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A b s t r a c t - - E x i s t i n g  work on the representation of operators in one-dimensional, compactly-sup- 
ported, orthonormal wavelet bases is extended to two dimensions. The nonstandard form of the 
representation of operators is given in separable two-dimensional, periodic, orthonormal wavelet bases. 
The matrix representation of the partial-differential operators cgx and 0v are constructed and a 
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is derived, where g is an analytic function. Q 2004 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The popularity of wavelets may be attributed, to their ability to resolve phenomena within 
different scales of magnitude. For example, a signal may have both high- and low-frequency 
content, and the proper and efficient representation of such contrasting behavior is a problem to 
which wavelets are most amenable. 

Although the theory of wavelets has been developed relatively recently (see, e.g., [1 5]), its 
historical origins date back to the beginning of the 20 th century, when Haar [6] constructed the 
first known wavelets. The important concept of a multiresolution analysis, where the "smooth- 
heSS" of a function is separated from the "details", was introduced by Meyer [7] and Mallat [2]. 
Another important concept is the wavelet transform, which may be continuous or discrete (see, 
e.g., [8,9]). 

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada. 

0898-1221/04/$ - see front matter (~) 2004 Elsevier Ltd. All rights reserved. Typeset by ~42v~-TEX 
doi: 10.1016/j.camwa.2003.02.009 



1012 M.A. HAJJI et al. 

Wavelets have found numerous applications in signal processing. To name only a few, Kronland- 
Martinet, Morlet and Grossmann [10] have employed wavelet transforms in the analysis of sound 
patterns, whereas Antoni et al. [11], Devore, Jawerth and Lucier [12], and Froment and Mal- 
lat [13] have applied wavelets to image processing. Wavelets have even permeated the area of 
fractals where, among other applications, fractal-wavelet transforms have been developed for 
image compression (see, e.g., [14]). 

Wavelets have been employed in the numerical solution of various types of differential equations. 
For example, Engquist, Osher and Zhong [15] have employed fast, wavelet-based algorithms for 
the solution of linear evolution equations, Jaffard [16] has employed wavelet methods for the fast 
resolution of elliptic problems, and Xu and Shann [17] have employed wavelet-based Galerkin 
methods to solve two-point boundary-value problems. 

Wavelets have also found applications in the representation of differential operators. The 
representation of operators in compactly-supported, one-dimensional wavelet bases, as well as the 
construction of their corresponding matrices, has been considered by Beylkin [18] (see also [19]). 
The foregoing results have been employed by Beylkin and Keiser [20] in the numerical solution 
of evolution equation in one temporal and one spatial dimension. 

In this paper, we address the two-spatial dimension case and consider the representation of oper- 
ators, in particular linear differential operators, in two-dimensional compactly supported wavelet 
bases. This work is an important generalization of that of Beylkin. Periodized Daubechies' 
wavelets are used in the construction of the matrices representing the linear differential opera- 
tors. The linear differential operators are assumed to be functions of the operators 0, and Oy, 
i.e., L = 9(02, 0y), where g is an analytic function. 

The differential operators 0~ and Oy are first considered separately. Due to the periodicity of 
the wavelets, the matrices of such operators admit special structures, which are then exploited 
to derive the matrix representation of the more general differential operator L = g(Oz, Oy). 

This paper is organized as follows. In Section 2, we review "multiresolution analysis" of both 
L2(R) and L2(R2). In Section 3, we give the definitions of the standard and nonstandard forms 
of the representation of operators in a wavelet multiresolution analysis. In Section 4, we discuss 
the construction of the matrix representation of the nonstandard form representation of a general 
linear operator T, while in Section 5 we construct the matrices for the cases of the differential 
operators 02 and 0 u. Section 6 is devoted to the derivation of a closed form formula for the matrix 
representation of a general differential operator g(O~, Oy). Finally, in Section 7, we conclude with 
some remarks and future research directions. 

2. M U L T I R E S O L U T I O N  A N A L Y S I S  A N D  W A V E L E T  B A S E S  

In this section, we review multiresolution analysis and wavelet bases of both L 2 (R) and L 2 (R2). 
In Section 2.1, we review multiresolution analysis of L 2 (R) and Daubechies compactly-supported 
wavelets. In Section 2.2, we consider the two-dimensional case. 

2.1. One-Dimensional Multiresolution Analysis 

A multiresolution analysis (1-D MRA) of L2(R) is defined as an increasing sequence of closed 
subspaces Vj C L2(R), j E Z, Z = {0, 4-1, ±2 , . . .  }, 

{0} C ' ' '  C V_2 C V-1 C V0 C Vl C V2 C . . .  C L2(R), (1) 

with the following properties: 

(P1) [.Jjez lZj is dense in L2(R) and ~ j e z  Vj = {0}. 
(P2) f(x) e Vj ~ f(2x) e Vj+I, for all j C Z. 
(P3) f(x) e Vj ~ f (x  - 2-Jk) • Vj., for all k • Z. 
(Pd) There exists a function ¢(x) • V0, with nonvanishing integral, such that the set {¢0,}(x) = 

¢(x - k), k • Z} is an orthonormal basis of Vo. 
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We have abused notation here, for the sake of brevity. For example, (P2) means that f E 

Vj ¢==> g E Vj+I, where g(x) = f(2x). The function ¢(x) in (P4) is called the scaling function 
associated with the multiresolution analysis. It  should be mentioned that  the orthonormality of 
the basis functions in (P4) is not a strict requirement. In fact, the multiresolution analysis is also 
defined with the set {¢0,a(x) = ¢(x - k), k E Z} being a mere Riesz basis of I10. 

Let us make some observations concerning this definition. Since ¢(x) E I70 C V1, there exists 
a sequence, {ha, k C Z}, such that 

~(~) : ~ ha¢l,a(~) : 4 ~  h~,(2~ - k). 
a k 

(2) 

This functional equation goes by several different names: the dilation equation, the two-scale 
difference equation, or the refinement equation. We shall refer to it by the latter name. It also 
follows immediately that  the collection of functions {¢j,a, k E Z} with 

Cj,a(~) : 2J/2¢ (2ix - k), k e z,  (3) 

constitutes an orthonormal basis of Yj. 
The scaling function ¢ is, under general conditions, uniquely defined by its refinement equa- 

tion (2) and the normalization, 

j/_~ ¢ ( x ) =  (4) dx 1. 
o o  

It is important to note that in many cases no explicit expression for ¢ is available. In many 
applications, we never need the scaling function itself; instead we often work directly with the 
coefficients hk. 

The spaces Vj are called the approximation spaces and are used to approximate general func- 
tions. This is done by defining appropriate projections onto these spaces. Associated with the 
spaces Vj are "detail" spaces defined as follows. Let Wj denote the orthogonal complement of Vj 
in Vj+I, i.e., a space that satisfies 

5+1 : E • wj. 

The spaces Wj contain the detail information needed to go from an approximation at resolution j 
to an approximation at resolution j + 1. Consequently, 

O wj : L 2(R). 
J 

A wavelet is a function ¢ such that  the collection of functions {¢(x - k), k E Z} constitutes 
an orthonormal basis of W0. The collection of wavelet functions {¢j,a, j, k G Z} is then an 
orthonormal basis of L2(R). The definition of Cj,a is similar to the one of Cj,a, that is, Cj,k(X) = 
2J/2¢(2Jx -- k). The wavelet ¢ satisfies an equation similar to that  of the scaling function ¢, 

¢(z) = v ~ g a ¢ ( 2 ~  - k), 
k 

where the coefficients gk are given by 

gk = (--1)kh-k+l. 

The wavelet bases discussed above consist of functions that are supported on the entire real 
line. However, in most applications, it is desirable and sometimes necessary to work with wavelets 
supported in a compact subset of the real line. The most popular compactly-supported wavelets 
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are the ones constructed by Daubechies [4]. 
refinement equation 

L - 1  

¢(~) : vq ~ h~¢(2~ - k), 
k=O 

and the wavelet function satisfies 

Daubechies' scaling function satisfies the finite 

(5) 

L - 1  

¢(z) = , 4  ~ g~¢(2~ - k), (6) 
k = 0  

where the coefficients gk are given in terms of hk by 

gk-=(--1)khL_k_l, k=O, 1 ,2 , . . . ,L -1 .  

Both the scaling function ¢ and the wavelet function ¢ have support in [0, L - 1]. 
Employing the refinement equations satisfied by ¢ and ¢, namely equations (5) and (6), and the 

definitions of Cj,k and Cj,k, we find that the scaling functions Cj,k and the wavelet functions Cj,k 
satisfy 

L - 1  

Cj,k(x) = Z h,~¢j+l,,~+2k(X), (7) 
m = 0  

L - 1  

Cj,k(x) = ~ gmCj+l,~+2k(x). (s) 
r n = 0  

One of the properties of Daubechies wavelets is that the scaling function satisfying (5), where 
L = 2M, has Mth-order approximation, in the sense that any polynomial of degree less than or 
equal to M - 1 can be expressed as a linear combination of integral translates of ¢(x), i.e., for 
any polynomial Pr of degree r < M - 1, there exist coefficients ck such that 

Pr(x) = ~ c~¢(x - k). 
k 

This approximation property translates into the wavelet function ¢ having M vanishing moments, 
i.e., 

/ x ~ ¢ ( ~ )  ~ = 0 , 1 , 2 , . . . , -  ds O, M 1. (9) 

It is important to note here that the higher the number of vanishing moments of ¢, the better 
the approximation is. However, larger M implies larger L = 2M, that is, longer low- and high- 
pass filters hk and gk, respectively. 

The next section discusses the two-dimensional multiresolution analysis. 

2.2. Two-Dimensional Multiresolution Analysis 

There are two ways to construct two-dimensional wavelet bases. An easy and the most common 
method is by building an L2(R 2) multiresolution analysis which is obtained from the tensor 
product of a multiresolution analysis of L2(R). This leads to separable wavelet bases. A more 
general method is by extending the concept of multiresolution analysis to two dimensions, which 
leads to inseparable bidimensional wavelet bases [21,22]. In this section, we review the tensor 
product technique for the construction of separable wavelet bases. 

Consider a one-dimensional multiresolution analysis as defined in the previous section, 

{o} c . - .  c v_2 c v_~ c Vo c v~ c v~ c . . .  c L2(R), (10) 



Representation of Differential Operators 1015 

and define the spaces Vj, j E Z, by 

v~ = 5 .vj = {F(~,y)  ] F (x ,y )  = / ( ~ ) g ( y ) ,  f , g  e vj}. ( n )  

Clearly, the subspaces Vj form a "separable" multiresolution analysis of L 2 (R2), that is, we have 
an increasing sequence of linear subspaces of L2(R2), 

{0} C . - .  C V-2 C V-1 C Vo C V1 C V2 C . . .  C L 2 (R2), (12) 

satisfying 

(1) A ~ z  v j  = {0}, Uj~z  v j  = L~(R2), 
(2) f (x ,  y) e Vy +:::# f(2x,  2y) e Vy+l, 
(3) f ( x , y )  E Vy ¢===> f ( z -  2 - J k l , y -  2-Jk2) E Vj, for all hi,k2 E Z. 

The scaling function associated with this L2(R 2) multiresolution analysis is then given by 

• (x, y) = ¢(x)¢(y), (13) 

where ¢(x) is the scaling function associated with (10). Since, for each j C Z, the set {¢j,k(X) = 
2J/2¢(2Jx -- k), k C Z} is an orthonormal basis for Vj, it follows that the set 

(I) j (x, y) = 2J¢ (2ix - kl) ¢ (2Jy - k2) hi, k2 e Z, (14) kl~k2 

is an orthonormal basis for Vj. For each j E Z, denote by Wj  the orthogonal complement of Vj 
in Vj+I. Then, we have the wavelet spaces Wj  given by 

W j  = (Wj ® Wj) • ( 5  ® Wj) ~ (Wj ® Va.), j e Z, (15) 

where the Wj are the wavelet spaces associated with (10). As a consequence of (15), three basic 
wavelets are required to define the orthogonal complement of V0 in V1, namely, 

' ~ (x ,  Y) = ¢(x)¢(y), (16) 

• "(x, ~) = ¢(x)¢(~), (it) 

• ~(x, ~) = ¢(x)¢(~), (is) 

where the superscripts h, v, and d stand for "horizontal", "vertical", and "diagonal", respectively. 
It then follows that an orthonormal basis for Wy consists of the collection of functions 

{~, /a2 ( x v,~ d,j Z} (19) Y)' I~/kl,]g2 (X, y), ~1]~1,~2 (X, y), kl, ~:2 ~ , 

where 

h,j X (2 ix  kl, 2Jy % , k ~ ( , Y )  = 2J~h -- -- k2) = 2J¢ ( 2 i x -  kl) ¢ (2Jy-  k2), (20) 
v,j %,k2(x' y) = 2J~ v (2ix - kl, 2Jr - k2) = 2J¢ (2ix - ~1) ¢ (2Jy - k2), (21) 

~d,j (.,. = ~l,k~ ~ ,  y) 2J~d (2ix -- kl, 2Jy -- k2) = 2J¢ (2ix -- k~) ¢ (2;y - k~) (22) 

The separable orthonormal wavelet basis of L2(R 2) is the set 

'~kl,k2 [x, y), ~k~,k2 (X, y), ff2kl,k2 (X, y), j, kl, k2 e . 

If the original one-dimensional scaling function ¢(x) and wavelet function ¢(x) have compact 
support in [0, L - 1], then it is clear that '~(x,y) and ff~)'(x,y) (~ = h,v, and d) are compactly 
supported in [0, L - 1] 2. In what follows, we consider compactly supported wavelets. 
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Since ¢(x) and ¢(x) satisfy the refinement equations 

L-I L--I 

¢(x) = v/2 E hk¢(2x - k) and ¢(x) = v~ E g k e ( 2 x  - k), 
k=0 k=0 

where L = 2M and M is the number of vanishing moments of ¢(x), the two-dimensional separable 
scaling and wavelet functions satisfy 

L-1 L-1 
k X (]~kl,k2('Y) = 2 E E hklhk2~(2x- ]~1'2Y-- ]g2), (24) 

kl=0 k2=0 
L--1 L-1 

c~lh(z,y) = 2 E E hklglv2~h(2x-- k l ' 2 y - -  k2)' (25) 
kl=0 k~=0 
L-1 L--1 

¢~(~,~) = 2 ~ ~ 9 k l h ~ ( 2 ~ -  k~,2y- k~), (26) 
kl=0 k2=0 
L--1 L--1 

¢%,y) = 2 ~ ~ g ~ g k ~ ( 2 ~ -  k~,2y- k~), (27) 
kl=0 k2=0 

and for each j ,  k l , k2  E Z,  A = h , v ,d ,  we have 

L-1 

1~)~1,k2 (x 'y)  ~- E 
m l  ~m2 = 0  

L--1 
~ , j  

kl,ks(x,Y) = E 
hilum2=0 

H m  m ~j+l X 1, ~ .~a+2kl . ~ + 2 k ~ (  Y), 

G ~ ~j+l ml,m2 rnl+2kl,rn2+2k2 (X' Y)' 

(28) 

(29) 

where Hi,j = hihj ,  Gh~,3 = higj,  Gv~,~. = gihj ,  and Gd.~,j = gigj. 
Now, let us consider the approximation of a function f ( x ,  y) in the multiresolution spaces. 

As mentioned earlier, approximation of functions f ( x ,  y) E L2(R 2) is performed by appropriate 
projections onto the spaces Vj of the multiresolution analysis. 

For f C L2(R2), the approximation of f ( x ,  y) in Vj is given by its orthogonal projection 
onto Vj, 

(Sf)(x,y) = ~ 5 J skl,k2g2kl,k2 (x, y),  (30) 
kl,k2 

where the "averages" s j ka,k2 are given by 

/?f? sJ kl ,k~ = ( f , ~J kl,k~ } = = • f ( x,  Y ) ~Jkl ,k~ ( x, y ) dx  dy • (31) 

Since Wj is composed of three orthogonal subspaces (see (15)), 

w~ = w~ • w~ ® w] ,  

with 
w ~ = ~ e w j ,  w~ = wj e ~ ,  w~  = wj e wj,  

the orthogonal projection, Qj, onto Wj is the sum of the orthogonal projections onto each one 
of W h, W~, and W d, namely, 

Qj = Q) + Q~ + QJ. (32) 
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The orthogonal projection of f(x, y) onto Wj can then be written as 

(Qjf)(x, y) = (Qhf) (x, y) + (Q;f) (x, y) + (Qdf) (x, y) 

kl,k2 kl ,k2 kl,k2 

where the coefficients "4h'j " ,]d,j  ~kl,k~, d~,k:, and ~k~,k~ are the horizontal, vertical, and diagonal "details", 
respectively, and~ for A = v, h, d, are given by 

/_// f (x, y)fZ2;~k~ (x, y) dx dy. (33) 

The coefficients d xJ ( , / =  h, v, d) contain the information (details) to go from an approximation 
resolution (j) to a higher approximation resolution (j + 1). 

Since Vj-1 ® W~_~ = Vj, it is easy to see that the averages s ~-1 and the details d a,j-1 
(A = h, v, d) at resolution j - 1 are obtained from the averages sJ at resolution j by means of 

L-I L-I 

s~,~2'- E E sJ (34) ~-- H m l  ,rnz ml  + 2kl ,m2+2k2 ~ 
rr~l wO m 2 = 0  

L- -1  L - 1  

dj-l,x = G m l , m  2 rnl~..2kl~m2~2k 2 ' 
ml=O rn2=O 

The reconstruction of sJkl,k2 from sJl-~ 2 and the details d h'j-lkl,k2 , ~kl,k~'~v'J-1, and ~kl,k2"~d'j-1 are given by 

M - 1  

2kl  ,2k2 
~ 1  ~m2 = 0  

M - 1  

2ml ,2 rn2  kl ~ 'n l , k2-rn2  ' 
k=h,v,d m l  ~ 2 = 0  

3//1 

m l ~ m 2 = 0  

M - 1  

+ Z (37) 
)~=h~v~d r n l , m 2 = O  

M - 1  

m l ~ m 2 = 0  

M - 1  

2m1,2m2-}-i  kt--rnl,k2--m2 
.X=h,%d rnt,m2=O 

M - I  

SJk~ + l,2k2 E j--1 = H2ml + l , 2 r n 2  Ski - m l  ~]e 2 - m 2  
m l  ~rl~2 ~ 0  

M - I  

A=h,v ,d  ml~m2=O 

3.  T H E  S T A N D A R D  A N D  N O N S T A N D A R D  F O R M S  

In this section, we discuss the standard and nonstandard forms of the representation of a linear 
operator as was defined by Beylkin [18] (see also [19]) in a two-dimensionM compactly-supported 
wavelet basis. 



1018 M.A. HAJJI et al. 

The representation of an operator T in wavelet bases is a set of operators acting on the mul- 
tiresolution spaces. The representation can be in standard or nonstandard form, terms which 
will be defined in this section. If the multiresolution spaces are finite dimensional, then these 
operators are represented by finite-dimensional matrices. 

We start by defining the standard and nonstandard forms of the representation of a general 
linear operator T. To this end, consider a multiresolution analysis 

{0} C " ' '  C V - 2  C V - 1  C Vo C V l  C V2 C "'" C R 2, (40) 

in L2(R 2) generating an orthonormal wavelet basis. Let Wj ,  j E Z, be the orthogonal com- 
plement of Vj  in Vj+I  (Vj • W j  = Vj+I) ,  and let Pj and Qj be the orthogonal projections 
onto Vj  and W j ,  respectively. The standard form of T in (40) is defined as the set of operators 

where 

Aj = QjTQ5 : Wj  ~ Wj ,  

= QjTQj ,  : w y  w j ,  

= Q y T Q j  : w j  - .  w j ,  

The nonstandard form of T is defined as the set of operators 

T = { A j , B j , C j } j e z ,  

where 

(42) 

(4a) 
(44) 

(45) 

Aj = QjTQj  : W j  ~ Wj,  (46) 

Bj = QjTPj  : V j  --~ W j ,  (47) 

c j  = P j T Q j :  Wj Vj (4S) 

As we can see, the difference between the standard and nonstandard forms is that  the standard 
form consists of operators mapping detail spaces onto detail spaces, whereas the nonstandard form 
consists of three types of operators: 

• Aj maps detail spaces onto detail spaces, 
• Bj maps approximation spaces onto detail spaces, 
• Cj maps detail spaces onto approximation spaces. 

In numerical schemes, one considers a finest space Vn and a coarsest space V~_j ,  where d is 
the depth of the multiresolution analysis, that is, we consider a "truncated" version of (40), 

V n - - J  C V n - J + l  C "'" C V n - 1  C Vn.  (49) 

The standard form of T in (49) is then given by the set of operators 

I. ) J j  . . . .  J ' ~  ' J j  . . . .  j , E n - g ,  n - j , T n - J  , (50) 
)n - -J~ j~n- -1  

where d j ,  B;,, and C jj, are as in (42)-(44), and 

EJn_j = Q j T P n - j  : V n - j  --+ W j ,  

FJ_ j  = P~ _ j T Qj  : Wy --~ V,~_j, 

T~_j = P,~_jTP,~_j : V,~_j ~ V n _ j ,  
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and the nonstandard form of T in (49) is given by the set of operators 

T~ = {{&, By, Cj}~_j<y_<~_l, r~_:}, 

where Ay, By, and Cy are as in (46)-(48), and 

Tn_ J = P~_jTP~_j  : V~_j  -+ V , _ j .  (51) 

As a final note in this section, we see that the representation of a linear operator T in a finite 
multiresolution analysis is an expansion in the multiresolution spaces of the approximation of the 
operator T by Tn = PnTP~ (an operator mapping V~ onto itself). Depending upon how T~ is 
expanded down the multiresolution, we obtain either the standard or nonstandard form of the 
representation. In the remainder of this paper, we shall be concerned with the nonstandard form 
of the representation, and the construction of the matrix representation. 

4. T H E  M A T R I X  R E P R E S E N T A T I O N  

In this section, we derive the matrix representation of the general linear operator T in a 
finite multiresolution analysis. The results of this section will be used in the next two sections 
to construct the matrices representing the differential operators 0z, Oy, and, in general, T = 
g(Ox, coy), where g is analytic. 

Recall that the nonstandard form of T in a finite multiresolution analysis is the set of operators 

{{Ay, By, C j } n - J < j < n - 1 ,  T n - J } ,  (52) 

where Ay = QyTQy, By = PyTQj, Cy = QyTPy, and T,~_j = Pn-jTP,~-a.  Since Wj  = 
W )  @ W~ ® W],  the orthogonal projection Qy onto Wj  is the sum of the three orthogonal 
projections Qh Q~, and Q~ onto W h, W ' ,  and W d, respectively, i.e., 

Qj = Q) + Q; + Q]. (5a) 

As a result of (53), the operators Ay, By, and Cj in (52) are given by the sums 

A y =  _ ,  = E (54) 
)hM=h,v,d .,k,.X~=h,v,d 

sy_- E E QFPy, (55) 
A=h,v,d X=h,v,d 

cy= E c2= E ,yre). (56) 
A=h,v,d A=h,v,d 

The nonstandard form of T is then rewritten as the set of operators 

' J '  Y Jn-J<j<n-1;A, ,V=h,v ,d 'Tn-J  ' (57) 

where 

A~ '~' : W ) '  : ~ W ~ ,  A, ,V = h, v, d, 

B~ :V j  : ~  W~, ,X = h, v, d, 

: vy ,  

In the construction of the matrix representation, we use [0, 1]2-periodic wavelets [5] (see also [23] 
for more details). The subspaees Vj and Wy are finite dimensional. The dimension of Vy is 22y 
with orthonormal doubly-indexed basis 

{~Jl,k~' kl, k2 = 0, 1 , 2 , . . . , 2  j - 1},  
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whereas the dimension of W j  is 3 x 2 2j (three t imes as large!) with or thonormal  doubly-indexed 
basis 

{ff'A'J } ~k~,k2, )~ = h,v,d;  kl ,k2 = 0 , 1 , 2 , . . . , 2  j - 1 . 

Each one of the operators  in (57) acts on a finite dimensional subspace of L2(R ~) with doubly- 
indexed basis elements (4~k~,k ~ for Vj  and O3k~,k~ for W j ) .  Of course, they can be represented 
by ordinary matrices if the basis with doubly-indexed elements is converted into a basis with 
singly-indexed elements, by reordering. However, it is best  to work with the original basis, and 
to represent the operators  by four-dimensional structures. 

In order to see how the four-dimensional structures come about,  consider a function f .  The 
action of, for example, T3 = PjTPj ,  on f gives 

(T j f ) (x ,  y) = P j T P j ( f )  = 5 . T  

2J--i 

- -E  ha,k4 =0 
2J-1 

2J--1 
sJ eJ kl,k2 kl,k2 

kl ,k2-=O 

k kl,k2=0[ 2~1 /~J3,k4'r(~Jkl,k2)>SJkl,ke] ~jk3,k4(x'y) 

-= E -J J sk~,k~k~,k~ (z, Y), 
ka ,k4 =O 

(58) 

where s j J kl,k~ = {f, ~k~,k2) are the coordinates of P j f ,  the projection of f onto Vj ,  and 

27--1 
~J = 

ka,k4 E 
kl,k2=O 

~j (59) 

are the coordinates of T j ( f )  in Vj .  Define the structure TJ to be the 2J x 2 j block matr ix  with 
matr ix  entries T j,k3,k4 (k3, ka = 0, 1 , . . . ,  2 j - 1), 

TJ = 

T/,0,0 TJ,0,1 ... T£0,2J-1 
TJ'I'°. TJ'I'I. ...".. TJ,I,2~-I: 

kTJ,2~-l,0 Tj,2J-I,1 . . .  T j , 2 J - l , 2 ~ - 1  

(60) 

with the entries of each matr ix  T j,ka,k4 given by 

q,j,k3,k4kl,ks ( ka,k4, T ( k t , k 2 )  } , k l ,k2 = 0,1, . . .  ,2 j -  1. 

Then, the action of Tj o n  f is represented by an operation of the structure T j on the matr ix  
8J 8 j = (kl,k~), given in terms of the following. 

Given a k x k block matr ix  F with m x m blocks F i,j and an m x m matr ix  A, define the 
operation 

P ® A = B ,  

where B is k x k with entries b~j given by 

k,l 

and F i,j oA is the Hadamard  (element by element) product  of F i,j and A, i.e., (F i,j oA)kt = F~'~ Akl. 
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In terms of the above, the matrix ~J of Tj (f)  in V j  is given by 

~J = TJ (9 s j . 

x,x' B~,  C~, and T~ are represented by structures A j,x,x', B y,h, C j,x, All the operators Ai  , 
and T j, the entries of whose  blocks are given by 

A3,A,A ,k3,k4 
"Xkl ,k2  ~--- k4 x , y  

oo oo 

k~,k2 ~4 (x, y )T  

/?f? ~,,~J'X'~3'~" = • ~,~,(x, y )T  
0o o(3 

, (X, U) ay, (61) 

= (x, y) dx dy. (64) ,rj,k~,k4 ~Jk3,k~ (x, y)T h ,k2 ~ k l ~ 2  oO 

We remark that, because the wavelets are periodic, the structures discussed above are consid- 
ered to be periodic. More precisely, if S is an m x m structure with m x m blocks pi , j  (0 < i , j  < 

"" lDi,j i,j rn - 1), then S is said to be m-periodic if pi+.~,j = p<j ,  pi , j+m = p*,3, ~ k l + m , k 2  : Pkl,k2' and 
i,j i,j Pk~,k2+m = Pk~,k2 for all i, j ,  kl ,  k2 (0 < i , j ,  kl, k2 ~ m - 1). 

Using equations (28) and (29), we find that all the structures A jA,;c, B y,x, C j,x, and T j 
(n - J < j < n - 1) are obtained from the structure T" recursively by means  of the formulae 

L--1  

AS,X,x',k.,k. Gx' {2x TJ+l,ms+2ka,m4+2k4 (65) 
kl,k2 = E rr~l,m2 ~ma,m4 mlT2kl,~Zz-]-2k2 ' 

ml,m2~rrt3~m4=O 

L-1 
BJ,X,ka,k. H G x T i+l'm3+2k3'm4+2k" (66) 

k l  ,k2 =- E m l  ,m2 m31~9%4 m l ' ~ 2 k i  ,rn2-[-2k2 ' 
ml~m2,r~s~m4=O 

L--1 
Ck j'x'k3'k4 = G x I f  T j+l'ma+2kz'm4+2k4 (67) 

1,k2 E ml,m2 m3,m4 ml+2kl,m2+2k2 ' 
ml ~m2 ~ 3  ~m4-~O 

L - 1  
TkJ, ka,ka = 

m l  ~ m 2  ~ 3  ~m4~0 

Therefore, if we have the structure of T~ in V m all the lower scale structures are determined. 
The application of an operator T to a function f is approximated by the sum of the applications 

. ~k X' 
of the operaxors ~ j  ' , B ~  , C~ , n -  J < j ~ n - l ,  A, A' = h, v, d, and  T n -  g (or, equivalently, by the 
application of the operator T~ to f ) .  First, the function is approximated by its projection Pnf  
onto V~  to obtain the coordinates of P,~f in V ~  as a 2 n x 2 n matrix s n. The matrix s ~ is 
decomposed down the multiresolution spaces, using equations (34) and (35), recursively, to arrive 
at the matrices d h'j, d v'j, d d'j, and sJ for j = n - J , . . . ,  n - 1. Finally, the structures A j,x,x', 
B y,h, C j,x, n - J < j <_ n - 1, and T ~ - J  are constructed. The approximation T ( f )  ~ T,~(f) is 
then given by 

7X,j X j 
T~(f ) (x ,y )  = E dk3,k, gk'~,k,(x'Y) 

j=n--J  X ,d \ k 3 , k 4 = O  

where d x,j, A = h,v ,d ,  and gJ axe given by 

2J--I ] 
+ , (69) 

k3 ,k4~O 

~h,j : AJ,h,h @ dh,J 4- A j'v'h @ d v'j 4- A j'd'h @ d d'j 4- B j'h @ s j ,  

~v,j  = AJ,h,v @ dh,J 4- A J . . . .  (9 d v'j 4- A j'd'v @ d d'j 4- B j'v @ s j ,  

dd,J = AJ,h, d @ d h,j + g j,v,d @ d v,j 4- A j,d,d @ d d,j 4- B j,d @ s j ,  

sJ ~--- C j 'h  @ d h'y 4- C y'v @ d v'j 4- C j 'd @ d d'j, for n - J + 1 < j < n - 1, 

~n--d = C n - J , h  @ d h , n - J  4- C n - J , v  @ d v , n - J  4- cn--g ,d  @ dd,n--J 4- T n - J  @ Sn--J. 
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The function y = T~(f)  in (69) can then be reconstructed back to  the  finest space Vn,  i.e., 

expressed as 
2 ~ - - 1  2 ~ _ 1  

k~,k~ ~ k ~ , k ~  , ~)' (70) 
k l = 0  k 2 = 0  

This is accomplished by using the inverse of the decomposit ion procedure to obta in  the coordinate 
matr ix  s n = s n ( k~,k2)" The procedure of constructing s n is as follows. Given the matrices dJ,~ 

and ~J, for n - Y <__ j < n - 1, )~ = h,v, d, we s tar t  at  the coarsest scale (n - J )  and reconstruct  
~ , n - J  (,k = h, v, d) and ~n-J into a mat r ix  ~ - J + l  using (36)-(39), and form the sum s ~-J+l = 
~n-y+l + ~ - J + l .  Then,  at  each scale j = n - J + 1, n - Y + 2 , . . . ,  n - 1, we reconstruct  d~,J 

and sJ(= ~J + ~J) into ~j+l and form the sum s J+l = ~j+l + ~j+l.  The final reconstruct ion (at 

scale n - 1) of s ~-1 and d~,~-I  gives the  coordinate mat r ix  s ~ in (70). 

From equations (65)-(68), we see tha t  the structures of A j';~,;~', B j';~, C j,~, and T j for n - Y 

j <_ n - 1, and hence the  mat r ix  representat ion of the  nons tandard  form of a linear operator  T, 

are completely determined by the construction of the  s t ructure  T ~, the  ma t r ix  representat ion 

of T~ in V~. We therefore tu rn  to the  construct ion of T ~ for the  cases T = 0~, T = 0u, and 

T = g(O~, Or). In Section 5, we consider 0~ and Oy and then, in Section 6, we consider the general 

differential opera tor  L = 9(0~, Or). 

5. T H E  M A T R I X  R E P R E S E N T A T I O N  
OF T H E  N S - F O R M S  OF 0x A N D  C~y 

For T = 0x, equation (64) with j = n gives 

r~n , k3 , k4  n 

oo oo 

f . / ?  o 
= ¢~,k, (x)¢~,k4 (Y) ~xx [¢~,k~ (x)¢~,k2 (Y)] dx dy 

OC OC 

: [ / 2  [ / 2  
Since ¢~,k is an or thonormal  basis, 

/_ ~ Cn,k2 (Y)¢~,k4(Y) = 5k2,k4. dy 
oo 

As for the  z-integral ,  we have 

/? o 

w h e r e  

F ~ = ¢ ( ~  - O ¢ ' ( x )  e~:. (71) 
O(3 

Thus, rY'n'ka'k4 ~k~,k2 =- 2nrk3_k16k2,k4, and therefore, the block mat r ix  T '~ is completely determined by 

the coefficients rl for which we have the following proposi t ion (see [18]). 

PROPOSITION 1. f f  integral (71) exists, then the coefficients rz satisfy the following system of 
linear equations; 

L/2 
rz = 2r2z + ~ a2k-l(r21-2k+l q-r2z+2k-1), (72) 

k = l  

with 
~ ,  lrl ---- --1, (73) 
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where  the  coet~ieients an ( the  autocorrelat ion o f  the f i l ter coeff icients hk ) are given by 

L-l-n 

a ~ =  2 E hihi+l ,  n = 1 , 2 , . . . , L - 1 .  (74) 
i=0 

The proof of this proposition can be found in [18]. I t  is also proved in [18] tha t  if the number 
of vanishing moments  M of the mother  wavelet ¢(x)  satisfies M > 2, (72) and (73) have a unique 
solution with rl ~ 0 for - L + 2  < l < L - 2 ,  and r - t  = - r t .  Note tha t  the range of the nonzero rz 
is easy to see, since the scaling function ¢(x) is supported in [0, L - 1]. For an efficient method 
of solution for the coefficients rt, see [23]. 

With  a minor change in notat ion in (60), the block matr ix  T n (=  T ~ for T = 0~) becomes 

= 

X1,1 X1 ,  2 . . .  X 1 , 2 n - 1  X 1 , 2 "  

X2,1 X2,2 . . .  X2,2"-1 X2,2" 
: : : : . . .  

X 2 " - 1 , 1  X 2 ~ - 1 , 2  . . .  X 2 " - 1 , 2 " - 1  X 2 " - 1 , 2  n 

X2~,1 X ~ , 2  . . .  X2",2"-1 X2-,2" 

( 7 5 )  

where yk~,/~4 = Tn,k3,k4 "~kl,k2 kl,k2 ~ 2nrk3-kl(~k2,k4" 
nonzero column, the k~ h column. Explicitly, 

It then follows that each X k3,k4 contains only one 

xka'k4 I 2nrka'kl~ 
k~,k2 = O, 

The nonzero column of X 1,1 is given by 

if k2 = k4, 

otherwise. 

c = 2 n (0, r _ l , r - 2 , . . . , r _ ( L _ 2 ) , 0 , . . . , 0 ,  r L - 2 , . . . , r 0  t , 

from which all the matrices X ks,k4 are obtained by means of the formulae 

X k3,k4+l = FSRWR (X k~'k4) , k4 = 1, 2 , . . . ,  2 ~ - 1, 

X k3+l'k4 = F S C W R  ( X  k~'k~) , k3 -- 1, 2 , . . . ,  2 ~ - 1, 

where FSRWR and F S C W R  stand for forward-shift-row-wraparound and forward-shift-column- 
wraparound,  defined by the following: for 

A = ( 6 1  62 .-.  6~) ,  F S R W R ( A ) = ( 6 n  61 . . .  

and for 

A = , FSCWR(A)  = , 

 oi_1 
where 6i is the ith column of A, and ~ is the j th  row. 

For T = Oy, we obtain, in an analogous fashion, 

Tkn,ka,k4 n 1,1v 2 : 2 rk4_k2~kl,k s. 

As in (75), we obtain 

i y1,1 y1,2 . . .  y l , e ~ - i  y1,2  ~ 
y2,1 y2,2 . . .  y2,2~-1 y2,2 ~ 

: : . . .  " " 

y2~-1,1 y2~-1,2 . . .  y2~-1,2~-1 y2~-1,~ ,~ 

L Y2~'1 Y2~'2 "'" Y 2 ~ ' 2 ~ - 1  Y2~'2~ 

, (76)  



1024 M.A. HAJJI et al. 

where each yk3,k4 is a 2 ~ × 2 ~ matrix equal to the transpose of X k3,k4 in (75). Thus, each yk3,k4 
contains only one nonzero row (the k~ h row) 

ykk3,k ~ { 2~rk~_;¢2, if kl : k3, 

~,k2 = 0, otherwise. 

The nonzero row of y1,1 is 

r = 2  n ( 0 , r _ l , r _ 2 , . . . , r _ ( L _ 2 ) , 0 , . . . , 0 , r L _ 2 , . . . , r l ) ,  

from which all the matrices yk~,k4 are obtained by means of the formulae 

yks,k4+l -= FSRWR (yk3,k4), 

yk~+l,k4 _-- FSCWR (yk~,k4), 

ks = 1 , 2 , . . . , 2  n - 1, 

k3 : 1 , 2 , . . . , 2  n - 1. 

6. T H E  M A T R I X  R E P R E S E N T A T I O N  

O F  T H E  N S - F O R M  O F  g(Ox, Oy) 

We now consider the general case where T = g(O~, Oy). In order to obtain the matrix represen- 
tation of T = g(O~, Oy) in V~, we represent (approximate) the operator g(O~, Oy) in V~ in such 
a way that  its matrix representation can be obtained from the matrix representations of P~O~P~ 
and P~OyPn. 

We should mention that there are two approaches to representing T = g(O~, Oy) in V~: 

(i) by computing the projection of (0~, 0v) onto V~, 

Tn ~- P,~g(O~, Oy)P~, (77) 

or, in contrast, 
(ii) by computing the function of the projections of Ox and 0y onto Vn, 

T~ = g(T~,~, Tn,~), (78) 

where T,,~ = P,O~P~ and Tn,y = P~OyP,. 

Thus, Tn in (78) is no longer a projection, but a different representation of T = g(O~, Oy) in Vn. 
The difference between these two approaches depends upon ]¢(~)[2, the magnitude of the Fourier 
transform of the scaling function ¢ (see [20]). We adopt the second approach and represent 
T = g(O~, Oy) in Vn by (78). 

If we denote by X and Y the matrix representations of P,  OxP,~ and P,  OyP,, respectively, then 
the matrix representation, T ", of T,~ = g(Ox, Oy) is obtained by applying the function g to X 
and Y, i.e., 

T ~ = g(X, Y). 

Now, if we simultaneously diagonalize X and Y and write 

X = P-1D~P, Y = P-1DvP, 

where P is a diagonalizing matrix for both X and Y and D~ and Dy are diagonal matrices 
containing the eigenvalues of X and Y, respectively, then, since g is analytic, we obtain 

T~ = g(X, Y) = P-lg(D~, Dy)P. 

Therefore, the problem reduces to simultaneously diagonalizing X and Y. 
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To this end, i t  is necessary to restructure the  s tructures  T~ and Ty into ord inary  matrices X 

and Y, respectively, and to express the  ® operat ion,  described in Section 4, in terms of ordinary 

mat r ix  mult ipl icat ion.  Express s ~ = (si j)  as the  column vector 

/ ) 
where ~ is the  i th row of S n. From the mat r ix  T 2 = (Xi,J),  1 _< i , j  _< 2' ~, construct  the new 

~i,j denote the  k th row of the  mat r ix  X i'j. Then, the first 2 2~ x 2 2~ mat r ix  X as follows. Let  r k 

row of X consists of 
( ~-,1,1 ~-.1,1 

the second row consists of 

the (2 ~ + 1) th row is 

• .. ~21n~l ) , 

• .. K~'2 ) ,  

. . .  fi*2,1 ) , 

that is, 

D E F I N I T I O N  2.  

where 

Ci+l,j+l =Ci , j ,  Ci,l =Ci_l ,n ,  fori=2,3,...,n. 

The Fourier matrix F of  order  N (or of  size ( N  x N ) )  is the matrix with entries 

1 LlT_(k_1)( l_1)  
F k , l = ~ , , N  , l < k , l < N ,  

W N ~ e27ri/N. 

The inverse Fourier matrix F* of order N is the adjoint (the conjugate transpose) of  F ( F F *  = 

F * F  = I) ,  with entries 

1 l/v(k_l)(l_l) 
lz~,l = - ~ , ,  N , l < k , l  < N. 

We have the following proposi t ion concerning the eigenvalues of a circulant  matr ix .  

and so on, with the  last row of X given by 

r 1 . . .  

In other words, the mat r ix  X is formed by laying out  the rows of X 1'1 next  to one another  to 

compose the first row of X,  laying out  the  rows of X 1,2 next  to one another  to compose the 

second row, and so on. The result of such a res t ructur ing is t ha t  the  action of T~ on s"  is now 

given simply by the matr ix-vector  mult ipl icat ion 

T n ® s  ~ ~ X ~ .  

Similarly, 

where Y is obta ined from T~ via the same procedure.  The symbol  ,-~ indicates tha t  the  operat ion 
on the lef t-hand side is equivalent to the  one on the right,  the  vector  on the right being a 

res t ructur ing of the mat r ix  on the left. 

At  this point,  we need to recall a few definitions. 

DEFINITION 1. A square matrix n × n is circulant K i t  is of  the form 

en Cl "'" Ca-1 
C = c i r c ( e l , c 2 , . . . , e n )  = . . , 

C3 • " " C1 
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PROPOSITION 2. Let C = c i r c  (Cl, c2 , . . . ,  eN) be a circulant matrix. Then, the eigenvalues of C 
are given explicitly by 

N 

Ak = E ete 2~i@-l)(l-1)/N, 1 < k < N. (79) 
l = l  

REMARK 1. The row vector ()u, A2,.. . ,  ),N) containing the eigenvalues of a eirculant matrix 
C = circ (cl, e2 , . . . ,  cg) is given by the vector-matrix product 

()u, 1 2 , . . . ,  IN) = v ~ ( c l ,  c 2 , . . . ,  c~)F* ,  

where F* is the inverse Fourier matrix of order N. 

It is now necessary to diagonalize X and Y simultaneously. Since, the operators 0z and Oy 
commute, their representations X and Y ought to be commuting matrices, and this can be 
deduced from the structures of X and Y, to which we now turn. The matrix X turns out to have 
the following structure: 

I )~1'1 -~1'2 ' '"  )~1'2~ ] _  
X 

L.~2~,1 X2~,2 . . .  2 ~ , 2  ~ 

where each •i,j is circulant and X is block circulant, i.e., X = bccb ()~1,1...X1,2~), where 
"bccb" stands for block circulant with cireulant blocks (see, e.g., [24]). The matrix Y has 
the same structure, Y = (Y~,J), with each ]7-i,j circulant and Y block circulant, with Y = 
bccb (~1,1...~1,2~). Since every ~-i,j commutes with every ~k,t (being circulant matrices of 
the same size), it follows that X and Y commute [24, p. 128], as expected, and are therefore 
simultaneously diagonalizable. 

To this end, we employ the following. 

DEFINITION 3. Let A = (a~j) and B = (b~j) be m × n and p x q, respectively. Then, the Kronecker 
product (or tensor, or direct) product of A and B is the m n ×  pq matr/x C defined by 

a l lB  a12B . "  a l i B I  
A ® B = C =  " " " . 

a~ lB  am2B "" am~BJ 

A bccb matrix M is said to be of type (m, n) if M is m × m and the blocks are n x n. In terms 
of these notions, we have (see, e.g., [24, p. 128]) the following result. 

THEOREM 1. All bccb matrices of type (m, n) are simultaneously diagonalizable by the unitary 
matrix F,~ ® F~, where F~ is the Fourier matrix of order n. I f  the eigenvalues of the circulant 
blocks are given by the diagonal matrices Ak, k = 1,2, . . .  ,m, the mn × m n  diagonal matrix A 
of the eigenvalues of the bceb matrix is given by 

A = ~ a ~  -~ ® A~, (s0) 
k = l  

where f~m is the m x m diagonal matrix given by 

a n  = diag (1, W L .  

Conversely, any matrix of the form 

W r n  ~ e 27ri/m. 

A = (S~ ® F~) A(F~ ® F~), 

where A is diagonal, is bccb. 
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We employ the above theorem to diagonalize X = (j~i,y) and Y = (f'~,J) simultaneously. 
Let A *'k, A y,k be the diagonal matrices containing the eigenvalues of )?l,k and ~t ,k ,  respectively, 
for k = 1, 2 , . . . ,  2% Then, we have 

x = (,;;~ ® F2*o)a ~ (F> ®&~) ,  

V = (F2*~ ® F~\) A y (F2~ ® F2~), 

2 ~ 
A S X-" f tk-1 = z _ .  2~ ® i~'k, (81) 

k=l 
2 ~ 

AY = E ak2:l  @ AY'k" (82) 
k=l 

It  follows tha t  the matr ix  representation T ~ (in bccb form) for T = g(Ox, Oy) is given by 

T~= (F;~ e F;~)g(A~,A ~) (&o ®F>), (sa) 

where g(A ~, A y) _= A is the 2 2~ x 2 2n diagonal matrix with entries given by 

Ak k = g (A~,k,A y ) , k,k " 

By Theorem 1, T n is block eirculant with circulant blocks, so it is completely determined by its 
first row. Let 

be the first row of T n, where each ~'k is a row vector of length 2% Let /~  be the 2 ~ x 2 '~ matr ix  
containing the eigenvaiues A<k, k = 1 , . . . ,  22n, 

i2 
= , (84) 

with 

/~k = (Aj+I , j+I ,  Aj+2 , j+2 , . . .  ' Aj+2n j+2 , )  , j = ( k  - 1)2 '~. 

By equation (83), we have 

1 

Next, we wish to place the matr ix  T n (presently in bccb form) into a s tructure form so that  
it acts by the operation ® defined earlier. This is accomplished by the exact inverse of the 
procedure, described earlier, for obtaining the bccb form. Then, the structure T n, that  is, 
the representation of Tn = g(Ox, Oy) in V~, has the same form as those for COx and Oy, with 
T ''ka'k4+l = F S R W R ( T  ~'k3'k4) for 1 _< k4 _< 2 ~ - 1 and T n,k3+l,k4 = F S C W R ( T  ~,k3,k4) for 
1 _< ka _< 2n' - 1. Therefore, all the matrices T n,ka,k4 are obtained from T ",1,1 by applications of 
the functions FSRWR and FSCWR.  Finally, the matr ix  T n'l,1 is given by 

rn , l ,1  =- ~'2. , (86) 

r~ 

where the ~'k are as in (85). From equation (85), we have 

1 1 X 2 
/7 k = ~---~ ~ (1, W2-~ ( k - 1 ) , w ; 2 ( k - i ) , . . . , w 2  ~(2~-1)(k-1)) F2~. 

x i. 
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Since 
1 (1, w2(k_l )  w22(k_l)  . W2, (2~_l)(k_l)) 

is the k th r o w  of the Fourier matr ix  F ~  (of order 2~), it follows tha t  

T ~'~'~ = ~F~F~o. 
The first block, T ~'1,i, of the structure T ~ for T = g(O~, 09) can be expressed in terms of the 

first blocks, T~ ,~,~ and T~ ,1,1, of the structures T~ and T~ for T = 0~, and T = 09, respectively. 
To this end, we proceed as follows. Reshape the 22~ x 2 ~ diagonal matrices A ~ and A ~ (in 
equations (81) and (82)) into two 2 ~ × 2 n matrices .~z and / ~ ,  by the same procedure for 
obtaining the matr ix  A in (84) from the diagonal matr ix  A = g(A~, A~). A careful examination 
of the expressions for A S and A ~ shows tha t  

[ A zJ  

n * [ Az'2 

|I.A~',:~ 

[ A y'I 

A~ = v~ZF~° / A~'~ 

LA~,~ ~ 

where A ~,k and A v,k are now row vectors containing the eigenvalues of the circulant blocks )~1,k 

and ]~1,k respectively. Each of the rows A z,k and A y,k is given by the product of the first rows 

of the blocks )~l,k and ]~1,k and the matrix vf~F~, respectively (see Remark I), Since the first 
row of )~1,k is the k th row of T~ n,I,1 and the first row of ~1,k is the k th row of T~ ,1,1, it follows 

that 

£= = ¢YzF~.T: ,~ , I~F; .  = 2"F~.T;,I,1F~o, 

The matrix/~ in (84) is therefore given by 

where g is applied element-wise. Finally, the matr ix  T n,1,1 for g(O~, 09) can be expressed in terms 
of T2 ,1,1 and T~ ,1,1 as follows: 

Tn,1,1 1 F 2 . g  (T'F~.T2,1,1p~. o ~ *  ~ , ,1 ,1~ .  = ,~ ~ 2 ~ y  ~2- jF2~.  (87) 

Note tha t  if g(O:~, 09) = Ox, i.e., T = 0~, then the above formula gives 

Tn, l,1 1 {Only. T n ,  l,1 ]~ . = ~-~F2~ ~.~ = 2~ ~ ~ 2~] F2,, = IT~ ' l ' l I  = T n'1'1 X 

Similarly, if g(Ox, c3y) = Oy, i.e., T = 09, equation (87) gives T ",1,1 = T~ ',1,1, as as expected. 
expected. 

REMARK 2. We remark that ,  by construction, the matr ix  T n,1,1 for g(Ox, Oy) is real. Therefore, 
one should take the real par t  of the result to suppress any unnecessary imaginary parts due to 
numerical fluctuations. 

There are special cases of the function g(Oz, 09) worth considering. First, we note tha t  if g is 
a function of 0~ only, i.e., g(O~, 09) = g(O~), then the first block, T n,1,1, given by (87), has only 
the first column as nonzero. Similarly, if g is a function of 09 only, i.e., g(O~, Oy) --- g(Oy), then 
the first block, T ~,1,1, has only the first row as nonzero. Also, the first blocks of all the structures 
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A j'x3, , B j':~, C j'x, and T j, for n -  J ~ j < n -  1 and A = h,v ,d ,  will have only the first column 
or the first row as nonzero. 

As a consequence of the above, it follows that  in cases T = g(O~) and T = g(Oy), the action of 
the structure T"  of the operators T = g(O~) or T = g(cgy), defined by 

= T ~ ® s ~, 

is equivalent to normal matrix multiplication, that  is, 

= x ~ ,  for T = g(0x) ,  (88) 

= sY,  for T = g(Oy), (89) 

where X is a circulant matrix whose first row is the transpose of the first column of T n'1'1 for 
T = g(O,~), and Y is also a circulant matrix whose first column is the transpose of the first row 
of T ~,1,1 for T = g(Oy). Note that  X multiplies s on the left and Y multiplies s on the right. 

Another special case is when the function g(O~, Oy) is separable, tha t  is, g(Ox, Oy) = g~(O~) x 
g2(Oy). In such cases the first block, T ~,1,1, of the structure representation, T ~, of the operator 
T = g(O~, Oy) is the product  of the first block of T~ and the first block of T~, where T~ and T~ 
are the structure representations of the operators gl (0~) and 92 (0y), respectively. More precisely, 
if X I'1 and yl ,1 are the first blocks of the structures Tff and Ty, respectively, then 

Tn,1,1 = x l , ly1 ,1 .  

But, since X 1,1 has only the first column as nonzero and yl ,1 has only the first row as nonzero, 
the action of the structure T n of the operator T = gl(Ox)g2(Oy) on a coordinate matrix s ~ is 
equivalent to an ordinary matrix multiplication, 

= T '~ ® s ~ = X s E  

where X is a circulant matrix whose first row is the transpose of the first column of X 1'1 and Y 
is also a circulant matrix whose first column is the transpose of the first row of yl ,1.  

The above observations apply to the various structures A j,~,~', B j,£, C j,)', and T j, for n - J < 
j < n -  1 and A = h , v , d .  

The importance of the representation of differential operators in a wavelet multiresolution 
analysis is that,  for some differential operators, although the matrix representation on the finest 
space V~ may be dense, the lower scale matrices are sparse in the sense that  many entries will 
be less than a certain threshold ~. In addition, the wavelet representation of a function will have 
detail coefficients d ~,j smaller than s where the function is smooth and significant coefficients in 
regions where the function has a large gradient. This way, only the significant detail coefficients 
of the function and significant entries in the matrices are used in the computation. 

As an example, consider the differential operator 

T = g(ox, = 

where At is the time step in the numerical solution of evolution partial-differential equations. 
The structure representation, T '~, of T in the finest space V~ is completely determined by the 
first block (top left), T ~,1,1. As mentioned earlier, T ~ may be dense, but  the representation 
(decomposition) of T ~ down the multiresolution spaces gives rise to sparse structures. Figure 1 
shows the entries of T ~,1,1 which are bigger than z, Figures 2 and 3 show the entries of the 
first block of the lower scale structures, A j,~,~', B j,~, C j,~, whose entries are bigger than c, and 
Figure 4 shows the first blocks of the s t r u c t u r e s  A n-J,'x,M , B n-J,~', C n-J,A, and T n-J .  
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The wavelet representations of functions are also sparse. As an example, consider the function 

f ( x ,  y) = cos(27r(x + y)). The scaling coefficients s~l,k2, kl, k2 = 0, 1, 2 , . . . ,  2 n -- 1, of f may 
be approximated by the function samples at the discrete mesh points (xi, yj) = 2-n ( i , j ) ,  i , j  = 
0, 1, 2 , . . . ,  2 n - 1. The resulting matrix,  s ~, is dense, as seen in Figure 5, whose entries bigger 
than  ~ = 10 -6 are shown in grey. However, the wavelet decomposition of this function is sparse 

50 

100 

150 

200 

250 

50 100 150 200 250 

zxt(o~+o~) Figu re  1. En t r i e s  of the  first b lock  •8,1,1 of t he  o p e r a t o r  T = ~ ~ above  
= 10 - 6 .  Daubech ies '  wavele t s  w i t h  M = 6 have  been  used. 

A7,h,h A7,V,h AT,d,h B7,h 

~ ,h,v 

A7,h,d 

~ , h  

AT,V,V 

R 
AT,V,d 

C7,V 

A7,d,v 

A7,d,d 

cT,v 

B7,V 

B7,d 

Figu re  2. En t r i e s  of the  first b lock  of A 7,~','~' , B 7,~', a n d  C 7,;~ above  z ---- 10 -6 .  
Daubech ie s '  wave le t s  w i t h  M -- 6 have  been  used. 
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A6,V,d A6,d,d B6,d 

C6, h c6,V C 6,v 

Daubechies' wavelets with M = 6 have been used. 

A5,h,h 

A5,h,v 

A5,h,d AS,V,d 

A5,V,h A 5,d,h 

I I 
A5,V,V A5,d,v 

A5,d,d 

c5,V C5, h c5,V 

J 

B5,h 

BS,V 

B5,d 
.1 

Figure 4. Entries of the first block of A 5,;'''x', B s,)', and C s,x above ~ = 10 -6.  
Daubechies' wavelets with M = 6 have been used. 

as  s h o w n  in  F i g u r e  6, w h e r e  t h e  w a v e l e t  coe f f i c i en t s ,  d ~,j > s ,  for  A = h,  v, d, a r e  s h o w n  in  gray.  

As  we  c a n  see,  all  o f  t h e  w a v e l e t  coe f f i c i en t s  a t  t h e  lower  s ca l e s  j = 7 a n d  j - -  6 a r e  s m a l l e r  

t h a n  z. O n l y  a t  t h e  c o a r s e s t  level  ( j  - -  5) a r e  t h e r e  s i g n i f i c a n t  w a v e l e t  coe f f i c i en t s .  

Figure 3. Entries of the first block of A 6,~,~'', B s,)', and C 6,;~ above e = 10 -6.  
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2: 
50 100 150 200 250 

Figure 5. Scaling coefficients of the function f (x ,  y) = cos(2~r(x + y)) on the finest 
space Vs. Daubeehies' wavelets with M = 6 have been used. 

d7,h d6,h 

dT,V d6,V 

d7,d d6, d 

d5,h 

dS,V 

dS,d 

Figure 6. The horizontal, vertical, and diagonal wavelet coefficients, d j')' for j = 
7,6,5 of the function f ( x , y )  = cos(2~r(x q- y)). Coefficients above e = 10 -6 are 
shown in gray. Daubechies ~ wavelets with M = 6 have been used. 

7. C O N C L U D I N G  R E M A R K S  

In  t h i s  pape r ,  we h a v e  genera l i zed  t h e  work  done  b y  Bey l k i n  [18] o n  t h e  r e p r e s e n t a t i o n  of 

d i f fe rent ia l  o p e r a t o r s  in  o n e - d i m e n s i o n a l  wave le t  bases  to  t w o - d i m e n s i o n a l  wave le t  bases .  We  

have  used  [0 ,1]2-per iodic  s epa rab l e  D a u b e c h i e s  wave le t s  to  c o n s t r u c t  t h e  m a t r i x  r e p r e s e n t a t i o n .  

T h e  pe r iod i c i t y  p r o p e r t y  of t h e s e  wave le t s  m a d e  i t  poss ib le  to  a r r ive  a t  a c losed fo rm f o r m u l a  for 

t h e  m a t r i x  r e p r e s e n t a t i o n  of  a genera l  d i f fe rent ia l  o p e r a t o r  L = g(O~:, Or) in  t e r m s  of t h e  m a t r i x  
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representations of 0x and Oy. These representations in periodic wavelets are serving as a good tool 

in developing wavelet-based algorithms for solving partial-differential evolution equations subject 

to periodic boundary conditions on the unit square [25]. A future research direction could be to 

consider nonseparable periodic two-dimensional wavelets. Also, one might investigate the use of 

wavelets on the interval or the square. These are currently being investigated by the authors. 
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