 0\\ \pi_{n}\Lambda & \text{if } p > 0. \end{cases}$$

Thinking of the simplicial abelian groups $K_q^{\text{alg}}\Lambda(\Delta^*)$ as coming from the singular complex of some topological structure on $K_q^{\text{alg}}\Lambda$ we propose

Definition 4.4. Let Λ be a Banach algebra. The homotopy groups of $K_*^{\text{alg}} \Lambda$ are

$$\pi_p K_q^{\mathrm{alg}} \Lambda := E_{p,q}^2(\Lambda).$$

Let X be a compact topological space. The complex topological K-theory of X in negative degrees can be calculated as $K^{-q}X = K_q^{\text{top}}\mathbb{C}(X)$. Define the higher algebraic K-theory of X to be

$$K_a^{\mathrm{alg}}X \coloneqq K_a^{\mathrm{alg}}\mathbb{C}(X), \quad q \ge 0.$$

An immediate consequence of Swan's theory is $K_0^{\text{alg}}X = K_0^{\text{top}}X$, and an elementary calculation yields $\pi_0 K_1^{\text{alg}}X = K_1^{\text{top}}X$. Since \mathbb{C}^* is an Eilengerg-Mac Lane space of type $(1, \mathbb{Z})$, we obtain for each p > 0 $\pi_p K_1^{\text{alg}}X \cong H^{1-p}(X, \mathbb{Z})$, and the associated filtration on $K_2^{\text{top}}X$ reduces to the short exact sequence

$$0 \to \pi_0 K_2^{\text{alg}} X \to K_2^{\text{top}} X \to \pi_1 K_1^{\text{alg}} X \to 0.$$

To proceed further we consider K-theory with finite coefficients. Prasolov [18] and Fischer [4] independently have shown that the algebraic K-theory and the topological K-theory of X with finite coefficients are the same.

PROPOSITION 4.5. For each $q \ge 0$ there is a natural short exact sequence

$$0 \to K_q^{\text{aig}} X \to K_q^{\text{aig}} (X \times \Delta^*) \to \mathcal{Q}(q) \to 0,$$

where $\mathscr{Q}_*(q)$ is a simplicial Q-vector space and $K_q^{\text{alg}}X$ is given the structure of a discrete simplicial abelian group.

Proof. The groups $K_0^{\text{alg}}(X \times \Delta^p)$ and $K_0^{\text{top}}(X \times \Delta^p)$ are isomorphic for all p. By the homotopy invariance of topological K-theory $K_0^{\text{alg}}X \to K_0^{\text{alg}}(X \times \Delta^*)$ is an isomorphism and $\mathcal{Q}(0)$ is the trivial Q-vector space.

For all p the projection map $\pi: X \times \Delta^p \to X$ induces an isomorphism

$$K_q^{\mathrm{alg}}(X, \mathbb{Z}/n) \to K_q^{\mathrm{alg}}(X \times \Delta^p, \mathbb{Z}/n)$$

for each q > 0, by the Prosolov-Fisher isomorphism and the homotopy invariance of topological K-theory, and a split monomorphism $K_q^{\text{alg}}X \to K_q^{\text{alg}}(X \times \Delta^p)$ since π admits a section. Let $\mathcal{Q}(q)$ denote the quotient $K_q^{\text{alg}}(X \times \Delta^*)/K_q^{\text{alg}}(X)$. The universal coefficient sequence

$$K_a^{\mathrm{alg}}(X \times \Delta^p) \oplus \mathbb{Z}/n \rightarrow K_a^{\mathrm{alg}}(X \times \Delta^p, \mathbb{Z}/n) \xrightarrow{} n$$
-torsion of $K_{a-1}^{\mathrm{alg}}(X \times \Delta^p)$

together with the previous observations proves the proposition.

Applying the homotopy functor to the short exact sequence of the previous proposition we obtain, for each p > 1, a family of isomorphisms $\pi_p K_q^{\text{alg}} X \cong \pi_p \mathcal{Q}(q)$, and it follows that $\pi_p K_q^{\text{alg}} X$ is a Q-vector space. For p = 0 and 1 there is a short exact sequence

$$0 \to \pi_1 K_q^{\text{alg}} X \to \pi_1 \mathcal{Q}(q) \to K_q^{\text{alg}} X \to \pi_0 K_q^{\text{alg}} X \to \pi_0 \mathcal{Q}(q) \to 0.$$
(9)

Since $K_1^{\text{alg}}(X \times \Delta^*) \cong \text{Sing } \mathbb{C}^*(X) \oplus [X, SU]$, the sequence (9) has the form

$$0 \longrightarrow H^0(X, \mathbb{Z}) \longrightarrow \mathbb{C}(X) \xrightarrow{\exp} \mathbb{C}^*(X) \longrightarrow H^1(X, \mathbb{Z}) \longrightarrow 0$$

where $\pi_1 \mathscr{Q}(1) \xrightarrow{\sim} \mathbb{C}(X)$ is given by $[\gamma(x, t)] \mapsto \int_{\gamma(x, t)} d \log t$. And from Suslin [22] we know that

$$K_q^{\text{alg}}\mathbb{C}(\Delta^q) \cong \begin{cases} \mathbb{Q}/\mathbb{Z} \oplus a \ \mathbb{Q}\text{-vector space} & \text{if } q > 0 \text{ is odd} \\ a \ \mathbb{Q}\text{-vector space} & \text{if } q > 0 \text{ is even.} \end{cases}$$

For q > 1, Bott periodicity along with a more detailed analysis of the spectral sequence (8) yields $(K_{2q-1}^{alg} \mathbb{C})_{tors} \subseteq \pi_0 K_{2q-1}^{alg} \mathbb{C}(\Delta^*)$.

Acknowledgements—I gratefully thank H. Gillet for his support and encouragement, and I am deeply indebted to the referee, who found critical mistakes and suggested meticulous corrections.

REFERENCES

- J. F. ADAMS: Infinite loop spaces, Annals of Mathematical Studies, 90 Princeton University Press, Princeton, NJ (1978).
- A. J. BERRICK: An approach to algebraic K-Theory, Research Notes in Mathematics 56, Pitman Advanced Publishing Program, Boston (1982).
- 3. A. K. BOUSFIELD and D. M. KAN: Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer, New York (1972).
- 4. T. FISHER: K-Theory of function rings, J. Pure Appl. Algebra 69 (1990), 33-50.
- 5. H. GILLET: Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981), 203-289.
- 6. H. GILLET and D. GRAYSON: The loop space of the Q-construction, Ill. J. Math. 31 (1987), 574-597.
- 7. D. GRAYSON: Higher algebraic K-theory II [after D. Quillen], in Algebraic K-theory, Lecture Notes in Mathematics 551, M. R. Stein, Ed., Springer, New York (1976) pp. 217–240.

Michael Paluch

- 8. M. W. HIRSCH: Differential topology, Springer, New York (1976).
- 9. R. KADISON and J. RINGROSE: Fundamentals of the theory of operator algebras, Vol. 1. Elementary theory, Academic Press, Boston (1983).
- 10. M. KAROUBI: Algèbres de Clifford et K-théorie, Ann. Sci. École Norm. Sup. 4 (1968), 161-270.
- 11. M. KAROUBI: K-theory an introduction, Grundleheren der mathematischen Wissenschaften 226, Springer, New York (1978).
- 12. S. LANG: Differential manifolds, Addison-Wesley, Reading, MA (1962).
- 13. J. P. MAY: Simplicial objects in algebraic topology, The University of Chicago Press, Chicago (1967).
- 14. E. MICHAEL: Convex structures and continuous sections, Canad. J. Math. 11 (1959), 556-575.
- 15. J. MILNOR: Morse theory, Annals of Mathematical Studies, Princeton University Press, Princeton, NJ (1963).
- 16. J. MILNOR: Introduction to algebraic K-theory, Annals of Mathematical Studies, Princeton University Press, Princeton NJ (1971).
- 17. R. PALAIS: Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16.
- 18. A. V. PRASOLOV: Algebraicheskaiya K-teoriya banakhovkh algebr, Dokl. Belo. SSR 28 (1984), 677–679.
- 19. D. QUILLEN: Higher algebraic K-theory I, Lecture Notes in Mathathematics 341, Springer, New York (1972).
- 20. G. SEGAL: Categories and cohomology theories, Topology 13 (1974), 293-312.
- 21. N. E. STEENROD: A convenient category of topological spaces, Mich. Math. J. 14 (1967), 133-152.
- 22. A. A. SUSLIN: On the K-theory of local fields, J. Pure Appl. Algebra 34 (1984), 301-318.
- 23. R. G. SWAN: Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264-277.
- 24. R. THOMASON: Homotopy colimits in the category of small categories, *Math. Proc. Cambridge Philos. Soc.* 85 (1979), 91–109.
- 25. C. A. WEIBEL: Algebraic K-theory and the Adams e-invariant, Lecture Notes in Mathematics 1046, A. Bak, Ed., Springer, New York (1984), pp. 442–450.
- 26. G. WHITEHEAD: Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer, New York (1978).

Instituto Superior Técnico, Departamento de Mathemática, Avenida Rovisco Pais, 1096 Lisboa Codex, Portugal