0040-9383(95)00050-X

TOPOLOGY ON $S^{-1} S$ FOR BANACH ALGEBRAS

Michael Paluch

(Received 27 March 1995)

In This note we show that Quillen's $S^{-1} S$-construction on the category of finitely generated projective modules over a Banach algebra Λ with identity has a topological enrichment $S^{-1} S^{\operatorname{top}}(\Lambda)$ and $B\left(S^{-1} S^{\operatorname{top}}(\Lambda)\right.$) has the homotopy type of $K_{0} \Lambda \times \mathrm{BGL}^{\text {top }} \Lambda$. By applying the singular complex functor, we obtain a first quadrant spectral $E_{p, q}^{t}(\Lambda)=K_{q}^{a l g} \Lambda\left(\Delta^{p}\right)$, where $\Lambda\left(\Delta^{p}\right)$ is the ring of continuous Λ-valued functions on Δ^{p}, that converges to $K_{p}^{\text {top }} q_{q} \Lambda:=\pi_{p+q}\left(K_{0} \Lambda \times B \mathcal{B L}^{\text {top }} \Lambda\right)$ for $p+q \geqslant 0$. Copyright (C 1996 Elsevier Science Ltd

0. INTRODUCTION

Let Λ be a Banach algebra with identity. For $p>0$ the topological K-theory of Λ is defined to be $K_{p}^{\text {top }} \Lambda:=\pi_{p} \mathrm{BGL}^{\text {top }} \Lambda$, where $\mathrm{GL}^{\text {top }} \Lambda$ is the colimit of finite-dimensional invertible matrices over Λ and $\mathrm{BGL}^{\text {top }} \Lambda$ is its classifying space. Since the Grothendieck group $K_{0} \Lambda$ of Λ only depends on the algebraic structure of $\Lambda, K_{*}^{\text {top }} \Lambda=\pi_{*}\left(K_{0} \Lambda \times \mathrm{BGL}{ }^{\text {top }} \Lambda\right)$ where $K_{0} \Lambda$ is given the discrete topology. On the other hand, the algebraic K-theory of Λ is defined to be $K_{*}^{\text {als }} \Lambda:=\pi_{*}\left(K_{0} \Lambda \times \mathrm{BGL}^{\delta} \Lambda^{+}\right)$, where $\mathrm{GL}^{\delta} \Lambda$ is the colimit of the discrete groups of finitedimensional invertible matrices over Λ and (-$)^{+}$is Quillen's plus construction [2]. The map $\mathrm{GL}^{\delta} \Lambda \rightarrow \mathrm{GL}^{\text {top }} \Lambda$ induces a map

$$
\begin{equation*}
K_{0} \Lambda \times \mathrm{BGL}^{\delta} \Lambda^{+} \rightarrow K_{0} \Lambda \times \mathrm{BGL}^{\text {top }} \Lambda \tag{1}
\end{equation*}
$$

of topological spaces and a map

$$
\begin{equation*}
K_{*}^{\mathrm{alk}} \Lambda \rightarrow K_{*}^{\mathrm{opp}_{\mathrm{p}}^{2}} \Lambda, \quad * \geqslant 0 \tag{2}
\end{equation*}
$$

from the algebraic K-theory to the topological K-groups of Λ.
In this note we approach the topological and algebraic K-theory of Λ through Quillen's $S^{-1} S$-construction [7]. Recall that if \mathscr{P} is the category of finitely generated (left) projective Λ-modules, then the homotopy groups of the classifying space of the category $S^{-1} S(\mathscr{F})$ are the algebraic K-theory of Λ-we shall assume that most all categories are small. Like the topological enrichment $\mathrm{GL}^{\text {top }} \Lambda$ of $\mathrm{GL}^{\delta} \Lambda$, there is a topological enrichment $S^{-1} S^{\text {top }}(\mathscr{P})$ of the category $S^{-1} S(\mathscr{P})$. The central result of this note, Theorem 3.1, asserts $K_{p}^{\text {top }} \Lambda \cong \pi_{p} S^{-1} S^{\text {top }}(\mathscr{P})$ and the forgetful functor

$$
\begin{equation*}
S^{-1} S(\mathscr{P}) \rightarrow S^{-1} S^{\operatorname{top}(\mathscr{P})} \tag{3}
\end{equation*}
$$

induces the map in (2). This result is part of the folklore of group completions [1]; however, the proof given does not deal with localization of homology groups. Instead we show that there is a continuous extension of the setting considered in [7] and the fibres of the continuous map $\mathrm{BGL}^{\text {top }} \Lambda \rightarrow \mathrm{B}\left(S^{-1} S^{\text {top }}(\mathscr{P})\right)$ are contractible; in fact these fibres can be identified with a realization of a simplicial model of frames in Λ^{∞}. The discerning feature of the functor in (3) is that it is the "identity," whereas the map in (1) is induced by the "identity" and involves universal properties of H -spaces and the + -construction.

In Section 1 we extend Quillen's Theorem A [19], which says that a functor with contractible fibres induces a homotopy equivalence of classifying spaces, to topological categories, and mention that Thomason's homotopy colimit theorem [24] also has a topological extension. We topologize Quillen's $S^{-1} S$-construction in Section 3 after giving a Banach space analog of the Stiefel manifold of k-frames in \mathbb{R}^{n}.

In Section 4 we replace the topological category with the simplicial category

$$
[p] \mapsto S^{-1} S^{\operatorname{top}}(\mathscr{P})\left(\Delta^{p}\right)
$$

Using Karoubi's extension [11] of a theorem of Swan [23], which states that there is equivalence between the category of \mathscr{P}-fibre bundles over a compact space X and the category of finitely generated projective modules over the ring of continuous functions from X to Λ, we are able to identify the homotopy groups of the classifying space of $S^{-1} S^{\operatorname{top}}(\mathscr{P})\left(\Delta^{p}\right)$ with the algebraic K-theory of $\Lambda\left(\Delta^{p}\right)$, where $\Lambda\left(\Delta^{p}\right)$ is the ring of continuous Λ-valued functions on the geometric p-simplex Δ^{p}. We then obtain a spectral sequence

$$
K_{q}^{\text {alg }} \Lambda\left(\Delta^{p}\right)=E_{p, q}^{1}(\Lambda) \Rightarrow K_{p+q}^{\text {top }} \Lambda
$$

whose edge homomorphism is the map in (2). If $\Lambda=\mathbb{C}(X)$ is the commutative Banach algebra of continuous \mathbb{C}-valued functions on X, then

$$
\begin{gathered}
K_{1}^{\mathrm{alg}} \Lambda\left(\Delta^{p}\right) \cong \mathbb{C}^{*}\left(X \times \Delta^{p}\right) \oplus[X, \mathrm{SU}] \\
E_{p, 1}^{2}(\Lambda) \cong \begin{cases}H^{1}(X, \mathbb{Z}) \oplus[X, \mathrm{SU}] & \text { if } p=0 \\
H^{1-p}(X, \mathbb{Z}) & \text { if } p>0\end{cases}
\end{gathered}
$$

Motivated by this observation we define the homotopy groups of the algebraic K-theory of Λ to be $\pi_{p} K_{q}^{\mathrm{alg}} \Lambda:=E_{p, q}^{2}(\Lambda)$.

1. TOPOLOGICAL CATEGORIES

The term topological category should be taken to mean a category in which each hom set is endowed with the structure of a compactly generated topological space and the usual structure maps are continuous. Let \mathscr{C} and \mathscr{D} be topological categories. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is called continuous if for each pair (A, B) of objects of \mathscr{C} the map $F: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(F(A)$, $F(B)$) is continuous. Let Y be an object in \mathscr{D}. The comma category Y / F is not, in general, a topological category, however, it does have the structure of a category object (see [5, Section 7]) in Top, the cartesian closed category of compactly generated topological spaces. To be precise, the space of objects of Y / F is

$$
\text { obj } Y / F=\coprod_{X} \operatorname{Hom}_{\mathscr{D}}(Y, F(X))
$$

and the space of arrows is

$$
\operatorname{arr} Y / F=\coprod_{X_{0}, X_{1}} \operatorname{Hom}_{\mathscr{\mathscr { C }}}\left(Y, F\left(X_{0}\right)\right) \times \operatorname{Hom}_{\mathscr{\mathscr { C }}}\left(X_{0}, X_{1}\right)
$$

Similarly one can define the category object F / Y. Note that the product of two topological spaces is given the compactly generated topology [21].

Given a category object \mathscr{C} in Top, let $\mathrm{N} \mathscr{C}$ denote the nerve of \mathscr{C}. Recall that $\mathrm{N} \mathscr{C}$ is a simplicial object in Top, and the classifying space of \mathscr{C} is the geometric realization $\mathbf{B} \mathscr{C}=|\mathbf{N} \mathscr{C}|$ of $\mathbf{N} \mathscr{C}$ obtained from $\amalg_{n} \Delta^{n} \times N \mathscr{C}_{n}$ by the relation $\left(t, \alpha^{*} x\right) \sim\left(\alpha_{*} t, x\right)$ for all $\alpha:[m] \rightarrow[n], t \in \Delta^{m}$ and $x \in \mathrm{~N}^{\mathscr{C}} \mathscr{C}_{n}$.

Let \mathscr{C} be a topological category and X an object of \mathscr{C}. Denote by X / \mathscr{C} the comma category X / F with F equal to the identity functor. Let $\rho: X / \mathscr{C} \rightarrow X / \mathscr{C}$ be the continuous functors given by $\rho(f)=i d_{X}$.

Lemma 1.1. Let \mathscr{C} be a topological category, and let X be an object in \mathscr{C}. There is a continuous natural transformation $\eta: \rho \rightarrow 1$. In particular the classifying space $\mathrm{B}(X / \mathscr{C})$ is contractible.

Proof. Let $\eta:$ obj $X / \mathscr{C} \rightarrow \operatorname{arr} X / \mathscr{C}$ be the map given by

$$
\left(f: X \rightarrow X_{0}\right) \mapsto\left(i d: X \rightarrow X, f: X \rightarrow X_{0}\right) .
$$

Clearly η is continuous. Let $\left(f: X \rightarrow X_{0}, f_{0}: X_{0} \rightarrow X_{1}\right)$ be an arrow in X / \mathscr{C}. Since the following diagram is commutative.

η is a natural transformation.
Remark. A similar proof that the space $\mathrm{B}(\mathscr{C} / X)$ is also contractible for every X in \mathscr{C}.
Quillen's Theorem A. Recall that a bisimplicial space X is a functor $([p],[q]) \mapsto$ $X_{p, q} \in$ Top. One may view X as a family of spaces in the first quadrant of the plane together with horizontal and vertical face and degeneracy operators that commute and satisfy the familiar identities [13]. Given a bisimplicial space X, there are natural homeomorphisms $|[p] \mapsto| X_{p, *}|\cong| \operatorname{diag} X|\cong|[q] \mapsto\left|X_{*, q}\right| \mid$, where $\operatorname{diag} X$ is the simplicial space $[p] \mapsto X_{p, p}$. Following Segal [20] we call the simplicial space X good if all the degeneracy operators $s_{i}: X_{n} \rightarrow X_{n+1}$ are closed cofibrations. Good simplicial spaces have the property that a simplicial map which is termwise a homotopy equivalence determines a homotopy equivalence of the corresponding geometric realizations.

The following theorem is a version of Quillen's Theorem A [19] for topological categories. We shall follow his proof with little change.

Theorem 1.2. Let \mathscr{C} and \mathscr{D} be topological categories, with the property that the inclusion of the point $*_{X} \mapsto 1_{X} \in \operatorname{Hom}(X, X)$ are cofibrations for all objects of \mathscr{C} and \mathscr{D}, and let $F: \mathscr{C} \rightarrow \mathscr{D}$ be a continuous functor. If the classifying space $\mathrm{B}(Y / F)$ has the homotopy type of a point for each object Y in \mathscr{D}, then

$$
\mathbf{B} F: \mathbf{B} \mathscr{C} \rightarrow \mathbf{B} \mathscr{D}
$$

is a homotopy equivalence.
Proof. Let $S(F)$ be the category object in Top whose space of objects is

$$
\operatorname{obj} S(F)=\coprod_{X, Y} \operatorname{Hom}_{\mathscr{Q}}(Y, F(X))
$$

and whose space of arrows arr $S(F)$ is

$$
\underset{Y_{i}, X_{i}}{\lfloor } \operatorname{Hom}_{\mathscr{R}}\left(Y_{1}, Y_{0}\right) \times \operatorname{Hom}_{\mathscr{T}}\left(Y_{0}, F\left(X_{0}\right)\right) \times \operatorname{Hom}_{\mathscr{\varepsilon}}\left(X_{0}, X_{1}\right) .
$$

A triple

$$
\left(g_{0}: Y_{1} \rightarrow Y_{0}, g: Y_{0} \rightarrow F\left(X_{0}\right), f_{0}: X_{0} \rightarrow X_{1}\right)
$$

is an arrow from $g: Y_{0} \rightarrow F\left(X_{0}\right)$ to $F\left(f_{0}\right) \circ g \circ g_{0}: Y_{1} \rightarrow F\left(X_{1}\right)$. Define $\pi_{1}: S(F) \rightarrow \mathscr{D}^{\text {op }}$ by sending $(g: Y \rightarrow F(X) ; X)$ to Y, and define $\pi_{2}: S(F) \rightarrow \mathscr{C}$ by sending the same object to X. Let $T(F)$ be the bisimplicial space whose (p, q)-simplices are of the form

$$
\left(Y_{q} \rightarrow \cdots \rightarrow Y_{0} \rightarrow F\left(X_{0}\right), X_{0} \rightarrow \cdots \rightarrow X_{p}\right)
$$

$T(F)_{p, q}$ is topologized as the disjoint union

$$
\coprod_{X_{i}, Y_{j}} \operatorname{Hom}_{\mathscr{G}}\left(Y_{q}, Y_{q-1}\right) \times \cdots \times \operatorname{Hom}_{\mathscr{E}}\left(X_{p-1}, X_{p}\right)
$$

Let $\mathrm{N} \mathscr{C}^{v}$ be the bisimplicial space equal to the nerve of \mathscr{C} in the horizontal direction and constant in the vertical direction. The obvious projections induce a map

$$
\begin{equation*}
T(F) \rightarrow \mathrm{B} \mathscr{C}^{v} \tag{4}
\end{equation*}
$$

of bisimplicial spaces. Since the nerve of $S(F)$ is equal to diagonal of $T(F)$, the realization of the map in (4) is equal to $\mathrm{B} \pi_{2}$. By first realizing (4) with respect to the vertical direction we get a map

$$
\coprod_{X_{i}} \mathrm{~B}\left(\mathscr{D} / F\left(X_{p}\right)\right) \times \operatorname{Hom}\left(X_{p}, X_{p-1}\right) \times \cdots \times \operatorname{Hom}\left(X_{1}, X_{0}\right) \rightarrow \mathrm{N} \mathscr{C}_{p}
$$

of good simplicial spaces. By the previous lemma, $\mathrm{B}\left(\mathscr{D} / F\left(X_{p}\right)\right)$ is contractible. It follows that $\mathrm{B} \pi_{2}$ is a homotopy equivalence. Similarly there is a map

$$
\begin{equation*}
T(F) \rightarrow \mathrm{N} \mathscr{D}^{\mathrm{op} h} \tag{5}
\end{equation*}
$$

of bisimplicial spaces, where $\mathrm{N} \mathscr{B}^{\mathrm{oph}}$ is constant in the horizontal direction; furthermore, the realization of this map is $\mathrm{B} \pi_{1}$. By first realizing (5) with respect to the horizontal direction we get a map

$$
\coprod_{Y_{i}} \operatorname{Hom}\left(Y_{0}, Y_{1}\right) \times \cdots \times \operatorname{Hom}\left(Y_{q-1}, Y_{q}\right) \times \mathrm{B}\left(Y_{q} / F\right) \rightarrow \mathrm{B} \mathscr{D}^{\mathbf{o p}}
$$

of good simplicial spaces. Since $\mathrm{B}\left(Y_{q} / F\right)$ is contractible, $\mathrm{B} \pi_{1}$ is a homotopy equivalence. Piecing these maps together we obtain the following commutative diagram

where the middle map is induced by the continuous functor $S(F) \rightarrow S\left(1_{\mathscr{Q}}\right)$

$$
(Y, X ; g: Y \rightarrow F(X)) \mapsto(Y, F(X) ; g: Y \rightarrow F(X))
$$

Since all the horizontal maps are homotopy equivalences, it follows that $\mathbf{B F}$ is a homotopy equivalence.

Grothendieck construction. Let Cat be the category of small categories and functors. Suppose $F: J \rightarrow$ Cat is a small diagram. By composing F with the nerve functor N , we obtain a small diagram $N F$ of simplicial sets. Thomason [24] has shown that the homotopy colimit [3] of $\mathrm{N} F$ is, up to weak equivalence, the nerve of $J \int F$, the Grothendieck
construction on $F . J \int F$ is the category whose objects are the pairs (j, X), where j is an object in J and X is an object in $F(J)$. An arrow from ($j, X)$ to (k, Y) consists of a pair (α, ϕ), where $\alpha: j \rightarrow k$ is an arrow in J and $\phi: F(\alpha)(X) \rightarrow Y$ is an arrow in $F(k)$.

If F is a small diagram of topological categories, composition with the classifying space functor B gives a small diagram $j \mapsto \mathrm{BF}(j)$ of topological spaces. The simplicial replacement functor \amalg_{*} associates to the J-indexed diagram $j \mapsto B F(j)$ the simplicial space $[p] \mapsto \amalg_{p} \mathrm{~B} F$, where

$$
\mathrm{L}_{p} \mathrm{~B} F=\underset{j_{0} \rightarrow \cdots \rightarrow j_{p}}{\coprod_{0}} \mathrm{~B} F\left(j_{0}\right) .
$$

The face and degeneracy maps d_{j}, s_{j} for $j>0$ are induced by the identity $\mathrm{B} F\left(j_{0}\right) \rightarrow \mathrm{B} F\left(j_{0}\right)$ and $d_{0}: \mathrm{BF}\left(j_{0}\right) \rightarrow \mathrm{BF}\left(j_{1}\right)$ is the map associated to $j_{0} \rightarrow j_{1}$. The homotopy colimit of the diagram $j \mapsto \mathrm{~B} F(j)$ is the geometric realization of $\amalg_{*} \mathrm{BF}$.

Theorem 1.3. Let $F: J \rightarrow$ Cat $^{\text {top }}$ be a small diagram of topological categories. Suppose the inclusion of the point corresponding to the identity map, $1_{X} \in \operatorname{Hom}_{F(j)}(X, X)$ is a cofibration for each object X in each $F(j), j \in J$. Then there is a natural homotopy equivalence

$$
\eta: \text { holim } \mathrm{B} F \rightarrow \mathrm{~B}\left(J \int F\right) .
$$

Proof. One can mimic Thomason's proof [24, Theorem 1.2].

2. FRAMES IN BANACH SPACES

Let k denote either the field of real or complex numbers. Recall that a Banach space is a complete normed k-vector space. Given two Banach spaces E and F the product norm on $E \times F$ is given by $|(e, f)|=\max \{|e|,|f|\}$. Recall that a k-linear map $T: E \rightarrow F$ is continuous if and only if there is a positive constant C such that $|T(e)| \leqslant C|e|$ for all $e \in E$. Let $L(E, F)$ be the k-vector space of continuous k-linear maps from E to F. The operator norm on $L(E, F)$ is given by

$$
|T|=\sup \{|T(e)|: e \in E,|e| \leqslant 1\} .
$$

It is well known (see [9]) that $L(E, F)$ is a Banach space and $|T \circ S| \leqslant|T||S|$ for all $T, S \in L(E, F)$.

A k-algebra Λ with unit I is a Banach algebra if it is a Banach space, $|I|=1$ and $|\lambda \cdot \mu| \leqslant|\lambda| \cdot|\mu|$ for all $\lambda, \mu \in \Lambda$. If E is a Banach space then $L(E, E)$ is a Banach algebra, and the k-algebra $k(X)$ of continuous k-valued functions defined on a compact space X with norm $|f|=\sup \{|f(x)|: x \in X\}$ is a Banach algebra.

Let Λ be a Banach algebra, and let $\mathscr{P}(\Lambda)$ be the category of finitely generated projective (left) Λ-modules and Λ-linear maps. Given $P \in \mathscr{P}(\Lambda)$ choose a surjective map $\varphi: \Lambda^{n} \rightarrow P$, and give P the quotient topology.

Lemma 2.1. The topology on P is independent of the choice of surjective map φ above.
Proof. If $\psi: \Lambda^{m} \rightarrow P$ is a surjective map let P_{ψ} be the space with the quotient topology induced by ψ. Given ϕ and ψ as above there exists a Λ-linear map $T: \Lambda^{m} \rightarrow \Lambda^{n}$ such that $\psi=\phi \circ T$. In particular the identity map $P_{\psi} \rightarrow P_{\phi}$ is continuous. Since there also exists a Λ-linear map $S: \Lambda^{n} \rightarrow \Lambda^{m}$ such that $\phi=\psi \circ S$, the two spaces P_{ϕ} and P_{ψ} have the same topology.

Corollary 2.2. Let P, Q be modules in $\mathscr{P}(\Lambda)$. Then P and Q are Banach spaces, and $\operatorname{Hom}(P, Q)$ is a Banach space with the operator norm.

Proof. To prove that P is a Banach space it is enough to show that P is a closed linear subspace of some Banach space. Choose a surjective map $\phi: \Lambda^{n} \rightarrow P$, and let $\rho: P \rightarrow \Lambda^{n}$ be a section of ϕ. Then P is isomorphic to the image of ρ which is also equal to the kernel of the $\operatorname{map}\left(I-\rho^{\circ} \phi\right): \Lambda^{n} \rightarrow \Lambda^{n}$. Since a Λ-linear map is continuous, the result follows.

We shall prove that $\operatorname{Hom}(P, Q)$ is a closed linear subspace of $L(P, Q)$. Let $\left\{\phi_{n}\right\}$ be a Cauchy sequence in $\operatorname{Hom}(P, Q)$. Since $L(P, Q)$ is a Banach algebra lim ϕ_{n} exists in $L(P, Q)$, and it is given by mapping $p \in P$ to $\lim \phi_{n}(p)$. Hence it is enough to show that $\lim \phi_{n}(\lambda \cdot p)=\lambda \cdot \lim \phi_{n}(p), \quad \lambda \in \Lambda$. This follows from $\left|\left(\phi_{m}-\phi_{n}\right)(\lambda \cdot p)\right| \leqslant$ $|\lambda| \cdot\left|\phi_{m}-\phi_{n}\right| \cdot|p|$.

Denote the Banach space of Λ-continuous maps from P to Q by $\operatorname{Hom}(P, Q)$, and the topological subspace of automorphisms of P by Aut (P).

Corollary 2.3. The set $\operatorname{Aut}(P)$ is open in $\operatorname{Hom}(P, P)$.

Proof. Let I be the identity map of P, and put $B_{1}(0)$ equal to the open subset $\{\varphi: P \rightarrow P:|\varphi|<1\}$. Notice that if $\varphi \in B_{1}(0)$ then the sequence

$$
I+\varphi+\varphi^{2}+\cdots
$$

converges to $(I-\varphi)^{-1}$. Hence the open ball $B_{1}(I)-\left\{I-\varphi: \varphi \in B_{1}(0)\right\} \subseteq \operatorname{Aut}(P)$ is a neighborhood of I. Since composition is continuous the open ball $B_{1}(I)$ can be translated to an open neighborhood of any $\psi \in \operatorname{Aut}(P)$.

Banach manifolds. The natural inclusion $P \rightarrow P \oplus Q$ induces an injective map $\operatorname{Aut}(P) \rightarrow \operatorname{Aut}(P \oplus Q)$. In order to understand the coset space

$$
\operatorname{Aut}(P \oplus Q) / \operatorname{Aut}(P)
$$

we shall introduce the concept of a Banach manifold. Roughly speaking a Banach manifold is a topological space that is locally a Banach space. To be more specific we give the following (cf. [12])

Definition 2.4. Let X be a topological Hausdorff space.
(1) A chart for X is a pair (U, φ) where U is an open subset of X and φ is a homeomorphism of U onto an open subset $\varphi(U)$ of some Banach space.
(2) An atlas for X is a collection $\left(U_{i}, \varphi_{i}\right), i \in I$ of charts of X such that $X=\bigcup U_{i}$ and $\varphi_{i}\left(U_{i} \cap U_{j}\right)$ is an open subset of $\varphi_{i}\left(U_{i}\right)$ and

$$
\varphi_{j} \varphi_{i}^{-1}: \varphi_{l}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right)
$$

is an isomorphism for each pair of indices i, j.
A topological space that admits an atlas is called a manifold. In order to rule out pathological examples of manifolds we shall assume that all manifolds are paracompact with a countable base; in particular all manifolds are metrizable and have the homotopy type of CW-complexes [17]. By a Lie group we mean a manifold with a group structure.

Lemma 2.5. Let H be a closed subgroup of the Lie group G. Then the natural projection $\pi: G \rightarrow G / H$ is a Serre fibration.

Proof. This follows from [14, 7.2 and 8.4].
Stiefel manifolds. Fix a Banach algebra Λ. Let $\mathscr{P}=\mathscr{P}(\Lambda)$, and for $P \in \mathscr{P}$ let $\mathscr{P}_{n}(P)$ be the full subcategory of the groupoid Iso \mathscr{P} of isomorphisms in \mathscr{P} whose objects are $A \in \mathscr{P}$ such that $P \oplus A \cong \Lambda^{n}$. Consider the space

$$
V_{n}(P)=\underset{\substack{\overrightarrow{\mathscr{P}_{n}}(P)^{\text {op }}}}{\lim } \operatorname{Iso}_{\mathscr{g}}\left(P \oplus A, \Lambda^{n}\right)
$$

If $\phi \in \operatorname{Iso}_{\mathscr{P}}\left(P \oplus A, \Lambda^{n}\right)$ let $F(\phi): \mathrm{Iso}_{\mathscr{P}}\left(P \oplus \Lambda, \Lambda^{n}\right) \rightarrow \operatorname{Aut}(P \oplus A)$ be $F(\phi)(\psi)=\phi^{-1} \circ \psi$. If $\pi_{0} \mathscr{P}_{n}(P)$ is a skeletal subcategory of $\mathscr{P}_{n}(P)$ then $V_{n}(P)$ is isomorphic to

$$
\coprod_{A \in \pi_{0} \mathscr{Y}_{n}(P)} \operatorname{Aut}(P \oplus A) / \operatorname{Aut}(0 \oplus A) .
$$

The topological space $V_{n}(P)$ is an infinite-dimensional analog of the finite-dimensional Stiefel manifold of p-frames in k^{n}.

The map Iso $\left(P \oplus A, \Lambda^{n}\right) \rightarrow \operatorname{Iso}_{\mathscr{P}}\left(P \oplus A \oplus \Lambda, \Lambda^{n+1}\right)$ given by $\phi \mapsto \phi \oplus I$ induces a map $V_{n}(P) \xrightarrow{\rightarrow} V_{n+1}(P)$. Let $V_{\infty}(P)$ be the colimit of the sequence

$$
\begin{equation*}
\cdots \rightarrow V_{n}(P) \xrightarrow{\prime} V_{n+1}(P) \rightarrow \cdots \tag{6}
\end{equation*}
$$

Proposition 2.6. The space $V_{\infty}(P)$ has the homotopy of a point.

Proof. First observe that $l: V_{n}(P) \rightarrow V_{n+1}(P)$ is a closed cofibration [17]. Thus $V_{\infty}(P)$ has the homotopy of a CW-complex (cf. [15, Appendix]), and it suffices to show that $V_{\infty}(P)$ has the weak homotopy of a point.

Suppose $\phi_{0}, \phi_{1} \in V_{\infty}(P)$, then there is n such that $\phi_{0}, \phi_{1} \in V_{n}(P)$. We may view an element $\phi \in V_{n}(P)$ as monomorphisms from P to Λ^{n}. Indeed $\operatorname{Iso}_{\mathscr{P}}\left(P \oplus A, \Lambda^{n}\right) / \operatorname{Aut}(A)$ is a torsor under the contractible Banach Lie group $\operatorname{Hom}(A, P)$, and so $V_{n}(P) \rightarrow \operatorname{Mono}\left(P, \Lambda^{n}\right)$ is Serre fibration and a homotopy equivalence. Define a family of monomorphisms $\Phi_{t}: P \rightarrow \Lambda^{n} \oplus \Lambda^{n}$ for $0 \leqslant t \leqslant 1$ by

$$
\Phi_{t}(p)=\left(t \cdot \phi_{0}(p)+(1-t) \cdot \phi_{1}(p), t(-t) \cdot \phi_{0}(p)\right)
$$

The monomorphism Φ determines a path from ϕ_{0} and ϕ_{1} in $V_{2 n}(P)$ and shows that $V_{\infty}(P)$ is path connected.

Now consider an element $x \in \pi_{q}\left(V_{\infty}(P), *\right)$, where $* \in \operatorname{Iso}_{\mathscr{F}}\left(P \oplus A, \Lambda^{n}\right) / \operatorname{Aut}(A)$ is some fixed base point and $q>0$. We may represent x by a $\operatorname{map} f: S^{q} \rightarrow V_{n}(P)$ for any continuous $\operatorname{map} S^{q} \rightarrow V_{\infty}(P)$ factors as $S^{q} \rightarrow V_{n}(P) \rightarrow V_{\infty}(P)$ by [21, Section 9] for some n. The fibration $\mathrm{Iso}_{\mathcal{P}}\left(P \oplus A, \Lambda^{n}\right) \xrightarrow{p} \mathrm{Iso}_{\mathscr{F}(}\left(P \oplus A, \Lambda^{n}\right) / \operatorname{Aut}(A)$ induces an isomorphism (cf. [26, Ch. IV, Theorem 8.5])

$$
p_{*}: \pi_{p}\left(\operatorname{Iso}_{\mathfrak{s}}\left(P \oplus \mathbf{A}, \Lambda^{n}\right), \operatorname{Aut}(A)\right) \rightarrow \pi_{p}\left(\operatorname{Iso}_{\mathfrak{p}}\left(P \oplus A, \Lambda^{n}\right) / \operatorname{Aut}(A)\right)
$$

and by fixing an isomorphism $P \oplus A \cong \Lambda^{n}$, we may identify Iso $_{\mathscr{P}}\left(P \oplus A, \Lambda^{n}\right)$ with $\operatorname{Aut}(P \oplus A)$.

Given $x \in \pi_{q}(\operatorname{Aut}(P \oplus A)$, $\operatorname{Aut}(0 \oplus A))$ is image in

$$
\pi_{q}(\operatorname{Aut}(P \oplus A \oplus P \oplus A), \operatorname{Aut}(0 \oplus A \oplus P \oplus A))
$$

induced by the map $S \mapsto S \oplus I$, is zero since the homotopy of maps $\operatorname{Aut}(P \oplus A) \rightarrow \operatorname{Aut}(P \oplus A \oplus P \oplus A)$ given by

$$
H(t, S)=\left(\begin{array}{cc}
\cos \frac{\pi}{2} t & -\sin \frac{\pi}{2} t \\
\sin \frac{\pi}{2} t & \cos \frac{\pi}{2} t
\end{array}\right)\left(\begin{array}{ll}
S & 0 \\
0 & I
\end{array}\right)
$$

for $S \in \operatorname{Aut}(P \oplus A)$, carries $\operatorname{Aut}(0 \oplus A)$ to $\operatorname{Aut}(0 \oplus A \oplus 0 \oplus A)$ for all t.

3. QUILLEN'S $S^{-1} S$-CONSTRUCTION

Recall that Quillen's $S^{-1} S$-construction on the category \mathscr{P} is the category whose objects are pairs (A, B) where $A, B \in \mathscr{P}$. A morphism from $\left(A_{1}, B_{1}\right)$ to $\left(A_{2}, B_{2}\right)$ is an equivalence class of pairs (f, S) where

$$
f:\left(A_{1} \oplus S, B_{1} \oplus S\right) \rightarrow\left(A_{2}, B_{2}\right)
$$

is a morphism in Iso \mathscr{P}^{2} and $(f, S) \sim\left(f^{\prime}, S^{\prime}\right)$ if there exists an isomorphism $\alpha: S \rightarrow S^{\prime}$ with $f=f^{\prime}(I \oplus \alpha, I \oplus \alpha)$ (cf. [7]). In particular

$$
\operatorname{Hom}_{S^{-1} s}\left(\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)\right)=\lim _{S \in \mathscr{H}(A, B)^{)^{r}}} \operatorname{Hom}_{\mathrm{los} \mathscr{g}^{2}}\left(\left(A_{1} \oplus S, B_{1} \oplus S\right),\left(A_{2}, B_{2}\right)\right)
$$

where $\mathscr{P}(A, B)$ is the full subcategory of the groupoid Iso \mathscr{P} whose objects are $S \in \mathscr{P}$ such that $A_{1} \oplus S \cong A_{2}$ and $B_{1} \oplus S \cong B_{2}$. In [7], [6] it was proved that

$$
\pi_{i} \mathrm{~B}\left(S^{-1} S(\mathscr{P})\right)=K_{i}^{\mathrm{alg}}(\Lambda) .
$$

Topological $S^{-1} S$. From the discussion of the previous section on Stiefel manifolds it follows that $S^{-1} S(\mathscr{P})$ has a topological enrichment which we denote as $S^{-1} S^{\text {top }}(\mathscr{P})$. Let * be the base point in $\mathrm{B}\left(S^{-1} S(\mathscr{P})\right)$ determined by the pair $(0,0)$. To simplify notation we denote $S^{-1} S(\mathscr{P})$ and $S^{-1} S^{\text {top }}(\mathscr{P})$ by $S^{-1} S$ and $S^{-1} S^{\text {top }}$, respectively.

Theorem 3.1. The classifying space $\mathbf{B}\left(S^{-1} S^{\text {top }}\right)$ has the homotopy type of

$$
K_{0}(\Lambda) \times \mathrm{BGL}^{\operatorname{top}} \Lambda
$$

and $\pi_{i} \mathrm{~B}\left(S^{-1} S^{\text {top }}\right)=K_{i}^{\text {top }} \Lambda$. Furthermore the obvious functor

$$
S^{-1} S \rightarrow S^{-1} S^{\text {top }}
$$

induces the standard map $K_{i}^{\text {alg }} \Lambda \rightarrow K_{i}^{\text {top }} \Lambda$.
Proof. The functor

$$
+: S^{-1} S \times S^{-1} S \rightarrow S^{-1} S
$$

given by sending the pair $\left(\left(A_{0}, A_{1}\right),\left(B_{0}, B_{1}\right)\right)$ to $\left(A_{0} \oplus B_{0}, A_{1} \oplus B_{1}\right)$ induces an associative H -space structure on $\mathrm{B}\left(S^{-1} S\right)$. Since + is clearly continuous, the classifying space $\mathrm{B}\left(S^{-1} S^{10 p}\right)$ is also an associative H -space. Moreover,

$$
\pi_{0} \mathbf{B}\left(S^{-1} S^{\text {top }}\right)=\pi_{0} \mathbf{B}\left(S^{-1} S\right)=K_{0} \Lambda
$$

is a group. Since the H -space $\mathbf{B}\left(S^{-1} S^{\text {top }}\right)$ admits a homotopy inverse [6, Lemma 3.2], there is a homotopy equivalence

$$
\mathrm{B}\left(S^{-1} S^{\mathrm{top}}\right) \cong K_{0}(\Lambda) \times \mathrm{B}\left(S^{1} S_{0}^{1 \mathrm{op}}\right)
$$

where $\mathrm{B}\left(S^{-1} S_{0}^{\text {top }}\right)$ is the connected component of the base point and $S^{-1} S_{0}$ is the full subcategory of pair (A_{1}, A_{2}) for which A_{1} and A_{2} are stably isomorphic.

Let $S^{-1} S_{0}^{\text {top }}$ be the full subcategory of pairs $\left(B_{1}, B_{2}\right)$ with $B_{1} \cong B_{2}$, and let l denote the inclusion functor. Then $\mathbf{B}(t)$ is a homotopy equivalence, and it is enough to show that $\mathrm{B}\left(S^{-1} S_{\overline{0}}^{\text {top }}\right)$ and $\mathrm{BGL}{ }^{\text {top }} \Lambda$ have the same homotopy type. To see that \imath determines a homotopy equivalence it suffices by Theorem 1.2 to show that the classifying space of the comma category $\left(A_{1}, A_{2}\right) / /$ is contractible. If $\left(A_{1}, A_{2}\right)$ is an object in $S^{-1} S_{0}^{\text {top }}$, then there exists P such that $A_{1} \oplus P \cong A_{2} \oplus P$. Composition with the arrow $(P, 1,1)$: $\left(A_{1}, A_{2}\right) \rightarrow\left(A_{1} \oplus P, A_{2} \oplus P\right)$, determines a continuous functor

$$
\left(A_{1}(1) P, A_{2}(\mathbb{D} P) / \imath \quad,\left(A_{1}, A_{2}\right) / / .\right.
$$

Since ($A_{1} \oplus P, A_{2} \oplus P$)/ has an initial object, its classifying space is contractible. There is a continuous functor from $\left(A_{1}, A_{2}\right) / l$ to $\left(A_{1} \oplus P, A_{2} \oplus P\right) / l$ sending (C, c_{1}, c_{2}): $\left(A_{1}, A_{2}\right) \rightarrow\left(B_{1}, B_{2}\right)$ to $\left(C, \tau^{*} c_{1}, \tau^{*} c_{2}\right):\left(A_{1} \oplus P, A_{2} \oplus P\right) \rightarrow\left(B_{1} \oplus P, B_{2} \oplus P\right)$, where $\tau^{*} c_{i}$ is the composite

$$
A_{i} \oplus P \oplus C \xrightarrow{\stackrel{\tau}{\longrightarrow}} A_{i} \oplus C \oplus P \xrightarrow{c_{i} \oplus 1} B_{i} \oplus P
$$

The composition γ of the continuous functors $\left(A_{1}, A_{2}\right) / l \rightarrow\left(A_{1} \oplus P, A_{2} \oplus P\right) / l \rightarrow\left(A_{1}, A_{2}\right) / l$ sends (C, c_{1}, c_{2}) to the diagonal arrow in the following commutative diagram.

The upper triangle shows that there is a continuous natural transformation from the identity functor to γ. Hence $\mathrm{B}\left(\left(A_{1}, A_{2}\right) / /\right)$ is a homotopy retract of the contractible space $\mathrm{B}\left(\left(A_{1} \oplus P, A_{2} \oplus P\right) / l\right)$. Thus $\mathrm{B}(z)$ is a homotopy equivalence.

Let $\mathrm{GL}_{*}^{\text {top }} \Lambda: \mathbb{N} \rightarrow$ Cat ${ }^{\text {top }}$ be the diagram of topological categories that assigns to n the groupoid $\mathrm{GL}_{n}^{\text {top }} \Lambda$. Denote the unique object of $\mathrm{GL}_{n}^{\text {top }} \Lambda$ by Λ^{n}, and to simplify notation let n represent the object (n, Λ^{n}) in the Grothendieck construction $\mathbb{N} \int \mathrm{GL}_{*}^{\text {top }} \Lambda$ of $\mathrm{GL}_{*}^{\text {top }} \Lambda$. Let

$$
F: \mathbb{N} \int \mathrm{GL}_{*}^{\text {top }} \Lambda \rightarrow S^{-1} S_{0}^{\text {top }}
$$

be the functor that sends \mathbf{n} to the pair $\left(\Lambda^{n}, \Lambda^{n}\right)$ and the arrow $(\mathbf{m} \leqslant \mathrm{n}, T)$ to

$$
\left.\left((I, T), \Lambda^{n-m}\right):\left(\Lambda^{m}, \Lambda^{m}\right) \rightarrow\left(\Lambda^{n}, \Lambda^{n}\right)\right) .
$$

Clearly F is well defined and continuous. Now $B\left(\mathbb{N} \int \mathrm{GL}_{*}^{\text {top }} \Lambda\right)$ has the homotopy type of the colimit

$$
\begin{equation*}
\cdots \rightarrow \mathrm{B}\left(\mathrm{GL}_{n}^{\text {top }} \Lambda\right) \rightarrow \mathrm{B}\left(\mathrm{GL}_{n}^{\mathrm{top}} 1{ }_{1} \Lambda\right) \rightarrow \cdots \tag{7}
\end{equation*}
$$

by Theorem 1.3. Since each map in the sequence (3.7) is a cofibration and for every n the space $\mathrm{B}\left(\mathrm{GL}_{n}^{\text {top }} \Lambda\right)$ has the homotopy type of a CW-complex, it follows that the classifying space of $\mathbb{N} \int \mathrm{GL}_{*}^{\text {top }} \Lambda$ has the homotopy type of $\mathrm{BGL}^{\text {top }} \Lambda$ (cf. [3, Ch. XII, Section 3]).

Let $A=\left(A_{1}, A_{2}\right)$ be an object in $S^{-1} S_{0}^{\text {top }}$. By the following lemma, $V_{\infty}\left(A_{1}\right)$ and $\mathrm{B}(A / F)$ have the same homotopy type. Since $V_{\infty}\left(A_{1}\right)$ is contractible by Proposition 2.6, it follows that $B(A / F)$ has the homotopy type of a point. Thus BF is a homotopy equivalence by Theorem 1.2.

In the discrete case the functor F is essentially the functor defined in [7, p. 224], where it was proved that $B F$ is acyclic (cf. [6, Section 4]). In particular there is a commutative diagram

and it follows that the map in (2) is equivalent to $\pi_{i} \mathrm{~B}\left(S^{-1} S\right) \rightarrow \pi_{i} \mathrm{~B}\left(S^{-1} S^{\text {top }}\right)$.

Lemma 3.2. $\mathrm{B}(A / F)$ and $V_{\infty}\left(A_{1}\right)$ have the same homotopy type.

Proof. Since the sequence (6) is a sequence of closed cofibrations, $V_{\infty}\left(A_{1}\right)$ is the homotopy colimit of the diagram $n \mapsto V_{n}\left(A_{1}\right)$. Hence it is enough to show that $\mathrm{B}(A / F)$ and $\left|\amalg_{*} V\left(A_{1}\right)\right|$ have the same homotopy type.

For $[p] \in \Delta$ we have

$$
\mathrm{N}(A / F)_{p}-\coprod_{n_{0} \leqslant \cdots \leqslant n_{p}} \operatorname{Hom}_{S^{-1} s}\left(A, F\left(n_{0}\right)\right) \times \mathrm{GL}_{n_{1}}^{\mathrm{top}} \Lambda \times \cdots \mathrm{GL}_{n_{p}}^{\mathrm{top}} \Lambda
$$

Composition in A / F, when restricted to the first factor, is induced by the standard inclusion, so the projection map

$$
\mathrm{Iso}_{\mathscr{P} \times \times P}\left(\left(A_{1} \oplus P, A_{2} \oplus P\right),\left(\Lambda^{n}, \Lambda^{n}\right)\right) \rightarrow \operatorname{Iso}_{\mathscr{P}}\left(A_{1} \oplus P, \Lambda^{n}\right)
$$

induces a continuous simplicial map $\pi: N(A / F) \rightarrow \amalg_{*} V\left(A_{1}\right)$.
Since $A=\left(A_{1}, A_{2}\right) \in S^{-1} S_{0}^{\text {top }}$, there exists an isomorphism $\alpha: A_{2} \rightarrow A_{1}$. Using α we define a continuous map $\alpha^{*}: \operatorname{Iso}_{\mathscr{F}}\left(A_{1} \oplus P, \Lambda^{n}\right) \rightarrow \operatorname{Iso}_{\mathscr{P}}\left(A_{1} \oplus P, \Lambda^{n}\right) \times \operatorname{Iso}_{\mathscr{3}}\left(A_{2} \oplus P, \Lambda^{n}\right)$ by $\alpha^{*}(\varphi)=(\varphi, \varphi \circ \alpha)$. The map α^{*} is stable in the sense that

commutes for non-negative k and $i=1,2$. Thus α^{*} determines a continuous simplicial map $t_{\alpha}: \mathrm{L}_{*} V\left(A_{1}\right) \rightarrow \mathrm{N}(A / F)$.

The composition $\pi^{\circ} l_{\alpha}$ is the identity, and there is a simplicial homotopy equivalence from the identity to $z_{\alpha} \circ \pi$ defined as follows. If $\left(P, \varphi_{1}, \varphi_{2}\right):\left(A_{1}, A_{2}\right) \rightarrow\left(\Lambda^{n}, \Lambda^{n}\right)$ is an arrow in $S^{-1} S_{0}^{\text {top }}$, then the isomorphism $\varphi_{1}\left(\alpha \oplus 1_{P}\right) \varphi_{2}^{-1}: \Lambda^{n} \rightarrow \Lambda^{n}$ is independent of the choice of representatives $P, \varphi_{1}, \varphi_{2}$. Now given a point ($\left.\left(P, \varphi_{1}, \varphi_{2}\right): A \rightarrow F\left(n_{0}\right), T_{1}, \ldots, T_{p}\right)$ in $\mathrm{N}(A / F)_{p}$ with $T_{i} \in \mathrm{GL}_{n_{i}}^{\text {top }} \Lambda$. Let $\Theta_{0}=\varphi_{1}\left(\alpha \oplus 1_{P}\right) \varphi_{2}^{-1}$, and define

$$
\Theta_{i}=\left[\varphi_{1}\left(\alpha \oplus 1_{p}\right) \varphi_{2}^{-1} \oplus I\right] T_{i}^{-1} \in \mathrm{GL}_{n_{i}}^{\text {top }} \Lambda
$$

for $i=1, \ldots, p$. With these isomorphisms we obtain a commutative diagram

that determines a simplicial homotopy equivalence from the identity to $l_{\alpha}{ }^{\circ} \pi$.

4. HOMOTOPY GROUPS OF ALGEBRAIC K-THEORY GROUPS

Let s.Sets denote the category of simplicial. In this section we utilize the adjoint functors [13, Section 16]

$$
\text { s.Sets } \underset{\text { Sing }}{\stackrel{|\cdot|}{\leftrightarrows}} \text { Top }
$$

to convert simplicial spaces to bisimplicial sets. Recall the singular complex functor Sing carries a topological space X to the simplicial set $p \mapsto \operatorname{Sing}_{p} X=\operatorname{Hom}\left(\Delta^{p}, X\right)$, and the counit \mid Sing $X \mid \rightarrow X$ is a weak homotopy equivalence [13, Section 16].

Let $\mathscr{P}_{T}\left(\Delta^{p}\right)$ denote the additive category of finitely generated projective (left) Λ-modules whose morphisms are Λ-linear transformations parametrized by Δ^{p}. The subscript T is used to suggest an identification of $\mathscr{P}_{T}(X)$ with the category of trivial \mathscr{P}-fibre bundles over a compact space X (cf. [10, p. 179]).

The underlying simplicial set of $\mathrm{N}\left(S^{-1} S^{\text {top }}\right)$ can be viewed as $\operatorname{Sing}_{0} \mathrm{~N}\left(S^{-1} S^{\text {top }}\right)$, similarly $\mathrm{N}\left(S^{-1} S\left(\mathscr{P}_{T}\left(\Delta^{p}\right)\right)\right)=$ Sing $_{p} S^{-1} S^{\text {top }}$. Since $\mathrm{N}\left(S^{-1} S^{\text {top }}\right)_{q}$ has the homotopy type of CW-complex the counit

$$
\mid \text { Sing } \mathrm{N}\left(S^{-1} S^{\text {top }}\right)_{q} \mid \rightarrow \mathrm{N}\left(S^{-1} S^{\text {top }}\right)_{q}
$$

is a homotopy equivalence; moreover, $\mathrm{N}\left(S^{-1} S^{\text {top }}\right)$ and $q \mapsto\left|\operatorname{Sing} \mathrm{~N}\left(S^{-1} S^{\text {top }}\right)_{q}\right|$ are a good simplicial spaces. Thus $\left|\operatorname{Sing} \mathrm{N}\left(S^{-1} S^{\text {top }}\right)\right|$ is homotopy equivalent to $\mathrm{B}\left(S^{-1} S^{\text {top }}\right)$.

Lemma 4.1. There is an isomorphism

$$
\pi_{i} \mathrm{~B}\left(S^{-1} S\left(\mathscr{P}_{T}\left(\Delta^{p}\right)\right)\right) \cong K_{i}^{\mathrm{alg}} \Lambda\left(\Delta^{p}\right)
$$

Proof. Since Δ^{p} is contractible every locally trivial \mathscr{P}-fibre bundle over Δ^{p} is trivial (cf. [8, Ch. 4, Section 2]). Using Swan's proof [23] of the equivalence between the category of locally trivial vector bundles over a compact space and the category of finitely generated projective modules over the ring of continuous functions, one sees that $\mathscr{P}_{T}\left(\Delta^{p}\right)$ is equivalent to the category $\mathscr{P}\left(\Lambda\left(\Delta^{p}\right)\right.$), of finitely generated projective modules over the ring of continuous Λ-valued functions on Δ^{p}. Since the $S^{-1} S$-construction preserves equivalences, the lemma follows.

Theorem 4.2. Let Λ be a Banach algebra. There is a first quadrant spectral sequence

$$
\begin{equation*}
K_{q}^{\mathrm{alg}} \Lambda\left(\Delta^{p}\right)=E_{p, q}^{1}(\Lambda) \Rightarrow K_{p+q}^{\mathrm{tap}} \Lambda . \tag{8}
\end{equation*}
$$

Proof. Let $X_{p}=\mathrm{N}\left(S^{-1} S\left(\mathscr{P}_{T}\left(\Delta^{p}\right)\right)\right)$. Since this space has the structure of an H-space and $\pi_{0}\left|X_{p}\right|$ is a group [6, Lemma 6.2] asserts that there is a spectral sequence

$$
E_{p, q}^{2}=\pi_{p}\left([n] \mapsto \pi_{q} X_{n}\right) \Rightarrow \pi_{p+q}|X|
$$

Now $\pi_{p} X_{n}=K_{q}^{\mathrm{alg}} \Lambda\left(\Delta^{n}\right)$ by the previous lemma. Whence the E^{2}-term is the homology of the chain complex associated to the simplicial abelian group $[p] \mapsto K_{q}^{\text {alg }} \Lambda\left(\Delta^{p}\right)$, see $[13$, Section 22].

The natural simplicial map Sing ${ }_{0} \mathrm{~N}\left(S^{-1} S^{\text {top }}(\mathscr{P})\right) \rightarrow \operatorname{diag} \operatorname{Sing} \mathrm{N}\left(S^{-1} S^{\text {top }}(\mathscr{P})\right)$ induces the map in (2) and we obtain

Corollary 4.3. The map $K_{q}^{\mathrm{alg}} \Lambda \rightarrow K_{q}^{\mathrm{top}} \Lambda$ is the edge homomorphism

$$
K_{q}^{\mathrm{alg}} \Lambda \rightarrow \cdots \rightarrow E_{0, q}^{\infty} \Lambda \multimap K_{q}^{\mathrm{top}} \Lambda
$$

of the spectral sequence in (8).

Homotopy groups of algebraic K-theory. Since Δ^{p} is a compact topological space, each algebra $\Lambda\left(\Delta^{p}\right)$ is a Banach algebra. A result of Milnor [16, Corollary 7.2] states that if Λ is commutative then

$$
K_{1}^{\mathrm{alg}} \Lambda\left(\Delta^{p}\right)=\Lambda^{*} \oplus \pi_{0} \mathrm{SL}^{\mathrm{top}} \Lambda\left(\Delta^{p}\right)
$$

Since Δ^{p} is contractible it follows that $\pi_{0} \operatorname{SL}^{\text {top }} \Lambda\left(\Delta^{*}\right)=\pi_{0} \mathrm{SL}^{\text {top }} \Lambda$

$$
E_{p, 1}^{2}(\Lambda)= \begin{cases}\pi_{0} \Lambda^{*} \oplus \pi_{0} S^{\text {top }} \Lambda & \text { if } p=0 \\ \pi_{p} \Lambda & \text { if } p>0\end{cases}
$$

Thinking of the simplicial abelian groups $K_{q}^{\text {als }} \Lambda\left(\Delta^{*}\right)$ as coming from the singular complex of some topological structure on $K_{q}^{\text {alg }} \Lambda$ we propose

Definition 4.4. Let Λ be a Banach algebra. The homotopy groups of $K_{*}^{\text {alg }} \Lambda$ are

$$
\pi_{p} K_{q}^{\text {alg }} \Lambda:=E_{p, q}^{2}(\Lambda)
$$

Let X be a compact topological space. The complex topological K-theory of X in negative degrees can be calculated as $K^{-q} X=K_{q}^{\text {top }} \mathbb{C}(X)$. Define the higher algebraic K-theory of X to be

$$
K_{q}^{\mathrm{alg}} X:=K_{q}^{\mathrm{alg}} \mathbb{C}(X), \quad q \geqslant 0
$$

An immediate consequence of Swan's theory is $K_{0}^{\text {alg }} X=K_{0}^{\text {top }} X$, and an elementary calculation yields $\pi_{0} K_{1}^{\text {alg }} X=K_{1}^{\text {top }} X$. Since \mathbb{C}^{*} is an Eilengerg-Mac Lane space of type ($1, \mathbb{Z}$), we obtain for each $p>0 \pi_{p} K_{1}^{\text {alg }} X \cong H^{1-p}(X, \mathbb{Z})$, and the associated filtration on $K_{2}^{\text {top }} X$ reduces to the short exact sequence

$$
0 \rightarrow \pi_{u} K_{2}^{\mathrm{alg}} X \rightarrow K_{2}^{\mathrm{top}} X \rightarrow \pi_{1} K_{1}^{\mathrm{alg}} X \rightarrow 0
$$

To proceed further we consider K-theory with finite coefficients. Prasolov [18] and Fischer [4] independently have shown that the algebraic K-theory and the topological K-theory of X with finite coefficients are the same.

Proposition 4.5. For each $q \geqslant 0$ there is a natural short exact sequence

$$
0 \rightarrow K_{q}^{\mathrm{alg}} X \rightarrow K_{q}^{\mathrm{alg}}\left(X \times \Delta^{*}\right) \rightarrow \mathscr{Q}(q) \rightarrow 0
$$

where $\mathscr{2}_{*}(q)$ is a simplicial \mathbb{Q}-vector space and $K_{q}^{\text {alg }} X$ is given the structure of a discrete simplicial abelian group.

Proof. The groups $K_{0}^{\text {alg }}\left(X \times \Delta^{p}\right)$ and $K_{0}^{\text {top }}\left(X \times \Delta^{p}\right)$ are isomorphic for all p. By the homotopy invariance of topological K-theory $K_{0}^{\text {alg }} X \rightarrow K_{0}^{\text {alg }}\left(X \times \Delta^{*}\right)$ is an isomorphism and $\mathscr{Q}(0)$ is the trivial \mathbb{Q}-vector space.

For all p the projection map $\pi: X \times \Delta^{p} \rightarrow X$ induces an isomorphism

$$
K_{q}^{\mathrm{alg}}(X, \mathbb{Z} / n) \rightarrow K_{q}^{\mathrm{alg}}\left(X \times \Delta^{p}, \mathbb{Z} / n\right)
$$

for each $q>0$, by the Prosolov-Fisher isomorphism and the homotopy invariance of topological K-theory, and a split monomorphism $K_{q}^{\text {alg }} X \rightarrow K_{q}^{\text {alg }}\left(X \times \Delta^{p}\right)$ since π admits a section. Let $2(q)$ denote the quotient $K_{q}^{\mathrm{alg}}\left(X \times \Delta^{*}\right) / K_{q}^{\text {alg }}(X)$. The universal coefficient sequence

$$
K_{q}^{\mathrm{alg}}\left(X \times \Delta^{p}\right) \oplus \mathbb{Z} / n \mapsto K_{q}^{\mathrm{alg}}\left(X \times \Delta^{p}, \mathbb{Z} / n\right) \rightarrow n \text {-torsion of } K_{q-1}^{\mathrm{atg}}\left(X \times \Delta^{p}\right)
$$

together with the previous observations proves the proposition.
Applying the homotopy functor to the short exact sequence of the previous proposition we obtain, for each $p>1$, a family of isomorphisms $\pi_{p} K_{q}^{\text {als }} X \cong \pi_{p} \mathscr{2}(q)$, and it follows that $\pi_{p} K_{q}^{\text {alg }} X$ is a \mathbb{Q}-vector space. For $p=0$ and 1 there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \pi_{1} K_{q}^{\mathrm{alg}} X \rightarrow \pi_{1} \mathscr{2}(q) \rightarrow K_{q}^{\mathrm{alg}} X \rightarrow \pi_{0} K_{q}^{\mathrm{alg}} X \rightarrow \pi_{0} \mathscr{2}(q) \rightarrow 0 \tag{9}
\end{equation*}
$$

Since $K_{1}^{\text {alg }}\left(X \times \Delta^{*}\right) \cong \operatorname{Sing} \mathbb{C}^{*}(X) \oplus[X, \mathrm{SU}]$, the sequence (9) has the form

$$
0 \longrightarrow H^{0}(X, \mathbb{Z}) \longrightarrow \mathbb{C}(X) \xrightarrow{\text { exp }} \mathbb{C}^{*}(X) \longrightarrow H^{1}(X, \mathbb{Z}) \longrightarrow 0
$$

where $\pi_{1} \mathscr{2}(1) \rightarrow \mathbb{C}(X)$ is given by $[\gamma(x, t)] \mapsto \int_{7(x, t)} d \log t$. And from Suslin [22] we know that

$$
K_{q}^{\mathrm{alg}} \mathbb{C}\left(\Delta^{q}\right) \cong \begin{cases}\mathbb{Q} / \mathbb{Z} \oplus \mathrm{a} \mathbb{Q} \text {-vector space } & \text { if } q>0 \text { is odd } \\ \mathrm{a} \mathbb{Q} \text {-vector space } & \text { if } q>0 \text { is even }\end{cases}
$$

For $q>1$, Bott periodicity along with a more detailed analysis of the spectral sequence (8) yields $\left(K_{2 q-1}^{\mathrm{alg}} \mathbb{C}\right)_{\text {tors }} \subseteq \pi_{0} K_{2 q \cdot 1}^{\mathrm{alg}} \mathbb{C}\left(\Lambda^{*}\right)$.

Acknowledgements-I gratefully thank H. Gillet for his support and encouragement, and I am deeply indebted to the referee, who found critical mistakes and suggested meticulous corrections.

REFERENCES

1. J. F. Adams: Infinite loop spaces, Annals of Mathematical Studies, 90 Princeton University Press, Princeton, NJ (1978).
2. A. J. Berrick: An approach to algebraic K-Theory, Research Notes in Mathematics 56, Pitman Advanced Publishing Program, Boston (1982).
3. A. K. Bousfield and D. M. Kan: Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer, New York (1972).
4. T. Fisher: K-Theory of function rings, J. Pure Appl. Algebra 69 (1990), 33-50.
5. H. GILlet: Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981), $203-289$.
6. H. Glleet and D. Grayson: The loop space of the Q-construction, Ill. J. Math. 31 (1987), 574-597.
7. D. Grayson: Higher algebraic K-theory II [after D. Quillen], in Algebraic K-theory, Lecture Notes in Mathematics 551, M. R. Stein, Ed., Springer, New York (1976) pp. 217-240.
8. M. W. Hirsch: Differential topology, Springer, New York (1976).
9. R. Kadison and J. Ringrose: Fundamentals of the theory of operator algebras, Vol. 1. Elementary theory, Academic Press, Boston (1983).
10. M. Karoubi: Algèbres de Clifford et K-théorie, Ann. Sci. École Norm. Sup. 4 (1968), 161270.
11. M. Karoubl: K-theory an introduction, Grundleheren der mathematischen Wissenschaften 226, Springer, New York (1978).
12. S. Lang: Differential manifolds, Addison-Wesley, Rcading, MA (1962).
13. J. P. May: Simplicial objects in algebraic topology, The University of Chicago Press, Chicago (1967).
14. E. Michael: Convex structures and continuous sections, Canad. J. Math. 11 (1959), 556-575.
15. J. Milnor: Morse theory, Annals of Mathematical Studies, Princeton University Press, Princeton, NJ (1963).
16. J. Milnor: Introduction to algebraic K-theory, Annals of Mathematical Studies, Princeton University Press, Princeton NJ (1971).
17. R. Palais: Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16.
18. A. V. Prasolov: Algebraicheskaiya K-teoriya banakhovkh algebr, Dokl. Belo. SSR 28 (1984), 677-679.
19. D. Quillen: Higher algebraic K-theory I, Lecture Notes in Mathathematics 341, Springer, New York (1972).
20. G. SEGAL: Categories and cohomology theories, Topology 13 (1974), 293-312.
21. N. E. Steenrod: A convenient category of topological spaces, Mich. Math. J. 14 (1967), 133-152.
22. A. A. SusLin: On the K-theory of local fields, J. Pure Appl. Algebra 34 (1984), 301-318.
23. R. G. Swan: Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264-277.
24. R. Thomason: Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. $\mathbf{8 5}$ (1979), 91-109.
25. C. A. Weibel: Algebraic K-theory and the Adams e-invariant, Lecture Notes in Mathematics 1046, A. Bak, Ed., Springer, New York (1984), pp. 442-450.
26. G. Whitehead: Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer, New York (1978).

Instituto Superior Técnico,
Departamento de Mathemática,
Avenida Rovisco Pais,
1096 Lisboa Codex, Portugal

