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TOPOLOGY ON S-IS FOR BANACH ALGEBRAS 
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IN THIS note we show that Quillen’s S- ‘S-construction on the category of finitely generated projective modules 
over a Banach algebra A with identity has a topological enrichment S-‘StOr(A) and B(S-‘F’(A)) has the 
homotopy type of &A x BGL*“rA. By applying the singular complex functor, we obtain a first quadrant spectral 
E:,,(A) = R,8’*A(AP), where h(Ap) is the ring of continuous A-valued functions on Ap, that converges to 
K&I := x~+~(K~A x BGL’“PA) for p f q > 0. Copyright Q 1996 Elsevier Science Ltd 

0. INTRODUCTION 

Let A be a Banach algebra with identity. For p > 0 the topological K-theory of A is defined 
to be KpA:= rr,BGLtoPh, where GLtoPA is the colimit of finite-dimensional invertible 
matrices over A and BGLtoPA is its classifying space. Since the Grothendieck group &,A of 
A only depends on the algebraic structure of A, KFPA = rr,(K,,A x BGL’“PA) where KOA is 
given the discrete topology. On the other hand, the algebraic K-theory of A is defined to be 
K:lgA := n,(KOA x BGL6A+), where GL6A is the colimit of the discrete groups of finite- 
dimensional invertible matrices over A and ( - )’ is Quillen’s plus construction [2]. The 
map GL6A -+ GLtoPA induces a map 

KOA x BGL6A + -+ KoA x BGLtaPA (11 

of topological spaces and a map 

Ka:BA -P KPA, * > 0 

from the algebraic K-theory to the topological K-groups of A. 

(2) 

In this note we approach the topological and algebraic K-theory of A through Quillen’s 
S-“S-construction [7]. Recall that if 9 is the category of finitely generated (left) projective 
A-modules, then the homotopy groups of the classifying space of the category S-‘S(P) are 
the algebraic K-theory of A-we shall assume that most all categories are small. Like the 
topological enrichment GL”PA of GL6A, there is a topological enrichment S-‘S’“P(B) of 
the category S1S(9’). The central result of this note, Theorem 3.1, asserts 
KF*A z ~,S-‘Stop(S) and the forgetful functor 

s-ls(q + s-‘P(P) (3) 

induces the map in (2). This result is part of the folklore of group completions Cl]; however, 
the proof given does not deal with localization of homology groups. Instead we show that 
there is a continuous extension of the setting considered in [7] and the fibres of the 
continuous map BGL’OPA --* B(S- ‘Step(9)) are contractible; in fact these fibres can be 
identified with a realization of a simplicial model of frames in A”. The discerning feature of 
the functor in (3) is that it is the “identity,” whereas the map in (1) is induced by the 
“identity” and involves universal properties of H-spaces and the + -construction. 
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In Section 1 we extend Quillen’s Theorem A [19], which says that a functor with 
contractible fibres induces a homotopy equivalence of classifying spaces, to topological 
categories, and mention that Thomason’s homotopy colimit theorem [24] also has 
a topological extension. We topologize Quillen’s S- ‘S-construction in Section 3 after giving 
a Banach space analog of the Stiefel manifold of k-frames in [w”. 

In Section 4 we replace the topological category with the simplicial category 

[p] H S- ‘S’Op(~)(Ap). 

Using Karoubi’s extension [l l] of a theorem of Swan [23], which states that there is 
equivalence between the category of 8-fibre bundles over a compact space X and the 
category of finitely generated projective modules over the ring of continuous functions from 
X to A, we are able to identify the homotopy groups of the classifying space of 
S- ‘Stop with the algebraic K-theory of A(A”), where A(Ap) is the ring of continuous 
A-valued functions on the geometric p-simplex Ap. We then obtain a spectral sequence 

K;lgA(Ap) = E;,,(A) * K;& A 

whose edge homomorphism is the map in (2). If A = C(X) is the commutative Banach 
algebra of continuous @-valued functions on X, then 

K;lgA(AP) r @*(X x A”) @ [X, SU] 

E;, I (4 = 
i 

H’(X,Z)@[X,SU] ifp=O 

H’ _“(X, Z) if p > 0. 

Motivated by this observation we define the homotopy groups of the algebraic K-theory of 
A to be x,K:‘~A := EiJA). 

1. TOPOLOGICAL CATEGORIES 

The term topological category should be taken to mean a category in which each horn set 
is endowed with the structure of a compactly generated topological space and the usual 
structure maps are continuous. Let % and 9 be topological categories. A functor F : %? + 9 is 
called continuous if for each pair (A, B) of objects of %? the map F : Horn@, B) -+ Hom(F(A), 
F(B)) is continuous. Let Y be an object in 9. The comma category Y/F is not, in general, 
a topological category, however, it does have the structure of a category object (see [S, 
Section 71) in Top, the Cartesian closed category of compactly generated topological spaces. 
To be precise, the space of objects of Y/F is 

obj Y/F = u Horn&Y, F(X)) 
X 

and the space of arrows is 

arr Y/F = u Horn&Y, F(X,)) x Hom,(XO, X,). 
x0,x, 

Similarly one can define the category object F/Y. Note that the product of two topological 
spaces is given the compactly generated topology [21]. 

Given a category object g in Top, let N% denote the nerve of 5%‘. Recall that N% is 
a simplicial object in Top, and the classifying space of V is the geometric realization 
BV = 1 N%l of NW obtained from u,,A” x NV, by the relation (t, GI*X) N (a.& x) for all 
cr:[m] + [n], tEA” and ~EN%?~. 
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Let V be a topological category and X an object of %‘. Denote by Xl%’ the comma 
category X/F with F equal to the identity functor. Let p :X/V + X/W be the continuous 

functors given by p(f) = idx. 

LEMMA 1.1. Let %? be a topological category, and let X be an object in V. There is 
a continuous natural transformation n : p 2, 1. In particular the classifying space B(X/%) is 
contractible. 

Proof: Let 9 : obj X/V + arr X/V be the map given by 

(f:X-+X,)t-+(id:X+X,f:X+Xo). 

Clearly q is continuous. Let (f: X +X0, f0 :X0 -XI) be an arrow in Xl%?. Since the 
following diagram is commutative. 

(id:X+X) + (f:X-+X,) 

(id:X+X) + (foof:X -X1) 

4 is a natural transformation. 

Remark. A similar proof that 

Quillen’s Theorem A. Recall 

cl 

the space B(%?/X) is also contractible for every X in %?. 

that a bisimplicial space X is a functor ([p], [q]) H 
X,,, stop. One may view X as a family of spaces in the first quadrant of the plane together 
with horizontal and vertical face and degeneracy operators that commute and satisfy the 
familiar identities [13]. Given a bisimplicial space X, there are natural homeomorphisms 

ICPI H I-G.ll = IdkXl g IId ++ ILJ~ where diagX is the simplicial space 

[PI - x,,,. Following Segal [20] we call the simplicial space X good if all the degeneracy 

operators Si : X, + X, + 1 are closed cofibrations. Good simplicial spaces have the property 
that a simplicial map which is termwise a homotopy equivalence determines a homotopy 
equivalence of the corresponding geometric realizations. 

The following theorem is a version of Quillen’s Theorem A [19] for topological 
categories. We shall follow his proof with little change. 

THEOREM 1.2. Let V and 9 be topological categories, with the property that the inclusion 
of the point *x H lx~Hom(X, X) are cofibrations for all objects of $7 and 9, and let 
F : %? -+ 9 be a continuous functor. If the classifying space B(Y/F) has the homotopy type of 
a point for each object Y in 9, then 

is a homotopy equivalence. 

Proof: Let S(F) be the category object in Top whose space of objects is 

obj S(F) = u Hom,(Y, F(X)) 
X-Y 

and whose space of arrows arr S(F) is 

u Hom,(Y,, I’,) x Hom9(Yo, F(Xo)) x Hom4Xo, XI). 
y.. xc 
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A triple 

(90:Y1~Yo,Y:Yo~F(Xo),fo:Xo-*X1) 

is an arrow from g: Y0 + F(X,) to F(f,)og 0 go: Y1 + F(X,). Define rci :S(F) -+ gap by 
sending (g : Y + F(X); X) to Y, and define rcZ : S(F) + V by sending the same object to X. 

Let T(F) be the bisimplicial space whose (p, q)-simplices are of the form 

(Y,+ ... --+ Y() -F(X,), x0 + ... -+x&J. 

T(F),,, is topologized as the disjoint union 

u Hom,(Y,, Y,- r) x ... x Hom,(X,_ i, X,). 
x.. r, 

Let N%” be the bisimplicial space equal to the nerve of % in the horizontal direction and 
constant in the vertical direction. The obvious projections induce a map 

T(F) + BW (4) 

of bisimplicial spaces. Since the nerve of S(F) is equal to diagonal of T(F), the realization of 
the map in (4) is equal to Brc2. By first realizing (4) with respect to the vertical direction we 

get a map 

F B(g/F(X,)) x Hom(X,, X,_ r) x ... x Hom(X,, X0) + NW:, 

of good simplicial spaces. By the previous lemma, B(g/F(X,)) IS contractible. It follows that 
Brc2 is a homotopy equivalence. Similarly there is a map 

T(F) -+ NWph (5) 

of bisimplicial spaces, where Ns Oph is constant in the horizontal direction; furthermore, the 
realization of this map is Brtr . By first realizing (5) with respect to the horizontal direction 

we get a map 

u Hom(Y,, Y,) x ... x Hom(Y,_ i , Y,) x B( Y,/F) -+ BgoP 
r, 

of good simplicial spaces. Since B(Y,/F) is contractible, Bni is a homotopy equivalence. 
Piecing these maps together we obtain the following commutative diagram 

Ba, 
BgoP zBS(F)- B%? 

1 
id 1 p(F) 

Bg”P z BS(i&? B9 

where the middle map is induced by the continuous functor S(F) -+ S(1,) 

(Y, X; g: Y -+ F(X)) H (Y, F(X); g: Y -+ F(X)). 

Since all the horizontal maps are homotopy equivalences, it follows that BF is a homotopy 
equivalence. cl 

Grothendieck construction. Let Cat be the category of small categories and functors. 
Suppose F : J + Cat is a small diagram. By composing F with the nerve functor N, we 
obtain a small diagram NF of simplicial sets. Thomason [24] has shown that the homotopy 
colimit [3] of NF is, up to weak equivalence, the nerve of JfF, the Grothendieck 
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construction on F. JJF is the category whose objects are the pairs (j, X), wherej is an object 

in J and X is an object in F(J). An arrow from (j, X) to (k, Y) consists of a pair (a, 4), where 

c( :j + k is an arrow in J and 4 : F(a)(X) + Y is an arrow in F(k). 
If F is a small diagram of topological categories, composition with the classifying space 

functor B gives a small diagram j H BF(j) of topological spaces. The simplicial replace- 
ment functor II, associates to the J-indexed diagram j H BF(j) the simplicial space 
[p] H Ll,BF, where 

II,BF = u BF(j,). 
j,-+ dj, 

The face and degeneracy maps dj, sj for j > 0 are induced by the identity BF( j,) + BF( j,) 
and d,,: BF(j,) -+ BF( jr) is the map associated to j, -+ j,. The homotopy colimit of the 
diagram j I-+ BF( j) is the geometric realization of II * BF. 

THEOREM 1.3. Let F: J + CattoP be a small diagram of topological categories. Suppose the 
inclusion of the point corresponding to the identity map, lx E Hom,u,(X, X) is a cojibrationfor 
each object X in each F(j), jE J. Then there is a natural homotopy equivalence 

q:holimBF+B(JlF). 
+ 

Proof: One can mimic Thomason’s proof [24, Theorem 1.23. cl 

2. FRAMES IN BANACH SPACES 

Let k denote either the field of real or complex numbers. Recall that a Banach space is 
a complete normed k-vector space. Given two Banach spaces E and F the product norm on 
E x F is given by 1 (e,f) 1 = max { 1 e 1, If I}. Recall that a k-linear map T : E + F is continuous 
if and only if there is a positive constant C such that I T(e) I < C I e I for all e E E. Let L(E, F) 
be the k-vector space of continuous k-linear maps from E to F. The operator norm on 
L(E, F) is given by 

It is well known (see [9]) that L(E, F) is a Banach space and I T 0 S I < I T I I S j for all 
T, SEL(E, F). 

A k-algebra A with unit I is a Banach algebra if it is a Banach space, 11 I = 1 and 
I 1. p 1 6 11). I p I for all 1, p E A. If E is a Banach space then L(E, E) is a Banach algebra, and 
the k-algebra k(X) of continuous k-valued functions defined on a compact space X with 

norm If I = sup{ If Cdl: xeX) is a Banach algebra. 
Let A be a Banach algebra, and let S(A) be the category of finitely generated projective 

(left) A-modules and A-linear maps. Given P E z?‘(A) choose a surjective map cp : A” + P, and 
give P the quotient topology. 

LEMMA 2.1. The topology on P is independent of the choice of surjective map cp above. 

Proof: If $ : A” + P is a surjective map let P, be the space with the quotient topology 
induced by $. Given 4 and $ as above there exists a A-linear map T : A” -+ A” such that 
$ = 4 0 T. In particular the identity map P, + P, is continuous. Since there also exists 
a A-linear map S : A” + A” such that 4 = I,+ 0 S, the two spaces P, and P, have the same 
topology. 0 
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COROLLARY 2.2. Let P, Q be modules in 9(A). Then P and Q are Banach spaces, and 
Hom(P, Q) is a Banach space with the operator norm. 

Proof: To prove that P is a Banach space it is enough to show that P is a closed linear 
subspace of some Banach space. Choose a surjective map 4 : A” + P, and let p : P + A” be 
a section of (;h. Then P is isomorphic to the image of p which is also equal to the kernel of the 
map (I - p 0 4): A” -+ A”. Since a A-linear map is continuous, the result follows. 

We shall prove that Hom(P, Q) is a closed linear subspace of L(P, Q). Let (&) 

be a Cauchy sequence in Hom(P, Q). Since L(P, Q) is a Banach algebra lim &, exists 
in L(P, Q), and it is given by mapping PC P to lim &(p). Hence it is enough to show 
that lim 4”(a 0 p) = A” - lim #,&J), I E A. This follows from I(& - 4,) (As p) / & 

I~l~lbn - #nl*IPI. cl 

Denote the Banaeh space of A-continuous maps from P to Q by Hom(P, Q), and the 
topological subspace of automorphisms of P by Aut(P). 

COROLLARY 2.3. The set Aut(P) is open in Hom(P, P). 

Proof: Let I be the identity map of P, and put B,(O) equal to the open subset 
(~0: P+ P:lql < 11. Notice that if q~Bt(0) then the sequence 

f+cp+@+.. 

converges to (I - cp)- ‘. Hence the open ball B,(I) = (I - cp: q~Bi(0)3 c Aut(P) is a neigh- 
borhood of I. Since composition is continuous the open ball B1 (I) can be translated to an 
open neighborhood of any t,& E Aut(P). cl 

Banach rnan~~d~. The natural inclusion P -+ P 8 Q induces an injective map 

AutfP) + Aut(P 0 Q). In order to understand the coset space 

Aut(P 0 Q)/Aut(P) 

we shall introduce the concept of a Banach manifold. Roughly speaking a Banach manifold 
is a topological space that is locally a Banach space. To be more specific we give the 
following (cf. [ 121) 

Dejnition 2.4. Let X be a topological HausdorlI space. 
(1) A chart for X is a pair (U, cp) where U is an open subset of X and cp is a homeomor- 

phism of U onto an open subset q(U) of some Banach space. 

(2) An atlas for X is a collection (Vi, pi), ill of charts of X such that X = uUi and 
pi(UinUj) is an open subset of Cpi(Ui) and 

is an isomorphism for each pair of indices i, j. 

A topological space that admits an atlas is called a manifold. In order to rule 
out pathological examples of manifolds we shall assume that all manifolds are paracom- 
pact with a countable base; in particular all manifolds are metrizable and have the 
homotopy type of CW-complexes [17]. By a Lie group we mean a manifold with a group 
structure. 
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LEMMA 2.5. Let H be a closed subgroup of the Lie group G. Then the natural projection 
71: G --t G/H is a Serre jibration. 

Proof: This follows from [14, 7.2 and 8.41. 0 

Stiefel manifolds. Fix a Banach algebra A. Let 9 = p(h), and for P E $7’ let g,,(P) be the 
full subcategory of the groupoid Iso 9 of isomorphisms in B whose objects are A E 9 such 
that P 0 A g A”. Consider the space 

V,(P) = lim Iso,(P 0 A, A”). 

If 4 E Iso,(P @ A, A”) let F(4): Iso,(P 0 A, A”) + Aut(P 0 A) be F(4)($) = 4-l 0 $. If 
q,Y,,(P) is a skeletal subcategory of g’,(P) then V,(P) is isomorphic to 

u Aut(P 0 A)/Aut(O @ A). 
AE~,.+‘~(P) 

The topological space V,(P) is an infinite-dimensional analog of the finite-dimensional 
Stiefel manifold of p-frames in k”. 

The map Iso,(P 0 A, A”) + Iso,(P 0 A 0 A, A”+l) given by 4 H 4 @ I induces a map 
V,(P) L V,, 1(P). Let V,(P) be the colimit of the sequence 

... -+ V”(P) & T/,+1(P)+ . . . . (6) 

PROPOSITION 2.6. The space V,(P) has the homotopy of a point. 

Proof: First observe that z: V,(P) + I/,+ 1 (P) is a closed cofibration [17]. Thus V,(P) 
has the homotopy of a CW-complex (cf. [15, Appendix]), and it suffices to show that V,(P) 
has the weak homotopy of a point. 

Suppose &, @1 E V,(P), then there is n such that &, $1 E V,(P). We may view an 
element 4 E V,(P) as monomorphisms from P to A”. Indeed Iso,(P 0 A, A”)/Aut(A) is 
a torsor under the contractible Banach Lie group Hom(A, P), and so V,(P) + Mono(P, A”) 
is Serre fibration and a homotopy equivalence. Define a family of monomorphisms 
@,:P+A”@A”forOdtdl by 

@t(P) = (~‘MP) + (1 - Q’&(P), Q - O.dkdP)). 

The monomorphism 0 determines a path from & and 41 in V,,(P) and shows that V,(P) is 
path connected. 

Now consider an element x E 7tq( V,(P), * ), where *E Iso,(P @ A, A”)/Aut(A) is some 
fixed base point and 4 > 0. We may represent x by a mapf: Sq + V,(P) for any continuous 
map Sq -+ V,(P) factors as Sq + V,(P) + V,(P) by [21, Section 91 for some n. The fibration 
Iso,,(P 0 A, A”) 1: Iso,(P 0 A, A”)/Aut(A) induces an isomorphism (cf. [26, Ch. IV, The- 
orem 8.51) 

p* : xJIso&P 0 A, A”), Aut(A)) + QIso8(P 0 A, A”)/Aut(A)) 

and by fixing an isomorphism P 0 A g A”, we may identify Iso,?(P @ A, A”) with 
Aut(P @ A). 

Given x E n,(Aut(P 0 A), Aut(0 0 A)) is image in 

n,(Aut(P @ A @ P @ A), Aut(0 @J A @I P @ A)) 
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induced by the map S H S @ I, is zero since the homotopy of maps 
Aut(P @ A) -+ Aut(P @ A 0 P @ A) given by 

H(t, S) = 

for SE Aut(P @ A), carries Aut(0 @ A) to Aut(0 @ A 0 0 @ A) for all t. 0 

3. QUILLEN’S Sm ‘S-CONSTRUCTION 

Recall that Quillen’s S- 'S-construction on the category C? is the category whose objects 

are pairs (A, B) where A, Beg’. A morphism from (A,, B,) to (AZ, B2) is an equivalence 
class of pairs (J; S) where 

f:(A, 0 S, B1 GS)-+(A2, B2) 

is a morphism in Iso 9’ and (f; S) N (f’, S’) if there exists an isomorphism LX : S -+ S’ with 
f=f’(r @ a, I @ IX) (cf. [7]). In particular 

where p(A, B) is the full subcategory of the groupoid Iso 9 whose objects are SEY such 
that A1 0 S g A2 and B1 0 S E Bz. In [7], [6] it was proved that 

niB(S- ‘S(~)) = K,“‘“(A). 

Topological S- ‘S. From the discussion of the previous section on Stiefel manifolds it 
follows that S’S(Y) has a topological enrichment which we denote as S-‘Stop(~). Let * be 
the base point in B(S-‘S(Y)) determined by the pair (0,O). To simplify notation we denote 
S’S(g) and S-‘Stop(!?) by S’S and SIStop, respectively. 

THEOREM 3.1. The classifying space B(S ‘Stop) has the homotopy type of 

K,,(A) x BGLtoPA 

and ~iB(S- ‘Stop) = KyPA. Furthermore the obvious functor 

s- ‘S + s- lpP 

induces the standard map KfrgA + KypA. 

Proof: The functor 

given by sending the pair ((A,, A,), (B,,, B,)) to (A,, 0 B,,, Al 0 B,) induces an associative 
H-space structure on B(S ‘S). Since + is clearly continuous, the classifying space 
B(S-‘Stop) is also an associative H-space. Moreover, 

rc,,B(S- ‘Stop) = noB(S- ‘S) = KOA 
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is a group. Since the H-space B(S-‘Stop) admits a homotopy inverse [6, Lemma 3.21, there 

is a homotopy equivalence 

B(S- ‘Stop) z K,,(A) x B(S- ‘SFp) 

where B(S-‘S~P) is the connected component of the base point and S-‘So is the full 
subcategory of pair (A,, A,) for which Al and A2 are stably isomorphic. 

Let S- ‘Szp be the full subcategory of pairs (B,, B2) with B1 z BZ, and let I denote the 
inclusion functor. Then B(z) is a homotopy equivalence, and it is enough to show that 
B(S ‘Sp) and BGLtoPA have the same homotopy type. To see that z determines 
a homotopy equivalence it suffices by Theorem 1.2 to show that the classifying space of the 
comma category (A,, A,)/1 is contractible. If (A,, A,) is an object in S- ‘Szp, then there 

exists P such that Al 0 P g A2 0 P. Composition with the arrow (P, 1,1): 

(A,, A,) -+ (A, @ P, A2 0 P), determines a continuous functor 

(A, 0 P, A2 0 P)lr + (A,, M/l. 

Since (A, 0 P, A2 0 P)/l has an initial object, its classifying space is contractible. There is 
a continuous functor from (A,, &)/I to (A, @ P, A2 0 P)/l sending (C, cl, cl): 
(A,, AZ) -+ (Bl, B2) to (C, z*cl, z*c,): (Al @ P, A2 @ P) + (Ill @ P, B2 @ P), where r*ci is 
the composite 

The composition y of the continuous functors (A,, A&/E + (A, @ P, A2 @ P)/t -+ (A,, A# 

sends (C, ci , c2) to the diagonal arrow in the following commutative diagram. 

(C.C,.C,) 

(Al,AA - (B, 9 Bz) 

The upper triangle shows that there is a continuous natural transformation from the 
identity functor to y. Hence B((A,, A )/ ) 2 1 IS a homotopy retract of the contractible space 

B((A, 0 P, A2 0 P)/t). Thus B(E) is a homotopy equivalence. 
Let GLtPA: N + CattoP be the diagram of topological categories that assigns to n the 

groupoid GLpPA. Denote the unique object of GLzPA by A”, and to simplify notation let 
n represent the object (n, A”) in the Grothendieck construction NfGL’,“PA of GL’,“PA. Let 

F:NJGL’,“PA+S-‘S; 

be the functor that sends n to the pair (A”, A”) and the arrow (m d n, T) to 

((I, T), A”-m):(Am, Am) --t (A”, A”)). 

Clearly F is well defined and continuous. Now B(N JGL’,“PA) has the homotopy type of the 
colimit 

... -+ B(GLrPA) + B(GL;fIA) + 1.. (7) 

by Theorem 1.3. Since each map in the sequence (3.7) is a cofibration and for every n the 
space B(GLzPA) has the homotopy type of a CW-complex, it follows that the classifying 
space of N fGL:“PA has the homotopy type of BGL’OPA (cf. [3, Ch. XII, Section 31). 



896 Michael Paluch 

Let A = (A,, A,) be an object in S-“Szp. By the following lemma, V,(A,) and B(A/F) 
have the same homotopy type. Since V,(A,) is contractible by Proposition 2.6, it follows 
that 23(4/F) has the homotopy type of a point. Thus BF is a homotopy equivalence by 
Theorem 1.2. 

In the discrete case the functor F is essentially the functor defined in [7, p. 2241, where it 
was proved that BF is acyclic (cf. [6, Section 4]). In particular there is a commutative 

diagram 

NfGL;h - s- ‘s- 0 

I 1 
kJfGLtPA - S-‘S’Tpp 

and it follows that the map in (2) is equivalent to 7liB(S- ‘S) + niB(S- 1Stop). 

LEMMA 3.2. B(A/F) and V,(A,) have the same homotopy type. 

Proof. Since the sequence (6) is a sequence of closed cofibrations, Irm(A1) is the 

0 

homotopy colimit of the diagram n t-+ V,(A,). Hence it is enough to show that B(A/F) and 
1 LI,V(A1)I have the same homotopy type. 

For [p] E A we have 

NW/F), = u Horns-&f, F(no)) x GLtPA x ..+ GLYA. 
n, $ .‘( $“, 

Composition in A/F, when restricted to the first factor, is induced by the standard inclusion, 
so the projection map 

induces a continuous simplicial map n: : N(A/F) + LI * V(A,). 
Since A =(A,,A,)ES- SO , ’ Op there exists an isomorphism a:Az + Ai. Using a we 

define a continuous map a* : Iso,&Ar @ P, A”) + Iso,(A, @ P, A”) x Iso,(A, @ P, A”) by 
a*(q) = (cp, cp 0 a). The map a* is stable in the sense that 

Iso&ll 0 P, A”) ---f Iso,p(Ai @ P, A”) 

I 1 

Iso,(Al @I’ @ Ak, An+k) -----+ IsoT(Ai @ P @ Akp A’+r 

commutes for non-negative k and i = 1,2. Thus a* determines a continuous simplicial map 
z,:I.I~V(A,)+N(A/‘F). 

The composition R 0 1, is the identity, and there is a simplicial homotopy equivalence 
from the identity to l,o z defined as follows. If (P, cpr , cp2) : (A,, A,) -+ (A”, A”) is an arrow in 
S-‘SF, then the isomorphism qn,(a @ lp)cp;’ :A” -+ A” is independent of the choice of 
representatives P, ql, q2. Now given a point ((P, (pi, cp2) : A -+ F(no), T1, . . . , TP) in 
N(A/F), with TiEGLyA. Let OO = cpi(a @ lp)q;‘, and define 
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for i = 1, . . . ,p. With these isomorphisms we obtain a commutative diagram 

A _‘“, 
F(T,) F(T,) FV,) 

F(p)) --+ F(n1) -+ ..’ -+ F(n,) 

II 1 F(@,) I F(@,) I F (0,) 

1. ‘n(v) F(r) F(I) F(r) 
A------+ F(nO) -+ F(nJ -+ ... -+ F(n,) 

that determines a simplicial homotopy equivalence from the identity to r, 0 7r. cl 

4. HOMOTOPY GROUPS OF ALGEBRAIC K-THEORY GROUPS 

Let s.Sets denote the category of simplicial. In this section we utilize the adjoint 
functors [ 13, Section 161 

I.1 

s.Sets - -Top 
Sing 

to convert simplicial spaces to bisimplicial sets. Recall the singular complex functor Sing 
carries a topological space X to the simplicial set p ++ Sing,X = Hom(AP, X), and the 
counit 1 Sing X 1 -+ X is a weak homotopy equivalence [13, Section 163. 

Let PT(AP) denote the additive category of finitely generated projective (left) A-modules 
whose morphisms are A-linear transformations parametrized by Ap. The subscript T is used 
to suggest an identification of P,(X) with the category of trivial P-fibre bundles over 
a compact space X (cf. [lo, p. 1791). 

The underlying simplicial set of N(S ‘s”“) can be viewed as Sing,N(S-‘S’“P), similarly 
N(SIS(PPT(AP))) = Sing,S-‘PP. Since N(SIStoP), has the homotopy type of CW-com- 
plex the counit 

ISing N(S-‘S’“P),l --PN(S-~S“‘~)~ 

is a homotopy equivalence; moreover, N(S- ‘Stop) and 4 H 1 Sing N(S- ’ S1Op)q 1 are a good 
simplicial spaces. Thus I Sing N(S- ‘Stop) I is homotopy equivalent to B(S- ‘Stop). 

LEMMA 4. I. There is an isomorphism 

Proof Since Ap is contractible every locally trivial P-fibre bundle over AJ’ is trivial (cf. 
[S, Ch. 4, Section 21). Using Swan’s proof [23] of the equivalence between the category of 
locally trivial vector bundles over a compact space and the category of finitely generated 
projective modules over the ring of continuous functions, one sees that PT(AP) is equivalent 
to the category P(h(AP)), of finitely generated projective modules over the ring of continu- 
ous A-valued functions on Ap. Since the S- ‘S-construction preserves equivalences, the 
lemma follows. 0 

THEOREM 4.2. Let A be a Banach algebra. There is a first quadrant spectral sequence 

K,algA(Ap) = E;,,(A) =+ K;&A. 
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Proof Let X, = N(S-rS(Yr(AP))). S ince this space has the structure of an H-space and 
rrOIXpl is a group [6, Lemma 6.21 asserts that there is a spectral sequence 

Ej,q = ~p(Cnl H nq X”) => $+qlXI. 

Now npXn = KilgA(A”) by the previous lemma. Whence the E2-term is the homology of the 
chain complex associated to the simplicial abelian group [p] H KtlgA(Ap), see [13, Sec- 
tion 221. 0 

The natural simplicial map Sing,N(S- ‘Stop(~)) --f diag Sing N(S- ‘St““(Y)) induces the 
map in (2) and we obtain 

COROLLARY 4.3. The map KilpA --f KTpA is the edge homomorphism 

K”‘gA+ . . . 4 -E$&-+K~A 

of the spectral sequence in (8). 

Homotopy groups of algebraic K-theory. Since Ap is a compact topological space, each 
algebra A(A”) is a Banach algebra. A result of Milnor [16, Corollary 7.21 states that if A is 
commutative then 

K;lgA(AP) = A* @ rc,,SLtoPA(AP). 

Since AP is contractible it follows that n,SL’“PA(A*) = nOSLtoPA 

-&%A\) = 
G,A*@o~SL~~“A if p=O 
7c A 

P 
if p > 0. 

Thinking of the simplicial abelian groups K$‘A(A*) as coming from the singular complex 
of some topological structure on K,“lgA we propose 

Dejinition 4.4. Let A be a Banach algebra. The homotopy groups of Kilg A are 

II,K,~‘~A := E;,,(A). 

Let X be a compact topological space. The complex topological K-theory of X in 
negative degrees can be calculated as KeqX = KY@(X). Define the higher algebraic 
K-theory of X to be 

K,algX := K;‘g@(X), q 3 0. 

An immediate consequence of Swan’s theory is KtlgX = KFPX, and an elementary calcu- 
lation yields Q,K;‘~X = KpPX. Since @ * is an Eilengerg-Mac Lane space of type (1, Z), we 
obtain for each p > 0 n,K;‘gX g H’ -“(X, H), and the associated filtration on KyPX 
reduces to the short exact sequence 

0 + ~Q,K~“‘~X + KyPX + ~c’K~‘~X + 0. 

To proceed further we consider K-theory with finite coefficients. Prasolov [18] and 
Fischer [4] independently have shown that the algebraic K-theory and the topological 
K-theory of X with finite coefficients are the same. 

PROPOSITION 4.5. For each q > 0 there is a natural short exact sequence 

0 + K;lgX + K;lg(X x A*) + -z(q) + 0, 
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where .2&(q) is a simplicial Q-vector space and 
simplicial abelian group. 
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KfgX is given the structure of a discrete 
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